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Abstract—This paper formulates and solves a continuous- In this paper we consider a continuous-time version of the
time version of the widely studied Vicsek consensus problem in Vjicsek problem in which each agent independently updates
which each agent independently updates its heading at times ji5 peading at times determined by its own clock. We do not
determined by its own clock. It is not assumed that the agents’ , .
clocks are synchronized or that the “event” times between assume_ that the agents ?lOCkS are synchronized or_ that the
which any one agent updates its heading are evenly spaced. ‘€venttimes” between which any one agent updates its head-
Heading updates need not occur instantaneously. Using the ing are evenly spaced. In contrast to prior work addressed to
concept of “analytic synchronization” together with several key asynchronous consensus [8], [9], heading updates need not
results concerned with properties of “compositions” of directed occur instantaneously. As a consequence, it is not so clear

graphs, it is shown that the conditions under which a consensus t th tset how t truct f th h dat
is achieved are essentially the same as those applicable in the @t the Outset how 1o construct from the asynchronous update

synchronous discrete-time case provided the notion of an agent’s Model we consider, the type of discrete-time state equation
neighbor between its event times is appropriately defined. upon which the formulation of the problem addressed in

[8] depends. For the problem considered in this paper, the
deriving of conditions under which all agents eventually
In a recent paper Vicsek and co-authors [1] consider a sifmove with the same heading requires the analysis of the
ple discrete-time model consisting of autonomous agents asymptotic behavior of an overalkynchronougontinuous-
or particles all moving in the plane with the same speetime process which models theagent system. We carry out
but with different headings. Each agent's heading is updatefle analysis by first embedding this asynchronous process
using a local rule based on the average of the headings of itsa suitably definedsynchronousdiscrete-time, dynamical
“neighbors.” In their paper, Vicsekt al. provide a variety systemS using the concept ofanalytic synchronization
of interesting simulation results which demonstrate that theutlined previously in [10], [11]. This enables us to bring to
nearest neighbor rule they are studying can cause all agentstsar key results derived in [12] to characterize a rich class
eventually move in the same direction despite the absencegif system trajectories under which consensus is achieved.
centralized coordination and despite the fact that each ageni’s particular, we prove that the conditions under which a
set of nearest neighbors can change with time. Vicsekionsensus is achieved are essentially the same as those in
problem is what in computer science is called a “consenstise synchronous discrete-time case studied in [4], [5], [12]
problem” [2] or an “agreement problem.” Roughly speakingprovided the notion of an agent’s neighbor between its event
one has a group of agents which are all trying to agree aimes is appropriately defined.
a specific value of some quantity. Each agent initially has Il ASYNCHRONOUSSYSTEM
only limited information available. The agents then try to _ )
reach a consensus by communicating what they know to their 1 N€ System to be studied consists:aiutonomous agents,
neighbors either just once or repeatedly, depending on tiPelled1 throughn, all moving in the plane with the same
specific problem of interest. For the Vicsek problem, eachP€ed but with different headings. Each agent's heading is
agent always knows only its own heading and the heading®dated using a simple local rule based on the average of
of its neighbors. One feature of the Vicsek problem whicffS Own heading plus the headings of its “neighbors.” Agent
sharply distinguishes it from other consensus problems, $ Néighborsat time ¢, are those agents, including itself,
that each agent's neighbors change with time, because Wifich are either in or on a closed disk of pre-specified

agents are in motion. It has recently been explained wH} diusr; centered at agerits current position. In the sequel

Vicsek's agents are able to reach a common heading [ ,i(t) denotes the set of labels of those agents which are
[4], [5], [6], [7]. neighbors of agent at time¢. In contrast to earlier work

[3], [4], [B], [6], [7], this paper considers a version of
* The research of Cao and Morse was supported in part, by grants frofhe flocking problem in which each agent independently
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I. INTRODUCTION



wheret;; = 0 and7; andT; are positive numbers. agent: is a neighbor of agenj at timet¢. ThusN(¢) is a
Updating of agent’s heading is done as follows. At its directed graph om vertices with at most one arc between
kth event timet,, agent; senses the headings(t;x), j € each ordered pair of vertices and with exactly one self-arc

