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Abstract— This paper studies a modified version of the
Vicsek’s problem, also known as the “consensus problem.”
Vicsek et al. consider a discrete-time model consisting ofn
autonomous agents all moving in the plane with the same speed
but with different headings. Each agent’s heading is updated
using a local rule based on the average of the headings of its
“neighbors.” We consider a modified version of the Vicsek’s
problem in which integer valued delays occur in sensing the
values of headings which are available to agents. By appealing
to the concept of graph composition, we side-step most issues
involving products of stochastic matrices and present a variety
of graph theoretic results which explains how convergence to a
common heading is achieved.

I. I NTRODUCTION

Current interest in cooperative control of groups of mobile
autonomous agents has led to the rapid increase in the
application of graph theoretic ideas together with more fa-
miliar dynamical systems concepts to problems of analyzing
and synthesizing a variety of desired group behaviors such
as maintaining a formation, swarming, rendezvousing, or
reaching a consensus. While this in-depth assault on group
coordination using a combination of graph theory and system
theory is in its early stages, it is likely to significantly
expand in the years to come. One line of research which
“graphically” illustrates the combined use of these concepts,
is the recent theoretical work by a number of individuals
[1], [2], [3], [4], [5], [6] which successfully explains the
heading synchronization phenomenon observed in simulation
by Vicsek [7], Reynolds [8] and others more than a decade
ago. Vicsek and co-authors consider a simple discrete-time
model consisting ofn autonomous agents or particles all
moving in the plane with the same speed but with different
headings. Each agent’s heading is updated using a local rule
based on the average of its own heading plus the current
headings of its “neighbors.” Agenti’s neighbors at time
t, are those agents, including itself, which are either in or
on a circle of pre-specified radiusri centered at agenti’s
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current position. In their paper, Vicseket al.provide a variety
of interesting simulation results which demonstrate that the
nearest neighbor rule they are studying can cause all agents to
eventually move in the same direction despite the absence of
centralized coordination and despite the fact that each agent’s
set of nearest neighbors can change with time. A theoretical
explanation for this observed behavior has recently been
given in [1]. The explanation exploits ideas from graph
theory [9] and from the theory of non-homogeneous Markov
chains [10], [11], [12]. With the benefit of hindsight it
is now reasonably clear that it is more the graph theory
than the Markov chains which will prove key as this line
of research advances. An illustration of this is the recent
extension of the findings of [1] which explain the behavior
of Reynolds’ full nonlinear “boid” system [6]. In this paper,
by appealing to the concept ofgraph composition, we side-
step most issues involving products of stochastic matrices
and present a variety of graph theoretic results which explain
how convergence to a common heading is achieved.

In the past few years many important papers have appeared
[2], [3], [4], [5], [13] which expand the results obtained in
[1] and extend the Vicsek model in many directions. For
example, in a recent paper [5] a modified version of the
Vicsek problem is considered in which integer valued delays
occur in sensing the values of headings which are available
to agents. The aim of this paper is to consider the same
problem, but more from a graph theoretic point of view. This
enables us to relax the conditions stated in [5] under which
consensus is achieved.

The rest of the paper is organized as follows. In section
2, the main convergence result is introduced. In section 3,
we present the state space model of the modified version of
Vicsek’s problem with measurement delays. In sections 4 and
5, several classes of graphs with special structures are defined
and the properties of their composition graphs are studied. In
section 6, we give the proof of our main convergence result.

II. COORDINATION FACING MEASUREMENT DELAYS

We consider a modified version of the Vicsek’s prob-
lem. More precisely we suppose that at each timet ∈
{0, 1, 2, . . .}, the value of neighboring agentj’s headings
which agenti may sense isθj(t − dij(t)) wheredij(t) is
a delay whose value att is some integer between0 and
mj−1; heremj is a pre-specified positive integer. While well
established principles of feedback control would suggest that



delays should be dealt with using dynamic compensation, in
this paper we will consider the situation in which the delayed
value of agentj’s heading sensed by agenti at timet is the
value which will be used in the heading update law for agent
i. LetNi(t) andni(t) denote the set of labels and the number
of agenti’s neighbors at timet respectively. Thus

θi(t + 1) =
1

ni(t)


 ∑

j∈Ni(t)

θj(t− dij(t))


 (1)

wheredij(t) ∈ {0, 1, . . . , (mj − 1)} if j 6= i anddij(t) = 0
if i = j.

