
The Multi-Agent Rendezvous Problem - Part 1

The Synchronous Case ∗

J. Lin

800 Phillips Road

MS:0128-30E

Webster, NY 14580-90701

jie.lin@xeroxlabs.com

585-422-4305

A. S. Morse

PO Box 208267

Yale University

New Haven, CT 06520

morse@sysc.eng.yale.edu

203-432-4295

B. D. O. Anderson

Australian National University & National ICT Australia Ltd

Locked bag 8001

Canberra ACT 2601 Australia

Brian.Anderson@nicta.com.au

61-2-6125-8667

Abstract

This paper is concerned with the collective behavior of a group of n > 1 mobile autonomous
agents, labelled 1 through n, which can all move in the plane. Each agent is able to continuously
track the positions of all other agents currently within its “sensing region” where by an agent’s
sensing region is meant a closed disk of positive radius r centered at the agent’s current position.
The multi-agent rendezvous problem is to devise “local” control strategies, one for each agent, which
without any active communication between agents, cause all members of the group to eventually
rendezvous at single unspecified location. This paper describes a solution to this problem consisting
of individual agent strategies which are mutually synchronized in the sense that all depend on a
common clock.
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Current interest in cooperative control has led to the development of a number of distributed
control algorithms capable of causing large groups of mobile autonomous agents to perform useful
tasks [1] – [16]. Of particular interest here are provably correct algorithms which solve what we shall
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refer to as the “multi-agent rendezvous problem.” This problem, which was considered previously
in [2, 3], is concerned with the collective behavior of a group of n > 1 mobile autonomous agents,
labelled 1 through n, which can all move in the plane. Each agent is able to continuously track the
positions of all other agents currently within its “sensing region” where by an agent’s sensing region
is meant a closed disk of positive radius r centered at the agent’s current position. The multi-agent
rendezvous problem is to devise “local” control strategies, one for each agent, which without any
active communication between agents, cause all members of the group to eventually rendezvous at
single unspecified location.

In this paper, as in [3], we consider distributed strategies which guide each agent toward rendezvous
by performing a sequence of “stop-and-go” maneuvers. A stop-and-go maneuver takes place within
a time interval consisting of two consecutive sub-intervals. The first, called a sensing period, is an
interval of fixed length during which the agent is stationary. The second, called a maneuvering period,
is an interval of variable length during which the agent moves from its current position to its next
‘way-point’ and again come to rest. Successive way-points for each agent are chosen to be within
rM units of each other where rM is a pre-specified positive distance no larger than r. It is assumed
that there has been chosen for each agent i, a positive number τMi

, called a maneuver time, which is
large enough so that the required maneuver for agent i from any one way-point to the next can be
accomplished in at most τMi

seconds. Since our interest here is exclusively with devising of high level
strategies which dictate when and where agents are to move, we will use point models for agents and
shall not deal with how maneuvers are actually carried out or with how vehicle collisions are to be
avoided.

In this paper we describe a family of stop-and-go strategies which solves the problem. The family
includes the specific strategies proposed in [3] and consists of agent strategies which are mutually
synchronized in the sense that all depend on a common clock. In a sequel to this paper [17] we
propose and analyze families of strategies which also solve the problem, but without the need for
synchronization.

In the synchronous case treated here, the kth maneuvering periods of all n agents begin at the same
time t̄k. The kth way-point of each agent is a function of the positions of its “registered neighbors”
at time t̄k. Agent i’s registered neighbors at time t̄k are all those other agents positioned within its
sensing region at time t̄k. This notion of a neighbor induces a symmetric relation on the agent group
since agent j is a registered neighbor of agent i at time t̄k just in case agent i is a registered neighbor
of agent j at the same time. Because of this it is possible to characterize neighbor relationships
at time t̄k with a simple graph whose vertices represent agents and whose edges represent existing
neighbor relationships {§1.2}. Although the neighbor relation is symmetric, it is clearly not transitive.
On the other hand if agent i is at the same position as neighbor j at time t̄k, then any registered
neighbor of agent j at time t̄k must certainly must be a registered neighbor of agent i at the same
time. It is precisely because of this weak transitivity property that one can infer a global condition
of the entire agent group from a local condition of one agent and its neighbors. In particular, if the
graph characterizing neighbor relationships at time t̄k is connected, and any one agent is at the same
position as all of its neighbors, then the weak transitivity property guarantees at once that all n agents
have rendezvoused at time t̄k.

One way to ensure that a neighbor graph is connected at time t̄k, assuming it is connected when
the rendezvousing process begins, is to constrain each agent’s way points to be positioned in such a
way so that no agent can lose any of its registered neighbors when it moves from one way point to the
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next. This can be accomplished using a clever idea taken from [3]. An immediate consequence is that
each agent’s set of registered neighbors is non-decreasing and, because of this, ultimately converges to
a fixed neighbor set for t̄k sufficiently large.

A second local constraint is to require the way-point of each agent i at the beginning of its kth
maneuvering period to lie in the “local” convex hull Hi(k) of agent i’s own position at time t̄k and
the sensed positions of its registered neighbors at the same time. It is quite easy to prove that doing
this causes the global convex hull H(k+1) of all n agent positions at time t̄k+1 to be contained in the
corresponding global convex hull H(k) at time t̄k.

A third constraint is to stipulate that for each i, the only condition under which agent i’s kth way
point can be positioned at a corner of Hi(k), is when Hi(k) is a single point. The global implication of
doing this is that the diameter of H(k + 1) must either be strictly smaller than the diameter of H(k)
or every agent must be at the same position as all of its registered neighbors at time t̄k – and this is
true whether or not the graph characterizing neighbor relationships at time t̄k is connected.

In §3, a more or less standard Lyapunov based argument is used to prove that if the preceding
constraints are adopted by all agents and if the graph characterizing initial neighbor positions is con-
nected, then all n agents will eventually rendezvous at a single point. Not surprisingly, the Lyapunov
function used for this purpose is the diameter of the global convex hull. However, although connec-
tivity of the graph characterizing initial neighbor positions is sufficient for rendezvousing, it is not
necessary. An example illustrating this is given in §2.2. The example deals with the situation when
the initial neighbor graph consists of two connected components, with one “encircling” the other in a
suitably defined sense.

1 The Synchronous Agent System

In the synchronous case treated in this paper, the maneuvering times for all agents are all the same
length positive value τM . Along any trajectory of the system to be considered, the real time axis
can be partitioned into a sequence of consecutive time intervals [0, t1), [t1, t2), . . . [tk−1, tk), . . ., each of
length at least τM . Each interval consists of a sensing period followed by a maneuvering period of
fixed length τM . All agents function in synchronization in the sense that all are at rest during sensing
periods and all can maneuver only during maneuvering periods. In particular, all agents actions are
synchronized to the time sequence t̄1, t̄2, . . . t̄k . . . where t̄k denotes the real time tk − τM at which the
kth maneuvering period begins. Agent i’s registered neighbors at the beginning of its kth maneuvering
period [t̄k, tk), are those agents, except for agent i, which are within agent i’s sensing region at time t̄k.
Note that this definition is a symmetric relation on the set of all agents; i.e., if agent i is a registered
neighbor of agent j at the beginning of maneuvering period k, then agent j is a registered neighbor of
agent i at the beginning of the same maneuvering period.

1.1 Pairwise Motion Constraint

A pair of agents which are registered neighbors at the beginning of maneuvering period k are said to
satisfy the pairwise motion constraint during the period if the positions to which they move at time
tk are both within a closed disk of diameter r centered at the mean of their registered positions at
time t̄k. The definition implies that any two agents which are registered neighbors at the beginning
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of maneuvering period k will be registered neighbors at the beginning of maneuvering period k + 1 if
they satisfy the pairwise motion constraint during the kth. We are interested in strategies possessing
this property and accordingly make the following assumption.

Cooperation Assumption: During each maneuvering period k, each pair of agents which are reg-
istered neighbors at the beginning of the period, restrict their motions to satisfy the pairwise motion
constraint.

Agent i’s kth way-point is the point to which agent i is to move to at time tk. Thus if xi(t) denotes
the position of agent i at time t represented in a world coordinate system, then xi(tk) and agent i’s
kth way-point are one and the same. The rule which determines each such way-point is a function
depending only on the number and relative positions of agent i’s registered neighbors. In particular,
if agent i has mi registered neighbors at time t̄k, positioned relative to agent i at points

zj
∆
= xij (t̄k)− xi(t̄k), j ∈ {1, 2, . . . ,mi} (1)

then agent i’s kth way-point is
xi(tk−1) + umi

(z1, z2, . . . , zmi
) (2)

where u0 = 0, um : D
m → DM , m ∈ {1, . . . , n− 1}, and D and DM are the closed disks of radii r and

rM respectively, centered at the origin in IR2. In other words, if agent i has no registered neighbors
at time t̄k, {i.e., mi = 0}, it does not move during the kth maneuvering period. On the other hand, if
agent i has mi > 0 neighbors at time t̄k with relative positions z1, z2, . . . , zmi

, then agent i moves to
the position xi(tk−1) + umi

(z1, z2, . . . , zmi
) at time tk. Thus

xi(tk) = xi(tk−1) + umi(t̄k)(xi1(t̄k)− xi(t̄k), xi2(t̄k)− xi(t̄k), . . . , ximi(t̄k)
(t̄k)− xi(t̄k)) (3)

In the sequel we will explain how the um are defined. At the very least we will require each to be a
continuous function.

