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Abstract

This paper is concerned with the collective behavior of a group of n > 1 mobile autonomous
agents, labelled 1 through n, which can all move in the plane. Each agent is able to continuously
track the positions of all other agents currently within its “sensing region” where by an agent’s
sensing region is meant a closed disk of positive radius r centered at the agent’s current posi-
tion. The multi-agent rendezvous problem is to devise “local” control strategies, one for each agent,
which without any active communication between agents, cause all members of the group to even-
tually rendezvous at single unspecified location. This paper describes a family of unsynchronized
strategies for solving the problem. Correctness is established appealing to the concept of “analytic
synchronization.”
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1 Introduction

This paper is concerned with the collective behavior of a group of n > 1 mobile autonomous agents,
labelled 1 through n, which can all move in the plane. Each agent is able to continuously track the
positions of all other agents currently within its “sensing region” where by an agent’s sensing region
is meant a closed disk of positive radius r centered at the agent’s current position. The multi-agent
rendezvous problem is to devise “local” control strategies, one for each agent, which without any
active communication between agents, cause all members of the group to eventually rendezvous at
single unspecified location.

The rendezvous problem, which is also sometimes called a “gathering problem,” has been studied
before assuming that all agents possess either unlimited visibility {e.g., r = ∞} [2], or a common
coordinate system [3] or both. The problem has also been addressed before without making either of
these assumptions [4, 5]. This paper also treats the case which individual agents have limited visibility
and distinct frames of reference. What distinguishes this work from that in [4, 5] is that individual
agents clocks are taken to be unsynchronized. These three features, namely limited sensing, no common
frame of reference, and no common clock, are of obvious practical importance but have apparently
not been dealt with before all at once as components of one multi-agent rendezvous problem.

As in [4, 5], we consider distributed strategies which guide each agent toward rendezvous by
performing a sequence of “stop-and-go” maneuvers. A stop-and-go maneuver takes place within a
time interval consisting of two consecutive sub-intervals. The first, called a sensing period, is an
interval of fixed length during which the agent is stationary. The second, called a maneuvering period,
is an interval of variable length during which the agent moves from its current position to its next
‘way-point’ and again come to rest. Successive way-points for each agent are chosen to be within
rM units of each other where rM is a pre-specified positive distance no larger than r. It is assumed
that there has been chosen for each agent i, a positive number τMi

, called a maneuver time, which is
large enough so that the required maneuver for agent i from any one way-point to the next can be
accomplished in at most τMi

seconds. Since our interest here is exclusively with devising of high level
strategies which dictate when and where agents are to move, we will use point models for agents and
shall not deal with how maneuvers are actually carried out or with how vehicle collisions are to be
avoided.

In the synchronous case treated in [4, 5], the kth maneuvering period of each agent is synchronized
to begin at the same time t̄k as the kth maneuvering period of every other agent. Agent i’s registered
neighbors at the beginning of its kth maneuvering period are taken to be all those other agents
positioned within agent i’s sensing region at the beginning of the period. Because of synchronization,
this notion of a registered neighbor induces a symmetric relation on the agent group in that agent
j is a registered neighbor of agent i at the beginning of maneuvering period k just in case agent
i is a registered neighbor of agent j at the same time. As a result, it is possible to characterize
neighbor relationships at time t̄k with a simple graph whose vertices represent agents and whose edges
represent existing neighbor relationships [5]. Although the neighbor relation is symmetric, it is clearly
not transitive. On the other hand if agent i is at the same position as neighbor j at time t̄k, then
any registered neighbor of agent j at time t̄k certainly must be a registered neighbor of agent i at
the same time. It is precisely because of this weak transitivity property that one can infer a global
condition of the entire synchronized agent group from a local condition of one agent and its neighbors.
In particular, if the graph characterizing neighbor relationships at time t̄k is connected, and any one
agent is at the same position as all of its neighbors, then the weak transitivity property guarantees at
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once that all n agents have rendezvoused at time t̄k.

Our aim in this paper is to relax the synchronization requirement. In particular we will not require
synchronization of the start times of the maneuvering periods of different agents. To accomplish
this it is necessary to modify somewhat what is meant by a registered neighbor of agent i at time
t̄ik where for the asynchronous case under consideration, t̄ik denotes the time at which agent i’s
kth maneuvering period begins. Our definition is guided by considerations discussed above for the
synchronous case. For example, the new definition is crafted to retain versions of the symmetry and
weak transitivity properties of the registered neighbor relation inherent in the synchronous case. Doing
this is challenging, because unlike the synchronous case, the times each agent registers its neighbors
and its neighbors’ positions are not synchronized with the times its neighbors do the same thing.

Exactly the same way-point update rules considered in the synchronous case [5] are adopted for the
asynchronous case. Thus the only functional differences between the two cases are the definitions of
registered neighbors and registered neighbor positions. Of course in the asynchronous case, way-point
updates are computed asynchronously, whereas in the synchronous case they are not.

Not surprisingly, the analysis of the asynchronous version of the problem is considerably more
challenging than that of the synchronous version. For example, while it is more or less obvious in the
synchronous case that the proposed way point update rules cause all agents retain their neighbors as
the system evolves [5], proving that this is also true in the asynchronous case involves a number of
steps.

Just as in the synchronous case, it is possible to characterize neighbor relationships with a graph.
This is done in §3 by first merging together into a single ordered time set the distinct “event times”
t̄ik, i ∈ {1, 2, . . . , n}, k ≥ 1 generated by all n agents. The elements of this set are then relabelled
as t1, t2, · · · in such a way so that tj < tj+1, j ∈ {1, 2, . . .}. With this notation, agent i’s registered
neighbors at its kth event time t̄ik are its registered neighbors at time tPi(k) where Pi(k) denotes
that value of p for which tp = t̄ik. For each i ∈ {1, 2, . . . , n}, the domain of definition of agent
i’s registered neighbors is then extended from the set {tPi(k) : k ≥ 1} to the set {tp : p ≥ Pi(1)}
by stipulating that for values of tp which are between two successive event times of agent i, say
between t̄ik and t̄i(k+1), agent i’s registered neighbors are the same as its registered neighbors at
time t̄ik. This means that registered neighbors of each agent are defined at each time tp ≥ tp̄ where

p̄
∆
= max{P1(1), P2(1), . . . Pn(1)}. Because of this, it is possible to describe neighbor relationships with

a directed graph with vertex set {1, 2, . . . , n} and directed edge set defined so that (i, j) is a directed
edge from vertex i to vertex j just in case agent j is a registered neighbor of agent i at event time
ts. The main result of this paper {Corollary 1} is that if this graph is ever strongly connected, then
rendezvous of all n agents will eventually occur.

To establish the correctness of Corollary 1 requires the analysis of the asymptotic behavior of the
asynchronous process which describe the n-agent system. Despite the apparent complexity of this
process, it is possible to capture its salient features using a suitably defined synchronous discrete-
time, hybrid dynamical system S. We call the sequence of steps involved in defining S analytic
synchronization. Analytic synchronization is applicable to any finite family of continuous or discrete
time dynamical processes {P1,P2, . . . , . . . ,Pn} under the following conditions. First, each process Pi

must be a dynamical system whose inputs consist of functions of the states of the other processes as
well as signals which are exogenous to the entire family. Second, each process Pi must have associated
with it an ordered sequence of event times {ti1, ti2, . . .} defined in such a way so that the state of
Pi at event time ti(ki+1) is uniquely determined by values of the exogenous signals and states of the
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Pj , j ∈ {1, 2, . . . , n} at event times tjkj
which occur prior to ti(ki+1) but in the finite past. Event

time sequences for different processes need not be synchronized. Analytic synchronization is a straight
forward procedure for creating a single synchronous process for purposes of analysis which captures
the salient features of the original n asynchronously functioning processes. As a first step, all n event
time sequences are merged into a single ordered sequence of even times T . The “synchronized” state
of Pi is then defined to be the original of Pi at Pi’s event times {ti1, ti2, . . .}; at values of t ∈ T between
event times tiki

and ti(ki+1), the synchronized state of Pi is taken to be the same at the value of its
original state at time tik. What results is a synchronous dynamical system evolving on T with state
composed of the synchronized states of the n individual processes under consideration. The definition
of S in section §4.1 illustrates the analytic synchronization procedure.

2 The Asynchronous Agent System

The strategy analyzed in [4, 5] cannot be regarded as truly distributed because each agent’s decisions
must be synchronized to a common clock shared by all other agents in the group. In the sequel we
redefine the strategies so that a common clock is not required. To do this it will be necessary to
modify somewhat what is meant by a registered neighbor and by a registered neighbor’s position.

For each agent i, the real time axis can be partitioned into a sequence of time intervals [0, ti1),
[ti1, ti2), . . . , [ti(k−1), tik), . . . each of length at most τD + τMi

where τD is a number greater than τMi

called a dwell time. Each interval [ti(k−1), tik) consists of a sensing period [ti(k−1), t̄ik) of fixed length
τD during which agent i is stationary, followed by a maneuvering period [t̄ik, tik) of length at most τMi

during which agent i moves from its current position to its next way-point. Although all agents use
the same dwell time, they operate asynchronously in the sense that the time sequences ti1, ti2, · · · , i ∈
{1, 2, . . . , n} are uncorrelated. Thus each agent’s strategy can be implemented independent of the rest,
without the need for a common clock.

2.1 Registered Neighbors

Because of the asynchronous nature of the control strategies under consideration, care must be exer-
cised in defining what is meant by a registered neighbor if one is to end up with something similar
to the symmetry property of the neighbor relationship defined in the synchronous case. For the asyn-
chronous case, agent i’s registered neighbors at time t̄ik {i.e., at the beginning of its kth maneuvering
period [t̄ik, tik)} are taken to be those agents which are fixed at one position within agent i’s sensing

region for at least τS > 0 seconds during agent i’s kth sensing period Si(k)
∆
= [ti(k−1), t̄ik). Here τS is

a positive number called a sensing time. For reasons to be made clear below, we shall require τS to
satisfy

τS ≤
1

2
(τD − τMi

) ∀i ∈ {1, 2, . . . , n} (1)

For any agent j, there may be more than one distinct interval of length at least τS within Si(k) during
which agent j is stationary. Let t∗ denote the end time of the last of these. For purposes of calculation,
agent i takes the registered position of agent j at the beginning of its kth maneuvering period, to be
the actual position of agent j at registration time t∗. To attain a symmetry-like property for the
asynchronous case, it is necessary make sure that the registration interval [t∗ − τS , t∗) lies within one
of agent j’s sensing periods. One way to guarantee that this is so is to require each agent to keep
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moving during each of its maneuvering periods except possibly for brief periods which are each shorter
than τS . Another way is equip each agent with a signaling device {such as a light in the case of visual
sensing} which is on just in case the agent is in one of its sensing periods. In the sequel we will assume
that registration of each agent j during one of agent i’s sensing periods always occurs at the end of a
registration interval [t∗− τS , t∗) which also lies within one of agent j’s sensing periods. Note that this
and the requirement that agent j is stationary during its sensing periods together imply that agent j’s
registered position xj(t

∗) is equal to xj(t̄jk∗) where k∗ is the sensing/maneuvering interval of agent j

during which registration takes place.