In the delay-free version of the problem treated in [1],
dij = 0 for i ∈ {1, . . . , n} and j ∈ Ni(t). Thus in this case
each agent’s heading update equation can be written as

θi(t + 1) =
1

ni(t)


 ∑

j∈Ni(t)

θj(t)


 (2)

The explicit forms of the update equations determined by
(1) and (2) respectively depend on the relationships between
neighbors which exist at timet. These relationships can be
conveniently described by a directed graphN(t) with vertex
set V = {1, 2, . . . n} and arc setA(N(t)) ⊂ V × V which
is defined in such a way so that(i, j) is an arc or directed
edge fromi to j just in case agenti is a neighbor of agentj
at timet. ThusN(t) is a directed graph onn vertices with at
most one arc connecting each ordered pair of distinct vertices
and with exactly one self-arc at each vertex. We writeGsa

for the set of all such graphs.
Let G be the set of all directed graphs with vertex set

V = {1, 2, . . . n}. Let A(G) denote the set of arcs ofG. It
is natural to call a vertexi a neighborof vertexj in G ∈ G
if (i, j) is an arc inG. In the sequel we will call a vertexi
of a directed graphG, a root of G if for each other vertex
j of G, there is a path fromi to j. Thus i is a root ofG,
if it is the root of a directed spanning tree ofG. We will
say thatG is rooted at i if i is in fact a root. ThusG is
rooted ati just in case each other vertex ofG is reachable
from vertex i along a path within the graph.G is strongly
rooted ati if each other vertex ofG is reachable from vertex
i along a path of length1. ThusG is strongly rooted ati if i
is a neighbor of every other vertex in the graph. By arooted
graphG ∈ G is meant a graph which possesses at least one
root. A strongly rooted graphis a graph which has at least
one vertex at which it is strongly rooted.

Here we will “combine graphs” using the notion of “graph
composition” rather than the notion of “graph union” used
in [1], [2], [3]. By the compositionof graphGq1 ∈ G with
Gq2 ∈ G, written Gq2 ◦ Gq1 , is meant the directed graph
with vertex setV and arc set defined in such a way so that
(u, v) is an arc of the composition just in case there is a
vertex w such that(u,w) is an arc ofGq1 and (w, v) is
an arc ofGq2 . We say that a finite sequence of directed
graphsGp1 , Gp2 , . . . ,Gpk

from G is jointly rooted if the
compositionGpk

◦ Gpk−1 ◦ · · · ◦ Gp1 is a rooted graph. We
say that an infinite sequence of graphsGp1 ,Gp2 , . . . , in G is

repeatedly jointly rootedif there is a positive integerm for
which each finite sequenceGpm(k−1)+1 , . . . ,Gpmk

, k ≥ 1
is jointly rooted.

The main result of [1] is similar to the follows.

Theorem 1:Let the θi(0) be fixed. For any trajectory of
the system determined by (2) along which the sequence of
neighbor graphsN(0),N(1), . . . is repeatedly jointly rooted,
there is a constantθss for which

lim
t→∞

θi(t) = θss (3)

where the limit is approached exponentially fast.

The aim of this paper is to prove that essentially the same
result holds in the face of measurement delays.

Theorem 2:Let θ(0) be fixed. For any trajectory of the
system determined by (1) along which the sequence of
neighbor graphsN(0),N(1), . . . is repeatedly jointly rooted,
there is a constantθss, depending only onθ(0) for which

lim
t→∞

θ(t) = θss1 (4)

where the limit is approached exponentially fast.

As noted in the introduction, the consensus problem
with measurement delays we’ve been discussing has been
considered previously in [5]. It is possible to compare the
hypotheses of Theorem 2 with the corresponding hypotheses
for exponential convergence stated in [5], namely assump-
tions 2 and 3 of that paper. To do this, let us agree, as before,
to say that theunion of a set of graphsGr1 ,Gr2 , . . . ,Grk

with vertex setV is that graph with vertex setV and arc
set consisting of the union of the arcs of all of the graphs
Gr1 ,Gr2 , . . . ,Grk

. Taken together, assumptions 2 and 3 of
[5] are more or less equivalent to assuming that there are
finite positive integersq ands such that theunion

G(k) ∆= N((k + 1)q − 1) ∪ N((k + 1)q − 2) ∪ · · · ∪ N(kq)

is strongly connected and independent ofk for k ≥ s.
By way of comparison, the hypothesis of Theorem 2 is
equivalent to assuming that there is a finite positive integer
q such that thecomposition