1.2 Definition of um

We’ve already defined u0 = 0. To define um for m > 0 it is necessary to take into account the pairwise
motion constraint. Toward this end, for each z ∈ D, let C(z) denote the closed disk of diameter r
centered at the point 1

2z. More generally, for each {z1, z2, . . . , zm} ∈ D
m, let

C(z1, z2, . . . , zm) =
m
⋂

j=1

C(zj) (4)

Note that 0 is in each C(zi) and moreover that each such C(zi) is closed and strictly convex. Conse-
quently C(z1, z2, . . . , zm) is either the singleton {0} or a strictly convex, closed set containing 0. We
can now define um to be any continuous function on D

m satisfying

um(z1, z2, . . . , zm) ∈ DM ∩ C(z1, z2, . . . , zm) ∩ 〈0, z1, z2, . . . , zm〉, ∀{z1, z2, . . . , zm} ∈ D
m (5)

where 〈0, z1, z2, . . . , zm〉 is the convex hull of the points 0, z1, z2, . . . , zm. The um are further required
to have the property that

um(z1, z2, . . . , zm) 6= a corner1 of 〈0, z1, z2, . . . , zm〉 (6)

1Recall that a point x in a polytope P in IRm is a corner if the only points y and z in P for which x is a convex
combination are y = z = x.
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unless z1 = z2 = · · · = zm = 0. In other words, um is required to be (i) a continuous function
on D

m which maps each {z1, z2, . . . , zm} ∈ D
m into DM ∩ C(z1, z2, . . . , zm) ∩ 〈0, z1, z2, . . . , zm〉 and

(ii) a function with the property that um(z1, z2, . . . , zm) is not a corner of 〈0, z1, z2, . . . , zm〉 unless
z1 = z2 = · · · = zm = 0. Examples of functions satisfying these conditions will be given in the sequel.

1.3 Target Points

One way to go about defining specific um which are continuous and which satisfy (5) and (6), is by first
defining what we shall refer to as a “target point.” By a target point is meant a continuous function
τ : D

m → 〈0, z1, z2, . . . , zm〉 defined in such a way that for each {z1, z2, . . . , zm} ∈ D
m for which 0

is a corner of 〈0, z1, z2, . . . , zm〉, the segment of the line from 0 to τ(z1, z2, . . . , zm) which lies within
C(z1, z2, . . . , zm) has positive length. For should it be possible to define such a τ , one could satisfy (5)
and (6) as well as the continuity requirement with a control of the form

um = g(z1, z2, . . . , zm)τ(z1, z2, . . . , zm)

where g : D
m → IR is any continuous, positive definite function satisfying

g < max
(0,1]

{µ : µτ ∈ DM

⋂

C(z1, z2, . . . , zm)}

Note that gτ ∈ 〈0, z1, z2, . . . , zm〉, ∀g ∈ [0, 1] because 0 ∈ 〈0, z1, z2, . . . , zm〉. The role of g is therefore to
scale down the magnitude of τ enough to insure that gτ is in the constraint set DM

⋂

C(z1, z2, . . . , zm).

It might be thought that one could choose for τ , the centroid of 〈0, z1, z2, . . . , zm〉 or perhaps the
average of the zi and 0, namely

τ
∆
=

1

m+ 1

m
∑

i=1

zi,

Both candidate definitions satisfy the requirement that τ(z1, z2, . . . , zm) must be a point in 〈0, z1, z2,
. . . , zm〉. Unfortunately, simple examples show that the centroid definition does not necessarily yield a
function which satisfies the continuity requirement while the averaging definition may lead to a function
which fails to satisfy the requirement that when 0 is a corner of 〈0, z1, z2, . . . , zm〉, the segment of the
line from 0 to τ(z1, z2, . . . , zm) which lies within C(z1, z2, . . . , zm) has positive length. For example,
the centroid of the convex hull of the points (0, 0), z1 = (0, 1) and z2 = (p, 1) is at (p3 ,

2
3) for p > 0

and at (0, 12) for p = 0 so the centroid is discontinuous at p = 0. As a counterexample to the use
of coordinate averaging to define a target point, note that the average of the four points located at
(0, 0), z1 = (−r, 0), z2 = (2r3 ,

r
2), and z3 = ( r3 ,

r
2) is at (0, r4) while the constraint set C(z1, z2, z3)

determined by these points must be contained in the constraint disk C(z1). Since the line L from (0, 0)
to (0, r4) is tangent to this disk at the origin, the intersection of L with C(z1, z2, z3) is just the point
(0, 0) and consequently not a line segment of positive length.

In the sequel we shall approach the problem of defining of τ in a slightly different way. We begin
by stating the following proposition which provides a simple condition on τ(·), which if satisfied,
automatically implies satisfaction of the requirement that when 0 is a corner of 〈0, z1, z2, . . . , zm〉, the
segment of the line from 0 to τ(z1, z2, . . . , zm) which lies within C(z1, z2, . . . , zm) has positive length.

Proposition 1 Let z1, z2, . . . , zm be a set of m > 0 points in D which are not all 0. If 0 is a corner
of 〈0, z1, z2, . . . , zm〉 and z is any non-zero point in D within r units of each point in {z1, z2, . . . , zm},
then the segment of the line from 0 to z which lies in C(z1, z2, . . . , zm), has positive length.
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The proof of this and subsequent propositions and lemmas are in §5.

Proposition 1 suggest the following approach for defining a target point. First, for each z ∈ D,
let D(z) denote a closed disk of radius r centered at z. More generally for any set of m > 0 points
z1, z2, . . . , zm in D, write

D(z1, z2, . . . , zm) =
m
⋂

i=1

D(zi)

By construction, each point in D(z1, z2, . . . , zm) is within r units of each point in {z1, z2, . . . , zm} and
conversely. Thus 0 ∈ D(z1, z2, . . . , zm) because zi ∈ D, i ∈ {1, 2, . . . ,m}.

Second, note that if z1, z2, . . . , zm is any set of m > 0 points in D which are not all zero and
for which 0 is a corner of 〈0, z1, z2, . . . , zm〉, then by Proposition 1 the segment of the line from 0 to
any non-zero point D ∩ D(z1, z2, . . . , zm) which lies in C(z1, z2, . . . , zm), must have positive length. It
follows that any continuous function τ : D

m → 〈0, z1, z2, . . . , zm〉 which satisfies

τ(z1, z2, . . . zm) ∈ D

⋂

D(z1, z2, . . . , zm)
⋂

〈0, z1, z2, . . . , zm〉

and which is non-zero whenever 0 is a corner of 〈0, z1, z2, . . . , zm〉 and z1, z2, . . . , zm are not all zero,
fulfills all the conditions required to be a target point. In the sequel we will show that there are at
least two different ways to so define τ .

1.3.1 The Centroid of D ∩ D(z1, z2, . . . , zm)

In order for the centroid of D∩D(z1, z2, . . . , zm) to be a target point, it must depend continuously on
the zi and, in addition, must have the property that it is non-zero for any set of m points in D which
are not all zero and for which 0 is a corner of 〈0, z1, z2, . . . , zm〉. These properties are guaranteed by
the following two propositions.

Proposition 2 Let z1, z2, . . . , zm be a set of m > 0 points in D which are not all 0. Then the centroid
of D∩D(z1, z2, . . . , zm) is in 〈0, z1, z2, . . . , zm〉. If, in addition, 0 is a corner of 〈0, z1, z2, . . . , zm〉, then
D ∩ D(z1, z2, . . . , zm) has a non-empty interior and the centroid of D ∩ D(z1, z2, . . . , zm) cannot be at
0.

Proposition 3 The function which assigns to each set of m > 0 points z1, z2, . . . , zm in D, the centroid
of D ∩ D(z1, z2, . . . , zm), is continuous.

Examination of the proof of Proposition 3 given in §5 reveals that the continuity of the centroid
of D ∩ D(z1, z2, . . . , zm) depends crucially on the fact that the centroid is at 0 whenever the area of
D∩D(z1, z2, . . . , zm) is zero. This property is not shared by the centroid of 〈0, z1, z2, . . . , zm〉 and it is
for this reason that the centroid of 〈0, z1, z2, . . . , zm〉 is not a continuous function of the zi.

It turns out that Propositions 2 and 3 both hold if the set D∩D(z1, z2, . . . , zm) is replaced through-
out by the constraint set D ∩ C(z1, z2, . . . , zm). This can be shown using essentially the same proofs
of the propositions as those given in the appendix. What this means then is that the centroid of
D ∩ C(z1, z2, . . . , zm) is also a valid target point.
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1.3.2 The Center of the Smallest Circle Containing 〈0, z1, z2, . . . , zm〉

It is also possible to define τ to be the center of the smallest circle containing 〈0, z1, z2, . . . , zm〉. To
understand why this is so, let us note first that for any set of points zi ∈ D, i ∈ {1, 2, . . . ,m}, the

set of points Q
∆
= {0, z1, . . . , zm} is contained in a circle of radius r centered at 0. It follows that the

center of this circle is at most r units from every point in Q. This suggests that one might choose
for τ(z1, z2, . . . , zm) the center τC(z1, z2, . . . zm) of the smallest circle containing Q or equivalently
〈0, z1, z2, . . . , zm〉, since τC(z1, z2, . . . , zm) would have to be within r units of every point in Q. It is
known that there is such a smallest circle [18] and that if the zi are not all zero, τC(z1, z2, . . . zm) is either
the midpoint between two of the points in Q or a point within the interior of a triangle formed from at
least one set of three points in Q [3]. In either case it is clear that τC(z1, z2, . . . zm) ∈ 〈0, z1, z2, . . . , zm〉
and, if the zi are not all zero and 0 is a corner of 〈0, z1, z2, . . . , zm〉, that τC(z1, z2, . . . zm) is nonzero
as well. Furthermore it can be shown that τC(z1, z2, . . . zm) depends continuously on the zi [19]. In
other words, τC(z1, z2, . . . zm) satisfies all the conditions required to be a target point. This elegant
choice for τ is the one proposed in [3].

