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Abstract

This paper formulates and solves a continuous-time version of the widely studied Vicsek
consensus problem in which each agent independently updates its heading at times determined
by its own clock. It is not assumed that the agents’ clocks are synchronized or that the “event”
times between which any one agent updates its heading are evenly spaced. Heading updates need
not occur instantaneously. Using the concept of “analytic synchronization” together with several
key results concerned with properties of “compositions” of directed graphs, it is shown that the
conditions under which a consensus is achieved are essentially the same as those applicable in
the synchronous discrete-time case provided the notion of an agent’s neighbor between its event
times is appropriately defined.

1 Introduction

In a recent paper Vicsek and co-authors [1] consider a simple discrete-time model consisting of
n autonomous agents or particles all moving in the plane with the same speed but with different
headings. Each agent’s heading is updated using a local rule based on the average of the headings
of its “neighbors.” Agent i’s current neighbors are itself together with those agents which are
either inside or on a circle of pre-specified radius centered at agent i’s current position. In their
paper, Vicsek et al. provide a variety of interesting simulation results which demonstrate that
the nearest neighbor rule they are studying can cause all agents to eventually move in the same
direction despite the absence of centralized coordination and despite the fact that each agent’s set
of nearest neighbors can change with time. Vicsek’s problem is what in computer science is called a
“consensus problem” [2] or an “agreement problem.” Roughly speaking, one has a group of agents
which are all trying to agree on a specific value of some quantity. Each agent initially has only
limited information available. The agents then try to reach a consensus by communicating what
they know to their neighbors either just once or repeatedly, depending on the specific problem of
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interest. For the Vicsek problem, each agent always knows only its own heading and the headings
of its neighbors. One feature of the Vicsek problem which sharply distinguishes it from other
consensus problems, is that each agent’s neighbors change with time, because all agents are in
motion. It has recently been explained why Vicsek’s agents are able to reach a common heading
(3, 4, 5,6, 7.

In this paper we consider a continuous-time version of the Vicsek problem in which each agent
independently updates its heading at times determined by its own clock. We do not assume that
the agents’ clocks are synchronized or that the “event times” between which any one agent updates
its heading are evenly spaced. In contrast to prior work addressed to asynchronous consensus
[8, 14], heading updates need not occur instantaneously. As a consequence, it is not so clear at
the outset how to construct from the asynchronous update model we consider, the type of discrete-
time state equation upon which the formulation of the problem addressed in [8] depends. For the
problem considered in this paper, the deriving of conditions under which all agents eventually move
with the same heading requires the analysis of the asymptotic behavior of an overall asynchronous
continuous-time process which models the n-agent system. We carry out the analysis by first
embedding this asynchronous process in a suitably defined synchronous discrete-time, dynamical
system S using the concept of analytic synchronization outlined previously in [11, 12]. This enables
us to bring to bear key results derived in [13] to characterize a rich class of system trajectories under
which consensus is achieved. In particular, we prove that the conditions under which a consensus is
achieved are essentially the same as those in the synchronous discrete-time case studied in [4, 5, 13]
provided the notion of an agent’s neighbor between its event times is appropriately defined.

2 Asynchronous System

The system to be studied consists of n autonomous agents, labelled 1 through n, all moving in
the plane with the same speed but with different headings. Each agent’s heading is updated using
a simple local rule based on the average of its own heading plus the headings of its “neighbors.”
Agent i’s neighbors at time t, are those agents, including itself, which are either in or on a closed
disk of pre-specified radius r; centered at agent i’s current position. In the sequel N;(t) denotes
the set of labels of those agents which are neighbors of agent ¢ at time ¢. In contrast to earlier
work [3, 4, 5, 6, 7], this paper considers a version of the flocking problem in which each agent
independently updates its heading at times determined by its own clock. We do not assume that
the agents’ clocks are synchronized or that the times any one agent updates its heading are evenly
spaced. We assume for i € {1,2,...,n} that agent i’s event times tip,ti1,...,tik, ... satisfy the
constraints

T; > tiggry —tac =Ty, k>0 (1)

where tjo = 0 and 7} and 7} are positive numbers.
Updating of agent i’s heading is done as follows. At its kth event time ¢;;, agent i senses the

headings 0;(t;r), j € Ni(tix) of its current neighbors and from this data computes its kth way-point
wj(tix). We will consider way point rules based on averaging. In particular
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ni(tir) Z 0i(ti) | » i€{1,2,...,n}, k>0 (2)

JEN; (tir)

w;(tix) =



where n;(t;;) is the number of indices in N;(t;;). Agent i then changes its heading from 6;(¢;;) to
w;(tix) on the continuous-time interval (¢, ¢;(x41)]. Thus

O0i(tikv1)) = witin), 1€{L,2,...,n}, k>0 (3)

Although we will not be concerned about the precise manner in which the value of each 8; changes
between way-points, we will assume that for each ¢ € {1,2,...,n}, there is a piece-wise continuous
signal p; : [0,00) — [0, 1] satisfying p(t;z) = 1 and limy s, pi(t) = 0 for all k£ > 0, such that

Hz(t) = Qi(tik) + Mi(t)(wi(tik) — Oz(tlk)), te (tikuti(k+1)]7 k> O, 1€ {1, 2, . ,n} (4)

For i € {1,2,...,n}, let M; denote the class of all piecewise continuous signals p : [0,00) — [0, 1]
satisfying limy ¢, p(t) = 0 and p(t;;) = 1 for all & > 0. The assumption that (4) holds for some
i € M, is equivalent to assuming that 6; is at least piecewise continuous and that

10:(t) — 0;(tan)| < |wi(tar) — Oi(tan)|, t € (finstigry), k>0 (5)

Clearly (4) implies (5); on the other hand if (5) holds and we define y; : [0, 00) — [0, 1] on (¢ik, t;(x+1)]
as
05 (t)—0i (ti) :
(arieartatsy) if wiltan) # 6i(ea)
pi(t) =
1 if wi(tie) = 0i(tix)
then p; will be in M; and (4) will hold.

For p; to be in M; means that u; could be constant at the value 1 on each each opened interval
(tik, tik+1)); this would mean that just after ¢, 6; would jump discontinuously from its value at
tik to w(tyx) and remain constant at this value until just after ¢;,1q) [14]. More realistically, p;
might change continuously from 0 to 1 on (#,t;x+1)) which would imply that 6; is continuous on
[0,00). Under any conditions equations (2) and (4) completely describe the temporal evolution of
the n agent asynchronous system of interest.

