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Abstract— This paper formulates and solves a continuous-
time version of the widely studied Vicsek consensus problem in
which each agent independently updates its heading at times
determined by its own clock. It is not assumed that the agents’
clocks are synchronized or that the “event” times between
which any one agent updates its heading are evenly spaced.
Heading updates need not occur instantaneously. Using the
concept of “analytic synchronization” together with several key
results concerned with properties of “compositions” of directed
graphs, it is shown that the conditions under which a consensus
is achieved are essentially the same as those applicable in the
synchronous discrete-time case provided the notion of an agent’s
neighbor between its event times is appropriately defined.

I. I NTRODUCTION

In a recent paper Vicsek and co-authors [1] consider a sim-
ple discrete-time model consisting ofn autonomous agents
or particles all moving in the plane with the same speed
but with different headings. Each agent’s heading is updated
using a local rule based on the average of the headings of its
“neighbors.” In their paper, Vicseket al. provide a variety
of interesting simulation results which demonstrate that the
nearest neighbor rule they are studying can cause all agents to
eventually move in the same direction despite the absence of
centralized coordination and despite the fact that each agent’s
set of nearest neighbors can change with time. Vicsek’s
problem is what in computer science is called a “consensus
problem” [2] or an “agreement problem.” Roughly speaking,
one has a group of agents which are all trying to agree on
a specific value of some quantity. Each agent initially has
only limited information available. The agents then try to
reach a consensus by communicating what they know to their
neighbors either just once or repeatedly, depending on the
specific problem of interest. For the Vicsek problem, each
agent always knows only its own heading and the headings
of its neighbors. One feature of the Vicsek problem which
sharply distinguishes it from other consensus problems, is
that each agent’s neighbors change with time, because all
agents are in motion. It has recently been explained why
Vicsek’s agents are able to reach a common heading [3],
[4], [5], [6], [7].
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In this paper we consider a continuous-time version of the
Vicsek problem in which each agent independently updates
its heading at times determined by its own clock. We do not
assume that the agents’ clocks are synchronized or that the
“event times” between which any one agent updates its head-
ing are evenly spaced. In contrast to prior work addressed to
asynchronous consensus [8], [9], heading updates need not
occur instantaneously. As a consequence, it is not so clear
at the outset how to construct from the asynchronous update
model we consider, the type of discrete-time state equation
upon which the formulation of the problem addressed in
[8] depends. For the problem considered in this paper, the
deriving of conditions under which all agents eventually
move with the same heading requires the analysis of the
asymptotic behavior of an overallasynchronouscontinuous-
time process which models then-agent system. We carry out
the analysis by first embedding this asynchronous process
in a suitably definedsynchronousdiscrete-time, dynamical
system S using the concept ofanalytic synchronization
outlined previously in [10], [11]. This enables us to bring to
bear key results derived in [12] to characterize a rich class
of system trajectories under which consensus is achieved.
In particular, we prove that the conditions under which a
consensus is achieved are essentially the same as those in
the synchronous discrete-time case studied in [4], [5], [12]
provided the notion of an agent’s neighbor between its event
times is appropriately defined.

II. A SYNCHRONOUSSYSTEM

The system to be studied consists ofn autonomous agents,
labelled1 throughn, all moving in the plane with the same
speed but with different headings. Each agent’s heading is
updated using a simple local rule based on the average of
its own heading plus the headings of its “neighbors.” Agent
i’s neighborsat time t, are those agents, including itself,
which are either in or on a closed disk of pre-specified
radiusri centered at agenti’s current position. In the sequel
Ni(t) denotes the set of labels of those agents which are
neighbors of agenti at time t. In contrast to earlier work
[3], [4], [5], [6], [7], this paper considers a version of
the flocking problem in which each agent independently
updates its heading at times determined by its own clock.
We assume fori ∈ {1, 2, . . . , n} that agenti’s event times
ti0, ti1, . . . , tik, . . . satisfy the constraints