N; () of its current neighbors and from this data computeat each vertex. We writg,, for the set of all such graphs.
its kth way-pointw; (¢;;). We will consider way point rules It is natural to call a vertex a neighborof vertexj in any
based on averaging. In particular graphG in G, if (¢,7) is an arc inG.
Although the neighbors of each agerdre well defined at
Z 0 (t: . event times of other agents, what's important for modelling
i 1]{) ,26{1,2,...,71} , c ! )

agenti’s updates are the headings of neighboring agents
) only at agenti’s own event times. We deal with this matter
where n;(t;;,) is the number of indices it\;(t;,). Agent by re-defining each agent's neighbor set at times between

i then changes its heading frof(t;,) to w;(t;;) on the its own event times to consist of only itself. Our reason
interval (i, tiss1)]. Thus for doing this will become clear later when, for purposes

of analysis, we use analytic synchronization to embed the
0i(tigrs1y) = wilti), i€{1,2,...,n}, k>0 (3) n agent asynchronous model defined by (2) and (4) in a
P/nchronous dynamical system.

To proceed, let/” denote the set of all event times of all

n agents. Relabel the elementsbfasty, t1,t2, -+ in such
a way so that, =0 andt, < t.y1, 7 € {0,1,2,...}. For
i€{1,2,...,n}, let 7; denote the set of. € 7 which are
event times of agent For eachi € {1,2,...,n} define

1

JEN(tir)

Although we will not be concerned about the precise manné
in which the value of eacH; changes between way-points,
we will assume that for each € {1,2,...,n}, there is a
piece-wise continuous signal; : [0,00) — [0, 1] satisfying
wu(tin) = 1 andlimy 4., p(t) = 0 for all &£ > 0, such that

0i(t) = 0i(tir) + pi(t) (witic) — Oi(tix)),

te (tzkvti(k-‘rl)]v kZO, 26{1723“'771} (4) M(T): {M(t‘r) %it‘r 6? (6)
For i € {1,2,...,n}, let M, denote the class of all ! if t- & T,
piecewise continuous signafs: [0, 00) — [0, 1] satisfying _ o ] )
lim e, p(t) = 0 and p(ty) = 1 for all k& > 0. The ThusM(r) cqlnC|de§ W'Ith/\/i(tT) W.hene\./ertT_ is an event
assumption that (4) holds for some € M,, is equivalent time of agenti, and is simply the single indexotherwise.

to assuming thaf; is at least piecewise continuous and that Much like N(¢) which describes the original neighbor
relations of system (2), (3) at timg we describe all re-

10:(t) = O(tax)| < |wiltin) — O:tir)], defined neighbor relationships at time € {0,1,...} to
t € (tin tigsyl, k>0 (5) be the directed grapiN(r) with vertex setV and arc set

. _ (N(7)) € V x V which is defined so thati, j) is an
Clearly (4) implies (5); on the other hand if (5) holds andy ¢ from ; to j just in case agenf is in the neighbor set

we definey; : [0,00) — [0, 1] on (tik, tigr+1)] @s Ni;(7). Thus like the neighbor graph$(t), eachN(r) is a
0i(1)—0i(tin) ¢ wilti) % 0i(tir) directed graph om vertices with at most one arc between
pi(t) = { witin)=0i(tax) = T o each ordered pair of vertices and with exactly one self-arc
1 if wi(ta) = 0i(ti) at each vertex. We calN(7) the extended neighbor graph

then y; will be in M; and (4) will hold. of the system (2) and (3) at time

For u; to be in M,; means thafi; could be constant at the
value1 on each interval(t;, t;+1)); this would mean that g Objective
just aftert;;, 8; would jump discontinuously from its value at
t:1, to w; (t;) and remain constant at this value until just after A complete description of the asynchronous system de-
tik41) [9]- More realistically,.; might change continuously fined by (2) and (4) would have to include a model which
from 0 to 1 on (ti, ti(x+1)) Which would imply that¢; is  explains how theu;(t) and N;(t) change over time as
continuous on[0,00). Under any conditions equations (2)functions of the positions of the: agents in the plane.
and (4) completely describe the temporal evolution ofithe While such a model is easy to derive and is essential for

agent asynchronous system of interest. simulation purposes, it would be difficult to take into account
_ in a convergence analysis. To avoid this difficulty, we shall
A. Extended Neighbor Graph adopt a more conservative approach which ignores how the

