Localization of Sensor Networks Using Sweep§

J. Fang M. Cao A. S. Morse

Dept. of Electrical Engineering Dept. of Electrical Engineering Dept. of Electrical Engineering
Yale University Yale University Yale University
jla.fang@yale.edu m.cao@yale.edu as.morse@yale.edu

B.D.O. Anderson
Australian National University and National ICT Australia Ltd.
Brian.Anderson@nicta.com.au

Abstract—The sensor network localization problem with to be localizable [2]. This leaves us with the more refined
distance information is to determine the positions of all sensors questions of how should we go about localizing networks,
in a network given the positions of some sensors and the dis- q?nd what kinds of networks can we efficiently localize? This

tances between some pairs of sensors. We present a specialize . . .
localization algorithm and identify the graph properties of some as been investigated in [3] and we extend the results of

classes of networks that can be localized by the algorithm. We that paper. While some ingenious heuristics-based schemes
also give an important application of our algorithm in creating have been proposed ([4], [5], [6], [7]), we are interested

formations in multi-agent systems. in provably correct localization algorithms and the kinds of
networks that can be efficiently localized by them. In the
following we will give a localization algorithm that consists

Determining the positions of sensors is essential in maryf a finite number of steps to be carried out sequentially.
network applications such as geographic routing, coverageWwe first give some terms and definitions from graph rigid-
and creating formations. Equipping each sensor in a netwoity theory in section 2. We present a localization algorithm
with GPS is not feasible in many cases because of the largge section 3, and identify some classes of networks that
number of sensors and the cost associated with a GPS umin be localized by the algorithm in section 4. We discuss
Hence, we attack this problem by exploiting the connectivityhe computational efficiency of the algorithm in section 5,
of a sensor network and some common capabilities @fnd then give an application of the algorithm in creating
sensors. More specifically, we assume a sensor can measigienations in section 6.
its distances to and communicate with certain other sensors
in the network. Il. TERMS AND DEFINITIONS

The sensor network localization problem with distance We begin by giving some terms and definitions to be
information is to determine the positions of all sensors imsed in the exposition which follows. Anulti-point p =
a network given the positions of some sensors and thg,,...,p,} in d-dimensional space is a set ofpoints in
distances between some pairs of sensors. A sensor wh@elabelledp,, ..., p,. Two multi-pointsp = {p1,...,pn}
position is given is called aanchor The sensor network andq = {qi,...,q,} of n points arecongruentif for all
localization problem is solvable if and only if the networki, j € {1,...,n}, the distance betweep, andp; is equal
is “localizable.” A network inR¢ is said to bdocalizableif  to the distance betwees and gj. A point formationof n
there exists exactly one positionlRf' corresponding to each points at a multi-poinp = {py,...,p,} consists ofp and a
non-anchor sensor such that the given inter-sensor distans@siple undirected grapy with vertex sety = {1,...,n},
are satisfied. The authors of [1] use rigidity theory to giveand is denoted byG, p). If (¢,7) is an edge inG, then we
the necessary and sufficient conditions for a network to bsay thelengthof edge(i, j) in the point formationG, p) is
localizable. However, the process of localizing a network hae distance betweem andp,.
been shown to be NP-hard even when the network is known A point formation(G, p) is globally rigid in R? if p andq

. _ _ are congruent multi-points iR¢ whenever(G, p) and(G, q)
1 A preliminary version of this paper has been presented at the 20Q6

MTNS. A full-length version of this paper with proofs will appear at a later aye the Sam? edge Iengths_- _A. point. format{@r_; p) of n
date. points isgenerically globally rigidin R? if there exists: > 0

* The work of Fang, Cao and Morse was supported in part, by grants frogy,ch that(G, ¢) is globally rigid in R4 for all multi-points
the U.S. Army Research Office and the U.S. National Science Foundation h Vi 1 A
and by a gift from the Xerox Corporation. The work of Anderson was! = 191;-- > q’(b} where [g; - pil <eVie { RS nt. i
supported by the Research School of Information Sciences and Engineergtaph G is said to begenerically globally rigidin R? if

and National ICT Austral_ia which is fundeq by the Australian Government’ va) is generically globally rigid for some multi-poin.
Department of Communications, Information Technology and the Arts a

the Australian Research Council through the Backing Australia’s Ability here are _a numb?r of efficient allg.or'_thms for determ'mng
initiative and the ICT Center of Excellence Program. if a graph is generically globally rigid ilR2. If graph G is