Ḡ(k) ∆= N((k + 1)q − 1) ◦ N((k + 1)q − 2) ◦ · · · ◦ N(kq)

is rooted fork ≥ 0. The latter assumption is weaker than
the former for several reasons. First, the arc set ofG(k) is
always a subset of the arc set ofḠ(k) and in some cases the
containment may be strict. Second,Ḡ(k) is not assumed to
be independent ofk, even fork sufficiently large, whereas
G(k) is; in other words,Ḡ(k) is not assumed to converge
whereasG(k) is. Third, eachG(k) is assumed to be strongly
connected whereas each̄G(k) need only be rooted; note that
a strongly connected graph is a special type of rooted graph
in which every vertex is a root. Perhaps most important about
Theorem 2 and the development which justifies it, is that
the underlying structural properties of the graphs involved
required for consensus are explicitly determined.



III. STATE SPACE SYSTEM

It is possible to represent the agent system defined by (1)
using a state space model. Towards this end, letḠ denote the
set of all directed graphs with vertex setV̄ = V1∪V2∪· · ·∪Vn

whereVi = {vi1 . . . , vimi
}. Here vertexvij labels thejth

possible delay value of agenti, namelyj−1. We sometimes
write i for vi1, i ∈ {1, 2, . . . , n}, V for the subset of vertices
{v11, v21, . . . , vn1}, and think ofvi1 as an alternative label
of agenti.

To take account of the fact that each agent can use its
own current heading in its update formula (1), we will utilize
those graphs in̄G which have self arcs at each vertex inV.
We will also require the arc set of each such graph to have,
for i ∈ {1, 2, . . . , n}, an arc from each vertexvij ∈ Vi except
the last, to its successorvi(j+1) ∈ Vi. Finally we stipulate
that for eachi ∈ {1, 2, . . . , n}, each vertexvij with j > 1
has in-degree of exactly1. In the sequel we call any such
graph adelay graphand writeD for the subset of all such
graphs. Note that there are graphs inD possessing vertices
without self-arcs. Nonetheless each vertex of each graph in
D has positive in-degree.

The specific delay graph representing the sensed headings
the agents use at timet to update their own headings
according to (1), is that graphD(t) ∈ D whose arc set
contains an arc fromvik ∈ Vi to vj1 ∈ V if agent j
usesθi(t + 1− k) to update. There is a simple relationship
betweenD(t) and the neighbor graphN(t) defined earlier.
In particular,

N(t) = Q(D(t)) (5)

where Q(D(t)) is the “quotient graph” ofD(t). By the
quotient graphof anyG ∈ Ḡ, written Q(G), is meant that
directed graph inG with vertex setV whose arc set consists
of those arcs(i, j) for which G has an arc from some
vertex in Vi to some vertex inVj . The quotient graph of
D(t) thus models which headings are being used by each
agent in updates at timet without describing the specific
delayed headings actually being used. The following is an
example of a delay graph (left) and its quotient graph (right).
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The set of agent heading update rules defined by (1) can
be written in state form. Towards this end defineθ(t) to be
that (m1 + m2 + · · ·+ mi) vector whose firstm1 elements
are θ1(t) to θ1(t + 1 − m1), whose nextm2 elements are
θ2(t) to θ2(t + 1−m2) and so on. Order the vertices ofV̄
asv11, . . . , v1m1 , v21, . . . , v2m2 , . . . , vn1, . . . , vnmn and with
respect to this ordering define for each graphD ∈ D, the
flocking matrix

F = D−1A′ (6)

whereA′ is the transpose of the adjacency matrix ofD and
D the diagonal matrix whoseijth diagonal element is the
in-degree of vertexvij within the graph. Anyn×n stochastic
matrix S determines a directed graphγ(S) with vertex set
{1, 2, . . . , n} and arc set defined is such a way so that(i, j)
is an arc ofγ(S) from i to j just in case thejith entry ofS
is non-zero. It is known [14] that for a set ofn×n stochastic
matricesS1, S2, . . . , Sp

γ(Sp · · ·S2S1) = γ(Sp) ◦ · · · ◦ γ(S2) ◦ γ(S1) (7)

One can check thatγ(F ) = D and

θ(t + 1) = F (t)θ(t), t ∈ {0, 1, 2, . . .} (8)

Let F̄ denote the set of all suchF . As before our
goal is to characterize the sequences of neighbor graphs
N(0),N(1), . . . for which all entries ofθ(t) converge to a
common steady state value.