2.1.1 Neighbor Characterization

Prompted by the preceding, let us agree to say that for each i, j ∈ {1, 2, . . . , n}, agent j’s pth sensing
period Sj(p) strongly overlaps agent i’s kth sensing period Si(k) if the overlap Sj(p) ∩ Si(k) is a non-
empty interval of length at least τS seconds. In the sequel we write Sj(p)∩Si(k) Â τS whenever Si(k)
and Sj(p) strongly overlap. Let us note that because all sensing periods of all agents are τD seconds
long, the largest number of sensing periods of any one agent which a given sensing period of agent i

can overlap, is two. On the other hand, each sensing period of agent i must strongly overlap at least
one sensing period of each other agent. To understand why this is so, note first that the maximal
possible amount of time between two successive sensing periods of agent j is τMj

; but τMj
is bounded

above by τD − 2τS because of (1). Thus the maximal possible amount of time between two successive
sensing periods of agent j is no greater than τD− 2τS . Given this and the fact that all sensing periods
are τD seconds long, it follows that each sensing period of agent i must strongly overlap at least one
sensing period of each agent j.

It is possible to be more explicit about which sensing periods of agent j overlap Si(k). For each
i, j ∈ {1, 2, . . . , n} and each k ≥ 1, let dt̄ikej denote the smallest integer q such that t̄jq ≥ t̄ik. In other
words, dt̄ikej is the unique integer for which t̄ik ∈ (t̄j(q−1), t̄jq]. Set q = dt̄ikej . In view of the definition
of d·ej and the preceding discussion it is clear that the only sensing periods of agent j which Si(k) can
overlap are Sj(q − 1) and Sj(q); moreover Si(k) must strongly overlap one of these. There are three
possible situations which might occur. In the first, shown in Figure 1a, the only sensing period of
agent j which overlaps Si(k) is Sj(q−1); in this case the length of the overlap is τD−(t̄ik− t̄j(q−1)) and
this length will always be greater than or equal to τS . Therefore in this situation, Si(k) and Sj(q− 1)
strongly overlap. For the second situation, shown in Figure 1b, the only sensing period of agent j

which overlaps Si(k) is Sj(q); in this case the length of the overlap is τD − (t̄jq − t̄ik) and this length
will also always be greater than or equal to τS . Therefore in this situation Si(k) and Sj(q) strongly
overlap. The only other possible situation which can occur, which is shown in Figure 1c, is when Si(k)
is overlapped by both Sj(q− 1) and Sj(q). In this case the lengths of the first and second overlapping
intervals are τD − (t̄j(q−1) − t̄ik) and τD − (t̄ik − t̄jq) respectively and at least one of these lengths will
always be greater than or equal to τS . Thus in this situation, Si(k) strongly overlaps Sj(q − 1) or
Sj(q) or both. We summarize.

Lemma 1 (Overlaps) Let i and j be distinct integers in {1, 2, . . . , n}. Let t̄ik be fixed and define
q = dt̄ikej. The only possible sensing periods of agent j which Si(k) can overlap are Sj(q − 1) and
Sj(q); moreover Si(k) must strongly overlap at least one of these. In addition,

1. Si(k) ∩ Sj(q) Â τS if and only if t̄jq − t̄ik ≤ τD − τS
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2. Si(k) ∩ Sj(q − 1) Â τS if and only if t̄ik − t̄j(q−1) ≤ τD − τS.

Note that for agent j to be a registered neighbor of agent i at the beginning of agent i’s kth

maneuvering period, it is necessary and sufficient that agent j be “within range of agent i” {i.e.,
within agent i’s sensing region} during a sensing period of agent j which strongly overlaps Si(k).
Consider again Figure 1 where q = dt̄ikej . In the situation depicted in Figure 1a, agent j will be a
registered neighbor of agent i just in case ||xi(t̄ik)−xj(t̄j(q−1))|| ≤ r ; moreover if this condition holds,
xj(t̄j(q−1)) will be the registered position of agent j. Similarly in the situation shown in Figure 1b,
agent j will be a registered neighbor of agent i just in case ||xj(t̄jq) − xi(t̄ik)|| ≤ r; moreover if this
condition holds, xj(t̄jq) will be the registered position of agent j. The remaining situation shown in
Figure 1c is slightly more complicated. If on the one hand, the length of the second overlap is greater
than or equal to τS and ||xj(t̄jq) − xi(t̄ik)|| ≤ r then agent j will be a registered neighbor of agent
i with registered position xj(t̄jq). If either of these two conditions fails to hold, if the length of the
first overlap is greater than or equal to τS , and if ||xi(t̄ik) − xj(t̄j(q−1))|| ≤ r, then agent j will be a
registered neighbor of agent i and xj(t̄j(q−1)) will be its registered position. The following proposition
summarizes these observations.

Proposition 1 (Neighbor Characterization) Let i, j ∈ {1, 2, . . . , n} and t̄ik be fixed an let q =
dt̄ikej. Then agent j is a registered neighbor of agent i at the beginning of agent i’s kth maneuvering
period if and only if at least one of the following is true.

A. Si(k) ∩ Sj(q) Â τS and ||xj(t̄jq)− xi(t̄ik)|| ≤ r.

B. Si(k) ∩ Sj(q − 1) Â τS and ||xi(t̄ik)− xj(t̄j(q−1))|| ≤ r

Moreover, if A is true, then xj(t̄jq) is the registered position of agent j at the beginning of agent i’s
kth maneuvering period and if A is not true while B is, then xj(t̄j(q−1)) is the registered position of
agent j at the beginning of agent i’s kth maneuvering period.

2.1.2 Neighbor Relationship Symmetry

The definition of a registered neighbor determines a relationship between agents similar to the sym-
metric relationship determined by the definition of a registered neighbor in the synchronous case [5].
Suppose that agent j is a registered neighbor of agent i at the beginning of agent i’s kth maneuvering
period. In view of Proposition 1, either condition A or condition B must hold. Suppose first that
condition A is true. Then Si(k) strongly overlaps Sj(q) and agent i is in range of agent j during the
overlap. There are two cases to consider. First, it is possible that Si(k + 1) also strongly overlaps
Sj(q) for at least τS time units and agent i is in range of agent j during this overlap; in this case agent
i would be a registered neighbor of agent j at time t̄jq and xi(t̄i(k+1)) would be its registered position.
Second, it is possible that either Si(k + 1) does not strongly overlap Sj(q) or that agent i is not in
range of agent j during this overlap; in this case agent i would be a registered neighbor of agent j at
time t̄jq and xi(t̄ik) would be its registered position. Thus in summary, if condition A is true then
agent i will be a registered neighbor of agent j at time t̄jq with registered position which could be
either xi(t̄ik) or xi(t̄i(k+1)).
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Figure 1: Sensing Period Overlaps

Suppose next that condition A does not hold. In view of Proposition 1, condition B must hold.
In other words, Si(k) must strongly overlap Sj(q − 1) and agent i must be in range of agent j during
this overlap. In view of Lemma 1, this must be the last sensing period of agent i with these properties
because we’ve assumed that condition A does not hold. Therefore agent i must be a registered neighbor
of agent j at time t̄j(q−1) and xi(t̄ik) must be its registered position. We summarize.

Proposition 2 (Neighbor Relationship Symmetry) Suppose that agent j is a registered neighbor
of agent i at the beginning of agent i’s kth maneuvering period. Let q = dt̄ikej. If condition A of
Proposition 1 holds, then agent i is a registered neighbor of agent j at the beginning of agent j’s
qth maneuvering period with either xi(t̄ik) or xi(t̄i(k+1)) as its registered position. If condition A of
Proposition 1 does not hold, then condition B must hold and agent i is a registered neighbor of agent
j at the beginning of agent j’s (q − 1)st maneuvering period with registered position xi(t̄ik).

2.1.3 Motion Constraint

In the synchronous case treated in [4], each agent’s way points are constrained to positions defined
in such a way so that no agent can lose any of its neighbors as it moves from one way point to
the next. This is accomplished by adopting a clever idea proposed in [4] which we call the pairwise
motion constraint. Neighbor retention can also be achieved in the asynchronous case by enforcing the
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following constraint. Agent i is said to satisfy the motion constraints induced by its neighbors, if for
each j ∈ {1, 2, . . . , n} for which j 6= i and each k ∈ {1, 2, . . .} for which agent j is a registered neighbor
of agent i at the beginning of maneuvering period k, the position to which agent i moves at the end
of the period is within a closed disk of diameter r centered at the mean of agent i’s position at the
beginning of the period {i.e., at time t̄ik} and the registered position of agent j at the beginning of
the period. As mentioned, in the synchronous case, satisfaction of the pairwise motion constraint by
agent i and neighbor j causes each to retain the other as a neighbor. The following proposition implies
that essentially the same thing is true in the asynchronous case when the induced motion constraints
are satisfied by agents i and j.

Proposition 3 (Neighbor Retention) Suppose that agents i and j satisfy the motion constraints
induced by their registered neighbors. If agent j is a registered neighbor of agent i at the beginning of
agent i’s kth maneuvering period, then agent j is also a registered neighbor of agent i at the beginning
of agent i’s k + 1st maneuvering period.

In proving Proposition 3 and several subsequent claims we will make use of the inequalities

t̄j(q+p) − t̄jq ≥ pτD, p ∈ {0, 1, 2, . . .}, q ∈ {1, 2, . . .}, j ∈ {1, 2, . . . , n} (2)

and
t̄i(k+1) − t̄ik ≤ 2(τD − τS), k ∈ {1, 2, . . .}, i ∈ {1, 2, . . . , n} (3)

which are both direct consequences of the definitions of the sensing and maneuver periods and (1).
To justify (2), let us first recall that for each integer s ≥ 1, t̄js is at the end of agent j’s sth sensing
period. In addition, agent j’s sensing periods do not intersect and are each of length τD. It follows
that t̄j(s+1) − t̄js ≥ τD, s ≥ 1, and thus that (2) is true. To justify (3), note that t̄i(k+1) can be
written as t̄i(k+1) = t̄ik + τD + τ where τ is the length of agent i’s kth maneuvering period. Since τ is
constrained to satisfy τ ≤ τMi

, we can write t̄i(k+1) ≤ t̄ik + τD + τMi
. From this and (1) it follows that

t̄i(k+1) ≤ t̄ik + τD + (τD − 2τS) and thus that (3) is true.

To prove Proposition 3, we will make use of the two conditions characterizing a registered neighbor
in Proposition 1. Each of these conditions in turn involves both an overlap requirement and a range
requirement. The next lemma provides the needed facts about the way in which two agents sensing
periods overlap. This is followed by Lemma 3 which provides the range information needed to prove
Proposition 3 and subsequent claims.