I. INTRODUCTION



generically globally rigid inR?, then (G, p) is guaranteed plane which lie on circles with the same raditisentered at
to be globally rigid for all multi-pointsp in R? where the points inS. Of course ifS is empty then so isf(S, d)
the coordinates op are algebraically independent over theand conversely. We will be especially interested in the case
rationals. A graph that is generically globally rigid R? is when S is a non-empty “finite set” and > 0, where by
said to beminimally generically globally rigidn R? if the finite setwe mean a set with a finite number of pointsHA.
removal of any edge causes the graph to not be generically this casef (S, d) is simply the union of a finite number
globally rigid in R2. of circles in the plane which all have radids An easily

A sensor network withm sensors is modelled by a point verified property off is that if u € A'(v), andS(u) is a set
formation (G, p), where each sensor corresponds to exactfipr which 7(u) € S(u), thenw(v) € f(S(u), duy). We call
one vertex ofG, and vice versa, with{i, j) being an edge this theposition keepingroperty of f.
of G if ¢ and j are distinct and the distance between the Let S denote the set of all non-empty subsets Rf
corresponding sensors is known, apd= {pi,...,p,} Wwith finitely many elements. Lety be a positive integer
where p; is the position of the sensor corresponding too smaller than 2 and writ&? for the ¢-fold Cartesian
vertexi. We say thaiG is the graph of the network, angl product ofS with itself. Similarly, let (R, )? denote they-
is the multi-point of the network. Vertex of G is called fold Cartesian product dR ;. with itself. Our aim is to define
an anchor vertexif the sensor corresponding to is an a functiong, : S? x (R4)? — 2%* in such a way so that for
anchor, and aensor vertexotherwise. It is known that if each{S;,S,...,S,;} € S? and{dy,ds,...,d,} € (Ry)Y,
the coordinates of the multi-point of a network k¥ are  ¢,(S1,Ss,...,S;, d1,ds, . .., d,) is at most a finite set. Fur-
algebraically independent over the rationals, then the netwotkermore, we shall require the definition@fto be such that
is localizable if and only if it has at least 3 non-collinearwhenever there are distinct poinis € S;, i € {1,2,...,q},
anchors and the graph of the network is generically globally v € R? satisfies|v — w;|| = d;, i € {1,2,...,q},
rigid in R2. thenv must be a point iny,(S1, Sz, ..., 8q,d1,da, ..., dg).

Let G be a graph with vertex sét and edge sef, which  Defining g,(S1,S2,...,8¢,d1,ds, ..., dy) in the most ob-
we denote byG = (V, ). The second powepf G, written  vious way as the intersection of the set§S;,d;), i €
G2, is the graph with vertex sét and edge sef UE?, where  {1,2,...,¢}, will not be adequate for it may be the case
(i,7) € &£? just in casei,j € V and there existd € V  that the resulting intersection is a continuous circle of points
such that(i, k), (k,7) € £. Define aring graph as a graph in the plane rather than a finite set.
whose vertices can be labelled €k ...,n} so that vertex Let 7 = ﬂ;?:l S;, and let pi,po,...,pr denote the
i, 1 < i < n, is adjacent to only vertices— 1 andi + 1, elements ofZ. For any setS € S, and any subsef C S,
vertex 1 is adjacent to only vertice8 andn, and vertexn  let S\7 denote the complement & in S. The following
is adjacent to only vertices — 1 and 1. definition of g, satisfies both of the requirements listed

