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Abstract—This paper studies a modified version of the current position. In their paper, Vicsek al. provide a variety
Vicsek's problem, also known as the “consensus problem.” of interesting simulation results which demonstrate that the
Vicsek et al. consider a discrete-time model consisting ot hearest neighbor rule they are studying can cause all agents to
autonomous agents all moving in the plane with the same speed . . g .
but with different headings. Each agent’'s heading is updated eventuf';llly MOVE In th_e same dlrec_tlon despite the absence of
using a local rule based on the average of the headings of its Centl‘allzed Coord|nat|0n and deSpIte the faCt that eaCh agenfs
“neighbors.” We consider a modified version of the Vicsek’'s set of nearest neighbors can change with time. A theoretical
problem in which integer valued delays occur in sensing the explanation for this observed behavior has recently been
values of headings which are available to agents. By appealing given in [1]. The explanation exploits ideas from graph

to the concept ofgraph composition we side-step most issues
involving products of stochastic matrices and present a variety theory [9] and from the theory of non-homogeneous Markov

of graph theoretic results which explains how convergence to a chains [10], [11], [12]. With the benefit of hindsight it

common heading is achieved. is now reasonably clear that it is more the graph theory
than the Markov chains which will prove key as this line
I. INTRODUCTION of research advances. An illustration of this is the recent

Current interest in cooperative control of groups of mobil&Xtension Of, the findi_ngs Of [1_] ,\,NhiCh explain the_ behavior
autonomous agents has led to the rapid increase in tHEReynOIQS full nonlinear “boid” system [6]_‘ _In this Paper,
application of graph theoretic ideas together with more faby appeahng to th? co:’lgept gfe:jph composmﬁnwg S'de'_
miliar dynamical systems concepts to problems of analyzin ep most ISSues nvolving pro UCtS,Of stoc ast|p matrlcgs
and synthesizing a variety of desired group behaviors su d present a variety of graph theoretic results which explain

as maintaining a formation, swarming, rendezvousing, ow convergence to a commpn heading is achieved.
reaching a consensus. While this in-depth assault on grou In the past few years many important papers have appeared

coordination using a combination of graph theory and systetfl* [31: [4l: [5], [13] which expand the results obtained in
theory is in its early stages, it is likely to significantly (1] @nd extend the Vicsek model in many directions. For
expand in the years to come. One line of research whid@mPple, in a recent paper [5] a modified version of the

“graphically” illustrates the combined use of these conceptél,icsek_ probler_n is considered in Whi(‘fh integgr valued dglays
is the recent theoretical work by a number of individual¢CU" IN SENSINg the values of headings which are available

[1], 121, [3], [4], [5], [6] which successfully explains the to agents. The aim of this paper is tg consider 'the same
heading synchronization phenomenon observed in simulatiGiioP!em. but more from a graph theoretic point of view. This

by Vicsek [7], Reynolds [8] and others more than a decaoeenables us to relax the conditions stated in [5] under which

ago. Vicsek and co-authors consider a simple discrete-tinf@nSeNsus is achieved. , .
model consisting of: autonomous agents or particles all_ 1€ rest of the paper is organized as follows. In section
moving in the plane with the same speed but with differerf> the main convergence result is introduced. In section 3,

headings. Each agent's heading is updated using a local [ present the state space model of the modified version of

based on the average of its own heading plus the Curre}ﬂcsek’s problem with measurement delays. In sections 4 and

headings of its “neighbors” Agents neighborsat time 5, several classes of graphs with special structures are defined
¢, are those agents, including itself, which are either in oind the properties of their composition graphs are studied. In
on a circle of pre-specified radius centered at agents section 6, we give the proof of our main convergence result.
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initiative and the ICT Centre of Excellence Program. a delay whose value atis some integer betweed and

t A preliminary version of this paper has been presented at the 2006 “h . ified Y Whil I
MTNS. A full-length version of this paper with proofs will appear at a later’%; —1; herem; Is a pre-specified positive integer. lie we

date. established principles of feedback control would suggest that



delays should be dealt with using dynamic compensation, nepeatedly jointly rootedf there is a positive integem for

this paper we will consider the situation in which the delayesvhich each finite sequende,, . _,,,,» - Gp,.,, k>1

value of ageny’s heading sensed by agenéat timet is the s jointly rooted.