2.1 Extended Neighbor Graphs

The explicit form of the update equations determined by (2) and (4) depends on the relationships
between neighbors which exist at each agent’s event times. It is possible to describe all neighbor
relationships at any time ¢ using a directed graph N(¢) with vertex set V = {1,2,...n} and arc set
A(N) C V x V which is defined in such a way so that (i,7j) is an arc or directed edge from ¢ to j
just in case agent i is a neighbor of agent j at time ¢. Thus N(¢) is a directed graph on n vertices
with at most one arc between each ordered pair of vertices and with exactly one self-arc at each
vertex. We write G, for the set of all such graphs. It is natural to call a vertex i a neighbor of
vertex j in any graph G in Gy, if (7,7) is an arc in G.

Although the neighbors of each agent ¢ are well defined at event times of other agents, what’s
important for modelling agent #’s updates are the headings of neighboring agents only at agent ’s
own event times. We deal with this matter by re-defining each agent’s neighbor set at times between
its own event times to consist of only itself. Our reason for doing this will become clear later when,
for purposes of analysis, we use analytic synchronization to embed the n agent asynchronous model
defined by (2) and (4) in a synchronous dynamical system.



To proceed, let 7 denote the set of all event times of all n agents. Relabel the elements of 7
as to,t1,ta, -+ in such a way so that to =0 and t, < t,y;, 7 € {0,1,2,...}. Fori e {1,2,...,n},
let 7; denote the set of ¢, € 7 which are event times of agent i. For each i € {1,2,...,n} define

Ni(tr) ift-eT;
()= { Mltr) e T )
i ift, & T,
Thus N;(7) coincides with N;(t,) whenever ¢, is an event time of agent i and is simply the single
index ¢ otherwise.

Much like N(¢) which describes the original neighbor relations of system (2), (3) at time ¢, we
describe all re-defined neighbor relationships at time 7 € {0,1,...} to be the directed graph N(7)
with vertex set V and arc set A(N(7)) C V x V which is defined so that (i, ) is an arc from i to
j just in case agent j is in the neighbor set A;(7). Thus like the neighbor graphs N(t), each N(7)
is a directed graph on n vertices with at most one arc between each ordered pair of vertices and
with exactly one self-arc at each vertex. We call N(7) the extended neighbor graph of the system
(2) and (3) at time 7. Figure 1 shows an extended neighbor graph N(7) for a time 7 for which ¢,
is an event time of agents 2,3, and 4.
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Figure 1: N for N7 = {1}, Ny = {1,2}, N3 = {1,2,3}, and N, = {4}

2.2 Objective

A complete description of the asynchronous system defined by (2) and (4) would have to include a
model which explains how the p;(t) and N;(¢) change over time as functions of the positions of the
n agents in the plane. While such a model is easy to derive and is essential for simulation purposes,
it would be difficult to take into account in a convergence analysis. To avoid this difficulty, we
shall adopt a more conservative approach which ignores how the N;(t) and the y;(t) depend on the
agent positions in the plane and assumes instead that each might be any function in some suitably
defined set of interest.

Our ultimate objective is to show for any initial set of agent headings, any set of u; € M;, i €
{1,2,...n} and for a large class of functions ¢t — N;(t), that the headings of all n agents will
converge to the same steady state value 0,,. Naturally there are situations where convergence to a
common heading cannot occur. The most obvious of these is when one agent - say the ith - starts
so far away from the rest that it never acquires any neighbors. Mathematically this would mean
not only that N(7) is never strongly connected! at any event time index 7, but also that vertex

1A directed graph with arc set A is strongly connected if it has a “path” between each distinct pair of its ver-



i remains an isolated vertex of N(7) for all 7 in the sense that within each N(7), vertex i has no
neighbors other than itself. This situation is likely to be encountered if the r; are very small. At
the other extreme, which is likely if the r; are very large, each agent might have all n agents as
its neighbors at each of its own event times. But even in this extreme case, the extended neighbor
graphs encountered along a typical trajectory would contain vertices whose only neighbor is itself
except in the very special case which ¢, turned out to be an event time for all n agents. We will
return to this issue in the next section.

3 Main Results

To state our main result, we need a few ideas from [13]. We call a vertex i of a directed graph G,
a root of G if for each other vertex j of G, there is a path from ¢ to j. Thus 7 is a root of G, if it
is the root of a directed spanning tree of G. We will say that G is rooted at ¢ if i is in fact a root.
Thus G is rooted at 4 just in case each other vertex of G is reachable from vertex i along a path
within the graph. G is strongly rooted at i if each other vertex of G is reachable from vertex i along
a path of length 1. Thus G is strongly rooted at ¢ if ¢ is a neighbor of every other vertex in the
graph. By a rooted graph G is meant a graph which possesses at least one root. Finally, a strongly
rooted graph is a graph which has at least one vertex at which it is strongly rooted.

By the composition of two directed graphs G, G, with the same vertex set we mean that graph
G4 o G, with the same vertex set and arc set defined such that (4, ) is an arc of G4 o G, if for
some vertex k, (i,k) is an arc of G, and (k,j) is an arc of G,. Let us agree to say that a finite
sequence of directed graphs G,,, Gp,,...,G,,, with the same vertex set is jointly rooted if the
composition Gy, 0 G, _, o---0G,, is rooted. An infinite sequence of graphs G, ,Gy,, ..., with
the same vertex set is repeatedly jointly rooted if there is a positive integer m for which each finite
sequence G G k > 0, is jointly rooted.

D (k+1)7 * "0 T Pmk+17

Equations (2) and (4) can be combined. What results is a description of the evolution of #; on
agent ¢’s event time set.

1
ni(tik)

> obilta) |, ie{1,2,...,n}

JEN:(tir)

0i(tikr1)) =

In the synchronous version of the problem treated in [3, 4, 5, 6, 7], for each k > 0, the kth event
times t1g, tok, - - -, tni Of all n agents are the same. Thus in this case each agent’s heading update
equation can be written as

1
n; (tk)

0:(t) = > o0it) | (treal, k=0 (7)

JEN;(t)

where tgp = 0 and ¢ = ;5. The main result of [13] is as follows.

tices ¢ and j; by a path {of length m} between vertices ¢ and j is meant a sequence of arcs in A of the form
(i,k1), (k1,k2), ... (km—1,km) where ky, = j and, if m > 1, 4,k1,...,km—1 are distinct vertices. Such a graph is
complete if it has a path of length one {i.e., an arc} between each distinct pair of its vertices.