1. THE SWEEPSALGORITHM above:

In the following, we will describe a localization algorithm 94(81, 82, .+, Sgydusda, ..y dg) =
in R? that consists of a finite number of steps to be carried S\T.d )
,d) N f(Sa,de) NN f(Sy,d
out sequentially. We will subsequently give examples where HENT di) 1 [(S2,da) 18 do) U
the number of steps is at most 2, and separately, at most (

k
U £}, di) 0 f(S\ i} da) 0

i=1

Let N be a network ofn sensors labelled through
n where sensor is positioned atr (i), and (1), 7(2),
..., m(n) are distinct points iR2. Suppose that,2,...,m
are the labels oN’s anchors and thah > 3. LetG = (V,€) N (S it dq)) 1)
be the graph ofN. Without loss of generality, suppose that
for eachi € {1,2,...,n}, vertexi of G corresponds to
sensor; and vice versa. For each € V, let N'(v) denote v, =1, 1 €{1,2,...,m}
the set consisting of all verticeswhere (u,v) € £, and for
eachu € N (v) write d,, for the distance between sensorNd at least one of the sets
w and v. By an assignmentfor N is meant any function M(v;) = N(v;) N {v1,v9, ..., 0521},
a:{1,2,...,n} — R2 An assignment foN is consistent i€ {m+1,m+2 n}
if for all v € {1,2,...,n}, |la(u) — a(v)|| = dy, for all ’ Y
u € N(v), anda(v) = 7(v) whenever sensaris an anchor, is non-empty is called aweepof N and is denoted byu].
i.e.v e {l1,2,...,m}. HenceN is localizable if and only if Hence, if an ordering,vs,...,v, is a sweep, then there is
there is exactly one consistent assignmentNor at least one vertex; wherei > m andw; is adjacent to at

Let 2% be the power set dk? and writeR, for the set least one vertex preceding it. We shall require the networks
of positive real numbers. Lef : 2R Ry — 2% denote we consider to have at least one “finite position generating”
the function(S,d) — S’ where S’ is the set ofp € R?  sweepvy,va, . .., v,, Where byfinite position generatingve
such that||p — ¢|| = d for someq € S. If S is not empty, mean that each vertex;, i« > m, is adjacent to at least
then geometricallyf (S, d) is the union of all points in the two distinct vertices preceding it. t;,vs, ..., v, is a finite

An orderinguvy, v, . .., v, Of the vertices iny for which



position generating sweep, then each of v, ), i > m,
is a set of at least two elements.

the second sweep adf. It is obvious from ), (5) and 6)
that S(v,2) C S(v,1) for all v € V.

In the following, we will describe a recursive procedure for Now suppose theith sweep ofN has been computed,

computing a sequence of finite sets for each vettex V),
ie. S(v,1), S(v,2),---S(v,i),---, such that eacks(v, 1)
is a finite setr(v) € S(v,4), and ifi < j, thenS(v,4) D

S(v,j). We begin by choosing a finite position generating{xz;, zo, . .

sweeplv] of N. Fori € {m+1,m+2,...,n}, let
M(’Uq) N(vi)ﬂ{vl,vg,..

. 71)7',—1}

and that for eachh € V , n(v) € S(v, k) andS(v, k) is a
finite set. The(k + 1)th sweep is computed as follows. Let
[] = z1,22,...,7, be a sweep, and leV(z;) = N (x;) N
Lxiqrforie{m+1,m+2...,n}. Fori e
{1,2,...,m}, we define

We denote the cardinality o¥1(v;) by ¢; and the elements of and fori € {m + 1,m +2,...,n} we define

M(v;) bY wit, w2, - . ., Ui, - We define the setS(v;, 1), i €
{1,2,...,n} as follows. Fori € {1,2,...,m}, we define

S(vi, 1) = {m(vi)} 2)
and fori € {m+1,m +2,...,n}, we define
S(vi, 1) = g4, (S(ui1,1), S(uso, 1), ..., S(uig,, 1),
duil'”i ? duiQ'Ui’ M) duqu 'Ui) (3)

S(wik+1) ={m(z:)} )
Sik) [ F(Sw,k+1), dus,)
weM(xz;)
if M(zi) #0 ®)
Sz, k+1) = S(xi, k) if M(x;) =10 9)

For eachv € V, we have thatS(v,k + 1) is a finite set,

Note that sincev] is assumed to be a finite position gen-m(v) € S(v,k +1) andS(v,k + 1) C S(v, k) by the same
erating sweep, eacM(v;) has at least 2 elements and sgeasoning as before.