There are a number of similarities and a number of dif-
ferences between the situation under consideration here and
the delay-free situation considered in [14]. For example, the
notion of graph composition defined earlier can be defined in
the obvious way for graphs in̄G. On the other hand, unlike
the situation in the delay-free case, the set of graphs used
to model the system under consideration, namely the set of
delay graphsD, is not closed under composition except in
the special case when all of the delays are at most1; i.e.,
when all of themi ≤ 2. In order to characterize the smallest
subset ofḠ containingD which is closed under composition,
we will need several new concepts.

IV. H IERARCHICAL GRAPHS

As before, letG be the set of all directed graphs with
vertex setV = {1, 2, . . . n}. Let us agree to say that a
rooted graphG ∈ G is a hierarchical graphwith hierarchy
{v1, v2, . . . , vn} if it is possible to re-label the vertices inV
asv1, v2, . . . vn in such a way so thatv1 is a root ofG with
a self-arc and fori > 1, vi has a neighborvj “lower ” in the
hierarchy where bylower we meanj < i. It is clear that any
graph inG with a root possessing a self-arc is hierarchical.
Note that a graph may have more than one hierarchy and
two graphs with the same hierarchy need not be equal. Note
also that even though rooted graphs with the same hierarchy
share a common root, examples show that the composition
of hierarchical graphs inG need not be hierarchical or even
rooted. On the other hand the composition of two rooted
graphs inG with the same hierarchy is always a graph
with the same hierarchy. To understand why this is so,
consider two graphsG1 andG2 in G with the same hierarchy
{v1, v2, . . . , vn}. Note first thatv1 has a self -arc inG2 ◦G1

becausev1 has self arcs inG1 andG2. Next pick any vertex
vi in V other thanv1. By definition, there must exist vertex
vj lower in the hierarchy thanvi such that(vj , vi) is an arc
of G2. If vj = v1, then(v1, vi) is an arc inG2 ◦G1 because
v1 has a self-arc inG1. On the other hand, ifvj 6= v1,
then there must exist a vertexvk lower in the hierarchy than
vj such that(vk, vj) is an arc ofG1. It follows from the
definition of composition that in this case(vk, vi) is an arc



in G2 ◦ G1. Thus vi has a neighbor inG2 ◦ G1 which is
lower in the hierarchy thanvi. Since this is true for allvi,
G2 ◦G1 must have the same hierarchy asG1 andG2. This
proves the claim that composition of two rooted graphs with
the same hierarchy is a graph with the same hierarchy.

Our objective is to show that the composition of a suffi-
ciently large number of graphs inG with the same hierarchy
is strongly rooted. Note that the fact that the composition
of (n − 1)2 rooted graphs inGsa is strongly rooted [14],
cannot be used to reach this conclusion because thevi in the
graphs under consideration here do not all necessarily have
self-arcs.

The following proposition says that the composition of
a sufficiently large number of graphs inG with the same
hierarchy is strongly rooted.

Proposition 1: Let G1,G2, . . .Gm denote a set of rooted
graphs inG which all have the same hierarchy. Ifm ≥ n−1
thenGm ◦ · · ·G2 ◦G1 is strongly rooted.
The proof of this proposition appears in [15].

V. THE CLOSURE OFD
We now return to the study of the graphs inD. As before

D is the subset of̄G consisting of those graphs which (i)
have self arcs at each vertex inV = {v11, v21, . . . , vn1}, (ii)
for each i ∈ {1, 2, . . . , n}, have an arc from each vertex
vij ∈ Vi except the last, to its successorvi(j+1) ∈ Vi, and
(iii) for each i ∈ {1, 2, . . . , n}, each vertexvij with j > 1
has in-degree of exactly1. It can easily be shown by example
that D is not closed under composition. We deal with this
problem as follows. First, let us agree to say that a vertexv
in a graphG ∈ Ḡ is a neighborof a subset ofG’s vertices
U , if v is a neighbor of at least one vertex inU . Next, we
say that a graphG ∈ Ḡ is an extended delay graphif for
eachi ∈ {1, 2, . . . , n}, (i) every neighbor ofVi which is not
in Vi is a neighbor ofvi1 and (ii) the subgraph ofG induced
by Vi has{vi1 . . . , vimi} as a hierarchy. We writēD for the
set of all extended delay graphs in̄G. It is easy to see that
every delay graph is an extended delay graph. The converse
however is not true. The set of extended delay graphs has
the following property.