2 Main Results

Define t0 = 0. Note that because agents don’t move during sensing periods, for k ≥ 1 the position of
each agent at time tk−1 is the same as its position at time t̄k. Thus (3) can be re-written as

xi(tk) = xi(tk−1)+umi(tk−1)(xi1(tk−1)−xi(tk−1), xi2(tk−1)−xi(tk−1), . . . , ximi(tk−1)
(tk−1)−xi(tk−1))

(7)

where mi(tk−1)
∆
= mi(t̄k). Because of this, the system just defined admits the model of a nonlinear

discrete-time system with state x(tk) = column {x1(tk), x2(tk), . . . xn(tk)} evolving on the time set
t0, t1, . . . tk, . . .. Analysis of this system depends on the relationships between neighbors and how they
evolve with time. These relationships can be conveniently described by a simple, undirected graph
with vertex set {1, 2, . . . , n} which is defined so that (i, j) is one of the graph’s edges just in case agents
i and j are registered neighbors at the beginning of maneuvering period k. Since these relationships
can change from one maneuvering period to the next, so can the graph which describes them. In the
sequel we use the symbol P to denote a suitably defined set, indexing the class of all simple graphs Gp

on n vertices. Let us partially order the set {Gp : p ∈ P} by agreeing to say that Gp is contained in
Gq if the edge set of Gp is a subset on the edge set of Gq. It is natural then to define the union of a
collection of such graphs, {Gp1 ,Gp2 , . . . ,Gpm}, to be the simple graph G with vertex set {1, 2, . . . , n}
and edge set equaling the union of the edge sets of all of the graphs in the collection.

Let σ(k) denote the index of the graph in {Gp : p ∈ P} which describes the relationship between
registered neighbors at the beginning of maneuvering period k. Because of the cooperation assumption,
we know that each agent keeps all of its registered neighbors as the system evolves. What this means
is the sequence of graphs Gσ(1),Gσ(2), . . . ,Gσ(k), . . . forms the ascending chain

Gσ(1) ⊂ Gσ(2) ⊂ · · ·Gσ(k) · · · (8)

Because {Gp : p ∈ P} is a finite set, the chain must converge to the graph

G
∆
=

∞
⋃

k=1

Gσ(k) (9)
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in a finite number of steps. Since the sequence of graphs stops changing in a finite number of steps,
rendezvousing at a single point can only occur if G is a complete graph. There is however, no a priori
guarantee that along a particular trajectory, G will turn out to be complete. On the other hand, it is
clear that G will always be at least connected if the initial graph Gσ(1) in the ascending chain is. It
turns out that connectivity of Gσ(1) implies not only that G is connected but also that the types of
distributed control strategies just described actually cause all agents to rendezvous at a single point.

2.1 Rendezvousing

Theorem 1 Let u0 = 0 ∈ DM and for eachm ∈ {1, 2, . . . , n−1}, let um : D
m → DM be any continuous

function satisfying (5) and (6). For each set of initial agent positions x1(0), x2(0), . . . , xn(0), each
agent’s position xi(t) converges to a unique point pi ∈ IR2 such that for each i, j ∈ {1, 2, . . . , n}, either
pi = pj or ||pi − pj || > r. Moreover, if agents i and j are registered neighbors at any time t, then
pi = pj.

The proof of this theorem is given in Section 3.

Theorem 1 states that the strategies under consideration cause all agents positions to converge
to points in the plane with the property that each two such points are either equal to each other, or
separated by a distance greater than r units. The theorem further states that if two agents are ever
registered neighbors of each other, then their positions converge to the same point. We are led to the
following corollary.

Corollary 1 If the graph characterizing registered neighbors at the beginning of period 1 is connected,
then the positions of all n agents converge to a common point in the plane.

It is quite straight forward to extend these results to the leader-follower case when the rendezvous
point is specified at the outset. This can be accomplished by simply fixing one additional agent {i.e.,
a virtual agent} at the desired rendezvous point and letting the remaining n agents maneuver just as
before. With initial graph connectivity of all n+1 agent positions, convergence to the position of the
virtual agent is then assured.

A more interesting case occurs when two virtual agents are fixed at distinct points in the plane.
In this case it can be shown that with initial connectivity of the n + 2 - agent graph, all n agents
will eventually move to positions on the line connecting the two virtual agents and will distribute
themselves in a predictable manner depending only the number of agents, r and the distance between
the two fixed, virtual agents. This behavior will be explored in greater depth in another paper dealing
with forming formations using distributed control.

2.2 Trapping

While the graph connectivity hypothesis of Corollary 1 is sufficient for rendezvousing, it is not nec-
essary. For example, suppose that the Gσ(1) has a connected component GC which contains a simple
closed cycle whose vertices are i1, i2, . . . , im. Then in the plane, the geometric form obtained by con-
necting by a straight line, the initial position of each agent ij ∈ {i1, i2, . . . , im} with its registered
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neighbors with labels in {i1, i2, . . . , im}, will be a simple, closed, polygon P. It turns out that if the
initial positions of all agents whose labels are not in the vertex set of GC , are within P, then ren-
dezvous will necessarily occur. While this conclusion might appear to be an obvious consequence of
the established property that agents ij ∈ {i1, i2, . . . , im} eventually rendezvous at a point, actually
proving that this is so is not so straight forward. There are two reasons for this. First there is no
guarantee that the polygon P(k) formed by the positions at time tk of agents ij ∈ {i1, i2, . . . , im} will
remain simple as the system evolves, even if it is initially; thus just what it means for an agent to
be “inside” of P(k) requires a more sophisticated notion of interior than the obvious one for a simple
closed curve in the plane and this in turn complicates the analysis. Second, it is quite possible that
an agent initially positioned inside of P(0), will be outside of P(k) for some k > 0. In the sequel we
explain how to overcome both of these difficulties and in so doing we establish a rendezvousing result
along the lines just described.

We begin by reviewing the concept of a “winding number” and what it means for a point to be
inside of a closed curve in IR2. Let κ : [0, 1] → IR2 be any continuous closed curve and let y be any
point in IR2 which does not lie on κ. The winding number of y with respect to κ, written wn(κ, y),
is the number of times a point p traversing κ encircles y in a counter-clockwise direction as p makes
a full circuit of κ. Points not on κ with non-zero winding numbers are inside of κ while those with a
winding number of zero are outside of κ. There is a well-known formula for wn(κ, y), involving the
integral around a closed contour κ̃ : [0, 1] → C in the complex plane [20]. κ̃ is a representation of
κ resulting from the assignment to each vector x = [ a b ]′ in IR2, the associated complex number

x̃
∆
= a+ jb. In this setting, wn(κ, y) is given by the contour integral

wn(κ, y) =
1

2πj

∮

κ̃

dz

z − ỹ

Use will be made of this formula in the sequel to prove Lemma 8.

The closed curves of interest here are of a specific type determined by finite point sets in IR2. In
particular, let us note that any ordered set of m > 0 points {y1, y2, . . . , ym} in IR2 uniquely determines
a continuous, piecewise-linear, closed curve c : [0,m]→ IR2 defined so that

c(t) = (t+ 1− i)yi+1 + (i− t)yi, i− 1 ≤ t ≤ i, i ∈ {1, 2, . . . ,m}

where ym+1 = y1. An ordered set {y1, y2, . . . , ym} of three or more such points is called a cycle if
||yi+1 − yi|| ≤ r, i ∈ {1, 2, . . . ,m}; in the sequel we denote such a cycle by dy1, y2, . . . , yme. A point
z ∈ IR2 is called an interior point of dy1, y2, . . . , yme if it is an interior point of the closed, piece-wise
linear curve c determined by {y1, y2, . . . , ym}.

A point z ∈ IR2 is said to be linked to a non-empty set of vectors {y1, y2, . . . , ym} in IR2, if for
some i ∈ {1, 2, . . . ,m}, ||z − yi|| ≤ r. More generally, z is connected to {y1, y2, . . . , ym} through a set
of vectors {x1, x2, . . . , xn} in IR2 if there exists a subset {xi1 , xi2 , . . . , xik} with xik ∈ {y1, y2, . . . , ym}
such that ||z − xi1 || ≤ r and ||xis−1 − xis || ≤ r, i ∈ {2, 3, . . . k}. The following corollary to Theorem 1
will be proved later in this section.

Corollary 2 Suppose that the set of initial positions {x1(0), x2(0), . . . , xn(0)} of the n agents
contains a cycle dxi1(0), xi2(0), . . . , xim(0)e. Then all agents initially positioned inside the cycle even-
tually rendezvous at one point with all agents with positions initially connected to the cycle through
{x1(0), x2(0), . . . , xn(0)}
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In the sequel we use the abbreviated notationC(k)
∆
= dxi1(tk), xi2(tk), . . . , xim(tk)e, k ≥ 0, and say

that a vector x is connected to C(k) whenever x is connected to C(k) through {x1(tk), x2(tk), . . . ,
xn(tk)}. Note that Corollary 2 does not require agents initially positioned inside of C(0) to be
connected to C(0). It is natural to say that such “disconnected” agents are ultimately trapped by
those agents whose initial positions comprise C(0). This particular group behavior is accordingly
referred to as “trapping.”

Consider the situation hypothesized in Corollary 2. We already know from Theorem 1 that all
agents with positions initially connected to C(0), eventually rendezvous at a single point. So what
remains to be shown is that all agents at initial positions interior to C(0) but not connected to it, also
rendezvous at the same point. To do this it is enough to show that each such initially disconnected
internal agent, eventually moves at some finite time tK to a position which is connected to C(K) -
for once this happens, Theorem 1 can be applied with a start time of tK , thereby enabling one to
conclude that the agent under consideration will eventually rendezvous at the same point as the agents
with positions initially connected to C(0). Carrying out this program relies on three key propositions
which follow and which are proved in §5.