¢; > 2. Hence, fori € {m+1,m+2,...,n}, g,, is defined
andS(v;, 1) is a finite set because the imageggf consists
only of finite sets. Sinc&(v;, 1), € {1,2,...,m}, are also
finite sets because o), we have thatS(v, 1) is a finite set
for eachv € V. Note also thatr(v;) € S(v;, 1), v; € V.
This is clearly true fori € {1,2,...,m} because of ).
The assumption that(v), v € V, are distinct together with
the definition ofg,, and the position keeping property ¢f
imply that w(v;) € S(v;,1) fori € {m+1,m+2,...,n}.
We call the computation aof (v, 1), v € V, thecomputation
of the initial sweepf N.

Now suppose that the initial sweep Bf has been com-
puted. The setsS(v,2), v € V, are computed as follows.
Let [u] = wuy,us,...,u, be a sweep, and leM (u;)
./\/'(uz) N {ul,uQ,...,ui_l} fori e {m—|— 1,m+2,...,n}.

The preceding shows that if we compute a sequence of
sweeps starting with one which is finite position generating,
we can generate a sequence of finite sets for eagly, i.e.
S(v,1), 8(v,2), --- S(v,i) ---, where each set is obtained
by means of a finite number of computations and

8(’071) DS(U,2) BDEEE 38(1)72')...

andw(v) € S(v, 1) for eachi. Thus if we can select a finite
number of sweeps, say, such that for allv € V, each
S(v, k) will contain just the positiont(v) of sensorv, then
localization will be complete. We call this theequential
localization of the network, and we say that the network
is sequentially localizablen %k sweeps. Hence, sequential
localization of a network is carried out in a finite number
of steps, each of which is solvable in a straightforward

Note that[u] need not be a finite position generating sweefimanner. This is in sharp contrast to a direct assault on the

Fori e {1,2,...,m} we define

S(ui,2) = {m(uwi)} (4)
and fori € {m+1,m +2,...,n} we define
S(u,2) =
Sui1) () F(Sw,2),dwy,) if M(u;)#0  (5)
weM (u;)
S(ui,2) = S(ug, 1) if M(u;) =0 (6)

For eachu;, : € {m+1,m+2,...,n}, (5) and @) implies
that S(u;,2) must be a finite set sinc&(u;, 1) is a finite
set. Moreover, sincé(u;,2),i € {1,2,...,m}, are all finite
sets because oft), we have thatS(v,2) is a finite set for
eachv € V. Also, n(v) € S(v,2) for all v € V. This is
clearly true foru;, i € {1,2,...,m} because of4). For
ite{m+1,m+2,...,n}, thatw(u;) € S(u;,1) and the
position keeping property of imply 7(u;) € S(u;,2). We
call the computation o8(v,2), v € V, the computation of

localization problem by attempting to solve a large number
of simultaneous quadratic equations2ifn — m) variables.

In the exposition which follows, we will give the graph
properties of some networks that are sequentially localizable
in just one or two sweeps. The sweeps are selected by con-
sidering properties of the network’s graph, hence localizing
the network in as few sweeps as possible.

In [8], an extension to the Sweeps algorithm is proposed
that results in significant reductions in the computational
complexity of using Sweeps to localize certain networks.
More specifically, supposgr] is the kth sweep. For;, ¢ <
m, let D(x;, k) = {x;}. Forz;, i > m, defineD(x;,0) =
{z:} and letD(zi, k) = U,erna,) P(u, k) UD(zi, k — 1).

For z;, i« < m, defineS(z;,k) as in (7). Forz,, ¢ > m,
first let S(z;, k) be as defined in (3) it = 1, or (8) and
(9) if £ > 1. Forp € S(x;, k), we say thap is a consistent
position if there is a consistent assignmemntfor the sub-
network ofN corresponding to the subgraph@finduced by
vertices inD(z;, k), wherea(z;) = p anda(z;) € S(zj, k)



for x; € D(x;,k), j < i, anda(z;) € S(z;,k — 1) for G is a bilateration graph.

z; € D(z;, k), j > i. In the extension to Sweeps, all points

in S(z;, k) that are not consistent positions are removed from Remark 1: A stronger version of lemmd also holds.
S(xi, k) before computing any(z;, k), j > i. If each sensor vertex ofs has degree at least three and
G is partially acyclic, thenG is a bilateration graph. This

is stronger since each vertex of a graph that is generically
globally rigid in R? must have degree at least three.