Lemma 2 Let i and j be distinct integers in {1, 2, . . . , n}. Let t̄ik be fixed and define q = dt̄ikej. Then

dt̄i(k+1)ej ∈ {q, q + 1, q + 2} (4)

1. If dt̄i(k+1)ej = q, then Si(k + 1) ∩ Sj(q) Â τS.

2. If dt̄i(k+1)ej = q + 1, then Si(k + 1) ∩ Sj(q) Â τS or Si(k + 1) ∩ Sj(q + 1) Â τS.

3. If dt̄i(k+1)ej = q + 2, then Si(k) ∩ Sj(q) Â τS and Si(k + 1) ∩ Sj(q + 1) Â τS.
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Moreover, if dt̄i(k+1)ej ∈ {q + 1, q + 2}, then Si(k) and Si(k + 1) are the only sensing periods of agent
i which can strongly overlap Sj(q).

Proof of Lemma 2: It will be shown first that (4) is true. Since t̄ik ∈ (t̄j(q−1)− t̄jq] and t̄i(k+1) > t̄ik,
it must be true that t̄i(k+1) > t̄j(q−1). Thus dt̄i(k+1)e ≥ q. To prove that dt̄i(k+1)ej ≤ q + 2, we
use (3) and the fact that t̄ik ≤ t̄jq to write t̄i(k+1) ≤ 2(τD − τS) + t̄jq. In view of (2) {with p = 1},
2(τD−τS)+ t̄jq ≤ τD+ t̄j(q+1) ≤ t̄j(q+2). Therefore t̄i(k+1) ≤ t̄j(q+2). This means that dt̄i(k+1)ej ≤ q+2.
Thus (4) is true.

To prove assertion 1, we use (2) with i substituted for j and p = 1 to write t̄i(k+1) ≥ t̄ik + τD. In
view of the definition of q, t̄ik > t̄j(q−1). Therefore t̄i(k+1) − t̄j(q−1) > τD > τD − τS . The hypothesis
dt̄i(k+1)e = q implies that Lemma 1 holds with k + 1 substituted for k. Thus Si(k + 1) and Sj(q − 1)
cannot overlap because of the lemma’s last claim. Since the lemma also states that Si(k + 1) must
strongly overlap either Sj(q − 1) or Sj(q), it must be true that Si(k + 1) strongly overlaps Sj(q).
Therefore assertion 1 is true.

Assertion 2 assumes that dt̄i(k+1)ej = q + 1. Lemma 1 thus applies with k + 1 and q + 1 replacing
k and q respectively. From this it follows that the only sensing periods of agent j which can overlap
S1(k + 1) are Sj(q) and Sj(q + 1); moreover S1(k + 1) must overlap strongly overlap at least one of
these. Thus assertion 2 is true.

Assertion 3 assumes that dt̄i(k+1)ej = q + 2. Thus t̄j(q+1) < t̄i(k+1). But t̄jq + τD ≤ t̄j(q+1) because
of (2) {with p = 1} and t̄i(k+1) ≤ t̄ik + 2(τD − τS) because of (3). Therefore t̄jq ≤ t̄ik + τD − 2τS . It
follows that t̄jq − t̄ik + τD − τS . Therefore by the first assertion of Lemma (1), Si(k) and Sj(q) must
strongly overlap. It remains to be shown that Si(k + 1) ∩ Sj(q + 1) Â τS if dt̄i(k+1)ej = q + 2. Since
dt̄i(k+1)ej = q + 2, Lemma 1 applies with k + 1 and q + 2 replacing k and q respectively. Thus prove
that Si(k+1) and Sj(q+1) also strongly overlap, it is enough to show that t̄i(k+1)− t̄j(q+1) ≤ τD− τS .
To do this, we first use (3) and the fact that t̄ik ≤ t̄jq to write t̄i(k+1) ≤ t̄jq + 2(τD − τS). From this
and (2) with p = 1 there follows t̄i(k+1) ≤ t̄j(q+1) + τD − 2τS . Therefore t̄i(k+1) ≤ t̄j(q+1) + τD − τS .
Thus Si(k + 1) ∩ Sj(q + 1) Â τS so assertion 3 is true.

Now suppose that dt̄i(k+1)ej ∈ {q+1, q+2}. Then in either case t̄jq ≤ t̄i(k+1). Therefore t̄ik ≤ t̄jq ≤
t̄i(k+1). If t̄ik 6= t̄jq then t̄ik < t̄jq ≤ t̄i(k+1) which means that dt̄jqe = t̄i(k+1); thus Lemma 1 applies
with k an q replaced by q and k+1 respectively. Therefore in this case Si(k) and Si(k+1) are the only
sensing periods of agent i which can strongly overlap Sj(q). Now suppose that t̄ik = t̄jq. This means
that dt̄jqe = t̄ik; thus Lemma 1 applies with k an q interchanged. Therefore in this case Si(k − 1)
and Si(k) are the only sensing periods of agent i which can strongly overlap Sj(q). To complete the
proof, it is enough to show that Si(k − 1) cannot strongly overlap Sj(q). Towards this end, first note
that t̄ik ≥ t̄i(k−1) + τD because of (2). Thus t̄jq ≥ t̄i(k−1) + τD so t̄jq − t̄i(k−1) > +τD − τS . Therefore
Si(k − 1) cannot strongly overlap Sj(q) because of Lemma 1.

Lemma 3 Let q = dt̄ikej. Suppose that agents i and j satisfy the motion constraints induced by their
registered neighbors. If agent j is a registered neighbor of agent i at the beginning of agent i’s kth

maneuvering period, then

||xi(t̄i(k+1))− xj(t̄jq∗)|| ≤ r (5)

||xi(t̄i(k+1))− xj(t̄j(q∗+1)|| ≤ r (6)

where q∗ = q if condition A of Proposition 1 is true and q∗ = q − 1 if it is not. Moreover, in either
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case
||xi(t̄ik)− xj(t̄jq)|| ≤ r (7)

Proof of Lemma 3: First suppose that agent j is a registered neighbor of agent i at the beginning
of maneuvering period k. Thus by Proposition 1, xjq∗ is agent j’s registered position and

||xi(t̄ik)− xj(t̄jq∗)|| ≤ r (8)

where q∗ = q if condition A holds and q∗ = q−1 if it does not. The positions of agent i at the beginning
and end of its kth maneuvering period are xi(t̄ik) and xi(tik) respectively. Therefore since agent i

satisfies the motion constraint induced by agent j during this period, ||xi(tik)−
1
2{xi(t̄ik)+xj(t̄jq∗)}|| ≤

r
2 . But xi(t̄i(k+1)) = xi(tik) because agent i does not move during sensing period [tik, t̄i(k+1)). This
enables us to re-write the preceding inequality as

||xi(t̄i(k+1))−
1

2
{xi(t̄ik) + xj(t̄jq∗)}|| ≤

r

2
(9)

Observe that

xi(t̄i(k+1))− xj(t̄jq∗) = xi(t̄i(k+1))−
1

2
{xi(t̄ik) + xj(t̄jq∗)} −

1

2
(xj(t̄jq∗)− xi(t̄ik))

Hence

||xi(t̄i(k+1))− xj(t̄jq∗)|| ≤

∥∥∥∥xi(t̄i(k+1))−
1

2
{xi(t̄ik) + xj(t̄jq∗)}

∥∥∥∥+
∥∥∥∥
1

2
(xj(t̄jk∗)− xi(t̄ik))

∥∥∥∥

From this (8) and (9) there follows ||xi(t̄i(k+1))− xj(t̄jq∗)|| ≤
r
2 +

r
2 = r. Therefore (5) is true.

It will now be shown that (6) is also true. By Proposition 2, agent i is a registered neighbor of agent
j at the beginning of agent j’s q∗th maneuvering period where q∗ = q if condition A of Proposition 1
holds and q∗ = q − 1 if it does not. Thus by Proposition 1

||xj(t̄jq∗)− x̄i|| ≤ r (10)

where x̄i denotes the registered position of agent i at t̄jq∗ . The positions of agent j at the beginning
and end of its q∗th maneuvering period are xj(t̄jq∗) and xj(tjq∗) respectively. Therefore since agent j

satisfies the motion constraint induced by agent i during this period, ||xj(tjq∗)−
1
2{xj(t̄jq∗)+ x̄i}|| ≤

r
2 .

But xj(t̄j(q∗+1)) = xj(tjq∗) because agent j does not move during sensing period q∗ + 1. Therefore

||xj(t̄j(q∗+1))−
1

2
{xj(t̄jq∗) + x̄i}|| ≤

r

2
(11)

In view of Proposition 2, x̄i could be either xi(t̄ik) or xi(t̄i(k+1)) if condition A of Proposition 1 hold
while x̄i = xi(t̄ik) if it does not. Consider first the case when x̄i = xi(t̄ik). It is then possible to
re-write (11) as

||xj(t̄j(q∗+1))−
1

2
{xj(t̄jq∗) + xi(t̄ik}|| ≤

r

2
(12)
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But

||xi(t̄i(k+1))− xj(t̄j(q∗+1))|| = ||xi(t̄i(k+1))−
1

2
{xi(t̄ik) + xj(t̄jq∗)} − (xj(t̄j(q∗+1))

−
1

2
{xj(t̄jq∗) + xi(t̄ik)})||

≤ ||xi(t̄i(k+1))−
1

2
{xi(t̄ik) + xj(t̄jq∗)}||

+||xj(t̄j(q∗+1))−
1

2
{xj(t̄jq∗) + xi(t̄ik)}||

From this, (9) and (12) it follows that ||xi(t̄i(k+1))− xj(t̄j(q∗+1))|| ≤ r and thus that (6) holds.

It will now be shown that (6) also holds for the case when x̄i = xi(t̄i(k+1)) which only occurs when
q∗ = q. Assuming this possibility (11) can be written as

||xj(t̄j(q∗+1))−
1

2
{xj(t̄jq∗) + xi(t̄i(k+1))}|| ≤

r

2
(13)

Observe that it is possible to write

xj(t̄j(q∗+1))− xi(t̄i(k+1)) = xj(t̄j(q∗+1))−
1

2
{xj(t̄jq∗) + xi(t̄i(k+1))}

−
1

2

(
xi(t̄i(k+1))−

1

2
{xj(t̄jq∗) + xi(t̄ik)}

)
+

1

4
(xj(t̄jq∗)− xi(t̄ik))

Clearly

||xj(t̄j(q∗+1))− xi(t̄i(k+1))|| ≤

∥∥∥∥xj(t̄j(q∗+1))−
1

2
{xj(t̄jq∗) + xi(t̄i(k+1))}

∥∥∥∥

+
1

2

∥∥∥∥xi(t̄i(k+1))−
1

2
{xj(t̄jq∗) + xi(t̄ik)}

∥∥∥∥+
1

4
‖xj(t̄jq∗)− xi(t̄ik)‖

Using (8), (9) and (13) we thus obtain ||xj(t̄j(q∗+1))− xi(t̄i(k+1))|| ≤
r
2 +

r
4 +

r
4 = r. Thus (6) holds in

this case too.