Proposition 4 The interior of any cycle dy1, y2, . . . , yme in IR2 is contained in its convex hull
〈y1, y2, . . . , ym〉.

This proposition is used as follows. Note that because all agents initially positioned at points com-
prisingC(0), eventually rendezvous at a single point, the diameter of the convex hull 〈xi1(tk), xi2(tk), . . . ,
xim(tk)〉 must eventually become smaller than r and remain so for all future time. What this and
Proposition 4 therefore imply is that any agent whose position remains inside of C(k) for all time,
must at some finite time tk̄ reach a position connected to C(k̄). Unfortunately not every agent initially
positioned at a point inside of and disconnected from C(0) can be counted on to be so accommodating.
We will deal with this situation by proving that when such an agent first leaves C(k) – say at time tk̄
– it automatically moves to a position connected to C(k̄). Let A be the label of such an agent and let
xA(tk̄) denote its position at time tk̄. Below we shall argue using the following proposition that all of
agent A′s registered neighbor at the beginning of maneuvering period k̄ − 1 are inside of C(k̄ − 1) at
time tk̄−1.

Proposition 5 Let dy1, y2, . . . , yme be a cycle in IR2 which contains a point z which is not linked to
dy1, y2, . . . , yme. Then any point within r units of z is either inside of dy1, y2, . . . , yme or is linked to
dy1, y2, . . . , yme.

We’ve assumed that xA(tk̄) is not inside of C(k̄), and that xA(tk̄−1) is inside of C(k̄ − 1) and not
connected to C(k̄− 1). Clearly xA(tk̄−1) is not linked to C(k̄− 1). From Proposition 5 it follows that
all of agent A′s registered neighbors at the beginning of maneuvering period k − 1 are at positions
at time t̄k̄−1 {and consequently time tk̄−1} which are either inside of C(k̄ − 1) or linked to C(k̄ − 1).
If any registered neighbors neighbor’s position were connected to C(k̄ − 1), then xA(tk̄−1) would be
connected to C(k̄−1) which we’ve explicitly assumed is not the case. Therefore none of A′s registered
neighbors is connected {or therefore linked} to C(k̄ − 1) at time tk̄−1; moreover all must be inside of
C(k̄ − 1) because of Proposition 5.

To show that under these conditions, xA(tk̄) is necessarily connected to C(k̄), we will make use
of the following concept. Let us agree to call a cycle dȳ1, ȳ2, . . . , ȳme a successor of a given cycle
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dy1, y2, . . . , yme if, in addition to the cycle requirement that ||ȳi+1 − ȳi|| ≤ r, i ∈ {1, 2, . . . , n}, the
inequalities ||ȳi − yi|| ≤ r, ||ȳi+1 − yi|| ≤ r, and ||ȳi − yi+1|| ≤ r all hold for i ∈ {1, 2, . . . ,m}. Observe
that each cycle in the sequence dy1, y2, . . . , yme, dȳ1, y2, . . . , yme dȳ1, ȳ2, . . . , yme,. . . , dȳ1, ȳ2, . . . , ȳme
is a successor of the cycle which precedes it. It is easy to verify that for each k ≥ 0, C(k + 1) is a
successor of C(k).

Proposition 6 Let dȳ1, ȳ2, . . . , ȳme be a successor of a given cycle dy1, y2, . . . , yme in IR2. Suppose
that z1, z2, . . . , zk are k > 0 interior points of dy1, y2, . . . , yme which are not linked to dy1, y2, . . . , yme
and which satisfy ||z1− zi|| ≤ r, i ∈ {2, 3, . . . , k}. Then each point in the convex hull 〈z1, z2, . . . , zk〉 is
either an interior point of dȳ1, ȳ2, . . . , ȳme or is linked to dȳ1, ȳ2, . . . , ȳme.

Recall that the strategy under consideration puts xA(tk̄) at a point in the convex hull of the set
consisting of xA(tk̄−1) and the positions at time tk̄−1 of agent A’s registered neighbors. Proposition 6
therefore implies that xA(tk̄) must either be inside of C(k̄) or linked to it. Since we’ve ruled out the
former by assumption, xA(tk̄) is linked and therefore connected to C(k̄) as claimed. This completes
the proof of Corollary 2.

3 Analysis

The aim of this section is to establish the correctness of Theorem 1. Towards this end, let {{x1(tk),
x2(tk), . . . , xn(tk)} : k ≥ 1} be a system trajectory determined by (7) and any initial set of agent
positions. Let k∗ denote the value of k for which the ascending chain shown in (8) converge to
the limit graph G in (9). Thus for tk ≥ tk∗ , the neighbors of each agent do not change. For each
i ∈ {1, 2, . . . , n}, let {i1, i2, . . . , imi

} denote the set of indices labelling the neighbors of agent i. For
simplicity, we will only deal with the case when each agent has at least one neighbor. This means that
all mi are positive integers. These assumptions imply that for k ≥ k∗, the system under consideration
will have a state {x1(tk), x2(tk), . . . , xn(tk)} taking values in the space

X = {{x1, x2, . . . xn} : ||xj − xi|| ≤ r j ∈ {i1, i2, . . . , imi
}, i ∈ {1, 2, . . . , n}} (10)

3.1 Error System

To analyze system behavior it is convenient to introduce a suitably defined “error system.” For
{x1, x2, . . . , xn} ∈ X , define

ei = xi − xn, i ∈ {1, 2, . . . , n} (11)

and note that en = 0. Let e
∆
= {e1, e2, . . . , en−1}. In view of (10) and the fact that ej − ei = xj − xi

for all i, j ∈ {1, 2, . . . , n}, we see that e takes values in the closed space

E = {{e1, e2, . . . en−1} : en = 0, ||ej − ei|| ≤ r j ∈ {i1, i2, . . . , imi
}, i ∈ {1, 2, . . . , n}} (12)

Note that

xij (tk−1)− xi(tk−1) = eij (tk−1)− ei(tk−1), j ∈ {1, 2, . . . ,mi}, i ∈ {1, 2, . . . , n}
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It follows that the update equation (7) for xi can be written as

xi(tk) = xi(tk−1) + fi(e(k − 1)), k ≥ k∗ (13)

where fi : E → D is the continuous function

{e1, e2, . . . , en−1} 7−→ umi
(ei1 − ei, ei2 − ei, . . . , eimi

− ei)|en=0

In view of (13) and the definition of the ei,

ei(tk) = ei(tk−1) + fi(e(tk−1))− fn(e(tk−1)), k > k∗, i ∈ {1, 2, . . . , n− 1} (14)

This enables us to define the error system

e(tk) = e(tk−1) + f(e(tk−1)), k > k∗ (15)

where f(e) = {f1(e)− fn(e), f2(e)− fn(e), . . . , fn−1(e)− fn(e)}.

3.2 Proving Convergence in the Style of Lyapunov

In the sequel, we will prove that under certain conditions e(tk)→ 0 as k →∞. We will do this using
the positive definite function V : E → IR defined by

V (e) = dia{e1, e2, . . . , en−1, 0} (16)

where for any set of vectors y1, y2, . . . , ym in IR2, dia{y1, y2, . . . , ym} denotes the diameter2 of 〈y1, y2,
. . . , ym〉. The following proposition is central to the proof of Theorem 1.

Proposition 7 The difference function ∆ : E → IR defined by

∆(e) = V (e+ f(e))− V (e) (17)

is negative semi-definite. Moreover if G is connected, then ∆ is negative definite.

Proof of Theorem 1: In general the graph G to which the ascending chain (8) converges for some
finite k = k∗ consists of a finite set of connected components. Suppose that Gc is any one of these. To
prove Theorem 1 it is enough to show that the positions of those agents whose indices are the vertices
of Gc, converge to a common point. For simplicity we will do this only for the case when Gc = G,
since, except for notation, the proof is essentially the same even if Gc 6= G.

By hypothesis n > 1. Note that if e(tk) = 0, for some k = k̄, then all agents are in the same
position at time tk̄; moreover any such position will remain fixed for all t ≥ tk̄ because f(0) = 0.
Therefore to complete the proof it is enough to show that e(tk) tends to 0 as k →∞.

Let V : E → IR be defined as in (16). Note that

V (e(tk)) = dia{x1(tk), x2(tk), . . . , xn(tk)} (18)

2Recall that the diameter of a closed set S ⊂ IR2 is the maximum of ||s1 − s2|| over all s1, s2 ∈ S.
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because the diameter of a convex set in IR2 is invariant under translation of the set. From this and
Proposition 7, it follows that the difference function

∆(e(tk)) = V (e(tk) + f(e(tk)))− V (e(tk))

is non-positive for k ≥ k∗. Thus V (e(tk)) is a monotone non-increasing function of k for k ≥ k∗. Since
for k ≥ k∗, V (e(tk)) is bounded above by V (e(tk∗)) and below by 0, there must exist a finite limit

V ∗ ∆
= lim

k→∞
V (e(tk))

We claim that V ∗ = 0. To prove this claim, suppose that it is false. Then V ∗ > 0. Let B denote the
set of all points e ∈ E such that V ∗ ≤ V (e) ≤ V (e(tk∗)). Note that B is closed and bounded because
V (·) is continuous and E is closed. Moreover 0 6∈ B because V (·) is positive definite and bounded away
from zero on B. By Proposition 7, ∆(·) is negative definite. Therefore for all e ∈ B, ∆(e) < 0. From
this, the compactness of B and the continuity of ∆(·), it follows that

µ
∆
= max

e∈B
∆(e)

is a finite negative number. Since e(tk) ∈ B for k ≥ k∗, it must therefore be true that

V (e(tk+1))− V (e(tk)) = ∆(e(tk)) ≤ µ, k ≥ k∗

Thus by summing,
V (e(tk)) ≤ V (e(tk∗)) + (k − k∗)µ, k ≥ k∗

Therefore, for k sufficiently large V (e(tk)) must be negative because µ < 0,. But this is impossible
because V (·) is positive definite. Hence V ∗ cannot be positive.