Proposition 2: D̄ is closed under composition.
In the light of this proposition it is natural to call̄D the
closure of D. To prove the proposition, we will need the
following fact.

Lemma 1:Let G1,G2, . . . ,Gq be any sequence ofq > 1
directed graphs with vertex setV. For i ∈ {1, 2, . . . , q}, let
Ḡi be the subgraph ofGi induced byU ⊂ V. ThenḠq ◦· · ·◦
Ḡ2 ◦ Ḡ1 is contained in the subgraph ofGq ◦ · · · ◦G2 ◦G1

induced byU .
The proof of Lemma 1 appears in [15].

Proof of Proposition 2:Let G1 andG2 be two extended
delay graphs inD̄. It will first be shown that for eachi ∈
{1, 2, . . . , n}, every neighbor ofVi which is not inVi is a
neighbor ofvi1 in G2 ◦ G1 . Fix i ∈ {1, 2, . . . , n} and let
v be a neighbor ofVi in G2 ◦G1 which is not inVi. Then
(v, k) ∈ A(G2 ◦G1) for somek ∈ Vi. Thus there is as ∈ V̄
such that(v, s) ∈ A(G1) and(s, k) ∈ A(G2). If s 6∈ Vi, then

(s, vi1) ∈ A(G2) becauseG2 is an extended delay graph.
Thus in this case(v, vi1) ∈ A(G2 ◦ G1) because of the
definition of composition. If, on the other hand,s ∈ Vi, then
(v, vi1) ∈ A(G1) becauseG1 is an extended delay graph.
Thus in this case(v, vi1) ∈ A(G2 ◦ G1) becausevi1 has a
self-arc inG2. This proves that every neighbor ofVi which
is not inVi is a neighbor ofvi1 in G2◦G1. Since this must be
true for eachi ∈ {1, 2, . . . , n}, G2 ◦G1 has the first property
defining extended delay graphs in̄D.

To establish the second property, we exploit the fact that
the composition of two graphs with the same hierarchy
is a graph with the same hierarchy. Thus for any integer
i ∈ {1, 2, . . . , n}, the composition of the subgraphs ofG1

andG2 respectively induced byVi must have the hierarchy
{vi1, vi2, . . . , vimi}. But by Lemma 1, for any integeri ∈
{1, 2, . . . , n}, the composition of the subgraphs ofG1 and
G2 respectively induced byVi, is contained in the subgraph
of the composition ofG1 andG2 induced byVi. This implies
that for i ∈ {1, 2, . . . , n}, the subgraph of the composition
of G1 andG2 induced byVi has{vi1, vi2, . . . , vimi

} as a
hierarchy.

Our main result regarding extended delay graphs is as
follows.

Proposition 3: Let m be the largest integer in the set
{m1,m2, . . . ,mn}. The composition of any set of at least
m(n− 1)2 + m− 1 extended delay graphs will be strongly
rooted if the quotient graph of each of the graphs in the
composition is rooted.

To prove this proposition we will need several more
concepts. Let us agree to say that a extended delay graph
G ∈ D̄ hasstrongly rooted hierarchiesif for eachi ∈ V, the
subgraph ofG induced byVi is strongly rooted. Proposition 1
states that a hierarchical graph onmi vertices will be strongly
rooted if it is the composition of at leastmi−1 rooted graphs
with the same hierarchy. This and Lemma 1 imply that the
subgraph of the composition of at leastmi − 1 extended
delay graphs induced byVi will be strongly rooted. We are
led to the following lemma.

Lemma 2:Any composition of at leastm − 1 extended
delay graphs inD̄ has strongly rooted hierarchies.

To proceed we will need one more type of graph which
is uniquely determined by a given graph in̄G. By the agent
subgraphof G ∈ Ḡ is meant the subgraph ofG induced by
V. Note that while the quotient graph ofG describes relations
between distinct agent hierarchies, the agent subgraph of
G only captures the relationships between the roots of the
hierarchies. Note in addition that both the agent subgraph of
G and the quotient graph ofG are graphs inGsa because all
n vertices ofG in V have self arcs.