In view of (8), (7) is true if q∗ = q. To prove that (7) also holds if q∗ = q − 1, we first write

xj(t̄j(q∗+1))− xi(t̄ik) = xj(t̄j(q∗+1))−
1

2
{xj(t̄jq∗) + xi(t̄ik)} −

1

2
(xi(t̄ik)− xj(t̄jq∗))

Therefore

||xj(t̄j(q∗+1))− xi(t̄ik)|| ≤

∥∥∥∥xj(t̄j(q∗+1))−
1

2
{xj(t̄jq∗) + xi(t̄ik)}

∥∥∥∥+
∥∥∥∥
1

2
(xi(t̄ik)− xj(t̄jq∗))

∥∥∥∥ (14)

But if q∗ = q−1, both (8) and (12) hold. From these inequalities and (14) it follows that ||xj(t̄j(q∗+1))−

xi(t̄ik)|| ≤
1
r
+ 1

r
= r and therefore that (7) is true.

Proof of Proposition 3: Consider first the case when dt̄i(k+1)e = q. If condition A of Lemma 1
holds, then q∗ = q so does

||xi(t̄i(k+1))− xj(t̄jq)|| ≤ r (15)

because of (5). On the other hand, if condition A of Lemma 1 does not hold, then q = q∗− 1 and (15)
still holds, in this case because of (6). Since dt̄i(k+1)e = q, it must be true that Si(k + 1) ∩ Sj(q) Â τS
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because of Lemma 2. This and (15) mean that condition A of Proposition 1 is satisfied with k + 1
substituted for k. Therefore agent j is a registered neighbor of agent i at t̄i(k+1).

Now suppose that dt̄i(k+1)e ∈ {q+1, q+2}. Consider first the case when condition A of Proposition
1 holds. Then Lemma 3 applies with q∗ = q, so

||xi(t̄i(k+1))− xj(t̄j(q+1))|| ≤ r (16)

and
||xi(t̄i(k+1))− xj(t̄jq)|| ≤ r (17)

If dt̄i(k+1)e = q + 1, then Si(k + 1) must strongly overlap either Sj(q) or Sj(q + 1) because of Lemma
2. In view of (16) and (17), condition A of Proposition 1 is satisfied in either situation with k + 1
substituted for k and q + 1 substituted for q. Therefore agent j is a registered neighbor of agent i at
t̄i(k+1). If dt̄i(k+1)e = q+2, then Si(k+1) and Sj(q+1) still must strongly overlap because of Lemma
2. Thus in this case condition B of Proposition 1 is satisfied with k + 1 substituted for k and q + 2
substituted for q. Therefore agent j is a registered neighbor of agent i at t̄i(k+1).

Consider finally the case when condition A of Proposition 1 does not hold. Since (7) hold, Si(k) and
Sj(q) cannot overlap. Therefore dtike 6= q+2 because of statement 3 in Lemma 2. Thus dtike = q+1.
In addition, Lemma 2 states that the only sensing periods of agent i which can strongly overlap Sj(q)
are Si(k) and Si(k + 1). Since Sj(q) must be strongly overlap at least one sensing period of agent i,
it must be true that

Sj(q) ∩ Si(k + 1) Â τS (18)

Since condition A of Proposition 1 does not hold condition B must hold, because agent j is a neighbor
of agent i at t̄ik. Thus Lemma 3 applies with q∗ = q − 1 so by (6)

||xi(t̄i(k+1))− xj(t̄jq)|| ≤ r (19)

Since dt̄i(k+1)e = q + 1, (19) and (18) show that condition B of Proposition 1 is satisfied with k + 1
and q + 1 substituted for k and q respectively.

2.2 Unsynchronized Agent strategies

We are interested in strategies which cause agents to retain their registered neighbors. We therefore
make the following assumption.

Cooperation Assumption: Each agent i satisfies the motion constraints induced by each of its
registered neighbors.

Suppose that the cooperation assumption is satisfied. Proposition 3 states that if agent j is a
registered neighbor of agent i during maneuvering interval k then it will also be a registered neighbor
of agent i during maneuvering interval k+1. In other words, if the cooperation assumption is satisfied,
each agent retains all of its prior registered neighbors as the system evolves. Thus if Ni(k) denotes
the set of labels of agent i’s neighbors at the beginning of its kth maneuvering period, then Ni(k) ⊂
Ni(k + 1), k ≥ 1.

Agent i’s kth way-point x̄i(k) is the point to which agent i moves at the end of its kth maneuvering
period. Thus if xi(t) denotes the position of agent i at time t represented in a world coordinate system,
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then xi(tik) and agent i’s kth way-point are one and the same. The rule which determines x̄i(k) is
essentially the same as considered previously for the synchronous case in [4, 5], except that now x̄i(k)
depend on agent i’s its own position at the beginning of its kth maneuvering period and the registered
{relative} positions of agent i’s registered neighbors at the beginning of the period. In particular if
agent i has mik registered neighbors at time t̄ik with registered positions z1, z2, . . . , zmik

relative to
agent i’s, then agent i moves to the position x̄i(k) = xi(ti(k−1)) + umik

(z1, . . . , zmik
) at the end of the

period where
zj = xiij (t̄ik)− xi(ti(k−1)), j ∈ {1, 2, . . . ,mik}, (20)

and xiij (t̄ik) is the registered position of neighbor ij at time t̄ik. As in [5], u0 = 0 and for m ∈
{1, . . . , n − 1} um is a continuous control law mapping D

m into DM where D and DM are the closed
disks of radii r and rM respectively, centered at the origin in IR2. For m > 0, um is defined so
that the aforementioned neighbor motion constraint is satisfied and, in addition so that for each
{z1, z2, . . . , zm} ∈ D

m, um(z1, z2, . . . , zn) is in the convex hull of {0, z1, z2, . . . , zm}, but not at a corner
unless z1 = z2 = · · · = zm = 0. Examples of um(·) satisfying these control law requirements can be
found in [4, 5].

Since each agent is assumed to move to its kth way point at the end of its kth maneuvering period,
agent i’s position at time tik is given by

xi(tik) = xi(ti(k−1)) + umik
(xii1(t̄ik)− xi(ti(k−1)), . . . , xiimik

(t̄ik)− xi(ti(k−1))) (21)

In view of Proposition 1 and (7), the formulas for the xij(t̄ik) can be written as

xij(t̄ik) =

{
xj(t̄jq) if Si(k) ∩ Sj(q) Â τS

xj(t̄j(q−1)) otherwise

}
, j ∈ Ni(k) (22)

where q = dt̄ikej and

Ni(k) = {j : ||xi(t̄ik)− xj(t̄iq)|| ≤ r and Si(k) ∩ Sj(q) Â τS}
⋃
{j : ||xi(t̄ik)− xj(t̄i(q−1))|| ≤ r

and Si(k) ∩ Sj(q − 1) Â τS} (23)

The expressions for the xij(t̄ik) in (22) are a direct consequence of the characterization of registered
positions in Proposition 1, the fact that (7) holds whenever j ∈ Ni(k), and the implication of Lemma
1 that Si(k) ∩ Sj(q − 1) Â τS whenever Si(k) ∩ Sj(q) 6Â τS . Of course the neighbor set Ni(k) and the
registration positions xij , j ∈ Ni(k) all depend on i and k.

3 Main Results

Note that because agents do not move during sensing periods, for each i ∈ {1, 2, . . . , n} the positions
of agent i at times ti(k−1) and tik are the same as at times t̄ik and t̄i(k+1) respectively. Thus (21) can
also be written as

xi(t̄i(k+1)) = xi(t̄ik) + umik
(xii1(t̄ik)− xi(t̄ik), . . . , xiimik

(t̄ik)− xi(t̄ik)) (24)

The n equations given by (24) for i ∈ {1, 2, . . . , n} together with (22) and (23) completely describes the
evolution of the positions of the n agents under consideration as each maneuvers from way-point to way-
point. Just as in the synchronous case, the analysis of these equations depends on the relationships
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between registered neighbors and how these relationships evolve with time. To characterize these
relationships, we first extend the domain of definition of each agent’s registered neighbors from its set
of maneuvering period start times to a suitably defined set of “event times” common to all n agents.
By an event time is meant any time t̄ik at which any maneuvering period [t̄ik, tik) of any agent begins.
Let {t̄ik : i ∈ {1, 2, . . . , n}, k ≥ 1} denote the set of all distinct event times. Label this set’s elements
as t1, t2, · · · , tp, · · · in such a way so that tp < tp+1, j ∈ {1, 2, . . .}. For i ∈ {1, 2, . . . , n}, let Pi denote
that strictly monotone function from the set of positive integers I to I which assigns to k ∈ I that
value of p ∈ I for which tp = t̄ik. Thus with this notation, tPi(k) = t̄ik so agent i’s registered neighbors
at its kth event time tPi(k), are its registered neighbors at time t̄ik. For each i ∈ {1, 2, . . . , n} we
extend the domain of definition of agent i’s registered neighbors from the set {tPi(k) : k ≥ 1} to the
set {tp : p ≥ Pi(1)} by stipulating that for values of tp which are between two successive event times
of agent i, say between tik and ti(k+1), agent i’s registered neighbors are the same as its registered
neighbors at time tik.

Let T
∆
= {tp̄, tp̄+1, tp̄+2 . . .} denote the set of all event times greater than or equal to tp̄ where

p̄
∆
= max{P1(1), P2(1), . . . Pn(1)}. Note that the registered neighbors of each agent are defined at each

time tp in T . For each p ≥ p̄, it is therefore possible to describe neighbor relationships using a directed1

graph Gp with vertex set {1, 2, . . . , n} and directed edge set defined so that (i, j) is a directed edge
from vertex i to vertex j just in case agent j is a registered neighbor of agent i at event time tp.

Let us partially order the set of all directed graphs with vertex set {1, 2, . . . , n} by agreeing to say
that G is contained in Ḡ if the edge set of G is a subset on the edge set of Ḡ. It is natural then to
define the union of a collection of such graphs to be the directed graph with vertex set {1, 2, . . . , n},
and edge set equaling the union of the edge sets of all of the graphs in the collection. Because of
the cooperation assumption and Proposition 3, we know that each agent keeps all of its registered
neighbors as the system evolves. What this means is the sequence of graphs Gp̄,Gp̄+1, . . . ,Gp, . . .

forms the ascending chain
Gp̄ ⊂ Gp̄+1 ⊂ · · ·Gp · · · (25)

Because the set of directed graphs on vertices {1, 2, . . . , n} is a finite set, the chain must converge to
the graph

G
∆
=

∞⋃

p=p̄

Gp (26)

in a finite number of steps. More is true. Suppose that agent i has agent j as a registered neighbor at
the beginning of one of agent i’s maneuvering periods. Then because of Proposition 2, agent i must
be a registered neighbor of agent j at the beginning of one of agent j’s maneuvering periods. These
observations together with the cooperation assumption imply that agents i and j must both eventually
become and remain registered neighbors of each other. As a consequence, there must be directed arcs
in G from vertex i to vertex j as well as from vertex j to vertex i. Clearly G must be a directed graph
with the property that for each distinct pair of vertices - say i and j - either there is no directed arc
connecting one to the other or there are two directed arcs one from vertex i to vertex j and the other
from vertex j to vertex i. Directed graphs with this property are usually regarded as simple graphs
whose edges represent such pairs of directed arcs [6]. In the sequel we shall adopt this viewpoint and
refer to G as a simple graph. Our main result is as follows.