T̄i ≥ ti(k+1) − tik ≥ Ti, k ≥ 0 (1)



whereti0 = 0 and T̄i andTi are positive numbers.
Updating of agenti’s heading is done as follows. At its

kth event timetik, agenti senses the headingsθj(tik), j ∈
Ni(tik) of its current neighbors and from this data computes
its kth way-pointwi(tik). We will consider way point rules
based on averaging. In particular

wi(tik) =
1

ni(tik)


 ∑

j∈Ni(tik)

θj(tik)


 , i ∈ {1, 2, . . . , n}

(2)
where ni(tik) is the number of indices inNi(tik). Agent
i then changes its heading fromθi(tik) to wi(tik) on the
interval (tik, ti(k+1)]. Thus

θi(ti(k+1)) = wi(tik), i ∈ {1, 2, . . . , n}, k ≥ 0 (3)

Although we will not be concerned about the precise manner
in which the value of eachθi changes between way-points,
we will assume that for eachi ∈ {1, 2, . . . , n}, there is a
piece-wise continuous signalµi : [0,∞) → [0, 1] satisfying
µ(tik) = 1 and limt↓tik

µi(t) = 0 for all k ≥ 0, such that

θi(t) = θi(tik) + µi(t)(wi(tik)− θi(tik)),
t ∈ (tik, ti(k+1)], k ≥ 0, i ∈ {1, 2, . . . , n} (4)

For i ∈ {1, 2, . . . , n}, let Mi denote the class of all
piecewise continuous signalsρ : [0,∞) → [0, 1] satisfying
limt↓tik

ρ(t) = 0 and ρ(tik) = 1 for all k ≥ 0. The
assumption that (4) holds for someµi ∈ Mi, is equivalent
to assuming thatθi is at least piecewise continuous and that

|θi(t)− θi(tik)| ≤ |wi(tik)− θi(tik)|,
t ∈ (tik, ti(k+1)], k ≥ 0 (5)

Clearly (4) implies (5); on the other hand if (5) holds and
we defineµi : [0,∞) → [0, 1] on (tik, ti(k+1)] as

µi(t) =

{
θi(t)−θi(tik)

wi(tik)−θi(tik) if wi(tik) 6= θi(tik)

1 if wi(tik) = θi(tik)

thenµi will be in Mi and (4) will hold.
For µi to be inMi means thatµi could be constant at the

value1 on each interval(tik, ti(k+1)); this would mean that
just aftertik, θi would jump discontinuously from its value at
tik to wi(tik) and remain constant at this value until just after
ti(k+1) [9]. More realistically,µi might change continuously
from 0 to 1 on (tik, ti(k+1)) which would imply thatθi is
continuous on[0,∞). Under any conditions equations (2)
and (4) completely describe the temporal evolution of then
agent asynchronous system of interest.

A. Extended Neighbor Graph

The explicit form of the update equations determined by
(2) and (4) depends on the relationships between neighbors
which exist at each agent’s event times. It is possible to
describe all neighbor relationships at any timet using a
directed graphN(t) with vertex setV = {1, 2, . . . n} and
arc setA(N) ⊂ V × V which is defined in such a way so
that (i, j) is anarc or directed edge fromi to j just in case

agenti is a neighbor of agentj at time t. ThusN(t) is a
directed graph onn vertices with at most one arc between
each ordered pair of vertices and with exactly one self-arc
at each vertex. We writeGsa for the set of all such graphs.
It is natural to call a vertexi a neighborof vertex j in any
graphG in Gsa if (i, j) is an arc inG.

Although the neighbors of each agenti are well defined at
event times of other agents, what’s important for modelling
agent i’s updates are the headings of neighboring agents
only at agenti’s own event times. We deal with this matter
by re-defining each agent’s neighbor set at times between
its own event times to consist of only itself. Our reason
for doing this will become clear later when, for purposes
of analysis, we use analytic synchronization to embed the
n agent asynchronous model defined by (2) and (4) in a
synchronous dynamical system.

To proceed, letT denote the set of all event times of all
n agents. Relabel the elements ofT ast0, t1, t2, · · · in such
a way so thatt0 = 0 and tτ < tτ+1, τ ∈ {0, 1, 2, . . .}. For
i ∈ {1, 2, . . . , n}, let Ti denote the set oftτ ∈ T which are
event times of agenti. For eachi ∈ {1, 2, . . . , n} define

N̄i(τ) =

{
Ni(tτ ) if tτ ∈ Ti

i if tτ 6∈ Ti,
(6)

Thus N̄i(τ) coincides withNi(tτ ) whenevertτ is an event
time of agenti, and is simply the single indexi otherwise.

