
Graphical Properties of Easily Localizable Sensor

Networks

Brian D O Anderson ∗ Peter N Belhumeur † Tolga Eren ‡ David K Goldenberg §

A Stephen Morse ¶ Walter Whiteley ‖ Y Richard Yang ∗∗

August 24, 2006

Abstract

The sensor network localization problem is one of determining the Euclidean positions of all sensors in a
network given knowledge of the Euclidean positions of some, and knowledge of a number of inter-sensor
distances. This paper identifies graphical properties which can ensure unique localizability, and further sets
of properties which can ensure not only unique localizability but also provide guarantees on the associated
computational complexity, which can even be linear in the number of sensors on occasions. Sensor networks
with minimal connectedness properties in which sensor transmit powers can be increased to increase the
sensing radius lend themselves to the acquiring of the needed graphical properties. Results are presented for
networks in both two and three dimensions.

Keywords: Localization, sensor networks, global rigidity, graph theory

1 Introduction

An important problem in the area of sensor networks is that of sensor network localization. Broadly speaking,
a planar or possibly three-dimensional array of sensors exists, and a collection of inter-sensor distances are
known. Additionally, the Euclidean coordinates of a small number of sensors (beacon or anchor sensors) are
known. The localization problem is then one of determining the Euclidean coordinates of all the sensors.

∗B D O Anderson is with National ICT Australia and the Research School of Information Sciences and Engineering, Aus-
tralian National University, Canberra, ACT, Australia. Work supported by National ICT Australia, which is funded by the
Australian Government’s Department of Communications, Information Technology and the Arts and the Australian Research
Council through the Backing Australia’s Ability initiative and the ICT Centre of Excellence Program.

†P N Belhumeur is with Department of Computer Science, Columbia University,New York, NY
‡T Eren is with Department of Computer Science, Columbia University,New York, NY
§D K Goldenberg is with Department of Computer Science,Yale University, New Haven, CT
¶A S Morse is with Department of Electrical Engineering, Yale University, New Haven, CT. Work supported by US Army

Research Office and US National Science Foundation
‖W Whiteley is with Department of Mathematics and Statistics, York University, Toronto, Canada. Work supported in part

by grants from NSERC (Canada) and NIH (USA).
∗∗Y R Yang is with Department of Computer Science, Yale University, New Haven, CT. Work supported in part by US

National Science Foundation.

1

For background papers dealing with various aspects of sensor network localization, see eg. [1–8]. To grasp the
context in which the results of this paper are applicable, we shall give a brief taxonomy of methods of sensor
network localization. One classification derives from the fact that different quantities may be sensed in order
to perform localization. Methods that in some way determine a distance may use received signal strength
(but then require a ‘path loss exponent’ to convert power to distance), one- or two-way propagation time,
or time-difference-of-arrival, and below these are commented upon further. Methods based on determining
angles (Angle Of Arrival or AOA) are also well known. See [9–12] for examples of such methods and
the recent interesting paper [13] which sets out to define a fundamental framework for localizability and
localization using angle data. Within the framework of methods using distance, the broadest difference is
between those methods which use neighbor type information, i.e. information for each sensor about the
number of other sensors within a particular distance of that sensor, as opposed to actual distance values
to those neighbors (albeit noisy values). Examples of methods using neighbor type information can be
found in [14–18]. Prominent within these schemes is Multidimensional Scaling (MDS), concerning which it
is relevant to include the following quote from [18]: “MDS can provide a very good starting point for local
optimisation. MDS is good at finding the right topology of the network, but not the precise locations of
nodes, because MDS uses shortest path distances to approximate the distance between nodes more than 1
hop away and the approximation may not be accurate”.

It is naturally of interest to make comparisons among the various methods for localization. However, this
is difficult, if not generally impossible, in part because the data sets to which each method can be applied
are different in kind, making fair comparisons hard to achieve.

This paper is concerned with localization in networks where actual distance information is available.
Among a number of the key questions that can be asked are the following:

(a) How much distance data needs to be collected to localize a network, at least if the data is free of noise?

(b) What is the computational complexity of localization?

(c) Can localization be carried out sequentially, sensor by sensor, or in some kind of distributed fashion,
or are central calculations required?

(d) What is the effect of noise (i.e. errors in distance measurements) in the various algorithms that might
be advanced?

(Of course, a number of these questions apply to other methods, and it is relevant to note for MDS that
it is a centralized algorithm in its raw form, though recent work has attempted to break away from this
restriction [18].) Semidefinite programming [19, 20] and stochastic annealing [21, 22] underpin two further
classes of centralized algorithms.

The key messages of this paper are that graph theory provides tight answers to (a) and (b); and that by
collecting more data, but nevertheless an amount of data that scales linearly with the number of sensors,
a helpful answer to (c) can be provided. While little can at this stage be said about (d), we note two
recent works that tie together noise with sequential localization based on trilateration [23, 24] and a further
work using trilateration ideas to improve an estimate of path loss exponent in the received signal strength
approach to distance determination, see [25].

What is primarily being advanced in this paper are theoretical underpinnings for the applicability of a
number of methods already advanced by others. However, we do present some simulation data later in the
paper that illustrates these theoretical underpinnings, and note that further simulation data relevant to a
number of the ideas in this paper can be found in [26, 35].

2

the localization problem based on distance measurements. The problem can be split up into an existence
or solvability problem and an algorithmic problem. The existence problem is: what are the properties of
a sensor network which ensure unique solvability of the localization problem? The algorithmic problem is:
how can one go about solving the localization problem, and what is the computational complexity involved
in a solution? A more refined question of an algorithmic character is: how can one deal with the presence
of errors in the inter-sensor measurements, and how do such errors translate into errors in the algorithm’s
output of sensor coordinates?

1.2 The role of graph theory

Many of these problems can be studied in the framework of graph theory, and we will cast the ideas of this
paper using this perspective. Let the set of sensor nodes be S, let distances dij between certain pairs of
nodes si, sj be given, and suppose the coordinates pi of certain nodes (the anchor nodes) si are known. The
localization problem is one of finding a map p : S→Rd (where d is 2 or 3) which assigns coordinates pi∈Rd

to each node si such that ‖p(i)−p(j)‖ = dij holds for all pairs i, j for which dij is given, and the assignment
is consistent with any node coordinate assignments provided in the problem statement.

We can associate a graph G = (V, E) with a sensor network by associating a vertex of the graph with
each sensor (the vertex set is V), and an edge of the graph with each sensor pair for which the inter-sensor
distance is known (the edge set is E). Let V denote the number of vertices and E the number of edges. A
d-dimensional framework (G, p) is a graph G = (V, E) together with a map p : V→Rd. The framework is a
realization if it results in ‖p(i)− p(j)‖ = dij for all pairs i, j where ij∈E. [One can form a mental picture
of such a framework as a physical structure of bars and joints, with the bar lengths equal to the prescribed
distances]. Two frameworks (G, p) and (G, q) are equivalent if ‖p(i) − p(j)‖ = ‖q(i) − q(j)‖ holds for all
pairs i, j with ij∈E. The two frameworks (G, p) and (G, q) are congruent if ‖p(i)− p(j)‖ = ‖q(i)− q(j)‖
holds for all pairs i, j with i, j∈V . This is the same as saying that (G, q) can be obtained from (G, p) by an
isometry of R

d, i.e. a combination of translations, rotations and reflection.

A framework (G, p) is rigid if there exists a sufficiently small positive ε such that if (G, q) is equivalent
to (G, p) and ‖p(i)− q(i)‖ < ε for all i∈V then (G, q) is congruent to (G, p). Intuitively, a rigid framework
cannot flex. We remark that there exist rigid frameworks (G, p) and (G, q) which are equivalent but not
congruent, see [27]. A framework (G, p) is globally rigid if every framework which is equivalent to (G, p)
is congruent to (G, p). Obviously, if G is a complete graph then the framework (G, p) is necessarily globally
rigid.