1It will soon be clear that the aforementioned symmetry of the neighbor relationship will ultimately enable us to
characterize neighbor relationships with a simple, undirected graph as in the synchronous case.
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Theorem 1 Let u0 = 0 ∈ DM and for each m ∈ {1, 2, . . . , n − 1}, let um : D
m → DM be any

continuous function satisfying the aforementioned control law requirements. For each set of initial
agent positions x1(0), x2(0), . . . , xn(0), each agent’s position xi(t) converges to a unique point πi ∈ IR2

such that for each i, j ∈ {1, 2, . . . , n}, either πi = πj or ||πi − πj || > r. Moreover, if agent j is a
registered neighbor of agent i at the beginning of one of agent i’s maneuvering periods, then πi = πj.

This theorem will be proved in §4.

Theorem 1 states that the strategies under consideration cause all agents’ positions to converge to
points in the plane with the property that each pair of such points are either equal to each other, or
separated by a distance greater than r units. The theorem further states that if one agent is ever a
registered neighbor of another, then both converge to the same point. Thus all n agents position will
converge to a single point if any one directed graph in the ascending chain is strongly connected. We
are led to the following corollary.

Corollary 1 If at any event time tp ≥ tp̄, the directed graph Gp characterizing registered neighbors is
strongly connected, then positions of all n agents converge to a common point in the plane.

4 Analysis

The aim of this section is to establish the correctness of Theorem 1. This requires the analysis of
the asymptotic behavior of the asynchronous process described by (22) and (24) for i ∈ {1, 2, . . . , n}.
Despite the apparent complexity of this process, it is possible to capture its salient features for ts
sufficiently large using a suitably defined synchronous discrete-time, hybrid dynamical system S. The
process of constructing a synchronous process to model the behavior of an asynchronous process is
called analytic synchronization and has been outlined in the introduction to this paper. of interest in
its own right. In the sequel we demonstrate the utility of this idea by applying it to the problem at
hand.

4.1 A Synchronous Model of the Asynchronous Agent System

It is sufficient to analyze the behavior of the n agent system for times beyond the time at which each
agent’s neighbor set stops changing. Analytic synchronization would thus have us define S to be a
synchronous system evolving on the event time set {tp : p ∈ P} where P = {p; p ≥ p∗} and p∗ is the
smallest values of p ≥ p̄ for which the ascending chain shown in (25) has converged to the limit graph
G in (26). To reduce clutter we will instead define S to be a synchronous discrete-time dynamical
system evolving on the index set P. Thus for p ∈ P, the registered neighbors of each agent do not
change. For simplicity, we will only deal with the case when each agent has at least one neighbor for
tp ≥ tp∗ . The position update equation (24) for agent i can thus be written as

xi(t̄i(k+1)) = xi(t̄ik) + umi
(xii1(t̄ik)− xi(t̄ik), . . . , xiimi

(t̄ik)− xi(t̄ik)) (27)
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where mi is a positive number and Ni
∆
= {i1, i2, . . . , imi

} is the set of indices labelling agent i’s
registered neighbors. Just as before,

xij(t̄ik) =

{
xj(t̄jq) if Si(k) ∩ Sj(q) Â τS

xj(t̄j(q−1)) otherwise
(28)

and

Ni = {j : ||xi(t̄ik)− xj(t̄iq)|| ≤ r and Si(k) ∩ Sj(q) Â τS}
⋃
{j : ||xi(t̄ik)− xj(t̄i(q−1))|| ≤ r

and Si(k) ∩ Sj(q − 1) Â τS} (29)

where q = dt̄ikej . Note that it must be true that

||xj(t̄jq)− xi(t̄ik)|| ≤ r (30)

because of (7). In view of (29) it also must be true that

||xj(t̄j(q−1))− xi(t̄ik)|| ≤ r if Si(k) ∩ Sj(q) 6Â τS (31)

Inequalities (30) and (31) are consequences of the assumption that j ∈ Ni. These inequalities will
translate into constraints on the state of S.

4.1.1 Definition of S

We will take as the state space of S, the space X of all lists {y1, y2, . . . yn, w1, w2, . . . , wn} satisfying

yi, wi ∈ IR2,

||yi − yj || ≤ r





j ∈ Ni, i ∈ {1, 2, . . . , n} (32)

In the sequel we often write y for {y1, y2, . . . yn} and w for {w1, w2, . . . wn}. We sometimes refer to
{yi, wi} as the state of “node” i. For i ∈ {1, 2, . . . , n} let P−1

i be a left inverse of Pi and let Pi =
P∩image Pi. We now define S to be a time-varying system with state {y, w}; for each i ∈ {1, 2, . . . , n},
the state of node i evolves on P according to update equations defined for p ∈ Pi by

yi(p+ 1) = yi(p) + umi
(vii1(p)− yi(p), . . . , viimi

(p)− yi(p)) (33)

wi(p+ 1) = yi(p) (34)

where

vij(p) =

{
yj(p) if Si(P

−1
i (p)) ∩ Sj(dtpej) Â τS

wj(p) otherwise

}
, j ∈ Ni (35)

and by

yi(p+ 1) = yi(p) (36)

wi(p+ 1) = wi(p) (37)

for p 6∈ Pi. We require yi satisfies the neighbor constraints

||yi(p)− wj(p)|| ≤ r if Si(P
−1
i (p)) ∩ Sj(dtpej) 6Â τS , p ∈ Pi j ∈ Ni (38)
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Note that these constraint requirements together with the definition of X and vij insure that ||vij −
yi(p)|| ≤ r whenever p ∈ Pi. This in turn is necessary for (33) to make sense because the domain of
umi

is D
mi .

The preceding defines S to be a synchronous discrete-time dynamical system with state constraints
given by (38). The definition depends on the Ni as well as the n event time sequences {t̄ik; k ≥ 1}.
We’ve assumed that the Ni are non-empty; in addition, Ni ⊂ {1, 2, . . . , i − 1, i + 1, . . . , n}. As a
consequence of Proposition 2 and the assumption that neighbors stop changing, the Ni all have the
following symmetry property: If j ∈ Ni then i ∈ Nj . Because of the symmetry property we can
associate with the Ni a simple graph G with vertex set {1, 2, . . . , n} and edge set defined in such a
way that (i, j) is in the edge set just in case i ∈ Nj and j ∈ Ni. Note that this is precisely the same
as the simple graph mentioned just before Theorem 1. As for event times, recall that each event time
sequence is strictly monotone increasing and that together they all satisfy Lemma 1, (2), and (3). In
defining S, these are the only properties of the Ni and the event times which are assumed.

4.1.2 Validation of S

We claim that S provides a synchronous model of the asynchronous agent system describe by (27) -
(31). The first step in justifying this claim is to define

yi(p) = xi(t̄ik)
wi(p) = xi(t̄i(k−1))

}
, Pi(k − 1) < p ≤ Pi(k), k ∈ P−1

i (P) (39)

for i ∈ {1, 2, . . . , n}. Note that yi has been defined so that it is constant between agent i’s event times
and agrees with xi whenever p is such that tp is within one of agent i’s sensing periods.

To justify the claim that S models (27) - (31), we need to prove that with the yi(p) and wi(p)}
defined by (39), {y(p), w(p)} ∈ X , p ∈ P, and (33) - (38) are satisfied. In view of (30) and the definition
of the yi(p) in (2), it is clear that for i ∈ {1, 2, . . . , n}, ||yi(p) − yj(p)|| ≤ r, j ∈ Ni, p ∈ P. Therefore
{y(p), w(p)} ∈ X , p ∈ P. It remains to be shown that (33) - (38) are satisfied. To accomplish this,
fix p ∈ P and suppose that k is that value for which Pi(k) ≤ p < Pi(k + 1). Set p1 = Pi(k) and
p2 = Pi(k + 1). By definition,

yi(p1) = xi(t̄ik) (40)

wi(p1) = xi(t̄i(k−1)) (41)

yi(p2) = xi(t̄i(k+1)) (42)

wi(p2) = xi(t̄ik) (43)

yi(s) = yi(p2), p1 < s ≤ p2 (44)

wi(s) = wi(p2), p1 < s ≤ p2 (45)

Suppose first that p 6∈ Pi, or equivalently that p1 < p < p2. Then p1 < p+1 ≤ p2, so yi(p+1) = yi(p2)
and wi(p + 1) = wi(p2) because of (44) and (45) respectively. But yi(p) = yi(p2) and wi(p) = wi(p2)
also because of (44) and (45) respectively. It follows that (36) and (37) are true.

Now suppose that p ∈ Pi, or equivalently that p = p1. Then p1 < p+ 1 ≤ p2 so yi(p+ 1) = yi(p2)
and wi(p+ 1) = wi(p2) because of (44) and (45) respectively. It follows from (42) and (43) that

yi(p+ 1) = xi(t̄i(k+1)) (46)
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and
wi(p+ 1) = xi(t̄ik) (47)

But
xi(t̄ik) = yi(p) (48)

because of (40) so (34) is true.

Fix j ∈ Ni and set q = dtpej . To justify (38) and (33) we will need to express xj(t̄iq), xj(t̄i(q−1))
and k in terms of yj , wj and p respectively. Note first that tp = t̄ik because p = p1. Thus

q = dt̄ikej (49)

so t̄j(q−1) < t̄ik ≤ t̄jq. This means that Pj(q− 1) < Pi(k) ≤ Pj(q) and thus that Pj(q− 1) < p ≤ Pj(q).
But by definition yj(s) = xj(t̄jq) and wj(s) = xj(t̄j(q−1)) for Pj(q − 1) < s ≤ Pj(q). Therefore

xj(t̄jq) = yj(p) (50)

xj(t̄j(q−1)) = wj(p) (51)

Finally note that
k = P−1

i (p) (52)

because Pi(k) = p1 = p. It is now clear from (40), (51) and (52), that the inequality in (31) translates
into neighbor constraint (38).

In addition, examination of (48) to (52) together with the definitions of xij(t̄ik) and vij(p) in (28)
and (35) respectively, reveals that

xij(t̄ik) = vij(p) (53)

From this and (48) it follows that the expression for xi(t̄i(k+1)) in (27) can be written as

xi(t̄i(k+1)) = yi(p) + umi
(vii1(p)− yi(p), . . . , viimi

(p)− yi(p))

This and (46) thus finally justify (33).

By a trajectory of S is meant a sequence of states {{y(p), w(p)} : p ∈ P} which satisfy (33) - (37)
as well as the neighbor constraints (38). The preceding proves that the family of such trajectories is
non-empty and contains the trajectory which represents actual agent system under consideration. It
turns out that the trajectory representing the actual agent system has an additional property which
we will exploit later.