value which will be used in the heading update law for agent The main result of [1] is similar to the follows.

i. Let V;(¢) andn;(t) denote the set of labels and the number

of agenti’'s neighbors at time respectively. Thus Theorem 1:Let the §,(0) be fixed. For any trajectory of
the system determined by (2) along which the sequence of

1 neighbor graph&(0),N(1), ... is repeatedly jointly rooted,
i+ 1) = (Z eju—dij(t))) ( peighbor graphsi(o), (1) peatedly jointly

ni(t) there is a constartt;; for which
JEN;(t)

whered;;(t) € {0,1,...,(m; — 1)} if j #i andd,;(t) =0 A 6:(8) = Ous 3
if ¢=j. where the limit is approached exponentially fast.
In the delay-free version of the problem treated in [1],
di; =0forie{l,...,n} andj € N;(t). Thus in this case = The aim of this paper is to prove that essentially the same
each agent’'s heading update equation can be written as result holds in the face of measurement delays.
1 Theorem 2:Let 6(0) be fixed. For any trajectory of the
Oit +1) = ni(t) ( Z 9j(t)> @ system determined by (1) along which the sequence of
JEN(D) neighbor graph&(0),N(1),... is repeatedly jointly rooted,

The explicit forms of the update equations determined bthere is a constartt,, depending only o (0) for which
(1) and (2) respectively depend on the relationships between lim 6() =
: : . ! . . im 0(t) = 0551 4)
neighbors which exist at timé These relationships can be t—o0
conveniently described by a directed grapft) with vertex where the limit is approached exponentially fast.
setV = {1,2,...n} and arc setd(N(¢)) C V x ¥ which
is defined in such a way so thét j) is anarc or directed As noted in the introduction, the consensus problem
edge from: to ; just in case agentis a neighbor of agent  with measurement delays we've been discussing has been
at timet. ThusN(¢) is a directed graph on vertices with at considered previously in [5]. It is possible to compare the
most one arc connecting each ordered pair of distinct verticeypotheses of Theorem 2 with the corresponding hypotheses
and with exactly one self-arc at each vertex. We wéitg  for exponential convergence stated in [5], namely assump-
for the set of all such graphs. tions 2 and 3 of that paper. To do this, let us agree, as before,
Let G be the set of all directed graphs with vertex seto say that theunion of a set of graph<s,,,G,,,...,G,,
V ={1,2,...n}. Let A(G) denote the set of arcs @. It with vertex setV is that graph with vertex se¥ and arc
is natural to call a vertex a neighborof vertex;j in G € G  set consisting of the union of the arcs of all of the graphs
if (z,7) is an arc inG. In the sequel we will call a vertex G, ,G,,,...,G,,. Taken together, assumptions 2 and 3 of
of a directed grapl@, aroot of G if for each other vertex [5] are more or less equivalent to assuming that there are
j of G, there is a path from to j. Thus: is a root of G, finite positive integerg ands such that theunion
if it is the root of a directed spanning tree & We will A
say thatG is rooted ati if i is in fact a root. ThusG is G(k) =N((k+1)g — ) UN((k +1)g - 2) U UN(kq)
rooted at: just in case each other vertex @f is reachable is strongly connected and independent foffor & > s.
from vertex: along a path within the grapl@ is strongly By way of comparison, the hypothesis of Theorem 2 is
rooted at: if each other vertex ofs is reachable from vertex equivalent to assuming that there is a finite positive integer
¢+ along a path of length. ThusG is strongly rooted atif i ¢ such that thecomposition
is a neighbor of every other vertex in the graph. Byated ~ A
graph G ¢ G is meant a graph which possesses at least on&®(¥) = N((k+1)g = 1) oN((k + 1) — 2) o -~ o N(kq)
root. A strongly rooted graptis a graph which has at leastis rooted fork > 0. The latter assumption is weaker than
one vertex at which it is strongly rooted. the former for several reasons. First, the arc seGOt) is
Here we will “combine graphs” using the notion of “graphalways a subset of the arc set®fk) and in some cases the
composition” rather than the notion of “graph union” usectontainment may be strict. Secorfd(k) is not assumed to
in [1], [2], [3]. By the compositionof graphG,, € G with  be independent o, even fork sufficiently large, whereas
G4 € G, written G, o G,,, is meant the directed graph G(k) is; in other wordsG(k) is not assumed to converge
with vertex setV and arc set defined in such a way so thatvhereasz (k) is. Third, eachG(k) is assumed to be strongly
(u,v) is an arc of the composition just in case there is @onnected whereas eaGl{k) need only be rooted; note that
vertex w such that(u,w) is an arc ofG,, and (w,v) is a strongly connected graph is a special type of rooted graph
an arc ofG,,. We say that a finite sequence of directedn which every vertex is a root. Perhaps most important about
graphsG,,, G,,,...,Gp, from G is jointly rooted if the Theorem 2 and the development which justifies it, is that
compositionG,, o G,,_, o---oG,, is a rooted graph. We the underlying structural properties of the graphs involved
say that an infinite sequence of grafihs ,G,,,...,in Gis required for consensus are explicitly determined.



