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Abstract

An approach to formulate geometric relations among distances between nodes as equality constraints is introduced in this paper to study the
localization problem with imprecise distance information in sensor networks. These constraints can be further used to formulate optimization
problems for distance estimation. The optimization solutions correspond to a set of distances that are consistent with the fact that sensor
nodes live in the same plane or 3D space as the anchor nodes. These techniques serve as the foundation for most of the existing localization
algorithms that depend on the sensors’ distances to anchors to compute each sensor’s location.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In sensor networks, sensors’ location information is vital
in location-aware applications and influences network perfor-
mances when algorithms like geographic routing are used.
Hence, localization is crucial in the development of low-cost
sensor networks where it is not feasible for all the nodes’
locations to be directly measurable via GPS or other similar
means. The locations of some of the nodes have to be inferred
by utilizing estimated distances to their nearby nodes. Hence,
as pointed out in [7], the first and the most fundamental phase
of most localization algorithms [9–11] is the determination
of the distances between sensor nodes whose locations are to
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be computed and “anchor nodes”. An anchor node is a node
whose location is assumed to be known during the current com-
putation. An anchor node may be a node with a GPS device, or
a node with a tentative estimated location in an iterative com-
putation process [11], or a point in the trajectory of a mobile
beacon [13], etc. Distances between sensors and anchors can
be obtained via direct measurements if they are within sensing
range of one another; otherwise, approximation methods such
as sum-dist [7,11] and DV-hop [9,10] can be used to estimate
the sensor–anchor distances. No matter which method is used
to obtain the distances, the data acquired are usually impre-
cise compared with the true distances because of measurement
noise and estimation errors. Because the true distances between
nodes are interdependent, these inaccuracies have undesirable
consequences of causing inconsistency with respect to geomet-
ric relations, and sometimes may even cause localization algo-
rithms to collapse. For example, in a 2D scenario, triangulation
fails due to nonexistence of feasible solutions when the dis-
tances are not consistent with the fact that all sensors live on a
plane.

However, because there are geometric and algebraic rela-
tions among the true distances between the nodes, the errors
associated with these imprecise distances are not independent.
It follows that one can exploit this dependence by seeking, for
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example, to find that set of errors which would yield true dis-
tances as close as possible (in some metric) to the measured
imprecise distances. These errors are then associated with the
imprecise distances to correct those distances and use the cor-
rected values to provide a nominal location for the sensor whose
position is to be determined, by lateration [9,10], min–max op-
timization [11], or any of the other appropriate methods.

In this paper, a novel technique is presented which describes
the geometric relations among the sensor–anchor distances as
one or multiple quadratic equality constraints. The key step is
to use the Cayley–Menger determinant that is defined in the
following section. Although inequality constraints usually vari-
ations of the triangle inequality where the sum of the lengths of
two sides of the triangle must be greater than the third have been
discussed before [15], the equality constraints reported in this
paper disclose more insightfully the dependency among dis-
tances between nodes. Furthermore, these equality constraints
can be utilized to estimate errors in the measured or computed
distances. One specific estimation approach presented in this
paper is to solve a least squares problem where the objective is
to minimize the sum of the squared errors in the distances that
are measured or computed by a sensor.

The rest of the paper is organized as follows. In Section 2, the
definition of the Cayley–Menger determinant is introduced as
well as related classic results in Distance Geometry. In Section
3, geometric relations among nodes’ positions are formulated
as quadratic constraints by using the Cayley–Menger determi-
nant. In Section 4, we show that errors in the imprecise dis-
tance information can be estimated by solving an optimization
problem. In Section 5, we provide a computational example.

2. Cayley–Menger determinants

The Cayley–Menger matrix of two sequences of n points,
{p1, . . . , pn} and {q1, . . . , qn} ∈ Rm, is defined as

M(p1, . . . , pn; q1, . . . , qn)

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d2(p1, q1) d2(p1, q2) · · · d2(p1, qn) 1

d2(p2, q1) d2(p2, q2) · · · d2(p2, qn) 1

...
...

. . .
...