Much like N(t) which describes the original neighbor
relations of system (2), (3) at timet, we describe all re-
defined neighbor relationships at timeτ ∈ {0, 1, . . .} to
be the directed graph̄N(τ) with vertex setV and arc set
A(N̄(τ)) ⊂ V × V which is defined so that(i, j) is an
arc from i to j just in case agentj is in the neighbor set
N̄i(τ). Thus like the neighbor graphsN(t), eachN̄(τ) is a
directed graph onn vertices with at most one arc between
each ordered pair of vertices and with exactly one self-arc
at each vertex. We call̄N(τ) the extended neighbor graph
of the system (2) and (3) at timeτ .

B. Objective

A complete description of the asynchronous system de-
fined by (2) and (4) would have to include a model which
explains how theµi(t) and Ni(t) change over time as
functions of the positions of then agents in the plane.
While such a model is easy to derive and is essential for
simulation purposes, it would be difficult to take into account
in a convergence analysis. To avoid this difficulty, we shall
adopt a more conservative approach which ignores how the
Ni(t) and theµi(t) depend on the agent positions in the
plane and assumes instead that each might be any function in
some suitably defined set of interest. Our ultimate objective
is to show for any initial set of agent headings, any set of
µi ∈Mi, i ∈ {1, 2, . . . n} and for a large class of functions
t 7−→ Ni(t), that the headings of alln agents will converge
to the same steady state valueθss.



III. M AIN RESULTS

To state our main result, we need a few ideas from [12].
We call a vertexi of a directed graphG, a root of G if for
each other vertexj of G, there is a path fromi to j. Thusi is
a root ofG, if it is the root of a directed spanning tree ofG.
We will say thatG is rooted ati if i is in fact a root. ThusG
is rooted ati just in case each other vertex ofG is reachable
from vertex i along a path within the graph.G is strongly
rooted ati if each other vertex ofG is reachable from vertex
i along a path of length1. ThusG is strongly rooted ati
if i is a neighbor of every other vertex in the graph. By a
rooted graphG is meant a graph which possesses at least
one root. Finally, astrongly rooted graphis a graph which
has at least one vertex at which it is strongly rooted.

By the compositionof two directed graphsGp,Gq with
the same vertex set we mean that graphGq ◦ Gp with the
same vertex set and arc set defined such that(i, j) is an
arc ofGq ◦ Gp if for some vertexk, (i, k) is an arc ofGp

and (k, j) is an arc ofGq. Let us agree to say that a finite
sequence of directed graphsGp1 , Gp2 , . . . ,Gpm

with the
same vertex set isjointly rooted if the compositionGpm ◦
Gpm−1 ◦ · · · ◦Gp1 is rooted. An infinite sequence of graphs
Gp1 ,Gp2 , . . . , with the same vertex set isrepeatedly jointly
rooted if there is a positive integerm for which each finite
sequenceGpm(k+1) , . . . ,Gpmk+1 , k ≥ 0, is jointly rooted.

Equations (2) and (4) can be combined. What results is a
description of the evolution ofθi on agenti’s event time set.

θi(ti(k+1)) =
1

ni(tik)


 ∑

j∈Ni(tik)

θj(tik)


 , i ∈ {1, 2, . . . , n}

In the synchronous version of the problem treated in [3],
[4], [5], [6], [7], for each k ≥ 0, the kth event times
t1k, t2k, . . . , tnk of all n agents are the same. Thus in this
case each agent’s heading update equation can be written as

θi(t) =
1

ni(tk)


 ∑

j∈Ni(tk)

θj(tk)


 ,

t ∈ (tk, tk+1], k ≥ 0 (7)

where t0 = 0 and tk = tik. The main result of [3] is as
follows.