The proof just given is basically a standard Lyapunov argument3 applied to the system (17). It is
worth pointing out here that the continuity of ∆(·) is crucial to the proof as is the fact that E is closed.
If E were not a closed set, the preceding proof would break down because one could not conclude that
B is closed. The closure of E is a direct consequence of the fact that sensing regions are defined to be
closed sets. The continuity of ∆(·) is a consequence of the requirement that the um(·) be continuous
functions. In summary, for the present analysis to go through, it is essential that sensing regions be
closed sets and that the um(·) be continuous functions. Whether or not these requirements can be
relaxed by approaching convergence differently remains to be seen.

4 Concluding Remarks

In this paper we have reconsidered the multi-agent rendezvous problem originally posed in [3] and
have described several alternate synchronous solutions. We have provided an example which shows
that rendezvousing can in some cases be guaranteed to occur even if the graph characterizing initial
relations is not initially connected. In a sequel to this paper [17] we will explain how rendezvousing
can be achieved asynchronously, without assuming that the agents share a common clock.

3It is worth noting that a similar proof could also be crafted using recent results by Moreau which appeared in [21]
after this paper was submitted in December, 2004.
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5 Appendix

The proof of Proposition 1 depends on the following lemma.

Lemma 1 Let z1, z2, . . . , zm be a set of m > 0 points in D which are not all 0. If 0 is a corner of
〈0, z1, z2, . . . , zm〉, then the constraint set C(z1, z2, . . . , zm) has a non-empty interior.

Proof of Lemma 1: Suppose that C(z1, z2, . . . , zm) has an empty interior in which case C(z1, z2, . . . , zm)
is the singleton {0}. It will be enough to prove that 0 is not a corner of 〈0, z1, z2, . . . , zm〉. In the sequel
we shall assume without loss of generality, that 0 is on the boundary of each disk in the intersection;
for if there were any disks in the intersection which contained the origin in their interiors, all such
disks could be removed from the intersection without changing what the intersection equals.

To proceed, let us note first that m > 1 because each C(zi) has a non-empty interior and, by
hypothesis, the intersection C(z1, z2, . . . , zm) does not. Next observe that since m > 1 and C(z1)

has a non-empty interior, there must be a least integer j ∈ {2, 3, . . . ,m} such that I
∆
=
⋂j−1
i=1 C(zj)

has a non-empty interior and I ∩ C(zj) contains just the origin. The intersection of any positive
number of discs from {C(z1), C(z2), . . . C(zm)} is either the origin or a convex set with a non-empty
interior; moreover the latter will always be a strictly convex set whose edges are arcs from circles
bounding disks in the intersection and whose corners are intersections of such arcs. It follows that
C(zj) must either be tangent at the origin to an arc which is from a circle bounding some disk
C(zk) ∈ {C(z1), C(z2), . . . C(zj−1)} or C(zj)’s boundary must pass through a corner of I at the origin.
If the former is true, then zk must equal −zj . Since zj 6= 0, this means that the origin is halfway
between zk and zj on the line connecting these two points. Hence the origin cannot be a corner of the
polytope 〈0, z1, z2, . . . , zm〉.

Now suppose that the boundary of C(zj) passes through a corner of I at the origin. Let C(zk)
and C(zl) denote two disks in {C(z1), C(z2), . . . C(zj−1)} whose intersection at the origin determine this
corner. Under these conditions, zk + zl 6= 0 – for if zk + zl = 0, then C(zk) and C(zl) would be tangent
and I would consequently contain just the origin. Moreover the intersection C(zj)∩C(zk)∩C(zl) must
consist of just the origin – for if this were not so, then I ∩C(zj) would have a non-empty interior since
I coincides locally, in an open neighborhood of 0, with C(zk) ∩ C(zl).

As illustrated in Figure 1, the requirement that C(zj) ∩ C(zk) ∩ C(zl) consist of just the origin
implies that C(zj) must be positioned in such a way so that it intersects only at the origin with a cone
of points determined by tangents to C(zk) and C(zl) at the origin. This means that zj must lie within
the opposing cone shown in grey in Figure 1. Hence the origin is within the interior of the convex hull
of zj , zk, and zl. Therefore the origin cannot be a corner of 〈0, z1, z2, . . . , zm〉.

Proof of Proposition 1: Lemma 1 and the hypothesis that 0 is a corner of 〈0, z1, z2, . . . , zm〉, imply
that C(z1, z2, . . . , zm) has a non-empty interior. From this and the hypothesis that z 6= 0, it follows
that if 0 is an interior point of C(z1, z2, . . . , zm), a line segment with the required property must exist.

Suppose next that 0 is on the boundary of C(z1, z2, . . . , zm). To complete the proof it is clearly
enough to show that the line from 0 to z passes through the interior of each disk C(zj) for which
0 is a boundary point. Let C(zj) be such a disk in which case ||zj || = r. Suppose that the line
from 0 to z does not pass through the interior C(zj). This means that z′jz ≤ 0 and thus that

||z||2 − 2z′jz + ||zj ||
2 ≥ ||z||2 + ||zj ||

2. Since ||z − zj ||
2 = ||z||2 − 2z′jz + ||zj ||

2 and ||zj || = r it

14



�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������

�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������

zk
zl

zj

0
Ck

Cj

Cl

Figure 1: Three constraint disks whose intersection is the origin

follows that
||z − zj ||

2 ≥ ||z||2 + r2

But ||z||2 > 0 because z 6= 0, so
||z − zj || > r

This contradicts the hypothesis that z is within r units of each point in {z1, z2, . . . , zm}. Therefore
the line from 0 to z must pass through the interior C(zj).

The proof of Proposition 2 depends of the following two lemmas.

Lemma 2 Let z1, z2, . . . , zm be a set of m > 0 points in D which are not all zero. Let E(x, y) be an
edge of 〈0, z1, z2, . . . , zm〉 with distinct corners x and y. Write L(x, y) for the line passing through
x and y and let S(x, y) denote the closed half plane bounded by this line whose intersection with
〈0, z1, z2, . . . , zm〉 is E(x, y). If z is any point in S(x, y) which is also in D ∩ D(z1, z2, . . . , zm), then
the reflection of z about L(x, y) is also in D ∩ D(z1, z2, . . . , zm).

Proof of Lemma 2: Note that 〈0, z1, z2, . . . , zm〉 is contained in the half plane obtained by reflecting
S(x, y) about L(x, y). Because of this, for each w ∈ S

||w̄ − q|| ≤ ||w − q||, ∀q ∈ 〈0, z1, z2, . . . , zm〉

where w̄ is the reflection of w about L(x, y). In particular, this implies that

||z̄ − zi| ≤ ||z − zi||, i ∈ {0, 1, 2, . . . ,m} (19)

where z0 = 0 and z̄ is the reflection of z about L(x, y). But

||z − zi|| ≤ r, i ∈ {0, 1, 2, . . . ,m} (20)

because z ∈ D ∩ D(z1, z2, . . . , zm). From (19) and (20) it follows that z̄ ∈ D ∩ D(z1, z2, . . . , zm).
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Lemma 3 Let L be a line in IR2 which divides a given closed set D into closed subsets P and Q with
Q convex. If the reflection of P about L is a subset of Q, then the centroid of D is in Q.

Proof: Let P̄ denote the reflection of P about L. By hypothesis, P̄ ⊂ Q. Write Q − P̄ for the
complement of P̄ in Q. By symmetry, the centroid of P ∪ P̄ is in L ⊂ Q. Meanwhile, the centroid of
Q − P̄ must also be in Q because Q is convex and Q − P̄ ⊂ Q. Thus the centroid of D must be in
Q because it is the average of the centroids of P ∪ P̄ and Q− P̄ weighted by the areas of P ∪ P̄ and
Q− P̄ respectively.

Proof of Proposition 2: Write D for D∩D(z1, z2, . . . , zm) and let {E1, E2, . . . , Ek} denote the set of
edges of 〈0, z1, z2, . . . , zm〉. For each such edge Ei, let Li denote the line in IR2 containing Ei and write
Si for the closed half plane bounded by this line whose intersection with 〈0, z1, z2, . . . , zm〉 is Ei. Let
S̄i denote the reflection of Si about Li. In view of Lemma 2,

Si ∩ D ⊂ D i ∈ {1, 2, . . . , k}

where Si ∩ D is the reflection of Si ∩ D about Li. Since Si ∩ D is also a subset of S̄i,

Si ∩ D ⊂ S̄i ∩ D i ∈ {1, 2, . . . , k} (21)

Moreover by de Morgan’s rule

{Si ∩ D} ∪ {S̄i ∩ D} = D, i ∈ {1, 2, . . . , k}

because Si ∪ S̄i = IR2, i ∈ {1, 2, . . . , k}. Thus for each i ∈ {1, 2, . . .}, Li divides D into two closed
convex regions, namely Si ∩ D and S̄i ∩ D. From this, (21) and Lemma 3 it follows that

centroid{D} ∈ S̄i ∩ D, i ∈ {1, 2, . . . , k}

Therefore

centroid{D} ∈
k
⋂

i=1

{S̄i ∩ D} (22)

But
k
⋂

i=1

{S̄i ∩ D} = 〈0, z1, z2, . . . , zm〉
⋂

D (23)

because

〈0, z1, z2, . . . , zm〉 =
k
⋂

i=1

S̄i

From (22) and (23) it follows that centroid{D} ∈ 〈0, z1, z2, . . . , zm〉.