IV. GRAPHICAL PROPERTIES OFSEQUENTIALLY
LOCALIZABLE NETWORKS

A graph is abilateration graph with bilateration ordering
v1,...,0, If its vertices can be relabelled as, ..., v, SO Theorem 1:A network with at least three anchors is
that the subgraph induced hy and v, is complete, and sequentially localizable in two sweeps if its graph is
eachv;, 2 < i, is adjacent to at least two distinct verticesgenerically globally rigid inR? and partially acyclic.
v; which “precede” it in the ordering, where byrecede
we mean;j < i. A necessary condition for a network 0  Remark 2:The network’s graph must be generically
be sequentially localizable is that its graph is a bilateratioamba”y rigid in R2 in order for theorem 1 to hold. This is
graph. A graph i&-connectedf the graph remains connected pec4use the network cannot be localizable if its graph is not
after removing any: — 1 vertices and the edges incident ongenerically globally rigid inR2, and it is straightforward to

those vertices. It is easy to see that bilateration graphs &R that a sequentially localizable network must also be
2-connected. localizable.

All the networks referred to below are ®? and the coor-
dinates of their multi-points are assumed to be algebraically

independent over the rationals. We note that for any positivq(ﬁ)glfn}?ei; ?r]: %Tg?gya?;yﬂfm%:gﬁhs ter;]aetrii;e” ge?()egi’;lally
integerd, the coordinates oélmost all multi-points in R¢ 9 y g y 9 y9 y

are algebraically independent over the rationals rigid in R2. This and theoren implies there are localizable
9 y P ' networks with just enough edges to ensure localizability that

A. Networks Sequentially Localizable in One and Twé"® also sequentially localizable.
Sweeps Many practical networks are such that the distance

. . . . . . between two sensors is known if the sensors are within
A graph is said to be drilateration graph with trilat-

. : - . sensing radius of each other. Suppd&és such a network,
eration orderingvy, ..., v, if its vertices can be relabelled

d letG be th h of.
aswvi,...,v, SO that the subgraph induced by, v, vs is and [etG be the graph of¥

complete and each; with ¢ > 3 is adjacent to at least three . ) _
distinct vertices; which precede it in the ordering ([1]). It is Theorem 2:Suppose there exists a subgraph of G

shown in [1] that trilateration graphs are generically globallyVith the same vertex set &, andG, is a ring graph with
rigid in R2. at least three anchor verticesj and & wherej is adjacent

to bothi and k. ThenN is sequentially localizable in two

A network is said to beeasily localizableif its sensors - . .
sweeps after doubling the sensing radius of each sensor.

can be relabelled as, . . ., v, so that the distance between
v; andv; is known wheni, j < 3, and the position of sensor
v;, i > 3, can be uniquely determined from just the positions Remark 3: Theorem 2 can be used to show the following.
of sensorsy; wherej < i and the distance between and Suppose there exists a subgraph of G with the same

v; is known, together with the distances from those sensovértex set ass, and G, is a ring graph. IfN has at least

to v; ([1], [3]). It is easy to see that a network with at leasthree anchors, then after doubling the sensing radius of
three anchors is easily localizable if and only if its graph i€ach sensorN is either sequentially localizable in two

a trilateration graph. sweeps orN can be localized using two sweeps of the
SupposeN has at least three anchors and the grapN &f ~ Sweeps algorithm in combination with a simple Euclidean
a trilateration graph with trilateration ordering, ..., v,. If  transformation. For the complete details, see the full length

v1, v and v are anchor vertices, theN is sequentially Vversion of the paper.

localizable in one sweep. Otherwis®, can be localized

using one sweep of the Sweeps algorithm in combination A graph is edge 2-connected there exists two paths

with a simple Euclidean transformation. For complete detailsyith no edge in common between any two vertices. It

please see the full length version of the paper. is known that the second power of an edge 2-connected
Let G be the graph of a network. We define taximal graph is generically globally rigid ifR? ([3]). An important

anchor-free subgraplof G to be the maximal subgraph of consequence of this and theorexris that if the graph of

G containing only sensor vertices. We say tfiais partially a network is edge 2-connected with at least three anchor

acyclicif its maximal anchor-free subgraph is acyclic. vertices, and the network is such that the distance between

two sensors is known if the sensors are within sensing radius,

Lemma 1l:Let G be the graph of a network. Ifs is then the network is sequentially localizable after doubling the

generically globally rigid inR? and partially acyclic, then sensing radius of all the sensors.