Given the graph and distance set of a globally rigid framework, there is not enough information to position
the framework absolutely in R

d. To do this requires the absolute position of at least three vertices (d = 2)
or four vertices (d = 3), and in fact they must be generically positioned. In R

2 for example, knowledge of
the absolute position of three vertices would not be sufficient if they were collinear, as the absolute position
of all other vertices would only be determined up to reflection about the line passing through the collinear
vertices.

The existence/solvability problem for sensor networks can be thought of as follows. Suppose a framework
is constructed which is a realization, i.e. the edge lengths corresponding to the collection of inter-sensor
distances. The framework may or may not be rigid; and even if it is rigid, there may be a second and
differently shaped framework which is a realization (constructable with the same vertex, edge and length
assignments). If up to congruence there is a unique rigid realizing framework consistent with the lengths,
i.e. the framework is globally rigid, then the sensor network can be thought of as like a rigid entity of known
structure, and one then only needs to know the Euclidean position of several sensors in it to locate the
whole framework in two or three dimensional space as the case may be, see [6]. So the existence/solvability
problem is describing how one can decide if a prescribed framework is globally rigid.

3

of all its points is algebraically independent over the rationals. It is known that rigidity of frameworks in
R

d is a generic property. In other words, provided p is generic, the graph G alone determines the rigidity
of the framework, and so we can speak of rigidity of a graph. Note that there may be a thin set of
vertex positions (in general defined by one or more equalities which are polynomial in the vertex positions
and have rational coefficients) such that rigidity does not hold on this set. We remark that there is a test
for rigidity involving the rank of a matrix with entries formed from the coordinates of the vertices, and in
two dimensions there is a combinatorial (essentially graph theoretic) necessary and sufficient condition for
rigidity, termed Laman’s theorem [28].

Although the matrix rank condition generalizes to three dimensions, no necessary and sufficient combi-
natorial condition is available for three dimensions; the obvious generalization of the Laman conditions are
only necessary in three dimensions, but not sufficient, [29, 30]

What of the global rigidity property? In two dimensions, there is an elegant necessary and sufficient
condition for generic global rigidity of a framework (i.e. global rigidity of a generic framework), and
it is of a graph theoretic nature: either the associated graph is the complete graph on three vertices or it
must have two properties which we unpack immediately below, viz. it must be 3-connected and it must
be generically redundantly rigid, [27, 31].

The definition of 3-connectedness is standard: between any two vertices of the graph, there must exist
at least three paths which have no edge or vertex in common (apart from the end vertices), or equivalently,
it is not possible to find two vertices whose removal (together with the removal of the edges incident on
them) would render the graph unconnected.

A graph is termed generically redundantly rigid if with the removal of any edge, it remains generically
rigid. In two dimensions, there is a variant of Laman’s theorem for checking generic redundant rigidity.

In three-dimensional space, it is necessary that a graph be 4-connected and generically redundantly rigid
for the graph to be generically globally rigid. However, these conditions are known to be insufficient, [32,33].
No necessary and sufficient conditions for generic global rigidity are known, and it is not clear that such
conditions have to exist, in contrast to the two dimensional case. That is, there may be examples of three
dimensional graphs for which specification of a set of lengths confined to certain intervals for each length
always guarantees global rigidity, while specification of the lengths for the same sensor pairs but confined
to other intervals for each length results in lack of global rigidity. On the other hand, it is clear that there
do exist graphs which are generically globally rigid in R

3, for example, any complete graph with 4 or more
vertices.

The computational complexity of the algorithmic localization problem has been dealt with in the literature.
The general answer is that the computational complexity of localization is NP-hard and probably exponential
in the number of vertices, [34]; this continues to be true for an important subclass of sensor network graphs,
those which are unit disk graphs (which capture the common practical constraint that two vertices have an
edge joining them in the graphical representation of the sensor network if and only if the sensors are closer
than a pre-specified constant distance, r say, often termed the sensing radius, [35]).

Not surprisingly however, exceptions to the general computational complexity conclusion can be found by
imposing more conditions on the underlying graph. In particular, one might expect that with more data,
i.e. more inter-sensor distances being specified than the minimum number required to secure generic global
rigidity of the underlying graph, there might be an opportunity to cut computational costs. Indeed this is
so. There is an important class of graphs in two dimensions, called trilateration graphs and defined in detail
in a later section, in which the computational complexity of localization is polynomial, and on occasions
linear, in the number of vertices, [6]. (The linear result applies if a so-called seed of the trilateration graph is
known; if it is unknown, it takes in general polynomial time to find). Now while many graph theory results
available for two dimensions do not generalize, or do not generalize straightforwardly, to three dimensions,

4

allows a three-dimensional sensor network with the quadrilateration property to be localized in polynomial
(or linear, given a seed) time.

We come now to the key contribution of this paper. It is to explain how to systematically construct gener-
ically globally rigid, trilateration and quadrilateration graphs from graphs without these properties. When we
say ‘construct’, we imply ‘by adding extra edges in the graph’. However what is also important is how the
addition of extra edges can be implemented in the underlying sensor network. Roughly speaking, it involves
sensors determining distances not just to their immediate neighbors, but also to their two-hop, three-hop
and even four-hop distant neighbours. This may be a natural thing to do in a sensor network: for a network
for which the underlying graphical model is a unit disk graph, it corresponds to upping the sensing radius
(presumably by adjusting transmit powers) for each sensor. In the case of determining distances to two-
hop neighbours, doubling of the sensing radius will suffice. Indeed, an advantage of this construction-based
approach is that during deployment, sensors can first perform simple topology control (using for example
measurement power control) to construct a topology with simple connectivity-based properties. Topology
control for connectivity is well studied (e.g., [23, 40, 42–44]). Then using our construction-based operation
(e.g. power control), the network constructs a localizable topology. Note the important property that up-
ward adjustment of the sensing radius may only be required for a localization step, which may only need
to be performed once, or at least occasionally. For handling of data collected by the sensor network (apart
from that used in localization), a lower degree of connectivity may well suffice.

There are, actually, other alternatives to sensor radius adjustment, however that is achieved. First, if a
sensor can determine the angle between two of its neighbours in addition to the distances to those neighbours,
then the cosine law allows determination of the distance between those neighbours. Any pair of neighbours
of a given sensor are either neighbours of each other or at a two-hop distance from each other, and so all
direct distances between two-hop neighbours can be determined given applicability of the cosine law idea.
Second, especially if the network is a random network, i.e. one where sensors are positioned in accord with
some prescribed distribution, often uniform or Poisson, doubling of the sensor radius can be replaced by
using 4 times as many sensors with the same sensor radius as before.

Two further points should be noted. First, in order that a sensor sense and be sensed by its two-hop
distant neighbors, a doubling of the sensing radius may be excessively great. Suppose a particular sensor j
has nj neighbors. Let every sensor pass to its neighbors the list of its own neighbors. Each sensor in this way
can learn the list of its two-hop neighbors. If sensors increase their powers synchronously, they only need
to do so until the correct set of two-hop neighbors are seen. Second, in order to communicate with two-hop
neighbors, the communication may not need to be as frequent as that with the immediate neighbors (and
thus a saving of power can be achieved). In fact, it might only be required once. The point of communicating
with two-hop neighbors is often to eliminate a binary ambiguity (known as flip ambiguity). Once this is
eliminated, even for a moving sensor network, it may be enough to remain within range only of the original
neighbors.

1.3 Structure of the paper

Sections 2 and 3 deal with the construction of globally rigid graphs in two and three dimensions respectively,
Section 4 deals with the construction of trilateration graphs in two dimensions and quadrilateration graphs
in three dimensions. Section 5 presents evaluation results. Section 6 contains concluding remarks. The result
of Section 2 was announced in [6] without proof. The three-dimensional results of Section 3, the results of
Section 4, and the evaluations in Section 5 are new.