Theorem 1 Let the 6;(0) be fizred. For any trajectory of the synchronous system determined by
(7) along which the sequence of neighbor graphs N(0),N(1),... is repeatedly jointly rooted, there is
a constant Oss for which

tlggo 0;(t) = Oss (8)

where the limit is approached exponentially fast.

The aim of this paper is to prove that essentially the same result holds in the face of asynchronous
updating.

Theorem 2 Let the 0;(0), w;(0), and p; € M; be fized. For any trajectory of the asynchronous sys-
tem determined by (2) and (4) along which the sequence of extended neighbor graphs N(0),N(1),...
1s repeatedly jointly rooted, there is a constant Oss for which

lim 6;(t) = O, (9)

t—o0

where the limit is approached exponentially fast.

It is worth noting that the validity of this theorem depends critically on the fact that there are
finite positive numbers, namely Tyax = max{T1,T5,...,T,} and Tyin = {131, Ts,...,T,}, which
uniformly bound from above and below respectively, the time between any two successive event
times of any agent. This is a consequence of the assumption that inequality (1) holds.

As noted in the last section, for the asynchronous problem under consideration, the only vertices
of N(7) which can have more than one neighbor, are those corresponding to agents for whom ¢,
is an event time. Thus in the most likely situation when distinct agents have only distinct event
times, there will be at most one vertex in each graph N(7) which has more than one neighbor. It
is this situation we want to explore further. Toward this end, let G, C G, denote the subclass
of all graphs which have at most one vertex with more than one neighbor. Note that for n > 2,
there is no rooted graph in G;,. Nonetheless, in the light of Theorem 2 it is clear that convergence
to a common steady state heading will occur if the infinite sequence of graphs N(0),N(1),... is
repeatedly jointly rooted. This of course would require that there exist jointly rooted sequences of
graphs from G},. We will now explain why such sequences do in fact exist.

Let us agree to call a graph G € G, an all neighbor graph centered at v if every vertex of G is a
neighbor of v. Note that all neighbor graphs are maximal in G}, with respect to the partial ordering
of G, by inclusion, where in this context G, € G, is contained in G, € G}, if A(G,) C A(Gy).
Note also the composition of any all neighbor graph with itself is itself. On the other hand, because
the arcs of any two graphs in G4, are arcs in their composition, the composition of n all neighbor
graphs with distinct centers must clearly be a graph in which each vertex is a neighbor of every
other; i.e., the complete graph. Thus the composition of n all neighbor graphs from G}, with
distinct centers is strongly rooted. In summary, the hypothesis of Theorem 2 is not at all vacuous
for the asynchronous problem under consideration. When that hypothesis is satisfied, convergence
to a common steady state heading will occur.



4 Analytic Synchronization

To prove Theorem 2 requires the analysis of the asymptotic behavior of the n mutually unsyn-
chronized processes Py, P, ... P, which the n pairs of heading equations (2), (4) define. Despite
the apparent complexity of the resulting asynchronous system which these n interacting processes
determine, it is possible to capture its salient features using a suitably defined synchronous discrete-
time, hybrid dynamical system S. The sequence of steps involved in defining S has been discussed
before and is called analytic synchronization [11, 12]. First, all n event time sequences are merged
into a single ordered sequence of event times 7', as we’ve already done. This clever idea has been
used before in [9] to study the convergence of totally asynchronous iterative algorithms. Second,
between event times each agent’s neighbor set is defined to have exactly one neighbor, namely itself;
this we have also already done. Third, the “synchronized” state of P; is then defined to be the
original state of P; at P;’s event times {¢;1,%2,...} plus possibly some additional state variables;
at values of t € 7 between event times t; and t;41), the synchronized state of IP; is taken to
be the same at the value of its state at time t;;. Although it is not always possible to carry out
all of these steps, in this case it is. What ultimately results is a synchronous dynamical system S
evolving on the index set of 7, with state composed of the synchronized states of the n individual
processes under consideration. We now use these ideas to develop such a synchronous system S for
the asynchronous process under consideration.

4.1 Definition of S

For each such i and each t, € 7; define

0i(1) = bilty), ¢<7<d (10)
wi(T) = wilty), ¢<7<q (11)
where t, is the first event time of agent ¢ after t,. Note that for any ¢, € 7; there is always such a

¢’ because we've assumed via (1) that the time between any two successive event times of agent ¢
is bounded above. We claim that for i € {1,2,...,n} and 7 > 0

(1) = wi(t—1), t; €T (12)
72 7-) — 01(7’ - 1)7 t‘r g Z (13)
_ 1 _ = _ _
wi(r) = —— > A= g@)0(r = 1) + (1) (wi(r = 1)}, tr €T, (14)

ni(7) N
JEN(T)
U_)Z'(T> = @Z‘(T — 1), tr &7; (15)

where for 7 € {0,1,...}, (1) = p;(t;) for j € {1,2,...,n}, and n;(7) is the number of indices in
N;(7). This set of equations constitute the synchronous system S we intent to analyze. First we
justify the claim that (12) — (15) hold.

Observe first that for i € {1,2,...,n}, (4) implies that 0;(ty) = wi(ty), tq € Z;. Thus
0i(q") = wia), t4€T; (16)

Moreover g < ¢’ because we’ve assumed via (1) that the time between any two successive event
times of agent ¢ is bounded away from zero. Thus ¢ < ¢’ —1 < ¢’. In view of (11), w;(7) is constant



for ¢ < 7 < ¢’ so w;(q) = w;(¢’ — 1). Therefore (16) can be written as 6;(¢') = w;(¢’ — 1). Clearly
this holds for all < € {1,2,...,n} and all t; € 7;. Therefore (12) holds for all positive ¢, € 7;. In
addition, (10) also implies that for i € {1,2,...,n}, 6;(7) is constant for ¢ < 7 < ¢’; this in turn
implies that (13) is true.