Theorem 1:Let the θi(0) be fixed. For any trajectory of
the synchronous system determined by (7) along which the
sequence of neighbor graphsN(0),N(1), . . . is repeatedly
jointly rooted, there is a constantθss for which

lim
t→∞

θi(t) = θss (8)

where the limit is approached exponentially fast.
The aim of this paper is to prove that essentially the same

result holds in the face of asynchronous updating.
Theorem 2:Let theθi(0), wi(0), andµi ∈ Mi be fixed.

For any trajectory of the asynchronous system determined by
(2) and (4) along which the sequence of extended neighbor
graphsN̄(0), N̄(1), . . . is repeatedly jointly rooted, there is a

constantθss for which

lim
t→∞

θi(t) = θss (9)

where the limit is approached exponentially fast.
It is worth noting that the validity of this theorem de-

pends critically on the fact that there are finite positive
numbers, namelyTmax = max{T̄1, T̄2, . . . , T̄n} andTmin =
min{T1, T2, . . . , Tn}, which uniformly bound from above
and below respectively, the time between any two successive
event times of any agent. This is a consequence of the
assumption that inequality (1) holds.

As noted in the last section, for the asynchronous problem
under consideration, the only vertices ofN̄(τ) which can
have more than one neighbor, are those corresponding to
agents for whomtτ is an event time. Thus in the most likely
situation when distinct agents have only distinct event times,
there will be at most one vertex in each graphN̄(τ) which
has more than one neighbor. It is this situation we want to
explore further. Toward this end, letG∗sa ⊂ Gsa denote the
subclass of all graphs which have at most one vertex with
more than one neighbor. Note that forn > 2, there is no
rooted graph inG∗sa. Nonetheless, in the light of Theorem 2
it is clear that convergence to a common steady state heading
will occur if the infinite sequence of graphs̄N(0), N̄(1), . . .
is repeatedly jointly rooted. This of course would require that
there exist jointly rooted sequences of graphs fromG∗sa. We
will now explain why such sequences do in fact exist.

Let us agree to call a graphG ∈ Gsa an all neighbor
graph centered atv if every vertex ofG is a neighbor of
v. Note that all neighbor graphs are maximal inG∗sa with
respect to the partial ordering ofG∗sa by inclusion, where in
this contextGp ∈ G∗sa is contained inGq ∈ G∗sa if A(Gp) ⊂
A(Gq). Note also the composition of any all neighbor graph
with itself is itself. On the other hand, because the arcs of
any two graphs inGsa are arcs in their composition, the
composition ofn all neighbor graphs with distinct centers
must clearly be a graph in which each vertex is a neighbor of
every other; i.e., the complete graph. Thus the composition
of n all neighbor graphs fromG∗sa with distinct centers is
strongly rooted. In summary, the hypothesis of Theorem 2
is not at all vacuous for the asynchronous problem under
consideration. When that hypothesis is satisfied, convergence
to a common steady state heading will occur.

IV. A NALYTIC SYNCHRONIZATION

To prove Theorem 2 requires the analysis of the asymp-
totic behavior of then mutually unsynchronized processes
P1,P2, . . .Pn which the n pairs of heading equations (2),
(4) define. Despite the apparent complexity of the resulting
asynchronoussystem which thesen interacting processes
determine, it is possible to capture its salient features using a
suitably definedsynchronousdiscrete-time, hybrid dynamical
systemS. The sequence of steps involved in definingS has
been discussed before and is calledanalytic synchronization
[10], [11]. First, alln event time sequences are merged into
a single ordered sequence of event timesT , as we’ve already
done. This clever idea has been used before in [13] to study



the convergence of totally asynchronous iterative algorithms.
Second, between event times each agent’s neighbor set is
defined to have exactly one neighbor, namely itself; this we
have also already done. Third, the “synchronized” state of
Pi is then defined to be the original ofPi at Pi’s event times
{ti1, ti2, . . .} plus possibly some additional state variables;
at values oft ∈ T between event timestik and ti(k+1), the
synchronized state ofPi is taken to be the same at the value
of its state at timetik. Although it is not always possible to
carry out all of these steps, in this case it is. What ultimately
results is a synchronous dynamical systemS evolving on the
index set ofT , with state composed of the synchronized
states of then individual processes under consideration. We
now use these ideas to develop such a synchronous system
S for the asynchronous process under consideration.