Now suppose that 0 is a corner of 〈0, z1, z2, . . . , zm〉. Then in view of Lemma 1, D∩C(z1, z2, . . . , zm)
has a non-empty interior. To prove that D ∩ D(z1, z2, . . . , zm) also has a non-empty interior, it is
therefore enough to show that

C(z1, z2, . . . , zm) ⊂ D(z1, z2, . . . , zm) (24)

Recall that for z ∈ D, D(z) = {x : ||z − x|| ≤ r} and C(z) = {x : || 12z − x|| ≤ r
2}. Thus for x ∈ C(z)

||z − x|| = ||
1

2
z − x+

1

2
z|| ≤ ||

1

2
z − x||+ ||

1

2
z|| ≤

r

2
+

1

2
||z|| ≤ r
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so x ∈ D(z). Hence C(z) ⊂ D(z), z ∈ D from which (24) follows.

To prove that the centroid of D is not at 0, it is enough to show that it is not at 0 whenever it lies
on an edge of 〈0, z1, z2, . . . , zm〉 which contains 0. Accordingly, let Ej be an edge of 〈0, z1, z2, . . . , zm〉
which contains both 0 and the centroid of D. Since the centroid of D lies in Lj , and both Sj ∩D and
S̄j ∩ D have non-empty interiors, it must be true that

area{Sj ∩ D}d = area{S̄j ∩ D}d̄

where d is the distance from the centroid of Sj ∩D to the point closest on Lj and d̄ is correspondingly
the distance from the centroid of S̄j ∩D to the point closest on Lj . But area{Sj ∩ D} = area{Sj ∩D},
so

area{Sj ∩ D}d = area{S̄j ∩ D}d̄ (25)

We claim that
Sj ∩ D = S̄j ∩ D (26)

To establish this claim, we first note that Sj ∩ D ⊂ S̄j ∩D because (21) holds for all i ∈ {1, 2, . . . , k}.
Thus to prove (26) it is enough to show that the complement of Sj ∩ D in S̄j ∩ D, denoted by W,
is empty. Towards this end, suppose that W is non-empty and has a non-empty interior. Since
S̄j ∩ D = {Sj ∩ D} ∪W and {Sj ∩ D} ∩W is empty, it must be true that

area {S̄j ∩ D}d̄ = area {Sj ∩ D}d1 + area {W}d2

where d1 is the distance from the centroid of {Sj ∩ D} to the point closest on Lj and d2 is correspond-
ingly the distance from the centroid of W to the point closest on Lj . But Sj ∩ D is the reflection of
Sj ∩ D about Lj so d1 = d. Therefore

area {S̄j ∩ D}d̄ = area {Sj ∩ D}d+ area {W}d2

This and (25) imply that area {W}d2 = 0. But d2 6= 0 because we’ve assumed thatW has a non-empty
interior. This implies that area {W} = 0 which contradicts the hypothesis that W has a non-empty
interior. Therefore W has an empty interior.

To show that W is actually empty or equivalently that (26) holds, it is enough to prove that the
interior of S̄j ∩ D is contained in Sj ∩ D. For if this is true, then (26) holds, because both sets are
closed and convex with non-empty interiors and Sj ∩ D ⊂ S̄j ∩ D .

Suppose that the interior of S̄j ∩ D is not contained in Sj ∩ D. Then there must be a point p in
the interior of S̄j ∩ D which is not in Sj ∩ D. Since {p} and Sj ∩ D are disjoint and each is a closed,
convex set, there must be a line L̄ which separates the two and intersects neither. From this it is clear
that there is an open set Np ⊂ S̄j ∩ D containing p and which does not intersect L̄. It follows that
Np and Sj ∩ D are disjoint and thus that Np ⊂ W. But this is impossible because W has no interior.
Therefore W is empty. We have therefor proved that D is symmetric about Lj in the sense that (26)
holds.

Since D has a non-empty interior, its boundary consists of circular arcs resulting from the inter-
section of m+ 1 disks of radius r. Let A denote a circular arc of positive length which lies in Sj and
which comprises part of the boundary of D. In view of D’s symmetry about Lj as defined by (26),
the reflection of A about Lj , namely Ā, must be a circular arc of positive length which lies in S̄j and
which comprises part of the boundary of D. Let x and y be points in {0, z1, z2, . . . , zm} which define
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discs D(x) and D(y) whose boundaries contain A and Ā respectively. Clearly the reflection of D(x)
about Lj must equal D(y) which implies that x̄ = y. Thus x̄ ∈ 〈0, z1, z2, . . . , zm〉. Since either x̄ or
x must be in Sj , at least one of these two points must be in Sj ∩ 〈0, z1, z2, . . . , zm〉 which is equal to
Ej . This can only occur if x̄ = x. In summary we have shown that if A is any circular arc of positive
length comprising part of the boundary of D, and if x is any point in {0, z1, z2, . . . , zm} which defines
a disk D(x) whose boundary contains A, then x must be in Ej .

Now let y be the non-zero endpoint of the edge Ej , let A be any circular arc of positive length
comprising part of the boundary of D, and let xA be any point in {0, z1, z2, . . . , zm} which defines a
disk D(xA) whose boundary contains A. As we’ve just shown, xA ∈ Ej . This means there must be a
number λ ∈ [0, 1] such that xA = λy. Let z be any point in D∩D(y). Then by definition ||z|| ≤ r and
||y − z|| ≤ r. Therefore

||xA− z|| = ||λy− z|| = ||λ(y− z)− (1−λ)z|| ≤ ||λ(y− z)||+ ||(1− λ)z|| ≤ λ||y− z||+ (1−λ)||z|| ≤ r

so z ∈ D(xA). Since z was chosen arbitrarily,

D ∩ D(y) ⊂ D(xA)

This containment holds for each disk D(xA) whose boundary contains a circular arc A of positive
length comprising part of the boundary of D. Since the intersection of the D(xA) over all such A is
D, it must therefore be true that

D ∩ D(y) ⊂ D (27)

On the other hand, D ⊂ D(y) since y ∈ 〈0, z1, z2, . . . , zm〉. Thus D ⊂ D ∩ D(y). This and (27) thus
imply that

D ∩ D(y) = D

It follows that the centroid of D must be the centroid of D∩D(y). But the centroid of two intersection
disks with the same radius must be at the mid-point between their centers. Therefore the centroid of
D is at 1

2y which is not 0.

Proof of Proposition 3: In the sequel we write z for the n-tuple {z1, z2, . . . , zm} ∈ D
m, and S(z)

for the intersection D ∩ D(z1, z2, . . . , zm). Thus for x, y ∈ D
m, S(x) ∩ S(y) = D ∩ D(x1, x2, . . . , xm) ∩

D(y1, y2, . . . , ym). For x ∈ D
m, let α(S(x)) and σ(S(x)) denote respectively the area and centroid of

S(x). Note that σ(S(x)) = 0 whenever α(S(x)) = 0. This crucial property {which is not true for
polygons} is a consequence of the fact that S(x) is either strictly convex with non-empty interior or
the singleton 0.

It will first be shown that z 7−→ σ(S(z)) is continuous at each point x ∈ D
m at which α(S(x)) = 0.

Let x be any such point. Clearly σ(S(x)) = 0. Let ε > 0 be fixed. Since z 7−→ diameter(S(z)) is
continuous on D

m, there must be a number δ > 0 such that diameter(S(z)) ≤ ε whenever ||z−x|| ≤ δ.
But both 0 and σ(S(z)) are points in S(z) for all z ∈ D

m. Hence ||σ(S(z))|| ≤ diameter(S(z)), z ∈ D
m

so |σ(S(z))| ≤ ε whenever ||z − x|| ≤ δ. Therefore z 7−→ σ(S(z)) is continuous at each point x ∈ D
m

at which α(S(x)) = 0.

It will now be shown that z 7−→ σ(S(z)) is continuous at each point x ∈ D
m at which α(S(x)) > 0.

Let x be such a point. Pick ε > 0 and define

ε̄ =
ε

ε+ 4r
α(S(x)) (28)
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Since z 7−→ α(S(z)) and z 7−→ α(S(x) ∩ S(z)) are continuous on D
m and α(S(x) ∩ S(x)) = α(S(x)),

there must be a number δ > 0 such that

|α(S(x))− α(S(z))| ≤ ε̄ and |α(S(x))− α(S(x) ∩ S(z))| ≤ ε̄ (29)

whenever ||z − x|| ≤ δ. Fix z at any such value. To complete the proof it is enough to show that

||σ(S(x))− σ(S(z))|| ≤ ε (30)

From the first inequality in (29), α(S(z)) ≥ α(S(x))− ε̄. But from (28), α(S(x))− ε̄ = 4rε̄
ε

so

α(S(z)) ≥
4rε̄

ε
(31)

In general
S(x) = (S(x) ∩ S(z)) ∪ X and S(z) = (S(x) ∩ S(z)) ∪ Z (32)

where X and Z are the complements of S(x)∩ S(z) in S(x) and S(z) respectively. If S(x)∩ S(z) is a
strictly proper subset of S(x) {respectively S(z)} then X {respectively Z} is a subset with non-empty
interior; in this case α(X ) and σ(X ) {respectively α(Z) and σ(Z)} are well defined. If on the other
hand, S(x) ∩ S(z) equals S(x) {respectively S(z)} then X {respectively Z} is the empty set; in this
case α(X ) {respectively α(Z)} is zero and σ(X ) {respectively σ(Z)} is taken to be the 0 vector in IR2.