The explicit form of the update equations determined byV;(¢) and thep;(¢) depend on the agent positions in the
(2) and (4) depends on the relationships between neighbgtane and assumes instead that each might be any function in
which exist at each agent’s event times. It is possible tsome suitably defined set of interest. Our ultimate objective
describe all neighbor relationships at any timeising a is to show for any initial set of agent headings, any set of
directed graphN(¢) with vertex setV = {1,2,...n} and pu; € M;, i € {1,2,...n} and for a large class of functions
arc setA(N) C V x V which is defined in such a way so ¢ — N;(¢), that the headings of all agents will converge
that (i, j) is anarc or directed edge froni to j just in case to the same steady state valdie.



I1l. MAIN RESULTS constantd,, for which

To state our main result, we need a few ideas from [12]. lim 6;(t) = 05 9
We call a vertex; of a directed graplt, aroot of G if for I _
each other vertex of G, there is a path fromto j. Thusiis  Where the limit is approached exponentially fast.

a root of G, if it is the root of a directed spanning tree Gf It is worth noting that the validity of this theorem de-
We will say thatG is rooted ati if i is in fact a root. Thu& pends critically on the fact that there are finite positive
is rooted ati just in case each other vertex @fis reachable NUMbers, namely;,., = max{71, 75, ..., T, } and T =
from vertexi along a path within the grapl@ is strongly ~min{71,73,...,T.}, which uniformly bound from above

rooted ati if each other vertex ofs is reachable from vertex and below respectively, the time between any two successive
i along a path of length. Thus G is strongly rooted ai ~ €vent times of any agent. This is a consequence of the
if 7 is a neighbor of every other vertex in the graph. By @&ssumption that inequality (1) holds.

rooted graphG is meant a graph which possesses at least AS noted in the last section, for the asynchronous problem

one root. Finally, astrongly rooted graplis a graph which under consideration, the_ only vertices §{7) which can

has at least one vertex at which it is strongly rooted. have more than one neighbor, are those corresponding to
By the compositionof two directed graphss,, G, with agents for whom_T is an event time. Thus in t_he most I|k_ely

the same vertex set we mean that grapho G, with the situation when distinct agents ha\{e only distinct event times,

same vertex set and arc set defined such (hgt) is an there will be at most one vertex in each graptr) which

arc of G, o G,, if for some vertexk, (i, k) is an arc ofG, has more than one neighbor. It is this situation we want to

and (k, j) is an arc ofG,. Let us agree to say that a finite ©XPlore further. Toward this end, I€t, C g,, denote the
sequence of directed grapi,,, G, G,, with the subclass of all graphs which have at most one vertex with
1? 2 bl

same vertex set iintly rooted if the compositionG, o More than one r:eighbor. Note that for> 2, there is no
G,, ,o---oG,, is rooted. An infinite sequence of graphsrooted graph ing7,. Nonetheless, in the light of Theorem 2

Gp,, Gy with the same vertex set iepeatedly jointly it is clear that convergence to a common steady state heading

19 29 i ) . O - ~

rooted if there is a positive integem for which each finite  Will occur if the infinite sequence of graphs(0), N(1), ...

sequences, G, k >0, is jointly rooted. IS repeatedly jointly rooted. This of course would require that
m(k+1)? * ) mk417 - Y .

there exist jointly rooted sequences of graphs fi@m. We
will now explain why such sequences do in fact exist.
Let us agree to call a grapG € G,, an all neighbor

Equations (2) and (4) can be combined. What results is
description of the evolution of; on agent’s event time set.

1 graph centered av if every vertex ofG is a neighbor of
0i(tik+1)) = i) Z 0;(ti) | , i €{1,2,...,n} wv. Note that all neighbor graphs are maximalgi, with
AR\ GeNi(tin) respect to the partial ordering ¢f, by inclusion, where in

. . his contextG,, € G, is contained inG, € G;, if A(G,) C
In the synchronous version of the problem treated in [3]S4(Gq). Note also the composition of any all neighbor graph