To justify (14), fix i € {1,2,...,n} and let ¢, be any positive time in 7;. Note from (2), (10),
and (11) that
_ 1 i
w;(q) = - 0:(q) + Z 0;(tq) | (17)
JEWi(q)—i)
where N;(q) — i is the complement of i in N;(g). Moreover because of (4), for each j € (N;(q) — 1),
0j(tq) = (1 = 11j(2))0;(tr) + Rj(Q)w; (tr)

where ¢, is the largest time in 7; such that ¢, < t,. Using (10) and (11), this can be written as

0j(tq) = (1= 5(q))0;(r) + fj(q)w;(r) (18)

Since ¢, is the largest time in 7; less than ¢4, it must be true that r < g <7’ where ¢,/ is the next
largest time in 7; after ¢,. Thus r < ¢—1 <7'. Now (10) and (11) imply that both 6;(7) and w;(7)
are constant for r < 7 < r/. Therefore 6;(r) = 6;(¢ —1) and w;(r) = w;(¢ —1). Thus (18) becomes
0;(tq) = (1 — fi;(a))0;(q — 1) + Ay ()@; (g — 1), (19)

Substitution in (17) gives

) = — (G@+ 3 {0 - m@)a—1) + i(@)mi(g — 1)}

JEWN;(gq)—1)

But 6;(q) = (1 — j1;(¢))0i(q) + ji;(¢)w; (g — 1) because of (12) and the fact that ji;(q) = 1. Therefore
B(g) = —— 5 {1 = (@) (a — 1) + i (@);q — 1)}

ni(a) JENi(q)

Since this is true for any positive time ¢, € 7;, (14) is valid for any positive ¢, € 7;.

Now suppose that ¢, is any positive time not in 7;, assuming of course that such a time exists.
Observe that (11) implies w;(7) is constant for ¢ < 7 — 1 < 7 < ¢’ where t, is the largest time in
7; such that t; < t;. Thus w;(7) = w;(7 — 1) so (15) is true. This completes our justification that
the 6; and w; satisfy (12) — (15).

4.2 State Space Model

The equations defining S, namely (12) — (15), determine a state space system of the form
z(r+1)=F(r)z(r), 7€{l,2,...} (20)

where

o(1)=[01(r—=1) - O(r—1) wi(r—1) - w(r—1)] (21)



Each F(7) is a 2n x 2n stochastic matrix which can be described as follows.

Let R denote the set of all lists of n numbers g = {ji1, fig, ..., [in} with each f; taking a value
in the real closed interval [0, 1]. Let B denote the set of all lists of n integers b = {b1,ba,...,b,}
with each b; taking a value in the binary integer set {0, 1}. Each such triple (N, ji,b) € Gsu x R x B
determines a 2n x 2n stochastic matrix F(N, fi, b) whose entries for i € {1,2,...,n} are

fij = O(i4n)j

and _
2(1—p;) jeWN;—i)
firmi = af j€W;—i)+{n}
a0y JE Wi =9 U((N; —i) +{n})
if b; =1 and
fij = dij
and

S+n)i = O(i+n);
if b; = 0. Here N is the set of neighbors of vertex i in N, 7; is the number of elements in Nj, N; —i
is the complement of i in Aj, &;; is the Kronecker delta, and for any set of integers Z, Z + {n} is
the set T+ {n} = {i +n: 7 € Z}. We call any such matrix F' an asynchronous flocking matriz.
Thus the image of F is the set of all possible asynchronous flocking matrices.

It is easy to verify that the matrix F(7) in (20) is of the form F(N(7), ii(1),b(7)) where N(7)
is that graph in G, with neighbor sets Ni(7), Na(7), ..., Np(7), ji(7) is that list in R whose ith
element is fi;(7), and b(7) is that list in B whose ith element is b;(7) = 1 if t; € T; or b;(7) = 0 if
t- € T;. An example of an asynchronous flocking matrix which could arise in conjunction with the
extended neighbor graph shown in Figure 1 is

"1 0000 0 0 07
0 00001 0 0
0O 0000010
0O 00O0O0O0 0 1
F=19 0001000 (22)
0 0002 3 00
1-p 1 1
= 3 00 % 0 3 0
0 0000 0 0 1]

Here p can be any real number in the closed interval [0, 1].

Note that unlike the other flocking problems considered in the past where the F'(7) were flocking
matrices from a finite set, the set of all asynchronous flocking matrices which arise here, namely
image F, is not a finite set because R is not a finite set. Nonetheless image F is a closed and
therefore compact subset of the set of all 2n x 2n stochastic matrices S. To understand why this
is so, note first that for each fixed b € B and N € G, the mapping R — S, pu — F(N, p,b) is
continuous on R. Therefore its image must be compact because R is. Next note that G, and B are
each finite sets. Since the union of a finite number of compact sets is compact, it must therefore
be true that the image of F is compact as claimed.



5 Analysis

The ultimate aim of this section is to give a proof of Theorem 2. We begin with the notion of the
graph of a stochastic matrix.

Any 2n x 2n stochastic matrix S such as those in image F, determines a directed graph v(5)
with vertex set {1,2,...,n,n+ 1,n+2,...,2n} and arc set defined is such a way so that (i,7) is
an arc of v(S) from ¢ to j just in case the jith entry of S is non-zero. It is easy to verify that for
any two such matrices S7 and So,

7(S251) = v(S2) 0 v(S1) (23)

Assuming that p is in the open interval (0, 1), the graph of the asynchronous flocking matrix F' in
(22) would be as shown in Figure 2.

(8
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Figure 2: ~(F)

5.1 Graphs and Their Properties

We now define a set of directed graphs G on vertex set {1,2,...,n,n+ 1,n + 2,...,2n} which
contains all v(F'), F' € image F, and which is large enough to be closed under composition. For
this purpose it is convenient to adopt the notation [v] for the subset {v,v + n} whenever v € V,
and to say that ([v],u) is an arc of a graph G in G if either (v,u) or (v + n,u) is. Similarly we say
that (v, [u]) is an arc of G if either (v,u) or (v,u+n) is and ([v], [u]) is an arc of G if either (v, [u])
or (v+mn,u)) is.

We define G to be the set of all directed graphs with vertex set {1,2,...,2n} whose graphs have
the following properties. For each G € G and each pair of vertices u € {1,2,...,2n} and v € V:

pl: v+ n has a self-arc in G.
p2: ([v],v) is an arc in G.
p3: If (u,v) is an arc in G and u # v, then (u,v + n) is an arc in G.

p4: If (u,[v]) is an arc in G and u # v, then (v +n,v) is an arc in G.