In view of (32)

α(S(x)) = α(S(x) ∩ S(z)) + α(X ) (33)

α(S(z)) = α(S(x) ∩ S(z)) + α(Z) (34)

α(S(x))σ(S(x)) = α(S(x) ∩ S(z))σ(S(x) ∩ S(z)) + α(X )σ(X ) (35)

α(S(z))σ(S(z)) = α(S(x) ∩ S(z))σ(S(x) ∩ S(z)) + α(Z)σ(Z) (36)

Subtracting (33) from (34) and (35) from (36) one obtains

α(S(z))− α(S(x)) = α(Z)− α(X ) (37)

and
α(S(z))σ(S(z))− α(S(x))σ(S(x)) = α(Z)σ(Z)− α(X )σ(X ) (38)

respectively. Using (37) to eliminate α(Z) from (38) there results

α(S(z))σ(S(z))− α(S(x))σ(S(x)) = α(X ){σ(Z)− σ(X )}+ {α(S(z))− α(S(x))}σ(Z)

which can be rewritten as

σ(S(z))− σ(S(x)) =
1

α(S(z))
{α(X ){σ(Z)− σ(X )}+ {α(S(z))− α(S(x))}{σ(Z)− σ(S(x))}} (39)

Since the centroids of Z,X ,S(z) and S(x) are all in D, it must be true that the norm of each is
bounded above by r. This and (39) imply that

||σ(S(z))− σ(S(x))|| ≤

∥

∥

∥

∥

1

α(S(z))

∥

∥

∥

∥

{2r||α(X )||+ 2r||α(S(z))− α(S(x))||} (40)
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But ‖ 1
α(S(z))‖ ≤

ε
4rε̄ because of (31); moreover ||α(X )|| ≤ ε̄ because of (33) and the second inequality

in (29). From these inequalities, the first inequality in (29), and (40) it follows that (30) is true.

Proof of Proposition 4: Note first that each point on the piece-wise linear curve c determined
by the points y1, y2, . . . , ym is on a line connecting two of these points. It follows that each point
on c is contained in 〈y1, y2, . . . , ym〉. Let y be an interior point of dy1, y2, . . . , yme; in other words,
wn(y, c) 6= 0. Because of this c must encircle y at least once. Since y is an interior point, any line of
sufficient length which passes through y must intersect c at least two distinct points. Since points on
c are in 〈y1, y2, . . . , ym〉, y must therefore be in 〈y1, y2, . . . , ym〉 as well.

The proof of Proposition 5 depends on the following fact.

Lemma 4 Let a, b, c, d be four points in the plane positioned so that the line from a to b intersects
the line from c to d, and that ||a− b|| ≤ r and ||c− d|| ≤ r. Then

min{||a− d||, ||b− c||} ≤ r and min{||a− c||, ||b− d||} ≤ r (41)

Proof of Lemma 4: Let e denote any point at which the line from a to b intersects the line from c

to d. Since a− d = (a− e) + (e− d) and c− b = (c− e) + (e− b), we can use the triangle inequality to
get ||a−d|| ≤ ||a−e||+ ||e−d|| and ||c− b|| = ||c−e||+ ||e−d|| respectively. Adding these inequalities
yields

||a− d||+ ||c− b|| ≤ ||a− e||+ ||e− d||+ ||c− e||+ ||e− b||

But because a, b and e are co-linear and c, d, e are co-linear, ||a − e|| + ||e − b|| = ||a − b|| and
||c− e||+ ||e− d|| = ||c− d|| respectively. Therefore

||a− d||+ ||c− b|| ≤ ||a− b||+ ||c− d|| ≤ 2r

It follows that either ||a − d|| ≤ r or ||c − b|| ≤ r. By the same reasoning, either ||a − c|| ≤ r or
||d− b|| ≤ r. Therefore (41) is true.

Proof of Proposition 5: Suppose w is within r units of z and is not interior to dy1, y2, . . . , yme.
Then the line connecting z and w must intersect the line from yj to yj+1 for some j ∈ {1, 2, . . . ,m}.
Since ||yj − yj+1|| ≤ r, Lemma 4 can be applied with a = z, b = w, c = yj and d = yj+1. It follows
from (41) that either z or w is linked to dy1, y2, . . . , yme. Therefore w is so linked.

The proof of Proposition 6 depends on the following lemmas.

Lemma 5 Let a, b, and c be three points in the plane such that ||a − b|| ≤ r, and ||a − c|| ≤ r. Any
point in the convex hull of a, b and c is within at most r units of both a and either b or c.

Proof of Lemma 5: Let d = 1
2(b + c). Since d − a = 1

2{(a − b) + (a − c)}, it must be true that
||d− a|| ≤ 1

2{||a− b||+ ||a− c||}. From this and the hypotheses ||a− b|| ≤ r and ||a− c|| ≤ r it follows
that ||d − a|| ≤ r. Moreover, from the triangle inequality, ||b − c|| ≤ ||b − a|| + ||a − c||. Therefore
||b − c|| ≤ 2r. Since d is the midpoint between b and c, ||b − d|| ≤ r and ||c − d|| ≤ r. Thus the sets
〈a, b, d〉 and 〈a, c, d〉 each have diameter no greater than r. Since 〈a, b, c〉 = 〈a, b, d〉∪〈a, c, d〉, it follows
that any point in 〈a, b, c〉 must be in 〈a, b, d〉 or 〈a, c, d〉 and consequently within r units of a and either
b or c.
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Lemma 6 Suppose that z1, z2, . . . , zk are k > 0 interior points of a given cycle dy1, y2, . . . , yme which
are not linked to dy1, y2, . . . , yme and which satisfy ||z1 − zi|| ≤ r, i ∈ {2, 3, . . . , k}. Then each point
in the convex hull 〈z1, z2, . . . , zk〉 is an interior point of dy1, y2, . . . , yme.

Proof of Lemma 6: Note first that if there is any point z ∈< z1, z2, ..., zk > which is not an interior
point of [y1, y2, ...ym], then z would have to either be on or outside of the piece-wise linear curve c
determined by y1, y2, . . . , ym; in either case this would mean that the line connecting z to any point
in {z1, z2, . . . , zk} would have to intersect c since, by assumption z1, z2, . . . , zk are interior points of
c. Since any such line is contained in < z1, z2, ..., zk >, the convex hull itself would have to intersect
c. Thus to prove the lemma it is enough to show that 〈z1, z2, . . . , zk〉 does not intersect c. To do
this it is sufficient to show that for each pair of points zi, zj ∈ {z1, z2, . . . , zk}, the line `ij from zi
to zj does not intersect c. To do this we suppose the contrary, namely that there is a pair of points
zi, zj ∈ {z1, z2, . . . , zk} such that `ij intersects c. Suppose this intersection occurs on the line ` between
yq and yq+1.

First consider the case when either zi or zj equals z1 in which case ||zi − zj || ≤ r. To prove that
`ij does not intersect `, it is sufficient to prove for any s ∈ {2, 3, . . . , k}, `1s and ` do not intersect.
Suppose that for some such s such an intersection exists. Since ||yq − yq+1|| ≤ r and ||z1 − zs|| ≤ r,
Lemma 4 applies with a = z1, b = zs, c = yq, and d = yq+1. It follows from (41) that either z1 or zs is
within r units of either yq or yq+1. This means that either z1 or zs is linked to dy1, y2, . . . , yme which
is a contradiction. Therefore for any s ∈ {2, 3, . . . , k}, `1s and ` do not intersect. In particular, `ij
does not intersect ` if either zi or zj equals z1.

Now suppose that neither zi nor zj equals z1. From what has just been shown we can conclude
that ` does not intersect either `1i or `1j . Since ` is assumed to intersect `ij , either yq or yq+1 must be
in the convex hull 〈z1, zi, zj〉. But ||z1 − zi|| ≤ r and ||z1 − zj || ≤ r so from Lemma 5 we can conclude
that either yq or yq+1 must be within r units of z1. But this is a contradiction of the hypothesis that
z1 is not linked to dy1, y2, . . . , yme. Hence `ij and ` do not intersect.

Lemma 7 For any four points a, b, c, d in IR2, the set 〈a, b, d〉 ∪ 〈a, c, d〉 ∪ 〈b, c, d〉 is convex.

Proof of Lemma 7: For the case when d ∈ 〈a, b, c〉, the union 〈a, b, d〉 ∪ 〈a, c, d〉 ∪ 〈b, c, d〉 equals
〈a, b, c〉 which is convex. Suppose therefore that d 6∈ 〈a, b, c〉. Then the line through at least one of the
bounding edges of 〈a, b, c〉 – say the edge from b to c – must separate d and 〈a, b, c〉. We claim that
the four or less corner polygon P = 〈a, b, d〉 ∪ 〈a, c, d〉 is convex. This certainly must be true if either
c ∈ 〈a, b, d〉 or b ∈ 〈a, c, d〉, since in either case P would be a polygon with at most three corners. On
the other hand, if neither of these cases hold, then the line segment from b to c must lie totally within
P. Thus in this case the line segment between any pair of corners of P must lie completely within P.
Since any four or less corner polygon in the plane with this property is necessarily convex, P is convex.
Finally we note that 〈b, c, d〉 ⊂ P because b, c and d are in P. Thus 〈a, b, d〉 ∪ 〈a, c, d〉 ∪ 〈b, c, d〉 = P so
〈a, b, d〉 ∪ 〈a, c, d〉 ∪ 〈b, c, d〉 is convex as claimed.