5

Before stating the main result of the section, we need to introduce some notation. Let G = (V, E) be a
graph. Then the graph G2 is defined as (V, E ∪ E2) where (va, vb) ∈ E2 just when va �= vb and there exists
vc with (va, vc) ∈ E and (vb, vc) ∈ E. Thus G2 is obtained from G by adding edges between the vertex pairs
of G which are separated by precisely one intermediate vertex, i.e. by adding edges between the two-hop
vertex pairs of G. The concept of the power of a graph can be found in the literature, e.g. [36], see page
74. Second, we say that a graph is edge k-connected if between any two vertices, there exist k paths
with no two paths sharing an edge in common (though two paths may have a vertex in common). Since
k-connectedness requires the existence of k paths between any two vertices with no edge or vertex pairwise
common, it is evident that k-connectedness implies edge k-connectedness, but not the converse.

Now we have the main result of the section.

Theorem 2.1 Let G = (V, E) be an edge 2-connected graph in R
2. Then G2 is generically globally rigid.

Note that if G is an abstraction of a sensor network, and if an edge occurs in G just when the two
corresponding sensors are within a common sensing radius r of one another, then a doubling of the sensing
radius will produce a new graph which has G2 as a proper (though not necessarily strictly proper) subgraph.
Consequently, the new graph will be generically globally rigid, and the sensor network localizable for generic
sensor locations, given three or more anchor nodes.

In Section 1, we outlined a simple procedure indicating how sensors might adjust their power levels in
order to replace G by G2. It turns out that the consequent localization task is not especially complicated.
The reader not interested in the proof of Theorem 2.1 should proceed straight to Section 2.3 to read how
localization can be performed.

2.1 The special case of a cycle

In order to prove this main result, we shall first establish the result for a graph G which is precisely a cycle.
Refer to Figure 1

Lemma 2.1 Let C be a cycle in R
2; then C2 is generically globally rigid.

Proof Suppose that C has vertices v1, v2, . . . , vk and edges v1v2, v2v3, . . . , vk−1vk, vkv1. If k = 3 the result
is trivial (as the complete graph on three vertices is generically globally rigid). So assume k > 3. We shall
show that C2 is 3-connected and then generically redundantly rigid. As noted in the introduction, these
properties are necessary and sufficient to establish generic global rigidity.

Consider the existence of paths in C2 between v1 and v2m+1 for any m with 2m + 1 not exceeding k.
Three paths which have no common vertices other than end vertices are: v1vkvk−1 . . . v2m+1, v1v3v5 . . . v2m+1

and v1v2v4 . . . v2mv2m+1. Likewise if we consider paths between v1 and v2m, then the following paths have
no common vertices other than end vertices: v1vkvk−1...v2m, v1v3v5 . . . v2m−1v2m and v1v2v4 . . . v2m. This
establishes the 3-connectedness of C2.

It remains to show that if we remove an edge from C2 then it remains rigid. Suppose an edge is removed
which is an edge of C, without loss of generality vkv1. Consider the sequence of triangles, the edges of which
are all in C2: v1v2v3, v2v3v4, v3v4v5,...,vk−2vk−1vk, and the corresponding subgraphs spanned by the vertices
and edges as each triangle is added. A Henneberg sequence of vertex additions results, with each member of

6

Figure 1: Doubling a cycle. The graph of the original cycle has edges depicted by solid lines, and the
additional lines of G2 are shown using dashed lines. Each of these additional lines joins two vertices which
are a two-hop distance apart in the original graph

the sequence differing from the previous one by the addition of one vertex of degree 2. By a standard result
in rigid graphs the resulting graph is generically rigid.

It is also a subgraph of C2 which contains all vertices of C2 but does not contain the edge vkv1. Hence
C2 \ vkv1 is generically rigid. If instead of the edge vkv1 the edge vk−1v1 is removed, the same argument
applies. Hence generic redundant rigidity of C2 is established.

While the above lemma establishes the generic global rigidity property of C2, it contains no indication
of any algorithm by which C2 might be localized, or how a globally rigid framework realizing C2 might be
found. We shall interrupt the flow of the proof of Theorem 2.1 to establish this, in the process providing an
alternative proof to Lemma 2.1.

Suppose C has vertices v1, v2, . . . , vk and edges v1v2, v2v3, . . . , vkv1. Then C2 has edges v1v2, v1v3,
v2v3, v2v4, . . . , vk−1vk, vk−1v1, vkv1 and vkv2. Consider the realization of a framework F corresponding to
C2, where we fix the coordinates of v1, v2 and v3 so that v1 = (0, 0), v2 = (a, 0) and v3 = (b, c) for some
a, c > 0. Knowledge of the lengths of v2v4 and v3v4 establishes the position of v4 with a binary ambiguity.
For each of these possible locations for v4, knowledge of the lengths v3v5 and v4v5 will establish the posi-
tion of v5 with a binary ambiguity, making four possibilities in all. Successively, we obtain the positions of
v6, v7, . . . , vk with 23, 24, . . . , 2k−3 ambiguities. However, vk is also connected to v1 and v2. Knowledge of
the associated lengths resolves the ambiguity in the position of vk. (In fact, knowledge of the length between
vk and v1 alone will be sufficient; further, there is yet another edge, viz. that joining vk−1 to v1, the use
of which would resolve all ambiguities save that associated with vk). Resolving the ambiguity in vk then
sequentially allows resolution of the ambiguity in vk−1, vk−2, . . . , v4, and in this way the unique realization
of the framework (up to congruence) is established.

The idea is depicted in Figure 2.

As noted above, this constructive procedure provides an alternative proof of Lemma 2.1. A further proof
again has been suggested in a communication of Cheung and Whiteley [38], based on iterating a Henneberg
edge-splitting construction starting with the complete graph on four vertices. Such a procedure establishes
that when C contains n vertices, then C2 less the edges v1vn and v2vn is globally rigid, for n = 5, 6,

7

V2

V3

V7

V1

V4

V5

Figure 2: Intermediate step of localization process. The solid lines depict those edge lengths which have
been used in an attempt to localize all vertices. However, until the length of the line joining v7 to v1 is used,
there remains a multiplicity of positions, finite in number for v7 and some earlier vertices. This multiplicity
is eliminated and unique positions (up to congruence) are found. It is not necessary to use the lengths of
the dashed lines.

2.2 Generic edge 2-connected graphs

We return now to the proof of Theorem 2.1. A further two Lemmas will be used to prove the main result.
The second especially is intuitively obvious, and no proof will be given here.

Lemma 2.2 Let H0 be a generically globally rigid graph in R
2 with at least three vertices, and let a further

graph H1 be defined by adjoining one vertex to the vertex set of H0, and three edges, each connecting the
new vertex to three different vertices of H0. Then H1 is generically globally rigid.

Proof Let a be the additional vertex adjoined to H0. Let F0 be a generic framework realizing the graph
H0. Consider the realization of a framework F1 corresponding to the graph H1, where the vertices other
than a are located as in the framework F0 The one vertex of F1 for which coordinates have to be determined
is the vertex a. Consider any two of the three edges incident on a; knowledge of each length positions a
on the circumference of each of two circles, and thus generically there are two possible points for a to lie
at, relative to F0. Knowledge of the length of the third edge linking a to F0 then eliminates the ambiguity.
Thus the global rigidity of F0 implies the same property for F1. Hence H1 is generically globally rigid.

Lemma 2.3 Let H1 = (V1, E1) and H2 = (V2, E2) be two generically globally rigid graphs in R
2 with at

least three vertices in common. Then H1 ∪H2 = (V1 ∪ V2, E1 ∪ E2) is generically globally rigid.