10



It is straightforward to verify that for each F' € image F, v(F) as a graph in G. In view of the
structure of the matrices in image F it is natural to call a graph G € G an event graph of agent
i € Vif (i+n,i) is the only incoming arc to vertex i. Note that the graph of every matrix F(N, i, b)
for which b; = 1 is an event graph of agent i. Thus «v(F(7)) is an event graph of agent i if ¢, is
an event time of agent i. It is easy to see that there are graphs in G which are not the graphs of
any matrix in image F. Let us agree to say that G € G is attached at i € V if vertex i has at least
(i+n,i) as an incoming arc. A graph G € G is attached if it is attached at every vertex in V. Thus
~v(F (7)) would be attached if and only if ¢, were an event time of every agent. Note that the graph
shown in Figure 2 is an event graph for agents 2,3 and 4 and consequently is attached at vertices
2,3 and 4. Note that the definition G allows this set to contain graphs which are attached at 4
which are not event graphs of agent 7. In other words, an event graph of agent ¢ must be attached
at i, but the converse is not necessarily so.

We begin our analysis with the following observation.
Proposition 1 The set of graphs G is closed under composition.

The proof of this and subsequent assertions can be found at the end of this section.

To prove that all §; converge to a common heading, it is clearly necessary to prove that 6; also
converge to a common heading. On the other hand, if both the ; and w; also converge to a common
heading — say 65 — then both 6; and w; converge to 655 at each event time of agent 7. Because of
this and (4), it is clear that each 6; will also converge to 655 between event times if both 6; and w;
converge to 0, at each event time of agent ¢. In other words, to prove Theorem 2 it is enough to
prove that the state x of S converges to a vector of the form 6551 where 1 is the 2n x 1 vector of
I’s. It is clear from (20) that z will converge to such a vector just in case as 7 — oo, the matrix
product F(7)F (7 —1)----- F(1) converges to a rank one matrix of the form 1c¢ for some 2n x 1
row vector c¢. The following easy to prove result from [13] is key to establishing this convergence.

Proposition 2 Let Sg be any closed set of stochastic matrices which are all of the same size and
whose graphs ¥(S), S € S are all strongly rooted. As j — oo, any product S;---S1 of matrices
from Ss, converges exponentially fast to a matrix of the form 1c at a rate no slower than X\, where ¢
18 a non-negative row vector depending on the sequence and X\ is a non-negative constant less than
1 depending only on Ssy.

In view of (23), this result can be applied to the problem at hand if there is an integer ¢ for
which each of the matrix products F((k+ 1)q)----- F(kg+ 1), k > 0 is a member of a compact
subset of stochastic matrices with strongly rooted graphs. For if such an integer exists, the infinite
product --- F(7) - ---- F(1) can be rewritten as an infinite product of the form --- S(k) - --- - S(1)
where S(k) = F((k+1)q)----- F(kq+1) is a matrix from the set of all products of ¢ matrices from
S. Since products of stochastic matrices are stochastic, every matrix S(k), k > 1, is stochastic.
Thus Proposition 2 can be applied if we can show that the S(k) come from a compact subset in S
whose members all have strongly rooted graphs. The following result from [13] plays a key role in
[13] in dealing with this matter in the synchronous case .

Proposition 3 Suppose n > 1 and let Gy, ,Gy,,...,G,, be a finite sequence of rooted graphs

with the same vertex set. If each vertex of each graph has a self arc and m > (n — 1)?, then
Gyp,, 0 Gp,,_, 0 --- 0 Gy, is strongly rooted.

11



Unfortunately the graphs of importance in the asynchronous case, namely the v(F (7)), do not have
self arcs at all vertices. Thus Proposition 3 cannot be directly applied.

To describe the analog of Proposition 3 appropriate to the asynchronous problem at hand we
need another concept. Note that each G € G determines a quotient graph Q(G) € G, defined in
such a way that Q(G) has an arc from ¢ to j just in case G has an arc from at least one vertex in
the set [i] to at least one vertex in the set [j]. Note that Q(v(F(N, z,b))) = N. Thus for example,
the quotient graph of the graph shown in Figure 2, is the extended neighbor graph shown in Figure
1. The following is the analog of Proposition 3 which we just mentioned.

Proposition 4 Let G, ,...,G be a sequence of 2m + 1 attached graphs in G whose quotient

? P2m+1
graphs are rooted. If m > (n —1)? then Gy, o--- oGy, is strongly rooted.

To make use of Proposition 4, we need stochastic matrices with attached graphs whose quotients
are rooted. Since individual asynchronous flocking matrices almost never have either of these
properties, to make use of the proposition we need to show that under typical conditions, sufficiently
long products of asynchronous flocking matrices do have attached graphs with rooted quotients.
To accomplish this requires a more in depth study of the graphs in G. We begin with the following
observation.

Proposition 5 Let G ,...,G,,, be a sequence of graphs from G which for each i € V, contains a
graph which is attached at i. Then Gy, o---0 Gy, is an attached graph.

The proposition implies that if ¢, ,t.,,...t;, is a sequence of event times containing at least one
event time of each agent, then v(F(7,,)--- F(71)) will be attached. Sequences for which this is
true are guaranteed to occur repeatedly. To understand why, note that inequalities in (1) imply
that there will be at least one event time of any given agent in a time interval of length at least
Tmax = max{Ty, Ty, ..., T,}. Similarly, for any non-negative integer h, there will be at most h event
times of any one agent in an interval of length at most hT i, where Ty = min{7y,Ts, ..., T,}. It
follows that if h is the smallest positive integer such that Tinax < AT min, then there will be at least
one event time of any one agent within a sequence of at most i + 1 consecutive event times of any
other agent. We are led to the following conclusion.

Lemma 1 In any sequence of (n — 1)h + 1 or more consecutive event times, there will be at least
one event time of each of the n agents.

The following proposition shows that for any sequence of graphs G,,,...,G,,, from G whose
quotients constitute a jointly rooted sequence, the quotient of the composition of the sequence is
rooted.

Proposition 6 Let Gp,,...,G,,, be a sequence of m > 1 graphs from G for which Q(G,,,) o
-0 Q(Gyp,) is a rooted graph. Then Q(Gp,, o ---0 Gp,) is also rooted at the same verter as

Q(Gp,,) 0+ 0 Q(Gp,).

Proposition 6 is more subtle than it might at first seem. While it is not difficult to show that
any arc in the quotient of the composition of the G, is an arc in the composition of the quotients
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it is not true that every arc in the composition of the quotients is an arc in the quotient of the
composition. For this reason it is not so obvious that Proposition 6 should be true. On the other
hand it is possible to prove that for any arc (u,v) in the composition of the quotients there is a path
in the quotient of the composition from u to v. It is this fact upon which the validity of Proposition
6 critically depends.