...

d2(pn, q1) d2(pn, q2) · · · d2(pn, qn) 1

1 1 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

where d(pi , qj ), i, j ∈ {1, . . . , n} is the Euclidean distance be-
tween the points pi and qj . The Cayley–Menger bideterminant
[3] of these two sequences of n points is defined as

D(p1, . . . , pn; q1, . . . , qn)� det M(p1, . . . , pn; q1, . . . , qn).

(2)

This determinant is widely used in distance geometry the-
ory [1,3] which deals with Euclidean geometry in spaces
where “distance” is defined and invariant. When the two se-
quences of points are the same, M(p1, . . . , pn; p1, . . . , pn)

and D(p1, . . . , pn; p1, . . . , pn) are denoted for convenience by

M(p1, . . . , pn) and D(p1, . . . , pn) respectively, and the latter
is simply called a Cayley–Menger determinant.

The Cayley–Menger determinant provides another way of
expressing the hyper-volume of a “simplex” by using only the
lengths of the edges. A simplex of n points is the smallest
(n − 1)-dimensional convex hull containing these points. The
hyper-volume V of the simplex formed by the points p1, . . . , pn

is given by Crippen and Havel [3]

V 2(p1, . . . , pn) = (−1)n

2n−1((n − 1)!)2 D(p1, . . . , pn). (3)

We can check Eq. (3) for the following low-dimensional cases:

• For n = 2, D(p1, p2) = 2d2(p1, p2), and V (p1, p2) =
d(p1, p2).

• For n = 3, the simplex is the triangle formed by p1, p2,
and p3. Then V (p1, p2, p3) is the area of this triangle.
Let a, b, c be the lengths of the three edges of the trian-
gle, namely a = d(p1, p2), b = d(p2, p3), c = d(p3, p1).
Let s denote the semi-perimeter s = 1

2 (a + b + c). Then
from Heron’s formula [2], we know that V (p1, p2, p3) =√

s(s − a)(s − b)(s − c). Hence, it is easy to check that
V 2(p1, p2, p3) = (−1/16)D(p1, p2, p3).

• For n = 4, the simplex is the tetrahedron formed by p1,
p2, p3, and p4. We can obtain Euler’s formula [14] re-
lating the volume of a tetrahedron with its edge-lengths:
V 2(p1, p2, p3, p4) = 1

288D(p1, p2, p3, p4).

The following theorem is a classical result on the Cayley–
Menger determinant and is later generalized in [16].

Theorem 1. Consider an n-tuple of points p1, . . . , pn in m-
dimensional space. If n�m+2, then the Cayley–Menger matrix
M(p1, . . . , pn) is singular, namely

D(p1, . . . , pn) = 0. (4)

A stronger statement can be made as follows in terms of the
rank of the Cayley–Menger matrix.

Theorem 2 (Theorem 112.1 in Blumenthal [1]). Consider an
n-tuple of points p1, . . . , pn in m-dimensional space with n�
m + 1. The rank of the Cayley–Menger matrix M(p1, . . . , pn)

is at most m + 1.

In fact, the rank of M(p1, . . . , pn) equals m + 1 if and only
if at least m + 1 points of the n points are in generic posi-
tions. A similar statement made in terms of the cofactors of
the Cayley–Menger determinant can be found in Corollary 1
of [16].

3. Geometric relations as equality constraints

In this section, we will illustrate how one can describe the
geometric relations among the distances between nodes as alge-
braic constraints, which are, to be precise, quadratic algebraic
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P2

P3P1

P0

Fig. 1. Sensor node 0 with anchor nodes 1, 2 and 3 in 2D.

equations. We first consider the two-dimensional case, and the
result will then be generalized to the three-dimensional case.

3.1. 2D Case

As shown in Fig. 1, nodes 1, 2 and 3 are anchor nodes in
known positions and node 0 is a sensor node with unknown
position to be localized. We assume that nodes 1, 2 and 3 are
in noncollinear positions.

Let dij = d(pi , pj ) denote the accurate Euclidean distance
between nodes i and j with i, j=0, 1, 2, 3. Now suppose that in-
accurate distances d̄0i , i=1, 2, 3 acquired by either noisy range
measurements or computations [9–11], are available while the
dij , the accurate Euclidean distances between anchor nodes
with i �= j , i, j = 1, 2, 3, are known. Then

d̄2
0i = d2

0i − �i (5)

for some error �i .