Note that the qualification implied by the word generically in the preceding two lemmas is mild overkill.
Whereas genericity demands of a set of vertices that their coordinates do not satisfy a polynomial equation
involving rational coefficients, all that is actually required in the hypotheses of the lemmas is that the
points be in general position, i.e. that there are no three vertices on a line (a property which is implied by
genericity). If the three vertices in a realization of the graph H0 of Lemma 2.2 happen to be collinear for
example, then the realization of the graph H1 will not be globally rigid, no matter where the extra vertex is
located.

8

contains just one cycle we are done. Therefore, suppose that G contains more than one cycle and that one
cycle is C1 = v1v2...vk. If the vertex set of C1 is identical with that of G it is clear we are done by Lemma
2.1. Suppose then it is not identical; because G is connected, every vertex in G \ C1 is joined by a path to
C1 and therefore there is a vertex of G \ C1 that is connected by a single edge to a vertex of C1. Call this
vertex vL, and without loss of generality let the edge be v1vL.

Now consider the graph G1 = (V1, E1) with vertex set that of C1 together with vL and with edge set that
of C1 together with v1vL. Then G2

1 has as its edge set the edges of C2 and three more edges, viz v1vL,v2vL

and vkvL. By Lemma 2.2, and identifying C2 with H0, we see that G2
1 is generically globally rigid. See

Figure 3.

V2

VL

VK

V1

Figure 3: The graphs G1 and G2
1 of Theorem 2.1; the latter is generically globally rigid by Lemma 2.2 and

the generic global rigidity of C2

Now because G is edge 2-connected, there is necessarily a second path other than the single edge v1vL

linking the two vertices v1 and vL, i.e. there is a cycle, call it C2, containing these two vertices as successors.
The cycle clearly cannot contain both v2 and vk as a successor of v1. Without loss of generality, suppose
it does not contain v2 as a successor of v1. Consider the graph G2 = (V2, E2) with vertex set that of C2

together with v2 and with edge set that of C2 together with v1v2. Then arguing as in the previous paragraph,
we have that G2

2 is generically globally rigid. This graph also contains the three vertices v1, v2, vL together
with the three edges joining them. The graph G2

1 has the same property; since both are globally rigid, the
graph formed from the union of the vertex sets and the edge sets of G2

1 and G2
2 is generically globally rigid,

by Lemma 2.3. This graph is obviously a subgraph of (G1 ∪ G2)2 with the same vertex set. Accordingly,
(G1 ∪G2)2 must then be globally rigid.

If the vertex set of this graph is a strictly proper subset of the vertex set of G, then one must find a further
vertex joined by a single edge to C1 ∪ C2, and then argue as in the immediately preceding paragraph. This
procedure is continued, until the set of vertices of G1 ∪G2 ∪ ... ∪Gr for some r is identical with the vertex
set of G, and (G1 ∪G2 ∪ ... ∪Gr)2 is generically globally rigid and a subgraph of G2. This establishes that
G2 is generically globally rigid.

2.3 An algorithm to localize G2

We can describe fairly easily how localization occurs for a sensor network with a graph which is of the form
G2, where the underlying graph G is 2 edge-connected. (If there is a subgraph of the graph of the sensor
network containing all vertices and of the form G2, the result is equally true). We identify a cycle C1 in G,
with vertices v1, v2, . . . , vk and edges v1v2, v2v3, . . . , vkv1. In the associated framework, temporarily suppose
that v1 is located at (0, 0), v2 at (a, 0) and v3 at (b, c) for some a, c > 0. Following the procedure given

9

C2 allow localization of v4, v5, . . . , vk (retaining the temporary coordinate basis). We locate a second cycle
C2 of G intersecting C1 but with at least one distinct vertex. In the associated framework, we localize the
vertices of C1 ∪ C2 using the edges of (C1 ∪ C2)2; this is straightforward and is described in the theorem
proof. The procedure is continued until all vertices are localized. Using anchor positions, an isometry based
on translation, rotation and possible reflection of the initially localized framework (the location of which
depended on making a temporary assumption about the positions of v1, v2 and v3) can be determined, which
yields new and correct localized values. Figure 4 formally specifies the algorithm. Note that in order to
improve algorithm efficiency, when we search for a new cycle Gm intersecting previous cycles and a first new
vertex, call it v, in Gm, we try to identify a short cycle. This can be achieved by modifying the standard
depth-first search algorithm [37]: at each node, before we take the recursion, we first check if any of the
neighbors of the node is directly connected back to v. Also note that we can reduce the complexity of the
algorithm by using ear-decomposition to identify the cycles at the beginning of the algorithm, but this may
be less effective compared with the algorithm in Figure 4.

� G(V, E): the input 2-connected graph
� L: the set of already localized sensor nodes

identify a cycle C = v1v2...vk from G
v1 ← (0, 0); v2 ← (a, 0); v3 ← (b, c)
localize the sensor nodes in C
L← {nodes in C}
while (L does not contain all nodes)

construct graph Gm(V, Em) from G with node set V and edge set Em:
Em = {(u, v) : ∃v′ ∈ L ∧ (u, v′) ∈ E} ∪ {(u1, u2) ∈ E : u1, u2 �∈ L}

identify a cycle C = vv1...vk in Gm starting from v
localize nodes v1 to vk

L← L ∪ {v1, ..., vk}
compute sensor true positions using a transformation based on anchor positions

Figure 4: An algorithm to localize G2 when G is 2 edge-connected.

In a preprint of Cheung and Whiteley [38], it is noted that the 2-edge connected condition in the theorem
statement can tolerate a minor relaxation, and in the process establish a necessary and sufficient condition
for G2 to be globally rigid: G must be connected, and such that if the removal of any edge e disconnects G,
then one of the two components is a single vertex. The proof is a simple extension of that given above.

3 Generating Globally Rigid Three-dimensional Graphs

While sensor networks in two dimensions appear much more common than those in three dimensions, it is
apparent that there should be no inherent limitation of interest to two dimensions. In this section, we prove
an extension of the two dimensional result of the previous section. Again, our starting point will be the
properties of a cycle. However, we cannot proceed by working with the three-dimensional generalisations of
3-connectivity and redundant rigidity, and we need an alternative procedure in R

3 to establish generic global
rigidity of a certain graph derived from a cycle. The procedure will be like that mentioned in Section 2 after
the proof of Lemma 2.1, where we indicated how a realization of C2 (for a two-dimensional cycle C) could
be found.

We need to introduce some notation. Let G = (V, E) be a graph in R
3. Then the graph G3 is defined

as (V, E ∪ E2 ∪ E3) where (va, vb) ∈ E3 when there exists vc and vd with (va, vc) ∈ E, (vc, vd) ∈ E and

10

separated by precisely one or two intermediate vertices, i.e. by adding edges between the two-hop and
three-hop vertex pairs of G.

The result we shall in fact prove is the following.

Theorem 3.1 Let G = (V, E) be an edge 2-connected graph in R
3 . Then G3 is generically globally rigid.

When G is associated with a sensor network in which every sensor has a common sensing radius r, a
tripling of the radius will induce a graph of which G3 is a (not necessarily strictly proper) subgraph. (If
vertices joined by a path with three or more intermediate vertices correspond to sensors closer than 3r, then
G3 will be a strictly proper subgraph.) Radius tripling provides a (potentially expensive) way of securing
the level of connectivity required to achieve sensor network localization, always provided of course that one
can postulate an edge 2-connected graph to start with. [Incidentally, based on the two-dimensional result,
one might have conjectured a result like that of the theorem, but with the stronger hypothesis of edge
3-connectivity rather than edge 2-connectivity.]

3.1 The special case of a cycle

As for the two-dimensional case, we shall first consider a graph which is exactly a cycle; then we shall build
out to a general graph. Accordingly, as the starting point for proving the theorem, we shall prove:

Lemma 3.1 Let C be a cycle in R
3; then C3 is generically globally rigid.