B. Networks Sequentially Localizable in at masSweeps containsN3 as a proper subset.
Let N be a network ofn sensors labelled through .
n where sensori is positioned atr(i), and 7(1),7(2), Hence, N> U N3 C N, and the class of networks with

..., m(n) are distinct points irR2. Let G = (V,€) denote recursively acyclic graphs gives us a larger and more com-
the7 graph ofN, and supposed = {1 m}’ is the set prehensive class of networks that are sequentially localizable.

of N's anchors. Without loss of generality, suppose that fory SequENTIAL LOCALIZATION AND COMPUTATIONAL
eachi € {1,2,...,n}, vertexi of G corresponds to sensor EFEICIENCY

i and vice versa. For each e V, let N'(v) denote the set
consisting of all vertices: where (u,v) € £, and for each
u € N(v) write d,, for the distance between sensars
andv. A sensorv of N is said to belocalizableif for all
consistent assignments for N, we have thaiv(v) = 7(v)
([9]). Note that if sensow € A, thenw is localizable by
definition. While all sensors in a localizable network ar
localizable, it is possible to have localizable sensors in

non-localizable network. Using the notions of localizabl ) . .
9 f N; is considered an anchor &f; if v is in a subnetwork

sensors and partially acyclic graphs, we will define th o ; .
graph properties of a class of networks that are sequentiafly Wher_ej < o '_I'he networklN can be 'OC?‘"ZEd by .f'TSt
localizable in at most, sweeps, where is the number of sequentially localizingN;, and then sequentially localizing
sensors in the network eachN;, i € {2,...,D}, once allN; wherej < i have

e say 0t i rcusvely syl i verces ST el aned For ente 11 D) L
can be ordered asi,vs,...,v, SO that for eachu, Iocallizin N;. Then the Eom lexity of 32 ueztiall Ic?calizin ’
ko€ {1,2,...,n}, there is a subgrapl, = (Vi,&) the enti?e ln.etwork is deteprmingd b@qand theyZ(Nl)s °
of G that satisfies the following conditions. Before L

stating the conditions, we give some definitions. For eacl nl? Ieem'? eoicgf (I\gr)\tglrle I’ccl)(;(;:j'pfbl);hzog:tqridh:egrl:h:
ke{l,...,n}, defineVA = {v; €V | i <k or v; € A}. plexity quentially 'zIng ! workt

For eachk € {1,...,n}, let N, be the network with sensor reT:ide faflcfer::att;:e.ers'on of the paper. we identify the
set V. where the position of senser € Vj is 7(v). Also, lati h'u b tvg Vth : h P pt' ’ Wf : r 'BII( d
if v € V{4, then the position of sensar in Ny is given, relationship between the grapn properties ot NEtworks an

and the distance between sensarand w in N, is given tf:cenc;)\/:,nprnl;tatlonal complexity of the sequential localization
whenever(u, w) € &. The conditions are: OF Networks.

Sequential localization of a network is not always com-
putationally efficient. However, in some cases it is possible
to efficiently localize a network by localizing sections of
the network in sequence. For example, f¥ebe a network,
and suppose there are subnetwdiks N,. .. Np of N such
éhat each sensor df is in at least one of the subnetworks.

upposeN; is sequentially localizable, and eadfi, i €
52, ..., D}, is sequentially localizable when each sensor

VI. APPLICATION OF SWEEPS

1) Each vertex iy \Vy' has degree at least three@.. Consider a set of agents in the plane where each agent