Lemma 3:Let Gp andGq be extended delay graphs in
D̄. If Gp has a strongly rooted agent subgraph andGq has
strongly rooted hierarchies, then the compositionGq ◦Gp is
strongly rooted.

Lemma 4:The agent subgraph of any composition of at
least(n − 1)2 extended delay graphs in̄D will be strongly
rooted if the agent subgraph of each of the graphs in the
composition is rooted.



Lemma 5:LetGp andGq be extended delay graphs in̄D.
If Gp has strongly rooted hierarchies andGq has a rooted
quotient graph, then the agent subgraph of the composition
Gq ◦Gp is rooted.
The proofs of lemmas 3, 4 and 5 appear in [15].

Proof of Proposition 3:Let G1,G2, . . .Gs be a sequence
of at leastm(n − 1)2 + m − 1 extended delay graphs with
rooted quotient graphs. The graphGs ◦ · · ·G(m(n−1)2+1) is
composed of at leastm−1 extended delay graphs. Therefore
Gs ◦ · · ·G(m(n−1)2+1) must have strongly rooted hierarchies
because of Lemma 2. In view of Lemma 3, to complete the
proof it is enough to show thatGm(n−1)2 ◦ · · · ◦ G1 has a
strongly rooted agent subgraph. ButGm(n−1)2 ◦ · · · ◦G1 is
the composition of(n−1)2 graphs, each itself a composition
of m extended delay graphs with rooted quotient graphs.
In view of Lemma 4, to complete the proof it is enough
to show that the agent subgraph of any composition ofm
extended delay graphs is rooted if each quotient graph of
each extended delay graph in the composition is rooted. Let
H1,H2, . . . ,Hm be such a family of extended delay graphs.
By assumption,Hm has a rooted quotient graph. In view of
Lemma 5, the agent subgraph ofHm ◦Hm−1 ◦ · · · ◦H1 will
be rooted ifHm−1 ◦ · · · ◦H1 has strongly rooted hierarchies.
But Hm−1 ◦ · · · ◦H1 has this property because of Lemma 2.

Finally we will need the following fact.
Proposition 4: LetG1, . . . ,Gr be a sequence of extended

delay graphs inD̄. If the compositionQ(Gr) ◦ · · · ◦Q(G1)
is rooted then so is the quotient graphQ(Gr ◦ · · · ◦G1).
This proposition is a direct consequence of the following
lemma.

Lemma 6:Let Gp,Gq be two extended delay graphs in
D̄. For each arc(i, j) in the compositionQ(Gq) ◦ Q(Gp),
there is a path fromi to j in the quotient graphQ(Gq ◦Gp).
The proof of Lemma 6 appears in [15].

Proof of Proposition 4:To prove the proposition it is
enough to show that ifQ(Gr) ◦ · · · ◦Q(G1) contains a path
from somei ∈ V to somej ∈ V, then Q(Gr ◦ · · · ◦ G1)
also contains a path fromi to j. As a first step towards
this end, we claim that ifGp,Gq are graphs inD̄ for which
Q(Gq)◦Q(Gp) contains a path fromu to v, for someu, v ∈
V, thenQ(Gq◦Gp) also contains a path fromu to v. To prove
that this is so, fixu, v ∈ V andGp,Gq ∈ D̄ and suppose that
Q(Gq)◦Q(Gp) contains a path fromu to v. Then there must
be a positive integers and verticesk1, k2, . . . , ks ending at
ks = v, for which (u, k1), (k1, k2), . . . , (ks−1, ks) are arcs
in Q(Gq)◦Q(Gp). In view of Lemma 6, there must be paths
in Q(Gq ◦Gp) from i to k1, k1 to k2,. . . , andks−1 to ks. It
follows that there must be a path inQ(Gq ◦ Gp) from i to
j. Thus the claim is established.

It will now be shown by induction for eachs ∈ {2, . . . , m}
that if Q(Gs) ◦ · · · ◦ Q(G1) contains a path fromi to
somejs ∈ V, then Q(Gr ◦ · · · ◦ G1) also contains a path
from i to js. In view of the claim just proved above,
the assertion is true ifs = 2. Suppose the assertion is
true for all s ∈ {2, 3, . . . , t} where t is some integer in
{2, . . . , r−1}. Suppose thatQ(Gt+1)◦ · · · ◦Q(G1) contains

a path from i to jt+1. Then there must be an integerk
such thatQ(Gt) ◦ · · · ◦ Q(G1) contains a path fromi to
k and Q(Gt+1) contains a path fromk to jt+1. In view
of the inductive hypothesis,Q(Gt ◦ · · · ◦ G1) contains a
path from i to k. ThereforeQ(Gt+1) ◦ Q(Gt ◦ · · · ◦ G1)
has a path fromi to jt+1. Hence the claim established at the
beginning of this proof applies and it can be concluded that
Q(Gt+1 ◦Gt ◦ · · · ◦G1) has a path fromi to jt+1. Therefore
by induction the aforementioned assertion is true.