Lemma 8 Let κ : [0, 1] → IR2 be any continuous closed curve and let a and b be any two distinct
points on κ. Let κ1 be the closed curve consisting of the segment of κ from a to b together with the
straight line segment from b to a. Let κ2 be the closed curve consisting of the segment of κ from b to
a together with the straight line segment from a to b. Then for any point y ∈ IR2 which is not on κ or
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on the line from a to b
wn(y, κ) = wn(y, κ1) + wn(y, κ2) (42)

Proof: Write φ1 and φ2 for the segments of κ from a to b and b to a respectively and let `1 and `2
denote the line segments from a to b and b to a respectively. Then

wn(y, κ1) + wn(y, κ2) =
1

2πj

{
∮

κ̃1

dz

z − ỹ
+

∮

κ̃2

dz

z − ỹ

}

=
1

2πj

{
∫

φ̃1

dz

z − ỹ
+

∫

˜̀
1

dz

z − ỹ
++

∫

φ̃2

dz

z − ỹ
+

∫

˜̀
2

dz

z − ỹ
+

}

But
∫

˜̀
1

dz

z − ỹ
+

∫

˜̀
2

dz

z − ỹ
= 0

so

wn(y, κ1) + wn(y, κ2) =
1

2πj

{
∫

φ̃1

dz

z − ỹ
+

∫

φ̃2

dz

z − ỹ
+

}

=
1

2πj

∮

κ̃

dz

z − ỹ

from which (42) follows.

Lemma 9 Let dy1, y2, . . . , yme and dȳ1, y2, . . . , yme be cycles such that ||y1 − ȳ1|| ≤ r. If z is an
interior point of dy1, y2, . . . , yme, then either ||z − ȳ1|| ≤ r or z is an interior point of dȳ1, y2, . . . , yme
or both.

Proof of Lemma 9: Suppose z is not an interior point of dȳ1, y2, . . . , yme. It is enough to prove
that ||z − ȳ1|| ≤ r. Towards this end let c, c̄, c1, c2 and c̄2 denote the piecewise-linear closed curves
determined by the ordered point sets {y1, y2, . . . , ym}, {ȳ1, y2, . . . , ym}, {y2, y3, . . . , ym}, {y1, y2, ym},
and {ȳ1, y2, ym} respectively.

Suppose first that z is inside or on c2; that is z ∈ 〈y1, y2, ym〉. By Lemma 7, 〈y1, y2, ȳ1〉∪〈y1, ym, ȳ1〉∪
〈y2, ym, ȳ1〉 is a convex set. Thus 〈y1, y2, ym〉 ⊂ 〈y1, y2, ȳ1〉 ∪ 〈y1, ym, ȳ1〉 ∪ 〈y2, ym, ȳ1〉 because y1, y2,
and ym are all in the union. Therefore z ∈ 〈y1, y2, ȳ1〉 ∪ 〈y1, ym, ȳ1〉 ∪ 〈y2, ym, ȳ1〉. We’ve assumed
||y1 − ȳ1|| ≤ r. Moreover ||ȳ1 − y2|| ≤ r and ||ȳ1 − ym|| ≤ r because dȳ1, y2, . . . , yme is assumed to be
a cycle. Thus no matter whether z is in 〈y1, y2, ȳ1〉, 〈y1, ym, ȳ1〉, or 〈y2, ym, ȳ1〉, Lemma 5 applies and
it can be concluded that ||z − ȳ1|| ≤ r as claimed.

Consider next the case when z is outside of c2; in other words, wn(z, c2) = 0. Since z is not on c2,
it is clearly not on the line segment from y2 to ym. Therefore Lemma 8 can be applied to c, c1 and c2
providing wn(z, c) = wn(z, c1)+wn(z, c2). But by assumption z is an interior point of dy1, y2, . . . , yme
so wn(z, c) 6= 0. Therefore

wn(z, c1) 6= 0 (43)

By assumption, z is not an interior point of dȳ1, y2, . . . , yme. Thus z must be either on c̄ or outside
of c̄. If z is on c̄, then it is linked to {ȳ1, y2, . . . , ym}. On the other hand, if z is outside of c̄ then
wn(z, c̄) = 0. Moreover, in this case wn(z, c̄) = wn(z, c1) + wn(z, c̄2) because of Lemma 8. From
this and (43) it follows that wn(z, c̄2) 6= 0. Thus z is inside of c̄2. But dȳ1, y2, . . . , yme is a cycle so
||ȳ1 − y2|| ≤ r and ||ym − ȳ1|| ≤ r. From this and Lemma 5 it follows that ||z − ȳ1|| ≤ r as claimed.

22



Proof of Proposition 6: Consider the sequence of cycles dy1, y2, . . . , yme, dȳ1, y2, . . . , yme, dȳ1, ȳ2,
. . . , yme, . . . , dȳ1, ȳ2, . . . , ȳme, each being a successor of the one before it. Let z be any point in
〈z1, z2, . . . , zk〉. By Lemma 6, z is an interior point of dy1, y2, . . . , yme. Therefore by Lemma 9, either
||z − ȳ1|| ≤ r or z is an interior point of dȳ1, y2, . . . , yme. If the former is true, then z is clearly linked
to dȳ1, ȳ2, . . . , ȳme. On the other hand, if the latter is true Lemma 9 can again be used, this time to
reach the conclusion that either ||z − ȳ2|| ≤ r or z is an interior point of dȳ1, ȳ2, . . . , yme which is not
linked to dȳ1, ȳ2, . . . , yme. Continuing this process a finite number of times completes the proof.

The proof of Proposition 7 is a simple consequence of the following lemmas.

Lemma 10 Let S be a closed, bounded convex set in IRm. If x and y are vectors in S for which

||x− y|| = diameter(S) (44)

then x and y are corners of S.

Proof of Lemma 10: Suppose (44) holds. It is enough to show that y is a corner of S. Suppose that
it is not. Then there must be distinct vectors x1 and x2 in S and a number α ∈ (0, 1) for which y =

αx1+(1−α)x2. In view of (44) and the definition of dia(S), the function f(λ)
∆
= ||x−λx1−(1−λ)x2||

2

must attain its maximum on [0, 1] at the interior point λ = α. But this is impossible because f(λ) is
a non-constant, convex function of λ. Therefore, by contradiction y must be a corner of S.

Lemma 11 Let {x1, x2, . . . , xn} ∈ X be fixed. Then

dia{x̄1, x̄2, . . . , x̄n} ≤ dia{x1, x2, . . . , xn} (45)

where for i ∈ {1, 2, . . . , n},

x̄i = xi + umi
(xi1 − xi, xi2 − xi, . . . , ximi

− xi) (46)

Moreover, if G is connected, then either the inequality in (45) is strict or x1 = x2 = · · · = xn.

Proof of Lemma 11: By definition, for m > 0, um(·) maps the vectors zi ∈ D, i ∈ {1, 2, . . . ,m}
into a point z̄ in the convex hull 〈0, z1, z2, . . . zm〉; moreover z̄ is not a corner of 〈0, z1, z2, . . . zm〉 unless
z1 = z2 = · · · = zm = 0. In the present context this means that for i ∈ {1, 2, . . . , n}, xi + umi

(·) maps
the vectors xij − xi ∈ D, j ∈ {1, 2, . . . ,mi}, into the point x̄i in the convex hull 〈xi, xi1 , xi2 , . . . , ximi

〉;
moreover, x̄i is not a corner of 〈xi, xi1 , xi2 , . . . , ximi

〉 unless xi = xi1 = xi2 = . . . = ximi
. Since each

〈xi, xi1 , xi2 , . . . , ximi
〉 is a subset of 〈x1, x2, . . . xn〉 it must be true that

〈x̄1, x̄2, . . . x̄n〉 ⊂ 〈x1, x2, . . . xn〉 (47)

Moreover, x̄i is not a corner of 〈x1, x2, . . . xn〉 unless xi = xi1 = xi2 = . . . = ximi
. Inequality (45) is a

direct consequence of (47).

Now suppose that G is connected and that the xi are not all equal. Then for each i ∈ {1, 2, . . . , n},
there is at least one ij ∈ {i1, i2, . . . , imi

} for which xij 6= xi. This means that it cannot be true that
xi = xi1 = xi2 = . . . = ximi

for any value of i ∈ {1, 2, . . . , n}. Therefore x̄i, i ∈ {1, 2, . . . , n} is not a
corner of 〈x1, x2, . . . , xn〉. From this and Lemma 10 it follows that the inequality in (45) is strict.

23



It is worth noting that (47) establishes that the sequence of convex hulls of agent positions generated
on successive steps must form a descending chain of convex sets. As a consequence, one can conclude
at once that the sequence has a limit set H into which all agents must eventually move and remain.
While this fact does not depend upon the um(·) being continuous, the fact that H is actually a single
point does.

Proof of Proposition 7: Note that (11) implies that

dia{x1, x2, . . . , xn} = dia{e1, e2, . . . , en−1, 0}

because the diameter of a convex set is invariant under translation. Therefore

V (e) = dia{x1, x2, . . . , xn} (48)

Next observe that Lemma 11 says that

dia{x1 + f1(e), x2 + f2(e), . . . , xn + fn(e)} ≤ dia{x1, x2, . . . , xn} (49)

with the inequality being strict if G is connected. But

dia{x1 + f1(e), x2 + f2(e), . . . , xn + fn(e)} = dia{e1 + f1(e)− fn(e), e2 + f2(e)− fn(e),

. . . , xn−1 + fn−1(e)− fn(e), 0}

= V (e+ f(e))

From this, (49) and (48) it is clear that

V (e+ f(e))− V (e)

is a negative semi-definite function and actually negative definite if G is connected.
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