Proof The case k = 4 is trivial, since then C3 is the complete graph on 4 vertices. So suppose there are
more than 4 vertices. For k = 5 it is easy to see that C3 is also a complete graph. As such, it is globally
rigid.

Suppose then that k > 5. Now v1, v2, v3 and v4 are vertices of a complete tetrahedral subgraph of C3.
Also, in C3 edges join v5 to each of v2, v3 and v4–one can think of this as a kind of Henneberg extension.
Hence the subgraph of C3 defined by the vertices v1 through v5 and the edges joining them in C3 is rigid; there
are two possible non-congruent frameworks corresponding to the specified distances, being distinguished by
the two partial reflections of the tetrahedron defined by v2 through v5 relative to the tetrahedron defined
by v1 through v4. If k < 8, this ambiguity is however not present since v1v5 is an edge whose length in the
framework determines which of the two possibilities applies.

Next, v6 is connected to v3, v4 and v5 in C3. (Again, one might think of this as Henneberg extension).
Hence, discounting for the moment the existence of any edges linking v5 to v1 or v6 to v1 or v2, the subgraph of
C3 defined by the vertices v1 through v6 is rigid, with four possible non-congruent frameworks corresponding
to the distances; the frameworks are distinguished by the two partial reflections of the tetrahedron defined
by v2 through v5 and a further two partial reflections of the tetrahedron defined by v3 through v6. In the
event that k < 9, there will be present in C3 an edge connecting v5 to v1 or v6 to v1 or v2, and then the
ambiguity will be resolved.

The argument continues in this way, considering the addition of v7, v8, etc., with each additional vertex
and its three connecting edges to earlier indexed vertices defining a rigid subgraph of C3 with a number
of binary ambiguities of noncongruent frameworks defined by partial reflections. The overall ambiguity
associated with the aggregate of these partial reflections will be resolved when, if m is the number of vertices
in the cycle C, the vertex vm−2 is introduced, since it is also connected in C3 to v1. This means that C3 is
generically globally rigid, as claimed.

11

To build out the result for a cycle to one applicable to more general graphs than a cycle, we shall rely on
the following two Lemmas, which are intuitively obvious variants on two lemmas in the previous section and
for which no proof will be given.

Lemma 3.2 Let H0 be a generically globally rigid graph in R
3 with at least four vertices, and let a further

graph H1 be defined by adjoining one vertex to the vertex set of H0, and four edges, each connecting the new
vertex to four different vertices of H0. Then H1 is generically globally rigid.

Lemma 3.3 Let H1 and H2 be two generically globally rigid graphs in R
3 with at least four vertices in

common. Then H1 ∪H2 is generically globally rigid.

Once again, we note that the qualifier ‘generically’ in the lemma hypotheses can be replaced by requiring
that no four points are in general position, i.e. coplanar. The result of Lemma 3.1 on cycles will not be
valid in a realization where four successive vertices of C are coplanar. And likewise, if in Lemma 3.2 the
four vertices of H0 to which the new vertex of H1 is connected are coplanar in a particular realization, the
associated realization of H1 cannot be globally rigid.

Proof of Theorem 3.1 If G contains just one cycle we are done. Therefore, suppose that G contains
more than one cycle and that one cycle is C1 = v1v2...vk. If the vertex set of C1 is identical with that of G
it is clear we are done by the first Lemma. If not, we can choose a vertex of G \ C that is connected by a
single edge to a vertex of C1. (Since G is connected, there must be such a vertex). Call this vertex vL, and
without loss of generality let the edge be v1vL.

Now because G is edge 2-connected, there is necessarily a second path other than the single edge v1vL

linking the two vertices v1 and vL, i.e. there is a cycle, call it C2, containing these two vertices as successors.
The cycle clearly cannot contain both v2 and vk as the other successor node of v1. Without loss of generality,
suppose it does not contain v2.

Consider the graph G1 = (V1, E1) with vertex set that of C1 together with vL and with edge set that of
C1 together with v1vL. Then G3

1 has as its edge set the edges of C3 and five more edges, viz. v1vL, v2vL,
v3vL, vk−1vL and vkvL. By Lemma 3.2, and identifying C3 and H0, we see that G3

1 is generically globally
rigid.

Consider also the graph G2 = (V2, E2) with vertex set that of C2 together with v2 and vk if this vertex is
not in C2, and with edge set that of C2 together with v1v2 and v1vk if vk is not in C2. Then arguing much
as in the previous paragraph, but appealing twice to Lemma 3.2, we have that G3

2 is generically globally
rigid. The two graphs G3

1 and G3
2 are both globally generically rigid and have a common set of at least four

vertices, viz. vk, v1, v2 and vL. Hence the graph formed from the union of the vertex sets and the edge sets
of G3

1 and G3
2 is generically globally rigid, by Lemma 3.3. This graph is obviously a subgraph of (G1 ∪G2)3

with the same vertex set. Accordingly, (G1 ∪G2)3 must then be globally rigid.

If there are any vertices of G which are not vertices of (G1∪G2), then the above line of argument must be
repeated, by determining such a vertex which is connected by a single edge to (G1 ∪G2), then determining
a cycle containing that edge, and so on. As for the two dimensional case, the process can obviously be
repeated until the set of vertices of G1 ∪ G2 ∪ ... ∪ Gr for some r is identical with the vertex set of G, and
(G1∪G2∪ ...∪Gr)3 is generically globally rigid and a subgraph of G3. This establishes that G3 is generically
globally rigid.

In [38] it is pointed out that a necessary and sufficient condition for G3 to be generically globally rigid
is that G is connected, and if the removal of any 2-valent vertex v should disconnect G, then one of the
resulting two components is a single vertex.

12

4 Generating Two-dimensional Trilateration and Three-dimensional
Quadrilateration Graphs

4.1 Trilateration graphs

We begin by recalling the notion of a trilateration graph, [6]. While this is of principal relevance just in R
2,

the definition remains valid in R
3. Let G = (V, E) be a graph. Then G is a trilateration graph if there

are (a) three vertices, v1,v2 and v3 say, for which v1v2, v2v3 and v1v3 are all edges of G and (b) an ordering
(actually, a partial ordering suffices) of the remaining vertices as v4, v5, v6,... such that any vi is joined by
(at least) three edges to three earlier vertices in the sequence. The three vertices v1,v2 and v3 are known as
a seed of the trilateration graph. Given a graph that is somehow known to be a trilateration graph, there
can be more than one seed and more than one vertex ordering consistent with the trilateration property.

Trilateration graphs are important in R
2, because if a sensor network has a trilateration graph, and at

least three of the sensors are anchor nodes, i.e. have known Euclidean coordinates, then the whole network
can be easily localized, as we now argue. To see this, assume first that one knows the seed and the ordering.
Temporarily locate the seed vertices consistently with the edge lengths by requiring one to be at the origin,
one to be on the positive x axis and the remaining one in the positive y half-plane. Then evidently all
vertices can be localized relative to these vertices sequentially, in a single sweep and in time O(|V |). Then
knowledge of the anchor node true positions will define a translation, rotation and possible reflection of
the initially determined position of the whole graph to align the anchor nodes with their correct positions,
and new positions follow for the rest of the nodes through application of the same translation, rotation and
possible reflection. If one knows the seed but does not know the ordering, the time is O(|V | + |E|). If
one does not know the seed, one must experiment with different choices of three nodes as a trial seed from
which trilateration-type localization is attempted. There are (1/6)|V |(|V | − 1)(|V | − 2) different choices of
three nodes from |V |. So the complexity of localization, requiring the identification of a seed followed by
the sequential localization of all the vertices, is at worst quartic in the number of vertices, O(|E||V |3 + |V |4)
in fact.. [Actually, if an upper bound, c say, on the valency of every vertex is known, then the maximum
number of seeding triangles is of order c2|V |, and the complexity becomes quadratic]. These remarks on
complexity do not cover any procedure which nodes might use to discover a sensor’s two-hop neighbors or
three-hop neighbors. This was described in Section 1 for two-hop neighbors and the complexity is linear in
the number of nodes. It will remain linear for three-hop neighbors too.