1[t4], t[S]’ [6]’15 [71. ffozl each ktZ 0, ttr?e kth ev_errrlt tlr_netsh_ with itself is itself. On the other hand, because the arcs of
1k Qk"'H’ nk ct)’ ‘1 ndggen sdatre N sigme. é’s m'tt 'Sany two graphs inG,, are arcs in their composition, the
case each agents heading update equation can be written,g position ofn all neighbor graphs with distinct centers

must clearly be a graph in which each vertex is a neighbor of

0;(t) = b Z 0,(t) |, every other; i.e., the complete grap.h. Thu_s the compo;ition
n;(te) JENT(tR) of n all neighbor graphs frongj¥, with distinct centers is
te (trtrs], k>0 @) strongly rooted. In summary, the hypothesis of Theorem 2

is not at all vacuous for the asynchronous problem under
wherety = 0 andt; = t;;,. The main result of [3] is as consideration. When that hypothesis is satisfied, convergence
follows. to a common steady state heading will occur.

Theorem 1:Let the 6,(0) be fixed. For any trajectory of
the synchronous system determined by (7) along which the
sequence of neighbor grapf¥0),N(1),... is repeatedly
jointly rooted, there is a constafit, for which

IV. ANALYTIC SYNCHRONIZATION

To prove Theorem 2 requires the analysis of the asymp-
totic behavior of then mutually unsynchronized processes
Py, Po,...P, which then pairs of heading equations (2),

lim 0;(t) = O (8) (4) define. Despite the apparent complexity of the resulting
tmeo asynchronoussystem which these: interacting processes
where the limit is approached exponentially fast. determine, it is possible to capture its salient features using a
The aim of this paper is to prove that essentially the san®uiitably definedynchronousliscrete-time, hybrid dynamical
result holds in the face of asynchronous updating. systemS. The sequence of steps involved in definBidpas

Theorem 2:Let the 6;(0), w;(0), andu; € M; be fixed. been discussed before and is callewhlytic synchronization
For any trajectory of the asynchronous system determined P30], [11]. First, alln event time sequences are merged into
(2) and (4) along which the sequence of extended neighbarsingle ordered sequence of event tifiesas we've already
graphsN(0),N(1), ... is repeatedly jointly rooted, there is adone. This clever idea has been used before in [13] to study



the convergence of totally asynchronous iterative algorithmgN, /i, b) € Gsa X R x B determines &n x 2n stochastic
Second, between event times each agent’s neighbor setmatrix F(N, iz, b) whose entries fo € {1,2,...,n} are
defined to have exactly one neighbor, namely itself; this we

have also already done. Third, the “synchronized” state of fii = da+n)js and

P, is then defined to be the original & atP;'s event times fitn)i =

{ti1,t:2, ...} plus possibly some additional state variables; ﬁL_(1 — ;) j€ (N; — i)

at values_ oft e T betwgen event times, andt;.1), the %ﬁj je (/\:/Z. —i)+ {n}
synchronized state @ is taken to be the same at the value %5(1‘%)]‘ & N —i)U(N; — i)+ {n})

of its state at time,;,. Although it is not always possible to
carry out all of these steps, in this case it is. What ultimatellf b: =1 and
results is a synchronous dynamical syst@mvolving on the fii = 01
index set of 7, with state composed of the synchronized v )
states of the: individual processes under consideration. Wéf b; = 0. HereV; is the set of neighbors of vertéxn N, 7
now use these ideas to develop such a synchronous systenthe number of elements iN;, N; —i is the complement

and Jlitn)j = O(itn);

S for the asynchronous process under consideration. of i in A, 6;; is the Kronecker delta, and for any set of
o integersZ, Z + {n} is the setZ + {n} = {i + n:i € I}.
A. Definition ofS We call any such matri¥" anasynchronous flocking matrix
For each sucli and eachy € 7; define Thus the image oF is the set of all possible asynchronous
_ flocking matrices.
0i(r) = bilty), a<7<d (10) It is easy to verify that the matri¥’(r) in (16) is of the
wi(1) = wity), ¢<T<q (11) form F(N(7), i(7),b(r)) whereN(7) is that graph inG,,

. . . , with neighbor sets\; (1), N2(7),..., N, (7), ii(7) is that
wheret, is the first event time of agent after f,. Not'e list in R whoseith element isi;(7), andb(7) is that list in
that for anyt, € 7; there is always such @ because we've B whoseith element ish;(r) = 1 if . € 7, or b;(7) = 0 if
assumed via (1) that the time between any two successiye 4T,

event times of agent is bounded above. In the full length ™, "