Ill. STATE SPACE SYSTEM where A’ is the transpose of the adjacency matrixipand
ﬁ the diagonal matrix whosgjth diagonal element is the
in-degree of vertex;; within the graph. Anyr xn stochastic
matrix S determines a directed grapHS) with vertex set
{1,2,...,n} and arc set defined is such a way so tfia§)

is an arc ofy(S) from i to j just in case thgith entry of S
is non-zero. It is known [14] that for a set afx n stochastic
matricesSy, S, ...,S,

It is possible to represent the agent system defined by (
using a state space model. Towards this endj léénote the
set of all directed graphs with vertex 8et= V,UV,U- - -UV,
whereV; = {v;1...,vm, }. Here vertexv;; labels thejth
possible delay value of agefitnamely;j — 1. We sometimes
write i for v;;, ¢ € {1,2,...,n}, V for the subset of vertices
{v11,v21,...,v,1}, @and think ofv;; as an alternative label
of agenti. Y(Sp - -+ 5281) = 7(Sp) 0 -+~ 07(S2) 0 y(S1) (7)

To take account of the fact that each agent can use its
own current heading in its update formula (1), we will utilizeOn€ can check thai() = D and
those graphs iy which have self arcs at each vertexlin O(t+1) = F(t)d(t), te{0,1,2,...} (8)

We will also require the arc set of each such graph to have, _

fori € {1,2,...,n}, an arc from each vertex; € V; except Let 7 denote the set of all suchF. As bgfore our

the last, to its successar, ;) € V;. Finally we stipulate goal is to characterl_ze the sequences of neighbor graphs
that for eachi € {1,2,...,n}, each vertex;; with j > 1 N(0),N(1),... for which all entries off(t) converge to a
has in-degree of exactly. In the sequel we call any such cOmmon steady state value. .
graph adelay graphand write D for the subset of all such There are a number of similarities and a number of dif-
graphs. Note that there are graphsDnpossessing vertices ferences between the situation under consideration here and

without self-arcs. Nonetheless each vertex of each graph i€ delay-free situation considered in [14]. For example, the
D has positive in-degree. notion of graph composition defined earlier can be defined in
The specific delay graph representing the sensed headiﬁEg obvious way for graphs ig. On the other hand, unlike
the agents use at time to update their own headingst e situation in the delay-free case, the set of graphs used
according to (1), is that grapB(t) € D whose arc set to model the system under consideration, namely the set of
contains an arc fromy;, € V; to v; € V if agent j delay graphsD, is not closed under composition except in
usest;(t + 1 — k) to update. There is a simple relationshipth® special case when all of the delays are at moste.,

betweenD(t) and the neighbor graph(t) defined earlier. when all gf them; < 2. In order to characterize the smallest
In particular subset ofj containingD which is closed under composition,