In proving Theorem 2, we will need to exploit the compactness of a particular subset of stochastic
matrices in S which can be described as follows. Let p > n be any given positive integer. Write
GE, for the subset of all sequences of p graphs in G,, which are jointly rooted and BP for the set
of all lists of p binary vectors in B with the property that for each i € {1,2,...,n}, each list
{b1,b2,...,b,} contains at least one vector whose ith row is 1. Since p > n, B? is nonempty. Let
RP be the Cartesian product of R with itself p times. We claim that the image of the mapping
FP : BP x RP x G% — S defined by

({N17N27 cee 7Np}7 {,U,l, M2,y Mp}a {b17 b27 v 7bp}) — F(Np7:u'p7 bp) e F(NQ,,U,Q, bQ)F(NhMlu bl)

is compact. The reason for this is essentially the same as the reason image F is compact. In
particular, for any fixed {N1,Ng,...,N,} € G5, and {b1,ba,...,b,} € BP, the restricted mapping
{ui,po, - pmpt — FP{N, No, .o Ny b {pa, po, - o5 pip}, {01, b2, ..., bp}) is continuous so its im-
age must be compact. Since BP and G%, are finite sets, the image of F? must therefore be compact
as well.

Set ¢ = 2(n —1)? +1 and let FP(q) denote the set of all products of ¢ matrices from image FP.
Then FP(q) is compact because image FP is. More is true.

Proposition 7 The graph of each matriz in FP(q) is strongly rooted.

We are now finally in a position to prove our main result.

Proof of Theorem 2: As already noted, it is sufficient to prove that the matrix product
F(7)---F(1) converges exponentially fast to a matrix of the form 1c as 7 — oo. Observe first
that there is a vector binary vector b(7) € B and a vector u(7) € R such that

F(7) = F(N(7), u(7),b(T)), 7> 0 (24)
because each F(7) € image F.

By hypothesis, the sequence of extended neighbor graphs N(0),N(1),..., is repeatedly jointly
rooted. This means that there is an integer m for which each of the sequences N(km+1), ..., N((k+
1)m), k > 0, is jointly rooted. Let h be as is in Lemma 1 and define p = rm where 7 is any positive
integer large enough so that p > (n — 1)h 4+ 1. Set ¢ = 2(n — 1)?> + 1 and let G&,, RP, BP, FP, and
FP(q) be as defined just above Proposition 7.

Since each N(km + 1),...,N((k 4+ 1)m), k > 0, is jointly rooted, each of the compositions
N((k+1)m)o---oN(km+1), k > 0, is rooted. This implies that each graph N((k+1)p)o- - -oN(kp+1),
k > 0, is rooted because p = rm and because the composition of r rooted graph is rooted. Therefore
each sequence N(kp + 1),...,N((k + 1)p), k > 0, is jointly rooted. It follows that

{(N(kp+1),...,N((k+1)p} € G2, k>0 (25)
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Note next that for each ¢ € {1,2,...,n} and each k > 0, at least one of the graphs in the
sequence y(F(kp 4+ 1)),...,7(F((k + 1)p)) must be attached at i because of Lemma 1 and the
assumption that p > (n — 1)h + 1. This implies that for each ¢ € {1,2,...,n} there must be at
least one vector in each list {b(kp+1),...,b((k+ 1)p)}, k > 0 whose ith row is 1.. Therefore

{b(kp+1),...,b((k+1)p)} € B, k>0 (26)

For k > 0, define
S(k)y=F(k+1)p)---F(kp+1) (27)

In view of (24) - (26) and the definition of F?, it must be true that S(k) € image FP,k > 0. Thus
if we define B
Sk)=S(k+1)g—1)---S(kq), k>0 (28)

then each S(k) must be in FP(q). Therefore by Proposition 7, the graph of each S(k) is strongly
rooted. Therefore by Proposition 2, the matrix product S(k) ---S(0) converges exponentially fast
as k — oo to a matrix of the form 1c as k — oo.

The definitions of S(-) and S(-) in (27) and (28) respectively imply that

S(k)---S0)=F({(k+1)pg)---F1, k>0

For 7 > 0, let (7) and p(7) denote respectively, the integer quotient and remainder of 7 divided
by pq. Then o B
F(r)---F(1) = S(1)S(k(7)) --- 5(0)

where k(7) = k() — 1, and S(7) is the bounded function

§(7_) _ F(r)---F((k(t) + pg+1) if p(1) #0
! if p(7) =0

Since k(7) is an unbounded monotone nondecreasing function and S(k)---S(0) converges expo-
nentially fast as k& — oo, it follows that F(7)--- F(1) converges exponentially fast as 7 — oo to a
matrix of the form 1c. B

5.2 Proofs of Supporting Assertions

Proof of Proposition 1: Let G, and G, be two graphs in G. Then both graphs have properties
pl through p4. Since both graphs have self-arcs at vertex v +n, v € V, so must their composition
Gq o Gp; thus G4 o G, has property pl.

Fix v € V. In view of property p2, either (v + n,v) € A(Gy) or (v,v) € A(Gy). If the former is
true then (v+n,v) € A(G40G,) because v+n has a self-arc in G,; on the other hand, if the latter
holds, then ([v],v) € A(G4 0 G,) because ([v],v) € A(G,). In either case, ([v],v) € A(Gq 0 Gyp).
Since this is true for all v € V, G, o G, has property p2.

To show that G, 0G,, has property p3, fix u € {1,2,...,2n}, v € V and suppose that u # v and
(u,v) € A(G4goG,). In view of the definition of composition, there must exist a vertex w € V such
that either (i) (u,w) € A(Gp) and (w,v) € A(Gy), or (ii) (v, w+n) € A(Gp) and (w+n,v) € A(Gy).
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If (i) is true and w = v, then (u,v) € A(G,). This implies (u,v + n) € A(G,) because of property
p3; but (v + n,v 4+ n) € A(G,) because of property pl so (u,v+n) € A(G4 o G,). On the other
hand, if (i) is true and if w # v then (w,v+n) € A(G,) because of property p3, so in this case too
(u,v+n) € A(G40Gy).

Now suppose that (ii) holds. Then (w + n,v +n) € A(G,) because of property p3. Therefore
(u,v+n) € A(G4 0G,). This proves that G, o G, has property p3.