As will be seen in the main result of this section, there is a simple way to order the vertices of a graph
prior to exploiting a trilateration property, and in particular to obtain a seed.

The steps involved in localization, assuming that an increase of sensing radius can be achieved to reach
three-hop neighbors are: order the graph vertices as described below (and this can be by propagation through
the network, as will be seen, and does not require central computation); increasing the sensing radius (or
equivalent measure) to secure trilateration structure, with identified seed; localization of all vertices, relative
to the seed; use of anchor positions to obtain absolute position information, differing from the relative
localization by a translation and rotation.

Before presenting the main result for R
2, we require the following lemma.

Lemma 4.1 Let G = (V, E) be a connected graph with N vertices. Then there exists an ordering v1, v2, ..., vN

of the vertices of G such that for all p > 1, the subgraph of G induced by the set {v1, v2, ..., vp}, denoted Gp,
is connected.

13

and call it v1. Pick a vertex connected to v1, call it v2. Then pick a vertex connected to either of v1 or v2,
etc. One can do this until all vertices have been picked, because of the connectivity condition on G.] Now
with the above Lemma in hand, we can state the main result:

Theorem 4.1 Let G = (V, E) be a connected graph with N vertices, and let v1, v2, ..., vN be an ordering of
the vertices of G such that for all p > 1, the subgraph of G induced by the set {v1, v2, ..., vp}, denoted Gp, is
connected. Then G3 is a trilateration graph, with the same vertex sequence v1, v2, ..., vN .

Note that the theorem, while valid in both R
2 and R

3, is of principal relevance for R
2, because of the appli-

cation to localization: tripling the sensing radius of a sensor network containing at least three anchor nodes
in R

2 renders it localizable, with attractive computational complexity. Figure 5 illustrates a trilateration
graph obtained by the technique of Theorem 4.1.

V2

V3 V7

V1

V4

V5

V6

V8

Figure 5: The subgraph shown using just solid lines is a connected graph G. The addition of the long-dashed
lines produces G2, and the further addition of the short-dashed lines produces a trilateration graph G3, with
the vertex ordering inherited from G. From v4 on, each vertex is connected to three earlier vertices.

The proof will be assisted by the following Lemma:

Lemma 4.2 Let G = (V, E) be a connected graph with N vertices. and let v1, v2, ..., vN be an ordering of
the vertices of G such that for all p > 1, the subgraph of G induced by the set {v1, v2, ..., vp}, denoted Gp, is
connected. Then in G2, for all p > 2, vp is a neighbour of two distinct vertices in the set {v1, v2, ..., vp−1}.

Proof Since Gp is connected, vp is a neighbour in Gp of some vertex in the set v1, v2, ..., vp−1, say vi. Also,
if i > 1, the same argument implies vi is a neighbour in Gi of some vertex in v1, v2, ..., vi−1; as Gi ⊂ Gp, vi

is also a neighbour in Gp of the same vertex in v1, v2, ..., vi−1, call it vj . If i = 1, then vi is connected to v2.
Then in G2, vp is connected to vi and vj , where 1 � i � p− 1, 1 � j � p− 1, i �= j.

With this Lemma in hand, the proof of the theorem is relatively straightforward. The main idea is to
extend the result of the Lemma from G2 to G3.

Proof of Theorem 4.1 Since the subgraph of G induced by the three vertices v1, v2 and v3 is connected,
it is obvious that in G3, three edges connect the three vertices. To establish the trilateration property then,

14

{v1, v2, ..., vp−1}. Regard vp as a vertex of G2
p. By the Lemma immediately above, it is a neighbour of two

vertices, say vi and vj with 1 � i < j � p − 1. Consider now Gj . Then j is a neighbour in Gj of some vk

with 1 � k < j. We now consider several cases.

Case 1: Suppose vk �= vi. Then vi, vj and vk are neighbours of vp in G3
p.

Case 2: Suppose vk = vi is a neighbour of vj in Gj . Three subcases occur.

Case 2a: If j = 2, then i = 1 and v3 is a neighbour of either v1 or v2 in G3 ⊂ Gp; then v1, v2 and v3 will
be neighbours of vp in G3

p

Case 2b: If j > 2 and i > 1, then vi has a neighbour in Gi ⊂ Gj ⊂ Gp, call it vk, with k < i; it follows
that vk, vi and vj are neighbours of vp in G3

p.

Case 2c: If j > 2 and i = 1, then v2 is a neighbour of v1 = vi, and v1, v2 and vj are neighbours of vp in
G3

p.

The hypothesis for the theorem here is less demanding than that for the theorem of Section 2. On the
other hand, seen from the viewpoint of adjusting a sensing radius to achieve a particular type of connectivity,
the requirement here to assure the trilateration property is to treble rather than double the sensing radius.
For the three-dimensional case, which we now treat, having a trilateration property is not enough, and the
requirement is to quadruple the sensing radius, to assure a quadrilateration property. Localization can then
be achieved in linear time.

4.2 Quadrilateration graphs

The quadrilateration property is a simple extension of the trilateration property, and is principally useful in
R

3. Let G = (V, E) be a graph. Then G is a quadrilateration graph if there are (a) four vertices, v1,v2,
v3 and v4 say, for which v1v2, v1v3, v1v4, v2v3, v2v4 and v3v4 are all edges of G and (b) an [yry: do we

want to say it is a partial order?] ordering of the remaining vertices as v5, v6, v7... such that any vi is
joined by (at least) four edges to four earlier vertices in the sequence. The four vertices v1,v2, v3 and v4 are
known as a seed of the quadrilateration graph.

The key to the main result is the following Lemma, generalizing both Lemma 4.2 above, and the key idea
of the theorem on trilateration graphs.

Lemma 4.3 Let G = (V, E) be a connected graph with N vertices. and let v1, v2, ..., vN be an ordering of
the vertices of G such that for all p > 1, the subgraph of G induced by the set {v1, v2, ..., vp}, denoted Gp, is
connected. Then in G4, for all p > 4, vp is a neighbour of four distinct vertices in the set {v1, v2, ..., vp−1}.

Proof Regarding vp as a vertex of G3
p, it is a neighbour of vi, vj and vk for some 1 � i < j < k < p. By

considering a limited number of particular cases similarly to the proof of Theorem 4.1, it follows that there
exists a vertex vm, m < p, m �= i, j, k such that in Gp, vm is a neighbour of one of vi, vj or vk. Then vi, vj ,
vk and vm are neighbours of vp in G4

p.

The proof of the following theorem is now immediate from this Lemma:

Theorem 4.2 Let G = (V, E) be a connected graph with N vertices, and let v1, v2, ..., vN be an ordering of
the vertices of G such that for all p > 1, the subgraph of G induced by the set {v1, v2, ..., vp}, denoted Gp, is
connected. Then G4 is a quadrilateration graph, with the same vertex sequence v1, v2, ..., vN .

15

We generate 100 instances of test networks each with N nodes by uniformly distributing the nodes in an area
of 760x787. We do not consider anchors, as we are interested here is how many nodes we can localize.

For each instance of the test networks, we compute the following performance metrics:

• r1: We raise the sensing radius of the network gradually until the largest connected component of the
network contains all of the N nodes. We refer to this radius as r1.

• 3r1: One way to achieve G3, as required in Theorem 4.1, when G is the connected network at radius
r1, is to just treble r1. We denote 3r1 = 3 ∗ r1.