Lemma 4 For i ∈ {1, 2, . . . , n}, let yi(p) and wi(p) be defined by (39). Let i ∈ {1, 2, . . . , n} and s ∈ Si
be fixed. Suppose that for some j ∈ {1, 2, . . . , n}, and p ∈ Pi

||yi(p+ 1)− yj(p)|| ≤ r (54)

||wi(p+ 1)− yj(p)|| ≤ r (55)

Then j ∈ Ni

Proof of Lemma 4: Since p ∈ Pi and Pi is strictly monotone, there is a unique integer k for
which p = Pi(k). Let q = dt̄ike. As was noted previously in the development leading to (46) to
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(50) yi(p + 1) = xi(t̄i(k+1)), wi(p) = xi(t̄ik) and yj(p) = xj(t̄jq). Thus (54) and (55) translate into
||xi(t̄i(k+1))−xj(t̄jq)|| ≤ r and ||xi(t̄ik)−xj(t̄jq)|| ≤ r respectively. Moreover Lemma 1 states that Si(k)
must strongly overlap either Sj(q) or Sj(q−1). If the former is true, then condition A of Proposition 1
is satisfied so j ∈ Ni. Suppose next that Si(k) does not strongly overlap Sj(q). Then t̄i(k+1) ∈ {q, q+1}
because of (4) and condition 3 in Lemma 2. If t̄i(k+1) = q, then Si(k + 1) ∩ Sj(q) ≥ τS because of
condition 1 in Lemma 2. Thus condition A of Lemma 1 is satisfied when k + 1 is substituted for k so
in this case j ∈ Ni. Suppose t̄i(k+1) = q + 1. In view of Lemma 2, Si(k) and Si(k + 1) are the only
sensing periods of agent i which can strongly overlap Sj(q). Since Sj(q) must be strongly overlapped
by at least one of agent i’s sensing periods, it must be true that Si(k+1)∩Sj(q) ≥ τS . Thus condition
B of Lemma 1 is satisfied with k+1 and q+1 substituted for k and q respectively. Therefore j ∈ Ni.

Conditions (54) and(55) do not necessarily imply that j ∈ Ni for every trajectory of S. The claim of
Lemma 4 is that the implication does indeed hold if the trajectory in question is the one which models
the actual agent system.

4.2 Properties of S

In Section 4.1 we defined S and proved that it faithfully models the actual agent system. In this
section we derive several important properties of S.

4.2.1 Local Convex Hulls

In the sequel we denote the convex hull of a given set of points x1, x2, . . . , xq in IR2 by 〈x1, x2, . . . , xq〉.
We write Hi(p) for the ith local convex hull

Hi(p) = 〈yi(p), yi1(p), . . . , yimi
(p), wi(p), wi1(p), . . . , wimi

(p)〉

where {i1, i2, . . . , imi
} = Ni. We also write H(p) for the {global} convex hull

H(p) = 〈y1(p), y2(p), . . . , yn(p), w1(p), w2(p), . . . , wn(p)〉,

and K(p) for the set of corners of H(p). Clearly

Hi(p) ⊂ H(p), i ∈ {1, 2, . . . , n}, p ∈ P (56)

This fact plays a role in the proof of the following lemma which established a fundamental property
of S:

Lemma 5
H(p+ 1) ⊂ H(p), p ∈ P (57)

Proof of Lemma 5: Fix i ∈ {1, 2, . . . , n} and note that (33) and the control law requirement that
um(z1, z2, . . . , zm) ∈ 〈0, z1, . . . , zm〉, zi ∈ D, imply that yi(p + 1) ∈ Hi(p) p ∈ Pi; thus yi(p + 1) ∈
H(p), p ∈ Pi because of (56). Moreover yi(p+1) is also in H(p) for p 6∈ Pi because of (36). Therefore
yi(p + 1) ∈ H(p), ∀p ∈ P. Similarly wi(p + 1) ∈ H(p), p ∈ P because of (34) and (37). Thus
{yi(p+ 1), wi(p+ 1)} ⊂ H(p), p ∈ P. Since this holds for all i ∈ {1, 2, . . . , n}, (57) is true.
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4.2.2 Stationary Nodes

Let us agree to say that node i is stationary at time p ∈ Pi if

yi(p) = vii1(p) = · · · = viimi
(p)

The terminology is prompted by the fact that if node i is stationary at p, then yi(p+ 1) = yi(p); this
can be seen from (33) and the control law requirements imposed on umi

. In addition, the requirement
that um(z1, z2, . . . , zm) not be a corner of 〈0, z1, . . . , zm〉 unless z1 = z2 = · · · zm = 0, implies that if
yi(p+1) is a corner of 〈yi(p), vii1(p), . . . , viimi

(p)〉, then node i must be stationary at p. The following
lemma implies that this is also true if yi(p+ 1) is a corner of H(p).

Lemma 6 Fix i ∈ {1, 2, . . . , n} and p̄ ∈ Pi. If yi(p̄+ 1) ∈ K(p̂) for some p̂ ≤ p̄, then node i must be
stationary at each p ∈ Pi ∩ {p : p̂ ≤ p ≤ p̄} and

yi(p) = yi(p̄+ 1), (58)

for all such p.

Proof of Lemma 6 Let p1, p2, . . . , pm denote the elements of the set Pi ∩ {p : p̂ ≤ p ≤ p̄}, ordered so
that p1 < p2 < · · · < pm = p̄. To prove the lemma it is sufficient to show that the statements

i. Node i is stationary at pk, pk+1, . . . , pm.

ii. yi(pk) = yi(pk+1) = · · · = yi(pm) = yi(p̄+ 1)

hold for k ∈ {1, 2, . . . ,m}.

Let H̄(ps) = 〈yi(ps), vii1(ps), . . . , viimi
(ps)〉, s ∈ {1, 2, . . . ,m}. Note that um must satisfy the

control law requirement um(z1, z2, . . . , zm) ∈ 〈0, z1, . . . , zm〉. In view of (33), it must therefore be true
that

yi(ps + 1) ∈ H̄(ps), s ∈ {1, 2, . . . ,m} (59)

Note next that the definition of vij in (35) implies that vij(ps) ∈ {yj(ps), wj(ps)}, s ∈ {1, 2, . . . ,m}.
Therefore H̄(ps) ⊂ Hi(ps). But Hi(ps) ⊂ H(ps); moreover H(ps) ⊂ H(p̂) because of Lemma 5. Thus
H̄(ps) ⊂ H(p̂). This implies that

H̄(ps) ∩ K(p̂) ⊂ K̄(ps), s ∈ {1, 2, . . . ,m} (60)

where K̄(ps) is the corner set of H̄(ps).

Recall that pm = p̄. By assumption, yi(p̄+1) ∈ K(p̂). These facts and (59) imply that yi(pm+1) ∈
H̄(pm) ∩ K(p̂). Thus yi(pm + 1) ∈ K̄(pm) because of (60). Therefore node i is stationary at pm and
because of this yi(pm + 1) = yi(pm). Thus statements i. and ii. above are true for k = m. If m = 1
the proof is complete.

Suppose next that m > 1 and that statements i. and ii. hold for all k ∈ {q + 1, . . . ,m} where q is
some integer satisfying 1 < q + 1 ≤ m. In view of (36), yi(p) = yi(pq+1) for pq < p ≤ pq+1. Therefore

yi(pq + 1) = yi(pq+1) (61)
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By hypothesis, ii. holds for k = q + 1; thus yi(pq + 1) = yi(p̄ + 1). Therefore yi(pq + 1) ∈ K(p̂).
But yi(pq + 1) ∈ H̄(pq) because of (59). Therefore yi(pq + 1) ∈ H̄(pq) ∩ K(p̂). From this and
(60) it follows that yi(pq + 1) ∈ K̄(pq). Therefore node i is stationary at pq and because of this
yi(pq+1) = yi(pq). Hence yi(pq) = yi(pq+1) because of (61). Thus statements i. and ii. above are true
for k = {q, q + 1, . . . ,m}. By induction, statements i. and ii. must hold for all k ∈ {1, 2, . . . ,m}.

4.2.3 Equilibrium States

By an equilibrium state of S we mean a state which does not change under the action of (33) - (37)
under any conditions for every value of p ∈ P. It is easy to see that equilibrium states are precisely
those states {y, w} ∈ X for which

yi = yii1 = · · · = yiimi
= wi = wii1 · · · = wiimi

, ∀i ∈ {1, 2, . . . , n}

Note that each equilibrium state is invariant set under the action of (33) - (37) under any and all
possible conditions. It is clear that if S is in an equilibrium state at p, then each node of S is
stationary at p. It is also not difficult to see that if each node of S is stationary at p, then S is at an
equilibrium state at time p+ 1.

4.2.4 Locally Rendezvoused Nodes

In the sequel we will say node i ∈ {1, 2, . . . , n} has locally rendezvoused at time p if Hi(p) is a single
point; i.e., if yi(p) = yi1(p) = · · · = yimi

(p) = wi(p) = wi1(p) = · · · = wimi
(p). Note that if a node has

locally rendezvoused at p it must be stationary at p. The following proposition provides a criterion
for a node of S to be locally rendezvoused.

Proposition 4 Let p1 < p2 < p3 < p4 be four consecutive values of p in Pi. If yi(p4 + 1) ∈ K(p1),
then node i is locally rendezvoused at p = p3.

The proof of Proposition 4 depends on the following lemmas.

Lemma 7 Let p1 and p2 be two consecutive values of p in Pi. Suppose for some i ∈ {1, 2, . . . , n}, that
yi(p2 + 1) ∈ K(p1). Then

yi(p1) = yj(p1), j ∈ Ni (62)

Proof of Lemma 7: By hypothesis, yi(p2 + 1) ∈ K(p1). Therefore by Lemma 6, yi(p1) = yi(p2) and
node i is stationary at both p1 and p2. Because node i is stationary at p2, yi(p2) = vij(p2), j ∈ Ni.
Therefore

yi(p1) = vij(p2), j ∈ Ni (63)

The justify (62) it is therefore enough to show that

vij(p2) = yj(p1), j ∈ Ni (64)
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For this fix j ∈ Ni and define k = P−1
i (p1) and q = dt̄ikej . Since p1 = Pi(k) and t̄j(q−1) < t̄ik ≤ t̄jq,

Pj(q − 1) < p1 ≤ Pj(q) (65)

Let q̄ = dt̄i(k+1)ej . Since p2 = Pi(k + 1) and t̄j(q̄−1) < t̄i(k+1) ≤ t̄jq̄,

Pj(q̄ − 1) < p2 ≤ Pj(q̄) (66)

By Lemma 2, q̄ ∈ {q, q + 1, q + 2}. We claim that no matter which value q̄ takes,

vij(p2) ∈ {yj(Pj(q)), yj(Pj(q + 1)), yj(Pj(q + 2))} (67)

To justify this claim, consider first the case when q̄ = q. Then Si(k+1)∩Sj(q) Â τS because of Lemma
2. In general q̄ = dtp2

ej because tp2
= t̄i(k+1). Thus in this case q = dtp2

ej . In addition k+1 = P−1
i (p2).