Theorem 3. The errors �i for i=1, 2, 3 as defined immediately
above satisfy a single algebraic equality which is quadratic
though not homogeneous in the �i’s, and whose coefficients are
determined by d̄0i for i = 1, 2, 3 and dij for i, j = 1, 2, 3 and
i �= j :

�TA� + �Tb + c = 0, (6)

where

� = [�1 �2 �3]T, (7)

A =
⎡
⎢⎣

2d2
23 d2

12 − d2
13 − d2

23 d2
13 − d2

23 − d2
12

d2
12 − d2

13 − d2
23 2d2

13 d2
23 − d2

12 − d2
13

d2
13 − d2

12 − d2
23 d2

23 − d2
12 − d2

13 2d2
12

⎤
⎥⎦ ,

(8)

b1 = 4d2
23d̄

2
01 + 2(d2

12 − d2
13 − d2

23)d̄
2
02

+ 2(d2
13 − d2

12 − d2
23)d̄

2
03

+ 2d2
23(d

2
23 − d2

12 − d2
13), (9)

b2 = 4d2
13d̄

2
02 + 2(d2

12 − d2
13 − d2

23)d̄
2
01

+ 2(d2
23 − d2

12 − d2
13)d̄

2
03

+ 2d2
13(d

2
13 − d2

12 − d2
23), (10)

b3 = 4d2
12d̄

2
03 + 2(d2

13 − d2
12 − d2

23)d̄
2
01

+ 2(d2
23 − d2

12 − d2
13)d̄

2
02

+ 2d2
12(d

2
12 − d2

13 − d2
23), (11)

c = 2d2
12d

2
13d

2
23 + 2d2

23d̄
4
01 + 2d2

13d̄
4
02 + 2d2

12d̄
4
03

+ 2(d2
12 − d2

13 − d2
23)d̄

2
01d̄

2
02 + 2(d2

13 − d2
12 − d2

23)d̄
2
01d̄

2
03

+ 2(d2
23 − d2

12 − d2
13)d̄

2
02d̄

2
03 + 2d2

23(d
2
23 − d2

12 − d2
13)d̄

2
01

+ 2d2
13(d

2
13 − d2

12 − d2
23)d̄

2
022d2

12(d
2
12 − d2

13 − d2
23)d̄

2
03.

(12)

Furthermore, the matrix A is positive semi-definite.

Proof. From Theorem 1 we know that D(p0, p1, p2, p3) = 0,
namely

det

⎡
⎢⎢⎢⎢⎢⎢⎣

0 d2
01 d2

02 d2
03 1

d2
01 0 d2

12 d2
13 1

d2
02 d2

12 0 d2
23 1

d2
03 d2

13 d2
23 0 1

1 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

= 0. (13)

Since nodes 1, 2 and 3 are noncollinear, D(p1, p2, p3) �= 0. So
we can define

E�

⎡
⎢⎢⎢⎣

0 d2
12 d2

13 1

d2
12 0 d2

23 1

d2
13 d2

23 0 1

1 1 1 0

⎤
⎥⎥⎥⎦

−1

. (14)

Then from (13) we know that

[d2
01 d2

02 d2
03 1 ] E

⎡
⎢⎢⎢⎣

d2
01

d2
02

d2
03

1

⎤
⎥⎥⎥⎦ = 0. (15)

Here we have used the fact that for an arbitrary matrix B =[
b11
bT

12

b12
B22

]
, where b11 is a scalar, if B22 is nonsingular, then

det B = (b11 − b12B
−1
22 bT

12) det B22.

It follows that

[d̄2
01 + �1 d̄2

02 + �2 d̄2
03 + �3 1]E

⎡
⎢⎢⎢⎣

d̄2
01 + �1

d̄2
02 + �2

d̄2
03 + �3

1

⎤
⎥⎥⎥⎦ = 0, (16)

which defines a quadratic surface in the �i’s. Multiplying both
sides of (16) by the determinant of the inverse of E, we arrive
at (6).
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P1

P4

P2

P3

Fig. 2. Tetrahedron formed by four anchor nodes in 3D.