• r3
1 : Another way to achieve G3 when G is the connected network at radius r1 is to start with radius

r1 at each node, and then raise the sensing radius of each node individually so that it connects to all
of its neighbours’ neighbours’ neighours. We compute the average of the radii of all nodes and denote
it by r3

1 .

• r2: We raise the sensing radius of the network gradually until the largest 2-connected component of
the network contains all of the N nodes. We refer to this radius as r2. Note that at r2 we achieve
node 2-connectivity, which implies edge 2-connectivity and thus is a stronger condition than required
in Theorem 2.1.

• 2r2: One way to achieve G2 when G is the 2-connected network at radius r2 is to just double r1. We
denote 2r2 = 2 ∗ r2.

• r2
2 : Another way to achieve G2 is to start with radius r2 at each node, and then raise the sensing

radius of each node individually so that it connects to all of its neighbours’ neighours. We compute
the average of the radii of all nodes and denote it by r2

2 .

• rGR: We raise the sensing radius of the network gradually until the largest globally rigid component
contains all N nodes. We refer to this radius as rGR.

Figure 6 reports the results for the first 30 instances when N = 100. We make the following observations.
First, controlling the sensing radii of the nodes individually to increase connectivity, e.g., from G to G2 or
G to G3, requires lower radius compared with simply doubling or trebling the network-wide sensing radius.
This result is somehow intuitive and is verified by observing that 2r2 > r2

2 and 3r1 > r3
1 for all test instances,

as foreshadowed in the discussion at the end of Subsection 1.2. It should be noted, however, that connectivity
control on individual nodes may have larger overhead than the simpler operation of doubling or trebling the
network sensing radius. Second, it is clear that 2r2 is higher than rGR. This is expected since the network
at the network-wide sensing radius 2r2 is globally rigid, and rGR is the minimum network sensing radius to
be globally rigid. The average sensing radius r2

2 is also higher than rGR for all instances of networks. Third,
it is clear that 3r1 is higher than rGR. This is again expected since the network at the network-wide sensing
radius 3r1 is a trilateration network which is globally rigid, and rGR is the minimum network sensing radius
to be globally rigid. Fourth, we observe that in general, the sensing radius to achieve trilateration (i.e. 3r1

and r3
1) is higher than that to be localizable using the algorithm in Figure 4.

Figure 7 normalizes the sensing radii with respect to rGR. We observe that to be localizable using the
algorithm in Figure 4, the sensing radius is on average 1.48 times for r2

2 and 1.75 times for 2r2 of the global
rigidity radius. To be able to trilaterate, the sensing radius is on average 1.78 times for r3

1 and 2.3 times
for 3r1 of the global rigidity radius. Although the sensing radii for these algorithms are higher than the
minimum global rigidity radius, as we will see below, using the minimum radius may cause many nodes to
be uniquely localizable only in theory but not in known algorithms.

16

 50

 100

 150

 200

 250

 300

 350

 400

 450

 5 10 15 20 25 30

ra
di

us

instance

3*r1
r1^3
2*r2
r2^2
rGR

r2
r1

Figure 6: Sensing radii to achieve various connectivity and localization objectives.

 0.5

 1

 1.5

 2

 2.5

 3

 5 10 15 20 25 30

no
rm

al
iz

ed
 r

ad
iu

s

instance

3*r1
r1^3
2*r2
r2^2

r2
r1

Figure 7: Normalized sensing radii to achieve various connectivity and localization objectives.

17

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30

nu
m

. u
ni

qu
el

y
lo

ca
liz

ab
le

instance

r2
r1

Figure 8: Numbers of uniquely localizable nodes at different radii.

 0

 20

 40

 60

 80

 100

 120

 5 10 15 20 25 30

nu
m

. u
ni

qu
el

y
lo

ca
liz

ab
le

 s
w

ep
t

instance

rGR
r2
r1

Figure 9: Numbers of uniquely localizable nodes that can be swept at different radii.

18

 0

 20

 40

 60

 80

 100

 120

 5 10 15 20 25 30

nu
m

. t
ri

la
te

ra
te

d

instance

rGR
r2
r1

Figure 10: Numbers of uniquely localizable nodes that can be trilaterated at different radii.

To start, we first show the number of nodes that are uniquely localizable at r1 and r2. The result is
shown Figure 8. We observe that although there are instances in which a large number of nodes are uniquely
localizable at r2, there are also instances in which a large number of nodes cannot be uniquely localized
even in theory. Even when a node can be uniquely localizable in theory, it may not be localizable by an
efficient algorithm. Figure 9 shows the number of uniquely localizable nodes that can be localized by the
algorithm in Figure 4. We observe that the algorithm can localize a large number of nodes in most instances.
However, even at rGR, there are instances (e.g., instance 6) in which many nodes are localizable in theory
but not by the algorithm. We have also conducted experiments with 200 nodes, and observed instances in
which even at rGR less than 5% of the nodes can be localized by the algorithm in Figure 4. This shows
the importance of topology control for easily localizable networks. Figure 10 shows the number of nodes
which can be localized by trilateration. Again, we observe large variations in different test cases. At radius
rGR, although there are many instances in which above 90% of the nodes can be localized by trilateration,
there are also many instances in which less than 20% of the nodes can be trilaterated. This again shows the
importance of applying graph-theoretic techniques to construct networks for easily localizable networks.

6 Conclusions

This paper has shown how, by an operation that can be likened to increasing the sensing radius of the sensors
in a sensor network, the localization problem can be made solvable, and indeed solvable in linear time, if the
network has certain limited connectivity properties before any adjustment of the sensing radius.

Certain variants on the ideas can easily be contemplated. It is known for example that in R
2, six-

connectivity of a graph guarantees generic global rigidity, [31]. Whether or not such a graph is a trilateration
graph is not known to the authors, or whether it could be made a trilateration graph by a simpler maneuverer
than that contemplated in this paper is not known. Again, it is possible to contemplate sensors with
directional properties. Suppose each sensor in a two-dimensional sensor network is guaranteed to have one

19

One can also envisage that sensors are laid down by a random process, as discussed for example in [6].
Consider for example a graph obtained by laying down n sensors in a unit area, independently and with
uniform distribution. Suppose the sensing radius is r for all sensors. If r > (1/

√
π + ε)

√
(logn/n) for

arbitrary positive ε and all n, so that r is allowed to depend on n, then as n → ∞ the graph is connected,
see [39]. Thus with probability very close to 1, and with a large value of n, trilateration will be achieved
when r is chosen to exceed the lower threshold of 3(1/

√
π)

√
(logn/n). One could still contemplate graphs

however where the trilateration property ‘just’ failed; one might suspect that such graphs could at least
still be globally rigid, with parts of them in trilateration ‘islands’, linked by a certain number of edges. If
the number of islands is small, one might conjecture that the computational complexity of localizing such a
globally rigid graph could be exponential in the number of islands, but not the number of vertices.

As noted in Section 1, from the graph theory point of view, instead of increasing the sensing radius r to
acquire some graphical property, one can increase the areal density of sensors; this is particularly apparent
in the random case.

References

[1] M Weiser, “Some computer science problems in ubiquitous computing,” Communications of ACM, July
1993

[2] GH Forman and J Zahorjan, “The challenges of mobile computing,” IEEE Computer, vol 27, no.4, pp.
38-47, April 1994

[3] B Karp and HT Kung, “GPSR: Greedy perimeter stateless routing for wireless networks,” Proceedings
of the Sixth International Conference on Mobile Computing and Networking 2000, Boston MA, August
2000

[4] B Hofmann-Wellenhof, H Lichtenegger and J Collins, Global Positioning System: Theory and Practice,
4th Edition, Springer-Verlag, 1997

[5] A Savvides, C-C Han and MB Strivastava, “Dynamic fine-grained localization in ad-hoc networks of
sensors”, Proceedings of the Seventh International Conference on Mobile Computing and Networking
2001, Rome Italy, July 2001, pp. 166-179

[6] T Eren, DK Goldenberg, W Whiteley, YR Yang, AS Morse, BDO Anderson and PN Belhumeur,
“Rigidity and Randomness in network localization”, Proceedings of the 17th Annual Joint Conference
of IEEE Computer and Communication Societies (INFOCOM), Hong Kong, 2004, Vol 4, pp 2673-2684.