A. Definition ofS
For each suchi and eachq ∈ Ti define

θ̄i(τ) = θi(tq), q ≤ τ < q′ (10)

w̄i(τ) = wi(tq), q ≤ τ < q′ (11)

where tq′ is the first event time of agenti after tq. Note
that for anytq ∈ Ti there is always such aq′ because we’ve
assumed via (1) that the time between any two successive
event times of agenti is bounded above. In the full length
version of this paper it is shown that fori ∈ {1, 2, . . . , n}
andτ > 0

θ̄i(τ) = w̄i(τ − 1), tτ ∈ Ti (12)

θ̄i(τ) = θ̄i(τ − 1), tτ 6∈ Ti (13)

w̄i(τ) =
1

n̄i(τ)

∑

j∈N̄i(τ)

{(1− µ̄j(τ))θ̄j(τ − 1)

+µ̄j(τ)(w̄j(τ − 1)}, tτ ∈ Ti (14)

w̄i(τ) = w̄i(τ − 1), tτ 6∈ Ti (15)

where for τ ∈ {0, 1, . . .}, µ̄j(τ) = µj(tτ ) for j ∈
{1, 2, . . . , n}, and n̄i(τ) is the number of indices in̄Ni(τ).
This set of equations constitute the synchronous systemS
we intend to analyze.

B. State Space Model

The equations definingS, namely (12) – (15), determine
a state space system of the form

x(τ + 1) = F (τ)x(τ), τ ∈ {1, 2, . . .} (16)

where

x(τ) = [θ̄1(τ −1) · · · θ̄n(τ −1) w̄1(τ −1) · · · w̄n(τ −1)]′

(17)
Each F (τ) is a 2n × 2n stochastic matrix which can be
described as follows.

Let R denote the set of all lists ofn numbers µ̄ =
{µ̄1, µ̄2, . . . , µ̄n} with each µ̄i taking a value in the real
closed interval[0, 1]. Let B denote the set of all lists
of n integers b = {b1, b2, . . . , bn} with each bi taking
a value in the binary integer set{0, 1}. Each such triple

(N̄, µ̄, b) ∈ Gsa × R × B determines a2n × 2n stochastic
matrix F(N̄, µ̄, b) whose entries fori ∈ {1, 2, . . . , n} are

fij = δ(i+n)j , and

f(i+n)j =



1
n̄i

(1− µ̄j) j ∈ (N̄i − i)
1
n̄i

µ̄j j ∈ (N̄i − i) + {n}
1
n̄i

δ(i+n)j j 6∈ (N̄i − i) ∪ ((N̄i − i) + {n})
if bi = 1 and

fij = δij and f(i+n)j = δ(i+n)j

if bi = 0. HereN̄i is the set of neighbors of vertexi in N̄, n̄i

is the number of elements in̄Ni, N̄i − i is the complement
of i in N̄i, δij is the Kronecker delta, and for any set of
integersI, I + {n} is the setI + {n} = {i + n : i ∈ I}.
We call any such matrixF anasynchronous flocking matrix.
Thus the image ofF is the set of all possible asynchronous
flocking matrices.

It is easy to verify that the matrixF (τ) in (16) is of the
form F(N̄(τ), µ̄(τ), b(τ)) where N̄(τ) is that graph inGsa

with neighbor setsN̄1(τ), N̄2(τ), . . . , N̄n(τ), µ̄(τ) is that
list in R whoseith element is̄µi(τ), andb(τ) is that list in
B whoseith element isbi(τ) = 1 if tτ ∈ Ti or bi(τ) = 0 if
tτ 6∈ Ti.

Note that unlike the other flocking problems considered in
the past where theF (τ) were flocking matrices from a finite
set, the set of all asynchronous flocking matrices which arise
here, namely imageF, is not a finite set becauseR is not
a finite set. Nonetheless imageF is a closed and therefore
compact subset of the set of all2n× 2n stochastic matrices
S. To understand why this is so, note first that for each
fixed b ∈ B and N ∈ Gsa, the mappingR → S, µ 7−→
F(N, µ, b) is continuous onR. Therefore its image must be
compact becauseR is. Next note thatGsa andB are each
finite sets. Since the union of a finite number of compact
sets is compact, it must therefore be true that the image of
F is compact as claimed.