Let the coordinates of anchor i’s location be xi and yi with
i = 1, 2, 3. Let

X =
⎡
⎢⎣

x3 − x2 y3 − y2

x1 − x3 y1 − y3

x2 − x1 y2 − y1

⎤
⎥⎦ . (17)

Then it is easily verified that

A = 2XXT, (18)

which is a positive semi-definite matrix. �

If noisy distance information between sensor node 0 and r
(r > 3) anchor nodes is available to sensor 0, we can write down
r − 2 independent quadratic equality constraints. This can be
obtained by demanding the coplanarity of the following node
sets: {0, 1, 2, 3}, {0, 1, 2, 4}, . . . , {0, 1, 2, r}. Each coplanarity
condition gives rise to a quadratic equality constraint in the
following form through a procedure similar to that described
above,

fi(�1, �2, �i ) = 0, i = 3, 4, . . . , r . (19)

Further coplanarity constraints can be written down using other
selections for four nodes, e.g. {0, 2, 3, 4}, but such constraints
will not be independent of the set in (19).

3.2. 3D Case

In 3D space, we consider the tetrahedron, as shown in Fig. 2,
spanned by four anchor nodes 1, 2, 3 and 4, whose inaccurate
distances relative to sensor node 0 are available to sensor 0. We
assume the four anchor nodes are not in co-planar positions.

Similarly to the 2D case, we have

D(p0, p1, p2, p3, p4) = 0, (20)

which defines a quadratic surface in �i with i = 1, 2, 3, 4

�TÃ� + �Tb̃ + c̃ = 0. (21)

After examining carefully each entry in matrix Ã, we define

Y =

⎡
⎢⎢⎢⎣

(p2 − p4) × (p3 − p4)

(p1 − p4) × (p3 − p4)

(p1 − p4) × (p2 − p4)

(p1 − p3) × (p2 − p3)

⎤
⎥⎥⎥⎦

T

, (22)

which is a 4-by-3 matrix, where “×” denotes the usual cross
product of two vectors in 3D. Then

Ã = kY · YT, (23)

where k is a nonzero scaling factor. Hence, the matrix Ã is also
semi-definite.

Similar to the 2D case, if noisy distance information between
sensor node 0 and s (s > 4) anchor nodes is available to sensor
0, we can write down s − 3 independent quadratic equality
constraints.

4. An optimization problem

Given all the algebraic constraints obtained in the last section,
we now try to estimate the error in the inaccurate distances
between sensor nodes and anchor nodes. One approach is to
formulate the problem as a least squares problem to minimize
the sum of the squared errors. Other objective functions are
also adoptable depending on the specific application context.
As discussed in [8], the least squares approach is sometimes
not the most appropriate one to use. We use it here simply
because of its clarity and simplicity of expression. The main
point is that the quadratic constraints, once established, can be
a powerful tool in various applications such as least squares
optimizations. Here we use the 2D case to illustrate the least
squares approach while the 3D case can be dealt with by using
the same procedures.

Let �i as defined in (5) be the error in the estimated squared
distances between sensor 0 and anchor i. We want to minimize
the sum of the squared errors

J = �2
1 + �2

2 + · · · + �2
r , r �3, (24)

subject to r − 2 quadratic equality constraints as defined in
Eq. (19).

When r = 3, we have a least squares problem with one
quadratic constraint, which is well studied [4–6]. When r > 3,
we can use the following Lagrangian multiplier method.

Let �i , i = 1, . . . , r − 2 be the Lagrangian multipliers. We
can get the following Lagrangian multiplier form

H(�1, . . . , �r , �1, . . . , �r−2)

=
r∑

i=1

�2
i +

r−2∑
i=1

�ifi+2(�1, �2, �i+2). (25)

Because of the strict convexity of the function J and the posi-
tive semi-definiteness of the Hessians of functions fi+2, when
�i > 0, the Lagrangian H is a strictly convex function. Then
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there exists a unique global minimum. So numerical methods,
such as gradient methods, can be exploited to search for the
minimum. In 3D, the same technique can be used to formulate
an optimization problem with quadratic equality constraints.