[7] DK Goldenberg, A Krishnamurthy, WC Maness, YR Yang, A Young, AS Morse, A Savvides, BDO
Anderson, “Network localization in partially localizable networks”, Proceedings of the 18th Annual
Joint Conference of IEEE Computer and Communication Societies (INFOCOM), Miami, March 2005

[8] T He, C Huang, B Blum, J Stankovic and T Abdelzaher, “Range-free localization schemes in large
scale sensor networks”. Proceedings of the Ninth International Conference on Mobile Computing and
Networking (Mobicom) San Diego, Sep 2003, pp. 81-95

[9] DJ Torrieri, “Statistical theory of passive location system”, IEEE Transactions on Aerospace and Elec-
tronic Systems, vol. AES-20, 1984, pp. 183-198

[10] T Rappaport, J Reed and B Woerner, “Position location using wireless communications on highways of
the future”, IEEE Communications Magazine, vol. 34, 1996, pp. 33-41

[11] TE Biedka, JH Reed and BD Woerner, “Direction finding methods for CDMA systems”, Proceedings of
the 13th Asilomar Conference on Signals, Systems and Computers, vol. 1, 1996, pp. 637-641

20

for CDMA cellular phone systems”, Proceedings of the 2000 IEEE Sensory Array and Multichannel
Signal Processing Workshop, 2000, pp. 408-412.

[13] J Bruck, J Gao and A Jiang,“Localization and routing in sensor networks by local angle information”,
Proceedings of the Sixth International Conference on Mobile Ad Hoc Networking and Computing (Mo-
bicom), ACM Press New York, NY, 2005, pp. 181-192

[14] L Doherty, K Pister and L El Ghaoui,“Convex position estimation in wireless sensor networks”, Pro-
ceedings of the 14th Annual Joint Conference of IEEE Computer and Communication Societies (INFO-
COM), vol. 3, 2001, pp. 1655-1663

[15] N Bulusu, J Heidemann and D Estrin,“GPS-less low-cost outdoor localization for very small devices”,
IEEE Personal Communications, vol.7 2000, pp. 28-34

[16] D Niculescu and B Nath, “Ad hoc positioning system (APS)”, Proceedings of IEEE GLOBECOM, vol.
5, 2000, pp. 2926-2931

[17] Y Shang, W Ruml, Y Zhang and M Fromherz, “Localization from connectivity in sensor networks”,
IEEE Transaction on Parallel and Distributed Systems, vol. 15, 2004, pp. 961-974

[18] Y Shang, W Ruml and Y Zhang,“Improved MDS-Based Localization”, Proceedings of the 17th Annual
Joint Conference of IEEE Computer and Communication Societies (INFOCOM), Hong Kong, 2004

[19] P Biswas and Y Ye, “Semidefinite programming for ad hoc wireless sensor network localization”, Third
International Symposium on Information Processing in Sensor Networks, 2004, pp. 46-54

[20] AM-C So and Y Ye,“Theory of semidefinite programming for sensor network localization”, Mathematical
Programming, to appear

[21] AA Kannan, G Mao and B Vucetic,“Simulated annealing based localization in wireless sensor network”,
Proceeding 30th IEEE Conference on Local Computer Networks, 2005, pp. 513-514

[22] AA Kannan, G Mao and B Vucetic,“Simulated annealing based wireless sensor network localization with
flip ambiguity mitigation”, Proceedings of the IEEE Vehicular Technology Conference 2006, to appear

[23] M Cao, AS Morse, BDO Anderson,“Sensor Network Localization with Imprecise Distance”, System and
Control Letters, to appear.

[24] D Moore, J Leonard, D Rus and S Teller, “Robust distributed network localization with noisy range
measurements”, Proceedings of the 2nd ACM Conference on Embedded Networked Sensor Systems (Sen-
Sys, 2004, pp. 50-61

[25] G Mao, BDO Anderson, B Fidan,“Online Calibration of Path Loss Exponent in Wireless Sensor Net-
works”, Proceedings of IEEE GLOBECOM 2006, to appear.

[26] DK Goldenberg, P Bihler, M Cao, J Fang, BDO Anderson, AS Morse and YR Yang, “Localization in
Sparse Networks using Sweeps”, Proceedings of the Seventh International Conference on Mobile Ad Hoc
Networking and Computing (Mobicom), 2006

[27] B Hendrickson, “Conditions for unique graph realizations”, SIAM J Computing, vol 21, 1992, pp. 65-84

[28] G Laman, “On graphs and rigidity of plane skeletal structures”, Journal of Engineering Mathematics,
vol. 4, 1970, pp. 331-340

[29] W Whiteley, “Some matroids from discrete applied geometry”, in JE Bonin, JG Oxley and B Servatius,
eds., Contemporary Mathematics, vol. 197, American Mathematical Society, 1996

[30] T Tay and W Whiteley, “Generating isostatic frameworks”, Structural Topology, vol. 11, 1985, pp. 21-69

21

torial Theory Series B, vol. 94, 2005, pp. 1-29.

[32] R Connelly, “Generic global rigidity” in Applied Geometry and Discrete Mathematics, DIMACS Ser.
Discrete Math. Theoret. Comput. Sci., vol 4, American Math Soc, 1991, pp 147-155

[33] R Connelly, “Generic global rigidity” , Discrete and Computational Geometry, vol. 33, 2005, pp. 549-563.

[34] J Saxe, “Embeddability of weighted graphs in k-space is strongly NP-hard”, Proceedings of 17th Allerton
Conference in Communications, Control and Computing, 1979, pp. 480-489

[35] J Aspnes, T Eren, DK Goldenberg, AS Morse, W Whiteley, YR Yang, BDO Anderson and PN Bel-
humeur, “A theory of network localization”, IEEE Transactions on Mobile Computing, to appear.

[36] SO Krumke and H Noltemeier, Graphentheoretische Konzepte und Algorithmen, Teubner, 2005

[37] T Cormen, C Leiserson, R. Rivest and C Stein, Introduction to Algorithms, 2nd edition, The MIT Press,
2001

[38] M Cheung and W Whiteley, “Transfer of global rigidity results among dimensions: Graph powers and
coning”. Preprint, York University, 2005

[39] P Gupta and PR Kumar, “Critical power for asymptotic connectivity of wireless networks” in Stochastic
Analysis, Control, Optimization and Applications: A volume in honor of W.H. Fleming, Birkhauser,
Boston, 1998

[40] X Li, Y Wang, P Wan and C Yi, “Fault Tolerant Deployment and Topology Control for Wireless Ad
Hoc Networks”, Proceedings of ACM MobiHoc, Annapolis, MD, 2003

[41] G Calinescu and PJ Wan, “Range Assignment for Biconnectivity and k-Edge Connectivity in Wireless
Ad Hoc Networks”, Lecture Notes in Computer Science, volume 2865, 2003

[42] M Hajiaghayi, N Immorlica, and V Mirrokni, “Power Optimization in Fault-Tolerant Topology Control
Algorithms for Wireless Multi-hop Networks” Proceedings of Ninth International Conference on Mobile
Computing and Networking (Mobicom), Dan Diego, 2003

[43] N Li, JC Hou, “FLSS: a Fault-Tolerant Topology Control Algorithm for Wireless Networks”, Proceedings
of Tenth International Conference on Mobile Computing and Networking (Mobicom), Philadelphia,
Pennsylvania, 2004

[44] P Santi, Topology Control in Wireless Ad Hoc and Sensor Networks, John Wiley and Sons, 2005

22