) ) - X Note that unlike the other flocking problems considered in
version of this paper it is shown that fere {1,2,...,n}

the past where th&'(7) were flocking matrices from a finite

andr >0 set, the set of all asynchronous flocking matrices which arise
0:(r) = wi(r—1), t,eT; (12) her.e', namely imag®", is not a finite set becausk is not
Iir) = Gi(r—1), t.@T; 13 2 finite set. Nonetheless imadeis a closed and therefore
! ! 1 T e ) compact subset of the set of &lh x 2n stochastic matrices
wi(t) = = Z {(@ —pa;(r)8;(r—1) S. To understand why this is so, note first that for each
7(7) JEN;(7) fixedb € B andN € G,,, the mappingR — S, p —
i (T)(w;(r — 1)}, treT; (14) F(N,p,b)is continulous orR. Therefore its image must be
Gi(r) = wi(r—1), t&T, (15) compact becaus® is. Next note thalj,, and B are each

finite sets. Since the union of a finite number of compact
where for r € {0,1,...}, ji;(r) = p;(t,) for j € sets is compact, it must therefore be true that the image of
{1,2,...,n}, and@,(7) is the number of indices iwV;(r). F is compact as claimed.

This set of equations constitute the synchronous sysiem

. V. ANALYSIS
we intend to analyze. _ ) ) o )
The ultimate aim of this section is to give a proof of
B. State Space Model Theorem 2. We begin with the notion of the graph of a
The equations defining, namely (12) — (15), determine Stochastic matrix. _ _ o
a state space system of the form Any 2n x 2n stochastic matrixS such as those in im-

age F, determines a directed graph(S) with vertex set
z(r+1)=F(r)z(r), 7€{1,2,...} (16) {1,2,...,n,n+1,n+2,...,2n} and arc set defined is such

a way so thati, j) is an arc ofy(S) from i to j just in case

the jith entry of S is non-zero. It is easy to verify that for
(r) =[0(r=1) -+ O,(r—1) Wi (r—1) --- Wu(r—1)] any two such matrices; and.S,

17) _
Each F'(7) is a 2n x 2n stochastic matrix which can be 7(5251) = 7(52) 0 7(51) (18)
described as follows. We now define a set of directed graplds on vertex
Let R denote the set of all lists of numbersig = set{1,2,...,n,n 4+ 1,n + 2,...,2n} which contains all

{fi1, fi2, - -, in} With eachf,; taking a value in the real ~(F), F € image F, and which is large enough to be closed
closed interval[0, 1]. Let B denote the set of all lists under composition. For this purpose it is convenient to adopt
of n integersb = {by1,bs,...,b,} with eachd; taking the notation[v] for the subsefv,v + n} wheneverv € V,
a value in the binary integer sd€t),1}. Each such triple and to say thaf[v],«) is an arc of a graplis in G if either

where



(v,u) or (v + n,u) is. Similarly we say tha{v, [u]) is an  that Q(y(F(N, zz,b))) = N. The following is the analog of

arc of G if either (v,u) or (v,u + n) is and([v], [u]) is an  Proposition 3.

arc of G if either (v, [u]) or (v + n,[u]) is. Proposition 4:Let G,,,...,G,,,., be a sequence of
We defineG to be the set of all directed graphs with2m + 1 attached graphs i whose quotients are rooted.

vertex set{1,2,...,2n} whose graphs have the following If m > (n—1)% thenG,,, ., o---0G,, is strongly rooted.

properties. For eaclz € G and each pair of vertices A more in depth study of the graphs ¢hleads us to the

uwe{l,2,...,2n} andv € V: following observation.
pl: v +n has a self-arc irG. Proposition 5: LetG,,...,G,, be asequence of graphs
p2: ([v],v) is an arc inG. from G which for eachi € V, coqtains a graph which is
p3: If (u,v) is an arc inG andu # v, then(u,v +n) is  attached at. ThenG,, o---0G,, is an attached graph.
an arc inG. Let ~ be the smallest positive integer such that,, <
p4: If (u,[v]) is an arc inG andu # v, then(v+n,v) is  7Tmin, then there will be at least one event time of any
an arc inG. one agent within a sequence of at mast- 1 consecutive
It is straightforward to verify that for eack’ € image F, event times of any other agent. We are led to the following
conclusion.