Therefore Si(P
−1
i (p2))∩Sj(dtp2

ej) Â τS . From this and (35) it follows that vij(p2) = yj(p2). In view of
(36), yj(p) = yj(Pj(q)) for all values of p in the range Pj(q−1) < p ≤ Pj(q). But Pj(q−1) < p2 ≤ Pj(q)
because of (66). Therefore yj(p2) = yj(Pj(q)). Thus vij(p2) = yj(Pj(q)) which proves that (67) holds
in this case.

Now suppose that q̄ = {q + 1, q + 2}. In this case vij(p2) equals either yj(p2) or wj(p2) because
of (35). In view of (36), yj(p) = yj(Pj(q̄)) for Pj(q̄ − 1) < p ≤ Pj(q̄). From this and (66) it follows
that yj(p2) = yj(Pj(q̄)). Thus if vij(p2) = yj(p2) then vij(p2) = yj(Pj(q̄)). Since q̄ ∈ {q + 1, q + 2},
(67) must hold in this situation. To prove that (67) also holds in the alternative situation, when
vij(p2) = wj(p2), we exploit the relation wj(Pj(q̄ − 1) + 1) = yj(Pj(q̄ − 1)) which is valid because of
(34). In view of (37), wj(p) is constant for p in the range Pj(q̄−1) < p ≤ Pj(q̄). But p2 is in this range
because of (66); clearly Pj(q̄ − 1) + 1 is as well. Therefore wj(p2) = wj(Pj(q̄ − 1) + 1). It follows that
wj(p2) = yj(Pj(q̄− 1)). Thus if vij(p2) = wj(p2) then vij(p2) = yj(Pj(q̄− 1)). Since q̄ ∈ {q+1, q+2},
(67) must hold in this situation too. Thus (67) holds under all conditions.

It will now be shown that
vij(p2) = yj(Pj(q)) (68)

Consider first the situation when vij(p2) = yj(Pj(s)) where s is fixed at either value in {q + 1, q + 2}.
Since node i is stationary at p2, vij(p2) = yi(p2 + 1). Thus yj(Pj(s)) = yi(p2 + 1). By hypothesis,
yi(p2 +1) ∈ K(p1). Thus yj(Pj(s)) ∈ K(p1). Moreover p1 ≤ Pj(q) because of (65). Thus by Lemma 6,
yj(Pj(s)) = yj(Pj(q)). Therefore (68) holds when vij(p2) = yj(Pj(s)) for s ∈ {q + 1, q + 2}. In view of
(67), the only other possibility is vij(p2) = yj(Pj(q)). Therefore (68) is true under all conditions.

It remains to be shown that (64) holds. In view of (36), yj(p) = yj(Pj(q)) for p in the range
Pj(q − 1) < p ≤ Pj(q). But (65) shows that p1 is in this range so yj(p1) = yj(Pj(q)). From this and
(68) it follows that (64) holds.

Lemma 8 For any integers i ∈ {1, 2, . . . , n} and k ≥ 1

Pi(k + 1)− Pi(k) ≤ 2(n− 1) (69)

Moreover for any integer j ∈ {1, 2, . . . , n} which is not equal to i, there are at most two successive
positive integers s, s+ 1 such that

Pi(k) ≤ Pj(s) < Pj(s+ 1) ≤ Pi(k + 1) (70)
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Proof of Lemma 8: Fix i, j ∈ {1, 2, . . . , n} and k > 0. Let s and p be positive integers such
that t̄ik ≤ t̄js < t̄j(s+p) ≤ t̄i(k+1). These inequalities imply that t̄j(s+p) − t̄js < t̄i(k+1) − t̄ik. But
pτD ≤ t̄j(s+p)− t̄js because of (2) and t̄i(k+1)− t̄ik < 2τD because of (3). Therefore pτD < 2τD so p = 1.
Thus there are at most two successive event times t̄js and t̄j(s+1) for which t̄ik ≤ t̄js < t̄j(s+1) ≤ t̄i(k+1).
Moreover, since {j : j ∈ {1, 2, . . . , n}, j 6= i} contains n− 1 integers, it therefore follows that number
of distinct event times in the set {t̄js : j ∈ {1, 2, . . . , n}, j 6= i, s ≥ 1} which satisfy t̄ik ≤ t̄js ≤ t̄i(k+1)

does not exceed 2(n − 1). But Pi(·) and Pj(·) are strictly monotone increasing and t̄iq = tPi(q),
t̄jq = tPj(q) for all q ≥ 1. Therefore (69) is true and there are at most two successive integers s, s+ 1
for which (70) holds

Proof of Proposition 4: By hypothesis, yi(p4 + 1) ∈ K(p1) and p1 < p2 < p3 < p4. Therefore by
Lemma 6,

yi(p2) = yi(p3) = yi(p4) = yi(p4 + 1) (71)

and node i is stationary at p3 and p4. In view of (34), wi(p2 + 1) = yi(p2). But wi(p) = wi(p3) for
p2 < p ≤ p3 because of (37), so wi(p2 + 1) = wi(p3). Therefore yi(p2) = wi(p3). From this and (71) it
follows that

yi(p3) = wi(p3) (72)

By hypothesis yi(p4 + 1) ∈ K(p1). In addition, yi(p4 + 1) ∈ H(p3) because of (71). Thus yi(p4 + 1) ∈
K(p1) ∩ H(p3). In view of Lemma 5, H(p3) ⊂ H(p1). Thus K(p1) ∩ H(p3) ⊂ K(p3). Therefore
yi(p4 + 1) ∈ K(p3). Hence by Lemma 7,

yi(p3) = yj(p3), j ∈ Ni (73)

If view of (72) and (73), node i will be rendezvoused at p3 provided

yj(p3) = wj(p3), j ∈ Ni (74)

It will now be shown that this is true.

Fix j ∈ Ni and let q = dt̄ikej where k = P−1
i (p3). Equivalently, q is the unique integer for which

Pj(q − 1) < p3 ≤ Pj(q). In view of (36)and (37), yj(p) and wj(p) are constant for p in the range
Pj(q − 1) < p ≤ Pj(q). Since both p3 and Pj(q − 1) + 1 are in this range,

yj(p3) = yj(Pj(q − 1) + 1) and wj(p3) = wj(Pj(q − 1) + 1) (75)

Note next that yi(p4 + 1) = yi(p4) because node i is stationary at p4. From this and (71) and (73) it
follows that yi(p4 +1) = yj(p3). Thus yi(p4 +1) = yj(Pj(q− 1) + 1). Since yi(p4 +1) ∈ K(p1) it must
be true that

yj(Pj(q − 1) + 1) ∈ K(p1) (76)

In view of Lemma 8, there can be at most two consecutive integers in Pj which are in the set {p :
Pj(q−1) ≤ p ≤ Pj(q)}. Since p3 is one such integer, it must be true that p1 is not in the set. Therefore
p1 < Pj(q − 1). From this, (76) and Lemma 6 it follows that yj(Pj(q − 1) + 1) = yj(Pj(q − 1)). But
wj(Pj(q− 1) + 1) = yj(Pj(q− 1)) because of (34), so wj(Pj(q− 1) + 1) = yj(Pj(q− 1) + 1). From this
and (75) if follows that wj(p3) = yj(p3). Therefore (74) is true.
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4.3 Error system

To analyze system behavior it is helpful to use a suitably defined error system S̄ derived from S.
Towards this end, for each p ∈ P let

ȳi(p) = yi(p)− wn(p)

w̄i(p) = wi(p)− wn(p)



 i ∈ {1, 2, . . . , n} (77)

Note that
w̄n(p) = 0, p ∈ P (78)

Using (33) - (37) we obtain the update equations for {ȳi, w̄i} defined for p ∈ Pi by

ȳi(p+ 1) = ȳi(p) + umi
(v̄ii1(p)− ȳi(p), . . . , v̄iimi

(p)− ȳi(p))− ω(p)ȳn(p) (79)

w̄i(p+ 1) = ȳi(p)− ω(p)ȳn(p) (80)

where

v̄ij(p) =

{
ȳj(p) if Si(P

−1
i (p)) ∩ Sj(dtpej) Â τS

w̄j(p) otherwise

}
, j ∈ Ni (81)

and by

ȳi(p+ 1) = ȳi(p)− ω(p)ȳn(p) (82)

w̄i(p+ 1) = w̄i(p)− ω(p)ȳn(p) (83)

for p 6∈ Pi. Here ω(p) = 1 if p ∈ Pn and ω(p) = 0 otherwise. In terms of error variables, the neighbor
constraints given by (38) can be written as

||ȳi(p)− w̄j(p)|| ≤ r if Si(P
−1
i (p)) ∩ Sj(dtpej) 6Â τS , p ∈ Pi j ∈ Ni (84)

In the sequel S̄ denotes the error system defined by (79) - (84). Note that the state of S̄, namely
{ȳ1(p), . . . , ȳn(p), w̄1(p), . . . , w̄n−1(p)}, takes values in the closed space X̄ of all lists {ȳ1, . . . , ȳn, w̄1, . . . , w̄n−1}
satisfying

ȳi, w̄i ∈ IR2,

||ȳi − ȳj || ≤ r





j ∈ Ni, i ∈ {1, 2, . . . , n} (85)

It is possible to describe the preceding state update equations concisely as

x̄(p+ 1) = f(p, x̄(p)), p ∈ P

where x̄ is the state {ȳ1, . . . , ȳn, w̄1, . . . , w̄n−1}, f(p, ·) : X̄ (p) → X̄ is the next state map defined by
(79) - (83), and X̄ (p) is the set of states in X̄ for which then neighbor constraints (84) hold at time
p. It is important to recognize that even though there are infinitely many possible values of p, there
are only finitely many distinct X̄ (p) and finitely many distinct f(p, ·). Moreover, each X̄ (p) is closed
because of (84) and each f(p, ·) is continuous on its domain because each um(·) is. The following
lemma summarizes these observations.
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Lemma 9 There exists a finite index set Q, and a finite set of continuous functions Fq : Xq → X̄
with closed domains such that the following statement is true. For any p ∈ P there is a q ∈ Q such
that X̄ (p) = Xq and Fq(·) = f(p, ·).

The implication of Lemma 9 is that if {x̄(p) : p ∈ P} is a trajectory of S̄, then there are indices
q(p) ∈ Q, p ∈ P such that

x̄(p) = Fq(p)Fq(p−1) · · ·Fq(τ+1)(x̄(τ)), p > τ, p, τ ∈ P (86)

Here Fq(p)Fq(p−1) · · ·Fq(τ+1) is a “composed function”, where by the composition of functions Fs and
Fq we mean the function FqFs : Xqs → X̄ , whose domain Xqs is the inverse image of Xq under Fs, and
whose action on x̄ is x̄ 7−→ Fq(Fs(x̄)). Composition is an associative operation and because of this,
the operation extends unambiguously to finite families of Fq. Note that any such composed function
F = Fq1Fq2 · · ·Fqk

has a closed domain on which it is continuous.