A different least squares approach for solving a localization
problem with noisy distance measurements was proposed in
[12] where linear equality constraints were derived. Suppose
sensor 0 can measure its distances to beacons 1, 2, . . . , r . For
beacon i, i ∈ {1, . . . , r}, draw a circle, denoted by ci , centered
at beacon i’s position pi with radius d̄0i , where d̄0i is the im-
precisely measured distance from sensor 0 to beacon i. Then
each pair of circles ci and cj , i, j ∈ {1, . . . , r} and i �= j , will
typically intersect at two points which determine a line. The
equation of this line is thus a linear equality constraint used in
[12]. When r > 2, we can have r − 1 such independent linear
equality constraints. Although the linear-constraint approach is
more computationally efficient than the one we proposed with
quadratic constraints, this approach, as we will illustrate by an
example in the next section, sometimes fails due to oversim-
plification during the transformation of intrinsically quadratic
constraints into linear ones.

5. A computational example

In this section, we will give an example to demonstrate the
steps introduced in previous sections to solve the localization
problem. We consider the simplest scenario in 2D as depicted
in Fig. 1 where sensor 0, which is the sensor we want to local-
ize, can measure its distances to three beacons 1, 2 and 3 whose
coordinates are p1=(0, 0), p2=(43, 7) and p3=(47, 0) respec-
tively. The noisy distance measurements acquired by sensor 0
are d̄01 = 35, d̄02 = 42 and d̄03 = 43.

First, we will determine the quadratic equality constraint as
described by Eq. (6). The distances between beacons are

d2
12 = d2(p1, p2) = 1898,

d2
13 = d2(p1, p3) = 2209,

d2
23 = d2(p2, p3) = 65.

Then the matrix A defined by (8) is

A =
⎡
⎢⎣

130 −376 246

−376 4418 −4042

246 4042 3796

⎤
⎥⎦ .

The vector b defined by (9)–(11) is

b = [b1 b2 b3]′
= [−623780 805016 − 1047164]′.

The scalar c defined by (12) is

c = −777892702.

Then the quadratic equality constraint for �1, �2 and �3 defined
by (6) is

0 = f (�1, �2, �3)

= 130�2
1 + 4418�2

2 + 3796�2
3 − 752�1�2

+ 492�1�3 − 8084�2�3 − 623780�1

+ 805016�2 − 1047164�3 − 777892702.

To determine optimal values for �1, �2 and �3, we need to solve
the following least squares problem:

min �2
1 + �2

2 + �2
3,

s.t. f (�1, �2, �3) = 0. (26)

We can use the Lagrangian multiplier method to solve this
optimization problem. By letting � be the Lagrangian multiplier,
we get the objective function

H(�1, �2, �3, �) = �2
1 + �2

2 + �2
3 + �f (�1, �2, �3).

By differentiating the Lagrangian H with respect to �i , i ∈
{1, 2, 3}, and letting the result be zero, we have

�H

��1
= 2�1 + �(260�1 − 752�2 + 492�3 − 623780) = 0,

�H

��2
= 2�2 + �(8836�2 − 752�1 − 8084�3 + 805016) = 0,

�H

��3
= 2�3 + �(7592�3 + 492�1 − 8084�2 − 1047164) = 0,

�H

��
= f (�1, �2, �3) = 0.

Solving these four algebraic equations numerically and discard-
ing all the nonoptimal stationary-point solutions, the solution
for the least squares problem (26) is as follows:

�∗1 = −37.9590, �∗2 = 163.7061 and �∗3 = −164.9748.

Correspondingly, the estimated distances from sensor 0 to the
three beacons are

d̂01 =
√

d̄2
01 + �∗1 = 34.4535,

d̂02 =
√

d̄2
02 + �∗2 = 43.9057,

d̂03 =
√

d̄2
03 + �∗3 = 41.0369. (27)

Now the data in (27) and the positions of beacons 1, 2 and 3
are consistent in the sense that there is a unique point in the
plane determined by beacons 1, 2 and 3 whose distances to
these three beacons are d̂01, d̂02 and d̂03 respectively; in other
words, we can use triangulation to obtain the estimated sensor
location as

p̂0 = (18.2, −29.2). (28)
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p2

p3p1

Fig. 3. Locations of beacons 1, 2 and 3, and estimated positions of sensor 0.