~(F) is a graph ing. In view of the structure of the matrices
in imagekF it is natural to call a grapli- € G anevent graph
of agenti € V if (i+mn,1) is theonly incoming arc to vertex
i. Note that the graph of every matrR(N, i, b) for which

b; = 1is an event graph of ageitThus~(F(7)) is an event
graph of agent if ¢, is an event time of agernit It is easy
to see that there are graphs dnwhich are not the graphs
of any matrix in imageF. Let us agree to say th& < G . i
is attached ati € V if vertex ¢ hasat least (i + n,4) as an Proposition 6: Let GPI" > Gp,, bea sequence oh > 1
incoming arc. A graphG € G is attachedif it is attached graphs fromg for which Q(G,,,) -~ -0 Q(Gy, ) is a rooted
at every vertex inV. Thusy(F (7)) would be attached if graph. ThenQ(G,, o~ o Gy,) is also rooted at the same
and only ift. were an event time of every agent. Note thate"tex aSQ(GPm) 010 Q<GP1)'_ )

the definitiongG allows this set to contain graphs which are " Proving Theorem 2, we will need to exploit the com-
attached at which are not event graphs of agentn other pactness of a particular subset of stochastic matriceS in

words, an event graph of agentnust be attached at but which can be described as follows. Let> n be any given
the converse is not necessarily so positive integer. WriteG?, for the subset of all sequences of

We begin our analysis with the following observation. p graphs ing,, which are jointly rooted an@® for the set

Proposition 1: The set of graphg is closed under com- of all |ISFS of p binary vectors |_nB with the property t_hat
L for each: € {1,2,...,n}, each list{b,, b, ..., by} contains
position. } . .
The following results from [12] are key to establishin at least one vector whosgh row is 1. Sincep > n, BP
. wing u y ISNING;g nonempty. LetR? be the Cartesian product 62 with
this convergence.

itself p times. We claim that the image of the mappin
Proposition 2: Let S, be any closed set of stochasticﬁ‘p . B]’)’ X R % GP — S defined by 9 pping
S sa

matrices which are all of the same size and whose grap

v(S), S € S, are all strongly rooted. A§ — oo, any  ({Ny,No, ..., Ny}, {1, p2, - ptp}, {b1,b2, ..., bp}) —

productS; - - - S; of matrices fromS,, converges exponen-

tially fast to a matrix of the formic at a rate no slower BNy, 1p,0p) - F(No 2, b2)F (N1, i1, bn)

than A, wherec is a non-negative row vector depending onis compact. The reason for this is essentially the same as

the sequence and is a non-negative constant less than the reason imagé# is compact. In particular, for any fixed

depending only orS,,. {N;,Np,...,N,} € @GP and {by,bs,...,b,} € BP,
Proposition 3: Suppose: > 1 and letG,,, G,,,...,G,, ~ the restricted mapping {u1,p2,...,1p} —

be a finite sequence of rooted graphs with the same vert®® ({N1,No, ... Ny}, {1, o, .-, tip s {b1,b2,...,0,}) i

set. If each vertex of each graph has a self-arc and> continuous so its image must be compact. Sif€eandG?,

(n—1)%, thenG,,, 0G,, ,o---0G,, is strongly rooted. are finite sets, the image @ must therefore be compact

Unfortunately the graphs of importance in the asynchronows well.

case, namely they(F (7)), do not have self arcs at all Setg = 2(n —1)? + 1 and letF?(q) denote the set of

vertices. Thus Proposition 3 cannot be directly applied. all products of¢q matrices from imageéF?. Then F?(q) is
To describe the analog of Proposition 3 appropriate teompact becausenage F? is. More is true.

the asynchronous problem at hand we need another conceptProposition 7: The graph of each matrix iF?(q) is

Note that eaclG € G determines ajuotient graphQ(G) €  strongly rooted.

Gsq defined in such a way tha®(G) has an arc fromi We are now finally in a position to prove our main result.

to j just in caseG has an arc from at least one vertex Proof of Theorem 2:As already noted, it is sufficient

in the set[i] to at least one vertex in the s¢t]. Note to prove that the matrix produck(r)--- F(1) converges

Lemma 1:In any sequence ofn — 1)h + 1 or more
consecutive event times, there will be at least one event time
of each of then agents.