Suppose that p̄ > 0 is fixed. If follows from the preceding that there are q(p) ∈ Q such that

x̄(p+ p̄) = Fq(p+p̄)Fq(p+p̄−1) · · ·Fq(p+1)(x̄(p)), p ∈ P (87)

It is important to recognize that even though the composed function Fq(p+p̄)Fq(p+p̄−1) · · ·Fq(p+1)(x̄(p))
depends on p, there can be only a finite number of such composed functions. This is because the family
of maps {Fq : q ∈ Q} is a finite set and because the composed functions in question are all compositions
of exactly p̄ maps in the family. The following proposition summarizes these observations.

Proposition 5 Let p̄ > 0 be fixed. There exist a finite index set Q̄, a finite set of closed subsets
X̄q ⊂ X̄ , and a finite set of continuous maps Dq : X̄q → X̄ , q ∈ Q̄ with the following property. For
each trajectory {x̄(p) : p ∈ P} of S̄, and each p ∈ P, there is a q ∈ Q̄ such that

x̄(p̄+ p) = Dq(x̄(p)) (88)

4.4 Global Rendezvous

It is natural to say that the n nodes of S have {globally} rendezvoused at time p if H(p) is a single
point; i.e., if y1(p) = y2(p) = · · · = yn(p) = w1(p) = w2(p) = · · · = wn(p). In view of the definitions
of tp and the yi and wi in (39) it is clear that the rendezvousing of all n nodes at time p implies the
rendezvousing of all n agents at time tp. It is also clear that the rendezvousing of all n nodes at time
p implies that each node has locally rendezvoused at p. Under certain conditions the converse is also
true.

Lemma 10 Suppose G is a connected graph. Suppose in addition that {{y(p), w(p)} : p ∈ P} is the
trajectory of S defined by (39). If for some i ∈ {1, 2, . . . , n} and p ∈ Pi, node i is locally rendezvoused,
then the n nodes of S have globally rendezvoused.

Proof of Lemma 10: Suppose node i is locally rendezvoused at p ∈ Pi. Then yi(p) = yj(p) and
wi(p) = yj(p), j ∈ Ni. Moreover, since node i is locally rendezvoused at p it must be stationary at
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p. Therefore yi(p+ 1) = yi(p); in addition, wi(p+ 1)) = yi(p) because of (34). Thus yi(p+ 1) = yj(p)
and wi(p + 1) = yj(p), j ∈ Ni. Fix j ∈ Ni and k ∈ Nj . Then ||yj(p) − yk(p)|| ≤ r because of the
definition of X . Therefore ||yi(p+1)−yk(p)|| ≤ r and ||wi(p+1)−yk(p)|| ≤ r. It follows from Lemma
4 that k ∈ Ni. Since this holds for every k ∈ Nj it must be true that Nj ⊂ Ni. Since j is arbitrary,
this must be true for all j ∈ Ni. Since G is connected, this can happen only if G is complete. Thus
Ni = {1, 2, . . . , n} which means that Hi(p) = H(p). By hypothesis Hi(p) is a single point. Therefore
Hi(p) is also a single point so the n nodes of S have globally rendezvoused.

Establishing the preceding result requires one to be able to conclude that if for some i, j ∈
{1, 2, . . . , n} and some p ∈ Pi, nodes i and j are in the same “position” in the sense that yi(p) =
yj(p) = wi(p), then Nj ⊂ Ni. In words, what this is roughly saying is that if node j is in the same
position as node i, then node j’s “neighbors” must also be neighbors of node i. This transitivity
property is not true in general but it is true if y(p) and w(p) are defined by (39) respectively. This is
a consequence of the Lemma 4.

The following proposition shows that if H does not change for a sufficiently long period of time,
then the n nodes have rendezvoused.

Proposition 6 Suppose G is a connected graph. Suppose in addition that {y(p), w(p) : p ∈ P} is the
trajectory of S defined by (39). Suppose that pa and pb are values in P for which pb − pa ≥ 8n and

dia{H(pa)} = dia{H(pb)} (89)

Then the n nodes of S have rendezvoused at p = pb.

Proof of Proposition 6: Choose i ∈ {1, 2, . . . , n} so that for some z ∈ H(pb), ||yi(pb) − z|| =
dia{H(pb)}. Then yi(pb) ∈ K(pb). In view of Lemma 5, H(pb) ⊂ H(pa). Therefore yi(pb), z ∈ H(pa).
Moreover ||yi(pb)− z|| = dia{H(pa)} because of (89) so

yi(pb) ∈ K(pa) (90)

Let p4 be the largest value of p ∈ Pi such that p4 < pb. Define k = P−1
i (p4) − 3 so Pi(k + 3) = p4.

Then p4 < pb ≤ Pi(k + 4). By (69),
pb − p4 ≤ 2(n− 1) (91)

In view of (36), yi(p) is constant for p in the range p4 < p ≤ Pi(k + 4). Since both p4 + 1 and pb are
in this range, yi(p4 + 1) = yi(pb). Thus

yi(p4 + 1) ∈ K(pa) (92)

Define p1 = Pi(k), p2 = Pi(k + 1), and p3 = Pi(k + 2). Clearly p1 < p2 < p3 < p4. Moreover
pj+1 − pj ≤ 2(n − 1), j ∈ {1, 2, 3} because of (69). From these inequalities and (91) it follows
that pb − p1 ≤ 8(n − 1). By hypothesis, pb − pb ≥ 8n. Therefore pa < p1. In view of Lemma 5,
H(p4) ⊂ H(p1) and H(p1) ⊂ H(pa). Therefore H(p1)∩K(pa) ⊂ K(p1). But H(p4+1) ⊂ H(p1) because
of Lemma 5;thus yi(p4 + 1) ∈ H(p1). This and (92) imply that yi(p4 + 1) ∈ H(p1) ∩K(pa). Therefore
yi(p4 + 1) ∈ K(p1). From this and Proposition 4 it follows that node i has locally rendezvoused at p3.
Therefore by Lemma 10, the n nodes of S are rendezvoused at p3.

The following theorem is our main convergence result concerning S. The main result of this paper,
Theorem 1, is an immediate consequence.
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Theorem 2 Let {{y(s), w(s)} : p ∈ P} be the trajectory of S defined by (39). If G is a connected
graph, then

lim
s→∞

dia〈y1(s), y2(s), . . . , yn(s), w1(s), w2(s), . . . , wn(s)〉 = 0 (93)

Proof of Theorem 2: In the sequel we write x(p) for {y1(p), . . . , yn(p), w1(p), . . . , wn(p)} and x̄(p)
for the error vector {ȳ1(p), . . . , ȳn(p), w̄1(p), . . . , w̄n−1(p)} defined by (77). Let V : X → IR denote the
diameter function x 7−→ dia〈y1, y2, . . . , yn, w1, w2, . . . , wn〉. Similarly, write V̄ : X̄ → IR denote the
diameter function x̄ 7−→ dia〈ȳ1, ȳ2, . . . , ȳn, w̄1, w̄2, . . . , wn−1, 0〉. Note that

V (x(p)) = V̄ (x̄(p)) (94)

Note in addition that because 0 ∈ 〈ȳ1, ȳ2, . . . , ȳn, w̄1, w̄2, . . . , wn−1, 0〉 , V̄ is radially unbounded whereas
V is not.

As a consequence of Lemma 5, V (x(p)) is a monotone non-increasing function of p. Clearly V (x(p))
is bounded below by 0. Moreover V (x(p)) is bounded above by V (x(0)) because V (·) is continuous.
Therefore there must exist a finite limit

V ∗ = lim
p→∞

V (x(p))

We claim that V ∗ = 0. To prove this claim, suppose that is false. Then V ∗ > 0. This means that the
trajectory {x(p) : p ∈ P} cannot contain any points in the set E = {x : V (x) = 0}. To proceed, fix
s̄ > 8n and let ∆(x(p)) denote the difference

∆(x(p)) = V (x(p̄+ p))− V (x(p)) (95)

Since V (x(p)) is monotone non-increasing, ∆(x(p)) ≤ 0, p ∈ P. In the light of Proposition 6 and the
fact that E has no points in common with {x(p) : p ∈ P}, one can conclude that ∆(x(p)) 6= 0, p ∈ P.
Therefore

∆(x(p)) < 0, p ∈ P (96)

Define ∆̄(x̄(p)) as
∆̄(x̄(p)) = V̄ (x̄(p̄+ p))− V̄ (x̄(p)) (97)

In view of (94)
∆(x(p)) = ∆̄(x̄(p)) (98)

Therefore
∆̄(x̄(p)) < 0, p ∈ P (99)

According to Proposition 5, for each p ∈ P there is a continuous function Dq such that x̄(p + p̄) =
Dq(x(p)). Let Wq denote the set of state pairs (x̄(p + p̄), x̄(p)) along the given trajectory of S̄ for
which this formula holds. It follows that

{(x(s+ s̄), x(s)) : s ∈ S} =
⋃

q∈Q

Wq

and that eachWq is a closed set. We claim that eachWq is bounded as well. This is in fact so because
of (94), because V̄ is radially unbounded, and because 0 ≤ V (x(p)) ≤ V (x(0)) <∞.
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For (x̂, x̄) ∈ Wq define ∆q : Wq → IR so that (x̂, x̄) 7−→ V̄ (Dq(x̂)) − V (x̄). Note that ∆q is a
continuous function on Wq whose value at each point (x̂, x̄) ∈ Wq agrees with ∆̄(x̄(p)) for some p. It
follows from (99) that

∆q(x̂, x̄) < 0, (x̂, x̄) ∈ Wq

Define
µq = sup

(x̂,x̄)∈Wq

∆q(x̂, x̄)

Since Wq is compact and ∆q is negative and continuous on Wq, it must be true that µq < 0. Let

µ = max
q∈Q

µi

Since Q is finite, µ < 0. Clearly

∆q(x̂, x̄) ≤ µ (x̂, x̄) ∈ Wq, q ∈ Q (100)

Note that by construction, for each p ∈ S there must be a q ∈ Q such that ∆̄(x̄(p)) = ∆q(x̄(p+p̄), x̄(p)))
From this and (100) it follows that

∆̄(x̄(p)) ≤ µ, p ∈ P

Therefore
∆(x(p)) ≤ µ, p ∈ P

because of (98). Note that

V (x(p+ p̄))− V (x(p)) = ∆(x(p)) ≤ µ, p ∈ P

Thus by summing,
V (x(p+ kp̄)) ≤ V (x(p)) + kµ, k ≥ 1

Therefore, for k sufficiently large V (x(p+kp̄)) must be negative because µ < 0. But this is impossible
because V (·) is positive semi-definite. Hence V ∗ cannot be positive.

5 Concluding Remarks

The analysis used in this paper exploits ideas which appear to have much in common with the embed-
ding process discussed in Chapter 7 of [7] for analyzing “partially asynchronous iterative algorithms.”
This suggests that the tools developed in [7] may be helpful in understanding the asynchronous system
considered in this paper.
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