VI. PROOF OFCONVERGENCE

Our aim is to make use of the properties of extended delay
graphs just derived to prove Theorem 2. We will also need
the following result from [14].

Proposition 5: Let Ssr be any closed set of stochastic
matrices which are all of the same size and whose graphs
γ(S), S ∈ Ssr are all strongly rooted. Asj → ∞, any
productSj · · ·S1 of matrices fromSsr converges exponen-
tially fast to a matrix of the form1c at a rate no slower
thanλ, wherec is a non-negative row vector depending on
the sequence andλ is a non-negative constant less than1
depending only onSsr.

Proof of Theorem 2:In view of (8), θ(t) = F (t −
1) · · ·F (0)θ(0). Thus to prove the theorem it suffices to
prove that ast → ∞ the matrix productF (t) · · ·F (0)
converges exponentially fast to a matrix of the form1c .

By hypothesis, the sequence of neighbor graphs
N(0),N(1), . . . , is repeatedly jointly rooted by subsequences
of length q. This means that each of the sequences
N(kq), . . . ,N((k + 1)q − 1), k ≥ 0, is jointly rooted. Let
D(t) = γ(F (t)), t ≥ 0. In view of (5),N(t) = Q(D(t)), t ≥
0. Thus each of the sequencesQ(D(kq)), . . . , Q(D((k +
1)q − 1)), k ≥ 0, is jointly rooted, so each composition
Q(D((k + 1)q − 1)) ◦ · · · ◦ Q(D(kq)) is a rooted graph. In
view of Proposition 4, each graphQ(D((k + 1)q− 1) ◦ · · · ◦
D(kq)), k ≥ 0 is also rooted.

Set p = (m(n − 1)2 + m − 1)q wherem is the largest
integer in the set{m1,m2, . . . , mn}. In view of Proposition
3, each of the graphsD((k + 1)p− 1) ◦ · · · ◦D(kp)), k ≥ 0
is strongly rooted. LetF(p) denote the set of all products of
p matrices fromF̄ which have the additional property that
each such product has a strongly rooted graph. ThenF(p)
is finite and therefore compact, becauseF̄ is.

For k ≥ 0, define

S(k) = F ((k + 1)p− 1) · · ·F (kp) (9)

In view of (7) and the fact thatγ(F (t)) = D(t), t ≥ 0,
it must be true thatγ(S(k)) = D((k + 1)p − 1) ◦ · · · ◦
D(kp), k ≥ 0. Thus eachS(k) has a strongly rooted graph.
Moreover, each suchS(k) is the product ofp matrices from
F̄ . ThereforeS(k) ∈ F(p), k ≥ 0. Therefore Proposition
5 applies withSsr = F(p) so it can be concluded that the
matrix productS(k) · · ·S(0) converges exponentially fast as
k →∞ to a matrix of the form1c ask →∞.

In view of the definition ofS(k) it is clear that for any
t, there is an integerk(t) and a stochastic matrix̂S(t)



composed of the product of at mostp − 1 matrices from
F̄ such that

F (t) · · ·F (1) = Ŝ(t)S(k(t)) · · ·S(0)

Moreovert 7→ k(t) must be an unbounded, strictly increasing
function; because of this the productS(k(t)) · · ·S(0) must
converge exponentially fast ast →∞ to a limit of the form
1c. Since Ŝ(t)1c = 1c, t ≥ 0, the productF (t) · · ·F (1)
must also converge exponentially fast ast →∞ to the same
limit 1c.

VII. C ONCLUDING REMARKS

A related topic that will be studied in the future is the
effect on convergence of the rate of changes in delays. This
is not an issue in our current setting since all agents are
assumed to update their headings synchronously on the set of
integer valued time instances. However, if all agents update
their headings asynchronously or if a continuous-time model
is adopted, then an extremely high rate of change in delays
may lead to divergence.
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