V. A NALYSIS

The ultimate aim of this section is to give a proof of
Theorem 2. We begin with the notion of the graph of a
stochastic matrix.

Any 2n × 2n stochastic matrixS such as those in im-
age F, determines a directed graphγ(S) with vertex set
{1, 2, . . . , n, n+1, n+2, . . . , 2n} and arc set defined is such
a way so that(i, j) is an arc ofγ(S) from i to j just in case
the jith entry ofS is non-zero. It is easy to verify that for
any two such matricesS1 andS2,

γ(S2S1) = γ(S2) ◦ γ(S1) (18)

We now define a set of directed graphsG on vertex
set {1, 2, . . . , n, n + 1, n + 2, . . . , 2n} which contains all
γ(F ), F ∈ image F, and which is large enough to be closed
under composition. For this purpose it is convenient to adopt
the notation[v] for the subset{v, v + n} wheneverv ∈ V,
and to say that([v], u) is an arc of a graphG in G if either



(v, u) or (v + n, u) is. Similarly we say that(v, [u]) is an
arc ofG if either (v, u) or (v, u + n) is and([v], [u]) is an
arc ofG if either (v, [u]) or (v + n, [u]) is.

We defineG to be the set of all directed graphs with
vertex set{1, 2, . . . , 2n} whose graphs have the following
properties. For eachG ∈ G and each pair of vertices
u ∈ {1, 2, . . . , 2n} andv ∈ V:

p1: v + n has a self-arc inG.
p2: ([v], v) is an arc inG.
p3: If (u, v) is an arc inG andu 6= v, then(u, v + n) is

an arc inG.
p4: If (u, [v]) is an arc inG andu 6= v, then(v + n, v) is

an arc inG.

It is straightforward to verify that for eachF ∈ image F,
γ(F ) is a graph inG. In view of the structure of the matrices
in imageF it is natural to call a graphG ∈ G anevent graph
of agenti ∈ V if (i+n, i) is theonly incoming arc to vertex
i. Note that the graph of every matrixF(N̄, µ̄, b) for which
bi = 1 is an event graph of agenti. Thusγ(F (τ)) is an event
graph of agenti if tτ is an event time of agenti. It is easy
to see that there are graphs inG which are not the graphs
of any matrix in imageF. Let us agree to say thatG ∈ G
is attached ati ∈ V if vertex i hasat least (i + n, i) as an
incoming arc. A graphG ∈ G is attachedif it is attached
at every vertex inV. Thus γ(F (τ)) would be attached if
and only if tτ were an event time of every agent. Note that
the definitionG allows this set to contain graphs which are
attached ati which are not event graphs of agenti. In other
words, an event graph of agenti must be attached ati, but
the converse is not necessarily so.

We begin our analysis with the following observation.
Proposition 1: The set of graphsG is closed under com-

position.
The following results from [12] are key to establishing

this convergence.
Proposition 2: Let Ssr be any closed set of stochastic

matrices which are all of the same size and whose graphs
γ(S), S ∈ Ssr are all strongly rooted. Asj → ∞, any
productSj · · ·S1 of matrices fromSsr converges exponen-
tially fast to a matrix of the form1c at a rate no slower
thanλ, wherec is a non-negative row vector depending on
the sequence andλ is a non-negative constant less than1
depending only onSsr.

Proposition 3: Supposen > 1 and letGp1 , Gp2 , . . ., Gpm

be a finite sequence of rooted graphs with the same vertex
set. If each vertex of each graph has a self-arc andm ≥
(n− 1)2, thenGpm ◦Gpm−1 ◦ · · · ◦Gp1 is strongly rooted.
Unfortunately the graphs of importance in the asynchronous
case, namely theγ(F (τ)), do not have self arcs at all
vertices. Thus Proposition 3 cannot be directly applied.