As a comparison, we will compute sensor 0s coordinates
using the approach formulated in [12] which computes the least
squares solution of a set of linear equations. Let (x̃, ỹ) denote
the estimated position of sensor 0 using this approach. For
i ∈ {1, 2, 3}, the equation for circle ci centered at beacon i’s
position pi = (xi, yi) with radius d̄0i is

(x − xi)
2 + (y − yi)

2 = d̄2
0i . (29)

By substituting (x̃, ỹ) into (29) and using the data for pi and
d̄0i , we have

x̃2 + ỹ2 = 352, (30)

(x̃ − 43)2 + (ỹ − 7)2 = 422, (31)

(x̃ − 47)2 + ỹ2 = 432. (32)

Subtracting (30) from (31), we can have one linear equality; and
subtracting (30) from (32), we obtain another linear equality.
These two linear equalities can be written into matrix form

H

[
x̃

ỹ

]
= h, (33)

where

H =
[

43 7

47 0

]
and h =

[
679.5

792.5

]
.

Then the least squares solution [12] of Eq. (33) is
[
x̃

ỹ

]
= (HTH)−1HTh =

[
16.9

−6.5

]
. (34)

Hence, the estimated sensor location achieved by using linear
equality constraints is

p̃0 = (16.9, −6.5). (35)

We will show the computational results p̂0 and p̃0 in
Fig. 3. The solid dots denote the anchors’ positions p1, p2 and
p3, and the dotted circles are the circles c1, c2 and c3. The
solid triangle denotes the estimated position p̂0 of sensor 0 in
(28) achieved using the approach proposed by this paper. The
solid square denotes the estimated position p̃0 of sensor 0 in
(35) achieved using the approach discussed in [12].

In most real sensor networks, distance measurement errors
can be upper and lower bounded by constants, in which case
sensor 0’s real position lives within a neighborhood of each cir-
cle centered at a beacons’ position with radius being the mea-
sured distance from sensor 0 to the corresponding beacon. This

implies that sensor 0s real position is roughly within the shaded
area shown in the figure containing a set of pairwise intersec-
tion points of the three circles. Hence, our approach using the
quadratic equality constraints derived from the Cayley–Menger
determinate gives a better estimate.

6. Conclusions

This paper introduces the Cayley–Menger determinant as an
important tool for formulating the geometric relations among
node positions in sensor networks as quadratic constraints. It
also discusses solutions to optimization problems to estimate
the errors in the inaccurate measured distances between sensor
nodes and anchor nodes. The solution of the optimization prob-
lem, when used to adjust noisy distance measurements, gives
a set of distances between nodes which are completely consis-
tent with the fact that sensor nodes live in the same plane or
3D-space as the anchor nodes. These techniques serve as the
foundation for most of the existing localization algorithms that
depend on the sensors’ distances to anchors to compute sensor
locations.

For future work, we will apply the technique presented in this
paper to the existing localization algorithms and determine the
most appropriate objective functions in the optimization pro-
cess. Other optimization techniques such as semi-definite pro-
gramming can also be exploited to accelerate the computation
processes.

More generally, the calculations presented here should be
seen as constituting but one component of a conceptually larger
algorithm encompassing the whole localization process in the
presence of noisy measurements. A key task is to accommodate
uncertainty in the positions of what were regarded in this paper
as anchor nodes, since in an actual localization problem, these
may be nodes which are not anchor nodes, but simply nodes
that were localized at an earlier stage in the overall localization
algorithm. Localization of a sequence of vertices would then
take into account both uncertainties in the “anchor” nodes and
uncertainties in the measured distances, and may derive a nom-
inal position for the just localized node together with an un-
certainty region around it. The uncertainty region might be one
which contains the newly localized node with a given thresh-
old probability. The way uncertainties propagate will be impor-
tant; there will be error cumulation that can only be combated
by introducing more anchor nodes whose positions are exactly
known. A further step would be to incorporate the notion of
robust quadrilaterals described in [8].
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