To show that G, o G, has property p4, again fix v € {1,2,...,2n}, v € V and suppose that
u # v and (u,[v]) € A(Gq o G,). Thus there must exist a vertex w € V such that either (i)
(u,w) € A(Gp) and (w, [v]) € A(Gy), or (ii) (u,w +n) € A(G,) and (w + n,[v]) € A(G,). If (i)
is true and w = v, then (v + n,v) € A(G,) because of property p4; but (v + n,v +n) € A(Gy)
because of property pl so (v + n,v) € G40 Gp,. On the other hand, if w = v and (ii) holds, then
(v+n,v) € A(Gq) because of property p4; but (v+n,v +n) € A(Gp) because of property pl so
(v+n,v) € G4 oG, in this case too. Therefore (v + n,v) € G, 0 G, if w=v.

Suppose finally that w # v. Then either (w, [v]) € A(Gy) or (w+n,[v]) € A(G,); in either case
then (v+n,v) € A(G,) because of property p4; but (v +n,v+n) € A(G,) because of property pl
s0 (V+n,v) € GgoG,. A

In the proofs which follow we use the symbol I(G) to denote the subgraph of G € G induced
by the vertex set V 4+ {n} = {n+ 1,n+ 2,...,2n}. The proof of Proposition 4 depends on the
following lemma.

Lemma 2 Let G, and G, be graphs in G and suppose that G, is attached. If Q(Gy) is rooted then
I(G4 0 Gp) is rooted.

Proof: Suppose that Q(G,) is rooted at u € V. It is enough to show that I(G, o G)) is rooted at
u+n. Let v+n be any vertex in V + {n}. It is enough to show that there is a path in (G40 G,))
from u +n to v + n. Note first that G, o G, must have a self-arc about u + n because of property
pl; this implies that (G4 0 G,) must also have a self-arc about u + n; thus if v = u there is a path
in (G4 0Gp) from u+n to v+ n.

Suppose that v # u. Since Q(Gy) is rooted at u there must be a path in Q(G,) from u to v.
Therefore there must be a positive integer s and distinct vertices kg, k1, k2, ..., ks in V starting at
ko = u and ending at ks = v, for which (ko, k1), (k1,k2), ..., (ks—1,ks) are arcs in Q(G,). Thus
for each i € {1,2,..., s} there must be an arc in G, from at least (1) k;—1 to k; or (2) k;j—; to k;+n,
or (3) ki—1 +n to k; or (4) ki—1 +n to k; +n. In view of property p3 of graphs in G, cases (1) and
(3) respectively imply the existence of arcs in G4 from k;_; or kj—1 + n to k; + n. Thus under all
four conditions there must be an arc from at least one vertex in the set [k;_1] to k; + n.

By assumption G, is attached and is in G which means that for each i € {1,2,...,s}, there
must be arcs in G, from k;_1 +n to k;—1 and from k;—1 + n to k;—; + n. Therefore for each
i € {1,2,...,s}, there must be an arc in G, o G, from k;_1 + n to k; + n. This means that for
i €{1,2,...,s} there must be an arc in I(G4 0 G,) from k;—; + n to k; + n. Thus there must be
a path in I(G4 0 G,) from u+ n = ko + n to v = kg + n. Since this is clearly true for all v+ n in
V +{n}, I(G, o G,) must be rooted at u +n. B

Proof of Proposition 4: For simplicity we write G; for G, throughout this proof. By assumption,
for i € {1,2,...,m} the graphs Go; and Gg;_; are quotient rooted and attached respectively. Thus
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for i € {1,2,...,m} the graphs I(Gag; o Gg;_1) are rooted because of Lemma 2. Since all graphs in
Gsa + {n} have self-arcs, and m > (n — 1)? Proposition 3 applies and it can thus be concluded that
I(Gapm 0 Gopy—1) 0 -+ - 0 I(Gg o Gy) is strongly rooted. But for each i € {1,2,...,m} every arc in
I(Gg;0Gy;—1) is an arc in Gg;0Gy;—1. This implies that every arc in I(Gay, 0Gop—1)0---0I(G20G)
is an arc in Gg,, o - - - 0 G between vertices in V + {n}. Therefore every arc in I(Gaoy, © Gopy—1) ©
-+ 01(GgoGy) is an arc in I(Ggp, 0 --- 0 Gy1). Since I(Gaym © Gopy—1) 0 -+ - 0 I(Gg 0 Gq) is strongly
rooted, I(Gay, o -+ 0 Gy) must be strongly rooted as well.

Let v+n be aroot of I(Ggpo---0Gy). We claim that in Goyq10Gapo- - <0Gy there is an arc from
v+n to every vertex in {1,2,...,2n}. To prove that this is so, and thus that Gay,+10Gypo---0Gy
is strongly rooted, first suppose that u + n is any vertex in V + {n}. Then there is an arc from
v+ntou+nin I(Ggy o---0Gy) and consequently in Gy, o - -+ 0 Gy because I(Gay0---0Gq) is
strongly rooted at v + n; but this arc must also be in Gay41 0 Goyy 0 - - - 0 G because Goy,41 has a
self arc about vertex u + n.

Now suppose that u is any vertex in V. As before, and for the same reasons, there is an arc in
Gom o --- 0 Gy from v+ n to uw+ n. But there is an arc in Ggp,41 from u + n to u because Gopy1q
is attached. Therefore there must be an arc in Gopy1 0 Goy0-+- 0 Gy from v +n to u. B

Proposition 5 is a direct consequence of the following lemma.

Lemma 3 If G € G is attached at i € V, then for any graphs G,,G4 € G, G40 G o G, is also
attached at 1.

Proof of Lemma 3: Since G is attached at i, (i + n, ) is one of its arcs. Since G, € G, either
(i,7) or (i + n,7) must be one of its arcs because of property p2. In either case (i + n,7) must be
one of the arcs of G, 0G. Similarly either (¢,4) or (i +n,i) must be one of its arcs of G, so (i+n,1)
must also be one of the arcs of Gy 0 G o G,. R

Proposition 6 depends on the following lemmas.

Lemma 4 Let G, and G, be graphs in G. If (i,7) is an arc in Q(Gg) o Q(Gyp), then there is a path
in Q(Gqo0Gy) fromi toj.

Proof of Lemma 4: Let (7,7) € A(Q(Gy) o Q(Gp)) be fixed. If i = j, then there is a path in
Q(G4 0 Gp) from i to j because all vertices in Q(G4 o Gp) have self arcs.