To describe the analog of Proposition 3 appropriate to
the asynchronous problem at hand we need another concept.
Note that eachG ∈ G determines aquotient graphQ(G) ∈
Gsa defined in such a way thatQ(G) has an arc fromi
to j just in caseG has an arc from at least one vertex
in the set [i] to at least one vertex in the set[j]. Note

that Q(γ(F(N̄, µ̄, b))) = N̄. The following is the analog of
Proposition 3.

Proposition 4: Let Gp1 , . . . ,Gp2m+1 be a sequence of
2m + 1 attached graphs inG whose quotients are rooted.
If m ≥ (n− 1)2 thenGp2m+1 ◦ · · · ◦Gp1 is strongly rooted.

A more in depth study of the graphs inG leads us to the
following observation.

Proposition 5: LetGp1 , . . . ,Gpm
be a sequence of graphs

from G which for eachi ∈ V, contains a graph which is
attached ati. ThenGpm

◦ · · · ◦Gp1 is an attached graph.
Let h be the smallest positive integer such thatTmax ≤

hTmin, then there will be at least one event time of any
one agent within a sequence of at mosth + 1 consecutive
event times of any other agent. We are led to the following
conclusion.

Lemma 1: In any sequence of(n − 1)h + 1 or more
consecutive event times, there will be at least one event time
of each of then agents.

The following proposition shows that for any sequence of
graphsGp1 , . . . ,Gpm

from G whose quotients constitute a
jointly rooted sequence, the quotient of the composition of
the sequence is rooted.

Proposition 6: LetGp1 , . . . ,Gpm be a sequence ofm > 1
graphs fromG for which Q(Gpm) ◦ · · · ◦Q(Gp1) is a rooted
graph. ThenQ(Gpm ◦ · · · ◦ Gp1) is also rooted at the same
vertex asQ(Gpm) ◦ · · · ◦Q(Gp1).

In proving Theorem 2, we will need to exploit the com-
pactness of a particular subset of stochastic matrices inS
which can be described as follows. Letp ≥ n be any given
positive integer. WriteGp

sa for the subset of all sequences of
p graphs inGsa which are jointly rooted andBp for the set
of all lists of p binary vectors inB with the property that
for eachi ∈ {1, 2, . . . , n}, each list{b1, b2, . . . , bp} contains
at least one vector whoseith row is 1. Since p ≥ n, Bp

is nonempty. LetRp be the Cartesian product ofR with
itself p times. We claim that the image of the mapping
Fp : Bp ×Rp × Gp

sa → S defined by

({N1,N2, . . . ,Np}, {µ1, µ2, . . . , µp}, {b1, b2, . . . , bp}) 7−→
F(Np, µp, bp) · · ·F(N2, µ2, b2)F(N1, µ1, b1)

is compact. The reason for this is essentially the same as
the reason imageF is compact. In particular, for any fixed
{N1,N2, . . . ,Np} ∈ Gp

sa and {b1, b2, . . . , bp} ∈ Bp,
the restricted mapping {µ1, µ2, . . . , µp} 7−→
Fp({N1,N2, . . . ,Np}, {µ1, µ2, . . . , µp}, {b1, b2, . . . , bp}) is
continuous so its image must be compact. SinceBp andGp

sa

are finite sets, the image ofFp must therefore be compact
as well.

Set q = 2(n − 1)2 + 1 and letFp(q) denote the set of
all products ofq matrices from imageFp. ThenFp(q) is
compact becauseimage Fp is. More is true.

Proposition 7: The graph of each matrix inFp(q) is
strongly rooted.
We are now finally in a position to prove our main result.

Proof of Theorem 2:As already noted, it is sufficient
to prove that the matrix productF (τ) · · ·F (1) converges



exponentially fast to a matrix of the form1c as τ → ∞.
Observe first that there is a vector binary vectorb(τ) ∈ B
and a vectorµ(τ) ∈ R such that

F (τ) = F(N̄(τ), µ(τ), b(τ)), τ ≥ 0 (19)

because eachF (τ) ∈ image F.
By hypothesis, the sequence of extended neighbor graphs

N̄(0), N̄(1), . . . , is repeatedly jointly rooted. This means that
there is an integerm for which each of the sequences
N̄(km + 1), . . . , N̄((k + 1)m), k ≥ 0, is jointly rooted. Let
h be as is in Lemma 1 and definep = rm wherer is any
positive integer large enough so thatp ≥ (n− 1)h + 1. Set
q = 2(n− 1)2 + 1 and letGp

sa, Rp, Bp, Fp, andFp(q) be
as defined just above Proposition 7.