N(t) = Q(D(t)) () We will need several new concepts.

where Q(D(t)) is the “quotient graph” ofD(t). By the V. HIERARCHICAL GRA'?HS _
quotient graphof any G € G, written Q(G), is meant that As before, letG be the set of all directed graphs with
directed graph irg with vertex set) whose arc set consists Vertex setV = {1,2,...n}. Let us agree to say that a
of those arcs(i,j) for which G has an arc from some rooted graphG € _Q_ls ahlgrarchlcal graphwith hlgrarchy
vertex inV; to some vertex irV;. The quotient graph of {v1,v2,..., v} ifitis possible to re-label the vertices i
D(t) thus models which headings are being used by ea@§v1; V2, .- s in such a way so that, is a root of G with
agent in updates at time without describing the specific & Self-arc and fof > 1, v; has a neighboo; “lower " in the
delayed headings actually being used. The following is aiérarchy where bjowerwe meary <. Itis clear that any

example of a delay graph (left) and its quotient graph (right@raph inG with a root possessing a self-arc is hierarchical.
Note that a graph may have more than one hierarchy and

two graphs with the same hierarchy need not be equal. Note
also that even though rooted graphs with the same hierarchy
share a common root, examples show that the composition
of hierarchical graphs i need not be hierarchical or even
rooted. On the other hand the composition of two rooted
graphs inG with the same hierarchy is always a graph
with the same hierarchy. To understand why this is so,
consider two graph&; andGs in G with the same hierarchy
The set of agent heading update rules defined by (1) cg®,, v,,...,v,}. Note first that; has a self -arc i, 0 G,
be written in state form. Towards this end defth@) to be because, has self arcs is; andG,. Next pick any vertex
that (m; + mq + - -- +m;) vector whose firsin; elements ¢, in V other thanv,. By definition, there must exist vertex
are 61 (t) to 61(t + 1 — mq), whose nextm, elements are v, lower in the hierarchy tham; such that(v;,v;) is an arc
02(t) to 62(t + 1 — m2) and so on. Order the vertices ®f  of G,. If v; = vy, then(vy,v;) is an arc inG, o G, because

ASULL; -+, Ulmy s U215+ -5 V2mas -+, Unls -« - Unim, and with ¢, has a self-arc inG;. On the other hand, ib; # vy,
respect to this ordering define for each graphe D, the  then there must exist a vertex lower in the hierarchy than
flocking matrix v; such that(vg,v;) is an arc ofG;. It follows from the

F=D14A (6) definition of composition that in this cagey, v;) is an arc



in Gy o G;1. Thuswv; has a neighbor iz, o Gy which is  (s,v;1) € A(G2) becauseG, is an extended delay graph.
lower in the hierarchy tham;. Since this is true for alb;, Thus in this casqv,v;1) € A(G2 o G1) because of the
Go o G; must have the same hierarchy @s and G». This  definition of composition. If, on the other handg V;, then
proves the claim that composition of two rooted graphs witlfv, v;1) € A(G;) becauseG, is an extended delay graph.
the same hierarchy is a graph with the same hierarchy. Thus in this casév,v;;) € A(Gs o G;) becausey;; has a

Our objective is to show that the composition of a suffiself-arc inG,. This proves that every neighbor ®f which
ciently large number of graphs i with the same hierarchy is not inV; is a neighbor of;; in GooG;. Since this must be
is strongly rooted. Note that the fact that the compositiotrue for each € {1,2,...,n}, GooG; has the first property
of (n — 1)? rooted graphs ing,, is strongly rooted [14], defining extended delay graphsn

cannot be used to reach this conclusion because;threthe To establish the second property, we exploit the fact that
graphs under consideration here do not all necessarily hatree composition of two graphs with the same hierarchy
self-arcs. is a graph with the same hierarchy. Thus for any integer