The following proposition shows that for any sequence of
graphsG,,,...,G,, from G whose quotients constitute a
jointly rooted sequence, the quotient of the composition of
the sequence is rooted.



exponentially fast to a matrix of the formc as+ — oc.
Observe first that there is a vector binary vedior) € B
and a vecton(7) € R such that

F(r) = F(N(1), u(7),b(1)), 720

19)

because each'(r) € image F.

By hypothesis, the sequence of extended neighbor gra
N(0),N(1),..., is repeatedly jointly rooted. This means tha
there is an integem for which each of the sequences
N(km +1),...,N((k + 1)m), k > 0, is jointly rooted. Let
h be as is in Lemma 1 and defipe= rm wherer is any
positive integer large enough so that- (n — 1)k + 1. Set
q=2(n—1)?+1and letg?,, R?, B?, F?, and F?(q) be
as defined just above Proposition 7.

Since eactN(km +1),...,N((k+1)m), k > 0, is jointly
rooted, each of the compositiob¥ (k+1)m)o- - -oN(km+
1), k > 0, is rooted. This implies that each grapt{(k +
)p)o---oN(kp+ 1), k > 0, is rooted becausg = rm
and because the composition ofrooted graph is rooted.
Therefore each sequentékp+1),...,N((k+1)p), k >0,
is jointly rooted. It follows that

{N(kp +1),....N((k + 1)p} € GL,, (20)

Note next that for each € {1,2,...,n} and eachk >
0, at least one of the graphs in the sequen¢é&'(kp +
1)),...,7(F((k + 1)p)) must be attached at because of
Lemma 1 and the assumption that> (n — 1)h + 1. This
implies that for eachi € {1,2,...,n} there must be at least
one vector in each lisfo(kp+1),...,b((k+ 1)p)}, k>0

k>0

whoseith row is 1. Therefore
{bkp+1),....b((k+1)p)}eB?, k>0 (21)
For & > 0, define
S(k) =F((k+1)p)--- F(kp+1) (22)

In view of (19) - (21) and the definition aF?, it must be
true thatS(k) € image F?, k > 0. Thus if we define

S(k)=S((k+1)g—1)---S(kq), k>0  (23)

then eachS(k) must be inF?(q). Therefore by Proposition
7, the graph of eacl$ (k) is strongly rooted. Therefore by
Proposition 2, the matrix produc§(k)---S(0) converges
exponentially fast ag — oo to a matrix of the formlc as
k — oo.

The definitions ofS(-) and S(-) in (22) and (23) respec-
tively imply that

S(k)---S(0) = F((k+1)pg) -~ F1, k=0

ForT > 0, let k(1) andp(7) denote respectively, the integer
qguotient and remainder af divided by pq. Then

F(r)---F(1) = S(7)S(k(7)) --- 5(0)
wherek(r) = x(r) — 1, and §(r) is the bounded function

~F((k(r)+ 1pg +1) if p(r) #0
if p(r) =0

hs
Fihere significantly generalizes our earlier work [9]. In par-

Sincek(7) is an unbounded monotone nondecreasing func-
tion andS(k) - -- S(0) converges exponentially fast &s—

o0, it follows that F'(r) - - - F(1) converges exponentially fast
asT — oo to a matrix of the formlc. m

VI. CONCLUDING REMARKS
The version of the asynchronous consensus considered

ticular, the present version of the problem can deal with
continuous heading changes whereas the version of the
problem solved in [9] cannot.

It is possible to formulate and solve a “continuous”
version of Viscek’s problem in which each agent’s heading
is adjusted by controlling its differential rate. Because of
changing neighbors this leads to a differential equation model
with a discontinuous vector field in which chattering may
occur. To avoid this one can introduce “dwell times” as was
done in [3] for the leader-follower version of the problem.
As a result, the question of synchronization again arises, in
this case with event times being the times at which each
agent's dwell time periods begin. Thus although one might
think that the question of synchronization is irrelevant in
the continuous-time case, this appears to only be true if
one is willing to accept generalized solutions to differential
equations and the possibility of chattering.
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