) o ) can communicate with and measure its distance to any
2) The maximal subgraph d&; containing only vertices qther agent within sensing range. A formation is given by

i A i o . . : .
in Vi\Vy" is acyclic. specifying certain pairs of agents and the desired distance
) ) between each specified pair of agents. The agents are said to
3) Sensorv; is a localizable sensor of the netwdl¢.  pein a formation if the distance between each pair of agents

specified by the formation is the desired distance. Given a
Let N, denote the class of networks with recursivelyparticular formation, the goal is for all the agents to position
acyclic graphs. LetN; denote the class of all networks themselves so that they are in the formation. We assume that
N where the graph oN is a trilateration graph andl is if the formation specifies a distandebetween agents and
sequentially localizable in one sweep. L&k denote the j, thend is known to both agents and j, and agents and
class of all networksN whereN has at least three anchors; are initially within sensing range.
and the graph oN is generically globally rigid inR? and When the given formation satisfies certain conditions, the
partially acyclic. From theorem 1, we have that networkSweeps algorithm can be used to compute a target position
in N3 are sequentially localizable in two sweeps. It is alsdor each agent so that the agents will be in formation when
straightforward to show that, and A5 are not disjoint, the agents are at their target positions. The target positions
No & N3 and N3 ¢ No. are all relative positions in the local coordinate system of a
particular agent. The selection of this agent as well as the
Theorem 3: 1) If N € N, then N is sequentially computation of the Sweeps algorithm can be carried out by
localizable in at most sweeps, where is the number the agents. Please see the full length paper for the details.

of sensors inN. Currently, we are in the process of devising a control
2) N> C N7, and the containment is strict, 86, contains strategy for each agent that will cause all of the agents
N> as a proper subset. to move to their target positions. Note that the agents do

3) N3 C N, and the containment is strict, s47 not have GPS and can only measure their distances to and



communicate with other agents within sensing range. Hence,
one of the main challenges will be to ensure that each agent
remains within sensing range of certain other agents as the
agents are moving.

VIl. CONCLUSION

We have presented the localization algorithm Sweeps and
identified several classes of networks that can be successfully
localized by the algorithm. The next step in our research
is to identify the graph properties of all networks that can
be efficiently localized by Sweeps. An important part of
our future works will also be to analyze the effects of
distance measurement errors on the Sweeps algorithm. In
this paper we have studied the sensor network localization
problem and the Sweeps algorithm in the absence of distance
measurement errors. This will help us greatly in pinpointing
key issues when we consider the localization problem with
distance measurement errors.

REFERENCES

[1] T. Eren, D. Goldenberg, W. Whiteley, Y.R. Yang, A.S. Morse, B.D.O.
Anderson, and P.N. Belhumeur. Rigidity, computation, and randomiza-
tion in network localization. IrProc. of IEEE INFOCOM 2004.

[2] J. Aspnes, T. Eren, D. K. Goldenberg, A. S. Morse, W. Whiteley, Y. R.
Yang, B. D. O. Anderson, and P. N. Belhumeur. A theory of network
localization. InTransactions on Mobile Computing005.

[3] B.D.O. Anderson, P.N. Belhumeur, T. Eren, D.K. Goldenberg, A.S.
Morse, W. Whiteley, and Y.R. Yang. Graphical properties of easily
localizable sensor networks. Submitted to Wireless Networks.

[4] A. Sawvides, H. Park, and M. Srivastava. The n-hop multilateration
primitive for node localization problemsACM Mobile networks and
applications 8:443-451, 2003.

[5] Joe Albowicz, Alvin Chen, and Lixia Zhang. Recursive position
estimation in sensor networks. Rroceedings of the 9th International
Conference on Network Protocoplgages 3541, 2001.

[6] L. Doherty, K.S.J. Pister, and L.E. Ghaoui. Convex position estimation
in wireless sensor networks. IRroceedings of IEEE INFOCOM
Anchorage, Ak, 2001.

[7] D. Niculescu and B. Nath. Ad-hoc positioning system Pitmceedings
of IEEE Globecom2001.

[8] D.K. Goldenberg, Pascal Bihler, M. Cao, J. Fang, B.D.O. Anderson,
A.S. Morse, and Y.R. Yang. Localization in sparse networks using
sweeps. To appear in Mobicom, 2006.

[9] D.K. Goldenberg, A. Krishnamurthy, W.C. Maness, Y.R. Yang,
A. Young, A.S. Morse, A. Savvides, and B.D.O. Anderson. Network
localization in partially localizable networks. Rroceedings of IEEE
Infocom 2005.