The following proposition says that the composition ofi € {1,2,...,n}, the composition of the subgraphs Gf
a sufficiently large number of graphs % with the same andG- respectively induced by; must have the hierarchy
hierarchy is strongly rooted. {vi1, vi2, - .., Vim, }. But by Lemma 1, for any integer €
Proposition 1: Let G1,Go, ... G, denote a set of rooted {1,2,...,n}, the composition of the subgraphs Gf and
graphs inG which all have the same hierarchy.if > n—1 G4 respectively induced by, is contained in the subgraph

thenG,, o - - - Gs o Gy is strongly rooted. of the composition ofz; andGs induced byV;. This implies
The proof of this proposition appears in [15]. that fori € {1,2,...,n}, the subgraph of the composition
of G; and G, induced byV; has{vi1,vi2,...,vim,} as a

V. THE CLOSURE OFD hierarchy.m

We now return to the study of the graphsZn As before Our main result regarding extended delay graphs is as
D is the subset ofj consisting of those graphs which (i) follows.
have self arcs at each vertex¥h= {vi1,v21,...,vn1}, (i) Proposition 3: Let m be the largest integer in the set
for eachi € {1,2,...,n}, have an arc from each vertex {m;,ms,...,m,}. The composition of any set of at least
vij € V; except the last, to its successgy;q) € Vi, and  m(n — 1) + m — 1 extended delay graphs will be strongly
(i) for eachi € {1,2,...,n}, each vertex,;; with j > 1 rooted if the quotient graph of each of the graphs in the
has in-degree of exactly. It can easily be shown by example composition is rooted.
that D is not closed under composition. We deal with this To prove this proposition we will need several more
problem as follows. First, let us agree to say that a vestex concepts. Let us agree to say that a extended delay graph
in a graphG € G is aneighborof a subset ofG’s vertices G e D hasstrongly rooted hierarchie# for eachi € V, the
U, if v is a neighbor of at least one vertexih Next, we subgraph ofs induced byV; is strongly rooted. Proposition 1
say that a graplz € G is anextended delay graph for  states that a hierarchical graphen vertices will be strongly
eachi € {1,2,...,n}, (i) every neighbor o/; which is not rooted if it is the composition of at least; — 1 rooted graphs
in V; is a neighbor ofy;; and (ii) the subgraph o& induced with the same hierarchy. This and Lemma 1 imply that the
by Vi has{v;; ...,vim,} as a hierarchy. We writ® for the subgraph of the composition of at least; — 1 extended
set of all extended delay graphs ¢n It is easy to see that delay graphs induced by; will be strongly rooted. We are
every delay graph is an extended delay graph. The convetge to the following lemma.
however is not true. The set of extended delay graphs hasLemma 2: Any composition of at leastn — 1 extended
the following property. delay graphs irD has strongly rooted hierarchies.
Proposition 2: D is closed under composition. To proceed we will need one more type of graph which
In the light of this proposition it is natural to cald the is uniquely determined by a given graphgn By the agent
closure of D. To prove the proposition, we will need the subgraphof G € G is meant the subgraph @ induced by
following fact. V. Note that while the quotient graph @fdescribes relations
Lemma 1:Let G1,Go,...,G, be any sequence af > 1 between distinct agent hierarchies, the agent subgraph of
directed graphs with vertex s&t Fori € {1,2,...,q}, let G only captures the relationships between the roots of the
G; be the subgraph df; induced byt C V. ThenG,o---o hierarchies. Note in addition that both the agent subgraph of
Gz 0 Gy is contained in the subgraph 6f,0---0G20G; G and the quotient graph @& are graphs irG,, because all
induced by/. n vertices ofG in V have self arcs.
The proof of Lemma 1 appears in [15]. Lemma 3:Let G, and G, be extended delay graphs in
Proof of Proposition 2:Let G; and G, be two extended D. If G, has a strongly rooted agent subgraph &hdhas
delay graphs irD. It will first be shown that for each €  strongly rooted hierarchies, then the compositiapo G,, is
{1,2,...,n}, every neighbor of; which is not inV; is a strongly rooted.
neighbor ofv;; in Go oGy . Fixi € {1,2,...,n} and let Lemma 4:The agent subgraph of any composition of at
v be a neighbor ol; in G, o G; which is not inV;. Then least(n — 1)? extended delay graphs i@ will be strongly
(v,k) € A(Gy0G,) for somek € V;. Thus there isa € V  rooted if the agent subgraph of each of the graphs in the
such thaf(v, s) € A(G;) and(s, k) € A(G2). If s ¢ V;, then composition is rooted.