Since each̄N(km+1), . . . , N̄((k+1)m), k ≥ 0, is jointly
rooted, each of the compositions̄N((k+1)m)◦· · ·◦N̄(km+
1), k ≥ 0, is rooted. This implies that each graph̄N((k +
1)p) ◦ · · · ◦ N̄(kp + 1), k ≥ 0, is rooted becausep = rm
and because the composition ofr rooted graph is rooted.
Therefore each sequenceN̄(kp+1), . . . , N̄((k+1)p), k ≥ 0,
is jointly rooted. It follows that

{N̄(kp + 1), . . . , N̄((k + 1)p} ∈ Gp
sa, k ≥ 0 (20)

Note next that for eachi ∈ {1, 2, . . . , n} and eachk ≥
0, at least one of the graphs in the sequenceγ(F (kp +
1)), . . . , γ(F ((k + 1)p)) must be attached ati because of
Lemma 1 and the assumption thatp ≥ (n − 1)h + 1. This
implies that for eachi ∈ {1, 2, . . . , n} there must be at least
one vector in each list{b(kp + 1), . . . , b((k + 1)p)}, k ≥ 0
whoseith row is 1. Therefore

{b(kp + 1), . . . , b((k + 1)p)} ∈ Bp, k ≥ 0 (21)

For k ≥ 0, define

S(k) = F ((k + 1)p) · · ·F (kp + 1) (22)

In view of (19) - (21) and the definition ofFp, it must be
true thatS(k) ∈ image Fp, k ≥ 0. Thus if we define

S̄(k) = S((k + 1)q − 1) · · ·S(kq), k ≥ 0 (23)

then eachS̄(k) must be inFp(q). Therefore by Proposition
7, the graph of each̄S(k) is strongly rooted. Therefore by
Proposition 2, the matrix product̄S(k) · · · S̄(0) converges
exponentially fast ask → ∞ to a matrix of the form1c as
k →∞.

The definitions ofS(·) and S̄(·) in (22) and (23) respec-
tively imply that

S̄(k) · · · S̄(0) = F ((k + 1)pq) · · ·F1, k ≥ 0

For τ ≥ 0, let κ(τ) andρ(τ) denote respectively, the integer
quotient and remainder ofτ divided bypq. Then

F (τ) · · ·F (1) = Ŝ(τ)S̄(k(τ)) · · · S̄(0)

wherek(τ) = κ(τ)− 1, and Ŝ(τ) is the bounded function

Ŝ(τ) =

{
F (τ) · · ·F ((k(τ) + 1)pq + 1) if ρ(τ) 6= 0
1 if ρ(τ) = 0

Sincek(τ) is an unbounded monotone nondecreasing func-
tion andS̄(k) · · · S̄(0) converges exponentially fast ask →
∞, it follows thatF (τ) · · ·F (1) converges exponentially fast
asτ →∞ to a matrix of the form1c.

VI. CONCLUDING REMARKS

The version of the asynchronous consensus considered
here significantly generalizes our earlier work [9]. In par-
ticular, the present version of the problem can deal with
continuous heading changes whereas the version of the
problem solved in [9] cannot.

It is possible to formulate and solve a “continuous”
version of Viscek’s problem in which each agent’s heading
is adjusted by controlling its differential rate. Because of
changing neighbors this leads to a differential equation model
with a discontinuous vector field in which chattering may
occur. To avoid this one can introduce “dwell times” as was
done in [3] for the leader-follower version of the problem.
As a result, the question of synchronization again arises, in
this case with event times being the times at which each
agent’s dwell time periods begin. Thus although one might
think that the question of synchronization is irrelevant in
the continuous-time case, this appears to only be true if
one is willing to accept generalized solutions to differential
equations and the possibility of chattering.

REFERENCES
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