Suppose i # j Then for some k € V, (i,k) € A(Q(G,)) and (k,j) € A(Q(Gy)). Therefore
([, [k]) € A(Gp) and ([k],[j]) € A(Gq). Thus either ([7],k) or ([i],k + n) is in A(G,) and either
(k, [7]) or (k-+n, 1) is in A(G,). Tt (], K) € A(G,) and (k, [j]) € A(G), then (i, ) € A(G,oG,)
which implies that (i,5) € A(Q(G4 0 Gp)). By the same reasoning, (i,j) € A(Q(G4 o Gp)) if
([il, k+n) € A(Gp) and (k +n, [j]) € A(Gy). To complete the proof, we need to show that (i, j) €
A(Q(G40Gy)) if either (i) ([i], k) € A(Gp) and (k+n, [j]) € A(G,) is true or (ii) ([i], k+n) € A(G,)
and (k, [j]) € A(Gy) is true.

Consider case (i) and suppose that i = k. Then (i + n,[j]) € A(Gy). (i + n,i+n) € A(Gy).
Therefore (i + n, [j]) € A(G4 0 Gp). This implies that (7, 5) € A(Q(G4 0 Gy)).
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Now consider case (i) assuming that i # k. If (i,k) € A(G,), then (i,k + n) € A(G,) because
of property p3. Similarly if (i +n, k) € A(G,), then (i +n,k+n) € A(G,) because of property p3.
Therefore ([i], k+n) € A(Gp). But (k+n, [j]) € A(Gy) so ([i], [j]) € A(G40G,). This implies that
(4,7) € A(Q(Gq 0 Gp)).

Now consider case (ii). If k =i then ([¢], [j]) € A(G4 0 G,) and consequently (i,j) € A(Q(G4 o
Gp)) because (i, [j]) € A(Gy) and ([7],7) € A(G,) via property p2. If k # i then (k+n, k) € A(G))
because of property p4. Thus (k+n, [j]) € A(G40Gyp). Moreover ([i], k+n) € A(G40Gy) because
(k+n,k+n) € A(Gy). Thus there is a path from [¢] to [j] in G40 G,. B

Proposition 6 is an immediate consequence of the following lemma

Lemma 5 Let Gp,,...,G,,, be a sequence of m > 1 graphs from G. If for somei,j € V, Q(G,,,) o
-0 Q(Gp,) contains a path from i to j, then Q(Gyp,, o ---0Gyp,) also contains a path from i to j

Proof of Lemma 5: We claim first that if G, G, are graphs in G for which Q(G,)oQ(G,) contains
a path from u to v, for some u,v € V, then Q(G, 0 G,) also contains a path from u to v. To prove
that this is so, fix u,v € V and G, G, € G and suppose that Q(G,) o Q(G,) contains a path from
u to v. Then there must be a positive integer s and vertices k1, ko, ..., ks ending at ks = v, for
which (u, k1), (k1,k2), ..., (ks—1,ks) are arcs in Q(Gy) 0 Q(G,). In view of Lemma 4, there must
be paths in Q(G, o G) from i to ki, k1 to ka,..., and ks_1 to ks. If follows that there must be a
path in Q(G4 0 Gp) from ¢ to j. Thus the claim is established.

It will now be shown by induction for each s € {2,...,m} that if Q(Gp,)o---0Q(Gy,) contains
a path from i to some j, € V, then Q(G,,, o--- 0 Gy, ) also contains a path from i to js. In view
of the claim just proved above, the assertion is true if s = 2. Suppose the assertion is true for all
s € {2,3,...,t} where t is some integer in {2,...,m — 1}. Suppose that Q(Gp,,,) o0 Q(Gp,)
contains a path from ¢ to jiy1. Then there must be an integer k such that Q(Gp,) o --- 0 Q(Gyp,)
contains a path from i to k and Q(G,,.,) contains a path from k to ji41. In view of the inductive
hypothesis, Q(Gp, o --- 0 Gy, ) contains a path from i to k. Therefore Q(Gy,,,) 0 Q(Gp, 0---0Gy,)
has a path from ¢ to j;11. Hence the claim established at the beginning of this proof applies and it
can be concluded that Q(G,, , 0 Gy, o---0 Gy, ) has a path from i to jsy1. Therefore by induction
the aforementioned assertion is true. B

Proof of Proposition 7: Let S € image F? be fixed. Then for some {N,Ny,....N,} € G&,,
{p1, 2, ..., pp}t € RP and {by,b,...,by} € BP, S = F,---Fy where F; = F(N;,p;,b;), i €
{1,...,p}. By assumption, Ni,Na,... N, is a jointly rooted sequence. Since Q(y(F;)) = N;, ¢ €

{1,...,p}, the sequence Q(y(F1)), ..., Q(~(Fp)) is also jointly rooted. Thus Q(y(Fp))o---0Q(y(F1))
is rooted. In view of Proposition 6, Q(y(Fp) o ---o~(F1)) is rooted.

By hypothesis, for each ¢ € {1,...n}, as least one of the vectors in the sequence by, ...,b, has
a 1 in its ¢th row. Therefore for each i € {1,...n}, at least one of the graphs in the sequence
Y(F1),...,7(Fp) must be attached at i. Thus by Proposition 5, y(F})) o --- o y(F1) is attached.

In view of (23) and the definition of S, v(F}) o - - o y(F1) = (S5). Therefore Q(v(S)) is rooted
and (9) is attached. Therefore the graph of every matrix in image F? is attached and has a rooted
quotient graph.

Let S be any matrix in FP(g). Then there must be matrices S; € image F?, i € {1,...,q¢}
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such that S = S;---Si. Then each graph v(S;), i € {1,..., ¢}, must be attached and must have a
rooted quotient graph Q(v(S)). Therefore by Proposition 4, v(Sy) o --- o y(S1) must be strongly
rooted. From this, (23) and the fact that S = S, ---Si, it follows that S has a strongly rooted
graph. Therefore every matrix in FP(q) is strongly rooted. B

6 Concluding Remarks

The version of the asynchronous consensus problem considered here significantly generalizes our
earlier work [14]. In particular, the present version of the problem can deal with continuous heading
changes whereas the version of the problem solved in [14] cannot.

It is possible to formulate and solve a “continuous” version of Vicsek’s problem in which each
agent’s heading is adjusted by controlling its differential rate. Because of changing neighbors this
leads to a differential equation model with a discontinuous vector field in which chattering may
occur. To avoid this one can introduce “dwell times” as was done in [3] for the leader-follower
version of the problem. As a result, the question of synchronization again arises, in this case with
event times being the times at which each agent’s dwell time periods begin. Thus although one
might think that the question of synchronization is irrelevant in the continuous-time case, this
appears to only be true if one is willing to accept generalized solutions to differential equations and
the possibility of chattering.
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