Lemma 5:Let G, andG, be extended delay graphsih  a path fromi to j,+1. Then there must be an integér
If G, has strongly rooted hierarchies afi has a rooted such thatQ(G;) o --- o Q(G;) contains a path fromi to
quotient graph, then the agent subgraph of the compositiagnand Q(G,1) contains a path fronk to j;1. In view
G4 0 G, is rooted. of the inductive hypothesisQ(G; o --- o G;) contains a
The proofs of lemmas 3, 4 and 5 appear in [15]. path fromi to k. ThereforeQ(Giy1) o Q(Gy o -+ 0 Gy)
Proof of Proposition 3Let G1,Gs»,...Gs be a sequence has a path from to j.;. Hence the claim established at the
of at leastm(n — 1)2 + m — 1 extended delay graphs with beginning of this proof applies and it can be concluded that
rooted quotient graphs. The graph o - G(n—1)241) IS Q(Gt110Gyo---0Gy) has a path fromi to j; ;. Therefore
composed of at least — 1 extended delay graphs. Thereforeby induction the aforementioned assertion is tme.
Gy o Gm(n—1)241) Must have strongly rooted hierarchies
because of Lemma 2. In view of Lemma 3, to complete the VI. PROOF OFCONVERGENCE

proof it is enough to show tha,,,—1)2 ©---0G1 has a  oyr aim is to make use of the properties of extended delay

strongly rooted agent subgraph. Bl —1)2 -0 G1 IS graphs just derived to prove Theorem 2. We will also need
the composition ofn—1)? graphs, each itself a composition 4o following result from [14].

of m extended delay graphs with rooted quotient graphs. pyq,qition 5: Let ., be any closed set of stochastic
In view of Lemma 4, to complete the proof it is enoughy,ices which are all of the same size and whose graphs
to show that the agent subgraph of any compositionnof S), S € 8., are all strongly rooted. A§ — oo, any
extended delay graphs is rgoted if each _q_uoti_ent graph aéodhctsj ...S, of matrices froms,, converges exponen-
each extended delay graph |n.the composition is rooted. Lﬁélly fast to a matrix of the formlc at a rate no slower
Hy, Hy, ..., Hy, be such a family of extended delay graphsyap, \ “wherec is a non-negative row vector depending on
By assumptionH,, has a rooted quotient graph. In view of o sequence andl is a non-negative constant less than
Lemma 5, the agent subgraphfif,, o H,,,_1 o --- o H; will depending only ors

be rooted ifH,,_; o---oH; has strongly rooted hierarchies. Proof of Theorefsr:.Z'ln view of (8), 8(t) = F(t —

BUt Hy, - o+~ o has this property because of Lemma 21)~-~F(0)9(0). Thus to prove the theorem it suffices to

" " i d the following f prove that ast — oo the matrix productE'(t)--- F(0)
Finally we will nee the following fact. converges exponentially fast to a matrix of the fotm.
Proposition _4LLet Gq,...,G, be a sequence of extended By hypothesis, the sequence of neighbor graphs

Qelaytg:ja|?rt1s iD. If iﬂe comtpostltlonQ(%) o Og(Gl) N(0),N(1),..., is repeatedly jointly rooted by subsequences

Is rooted then so is the quotient graghiG, o---0Gy). length ¢. This means that each of the sequences

This proposition is a direct consequence of the foIIowm%(kq) N((k + 1)g — 1), k > 0, is jointly rooted. Let

lemma. o o= '

. D) =~(F(t)), t > 0.Inview of (5),N(¢t) = Q(D(¢)), t >

_Lemma 6:Let GP" Gq be two exte_n_ded delay graphs mo.('l)'hug(ea(c%) of the sequencégs(I)D)(k(q))), e ,(Q<(]]g>)((k +

D. For each ardi, j) in the compositionQ(G,) o Q(G,). 1)¢ — 1)), k > 0, is jointly rooted, so each composition

there is a path froni to j in the quotient grapl@)(G, o G,). QD((k+ 1)g — 1)) o --- 0 Q(D(kq)) is a rooted graph. In

The proof of Lemma 6 appears in [15]. . "
o i .. .. view of Proposition 4, each grapgQ(D((k +1)g—1)o---o0
Proof of Proposition 4:To prove the proposition it is D(kq)), k > 0 is also rooted.

enough to ghow that IQ(GT) o---0Q(Gy) contains a path Setp — (m(n — 1)2 + m — 1)q wherem is the largest
from somei € V to somej € V, thenQ(G, o ---0Gy) . : . e
. : . . integer in the se{m, ma,...,m,}. In view of Proposition
also contains a path from to j. As a first step towards
) . . e . 3, each of the graphB((k+1)p—1)o---oD(kp)), £ >0

this end, we claim that is,,, G, are graphs irD for which .
Q(G.)oQ(G,) contains a path from to v, for someu, v € is strongly rooted. LefF(p) denote the set of all products of

; P P v v p matrices fromF which have the additional property that

V, thenQ(G,0G,) also contains a path fromto v. To prove
L . _ each such product has a strongly rooted graph. Thém
that this is so, fix.,v € ¥V andG,, G, € D and suppose that is finite and therefore compact, becauses.

Q(Gq)oQ(_Gp). contains a path. from to v. Then ther(_a must For k > 0, define

be a positive integes and verticesky, ko, ..., ks, ending at

(gs = v, for which (u,k_l), (k1,k2), ..., (ks—1,ks) are arcs S(k)=F((k+1)p—1)--- F(kp) (9)

in Q(G4)oQ(G,). In view of Lemma 6, there must be paths

in Q(G,0G,) fromi to ky, ki t0 ks,..., andks_; to k. It In view of (7) and the fact that(F(t)) = D(t), t > 0,

follows that there must be a path @(G, o G,) from i to it must be true thaty(S(k)) = D((k +1)p —1)o---0

j. Thus the claim is established. D(kp), k > 0. Thus eachS(k) has a strongly rooted graph.
It will now be shown by induction for eache {2,...,m}  Moreover, each such(k) is the product ofp matrices from

that if Q(G,) o --- o Q(G,) contains a path from to F. ThereforeS(k) € F(p), k > 0. Therefore Proposition

somej, € V, thenQ(G, o --- o G;) also contains a path 5 applies withS,, = F(p) so it can be concluded that the

from i to j,. In view of the claim just proved above, matrix productS(k) - --.S(0) converges exponentially fast as

the assertion is true ik = 2. Suppose the assertion isk — oo to a matrix of the formlc ask — oo.

true for all s € {2,3,...,t} wheret is some integer in  In view of the definition ofS(k) it is clear that for any

{2,...,r—1}. Suppose tha®(G;;1)o---0Q(Gy) contains ¢, there is an integek(¢t) and a stochastic matriX(t)



composed of the product of at mogt— 1 matrices from
F such that

F(t)-- F(1) = S{t)S(k(t)) - S(0)

Moreovert — k(t) must be an unbounded, strictly increasing
function; because of this the produgtk(t))---S(0) must
converge exponentially fast as— oo to a limit of the form
lc. Since S(t)1c = 1¢, t > 0, the productF'(¢)--- F'(1)
must also converge exponentially fasttas> oo to the same
limit 1c. m

VII. CONCLUDING REMARKS

A related topic that will be studied in the future is the
effect on convergence of the rate of changes in delays. This
is not an issue in our current setting since all agents are
assumed to update their headings synchronously on the set of
integer valued time instances. However, if all agents update
their headings asynchronously or if a continuous-time model
is adopted, then an extremely high rate of change in delays
may lead to divergence.
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