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Abstract— The sensor network localization problem with
distance information is to determine the positions of all sensors
in a network given the positions of some sensors and the dis-
tances between some pairs of sensors. We present a specialized
localization algorithm and identify the graph properties of some
classes of networks that can be localized by the algorithm. We
also give an important application of our algorithm in creating
formations in multi-agent systems.

I. I NTRODUCTION

Determining the positions of sensors is essential in many
network applications such as geographic routing, coverage
and creating formations. Equipping each sensor in a network
with GPS is not feasible in many cases because of the large
number of sensors and the cost associated with a GPS unit.
Hence, we attack this problem by exploiting the connectivity
of a sensor network and some common capabilities of
sensors. More specifically, we assume a sensor can measure
its distances to and communicate with certain other sensors
in the network.

The sensor network localization problem with distance
information is to determine the positions of all sensors in
a network given the positions of some sensors and the
distances between some pairs of sensors. A sensor whose
position is given is called ananchor. The sensor network
localization problem is solvable if and only if the network
is “localizable.” A network inRd is said to belocalizableif
there exists exactly one position inRd corresponding to each
non-anchor sensor such that the given inter-sensor distances
are satisfied. The authors of [1] use rigidity theory to give
the necessary and sufficient conditions for a network to be
localizable. However, the process of localizing a network has
been shown to be NP-hard even when the network is known
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to be localizable [2]. This leaves us with the more refined
questions of how should we go about localizing networks,
and what kinds of networks can we efficiently localize? This
has been investigated in [3] and we extend the results of
that paper. While some ingenious heuristics-based schemes
have been proposed ([4], [5], [6], [7]), we are interested
in provably correct localization algorithms and the kinds of
networks that can be efficiently localized by them. In the
following we will give a localization algorithm that consists
of a finite number of steps to be carried out sequentially.

We first give some terms and definitions from graph rigid-
ity theory in section 2. We present a localization algorithm
in section 3, and identify some classes of networks that
can be localized by the algorithm in section 4. We discuss
the computational efficiency of the algorithm in section 5,
and then give an application of the algorithm in creating
formations in section 6.

II. T ERMS AND DEFINITIONS

We begin by giving some terms and definitions to be
used in the exposition which follows. Amulti-point p =
{p1, . . . , pn} in d-dimensional space is a set ofn points in
Rd labelledp1, . . . , pn. Two multi-pointsp = {p1, . . . , pn}
and q = {q1, . . . , qn} of n points arecongruentif for all
i, j ∈ {1, . . . , n}, the distance betweenpi and pj is equal
to the distance betweenqi and qj . A point formationof n
points at a multi-pointp = {p1, . . . , pn} consists ofp and a
simple undirected graphG with vertex setV = {1, . . . , n},
and is denoted by(G, p). If (i, j) is an edge inG, then we
say thelengthof edge(i, j) in the point formation(G, p) is
the distance betweenpi andpj .

A point formation(G, p) is globally rigid in Rd if p andq
are congruent multi-points inRd whenever(G, p) and(G, q)
have the same edge lengths. A point formation(G, p) of n
points isgenerically globally rigidin Rd if there existsε > 0
such that(G, q) is globally rigid in Rd for all multi-points
q = {q1, . . . , qn} where |qi − pi| < ε ∀i ∈ {1, . . . , n}. A
graphG is said to begenerically globally rigid in R2 if
(G, p) is generically globally rigid for some multi-pointp.
There are a number of efficient algorithms for determining
if a graph is generically globally rigid inR2. If graphG is



generically globally rigid inR2, then (G, p) is guaranteed
to be globally rigid for all multi-pointsp in R2 where
the coordinates ofp are algebraically independent over the
rationals. A graph that is generically globally rigid inR2 is
said to beminimally generically globally rigidin R2 if the
removal of any edge causes the graph to not be generically
globally rigid in R2.

A sensor network withn sensors is modelled by a point
formation (G, p), where each sensor corresponds to exactly
one vertex ofG, and vice versa, with(i, j) being an edge
of G if i and j are distinct and the distance between the
corresponding sensors is known, andp = {p1, . . . , pn}
where pi is the position of the sensor corresponding to
vertex i. We say thatG is the graph of the network, andp
is the multi-point of the network. Vertexv of G is called
an anchor vertexif the sensor corresponding tov is an
anchor, and asensor vertexotherwise. It is known that if
the coordinates of the multi-point of a network inR2 are
algebraically independent over the rationals, then the network
is localizable if and only if it has at least 3 non-collinear
anchors and the graph of the network is generically globally
rigid in R2.

Let G be a graph with vertex setV and edge setE , which
we denote byG = (V, E). The second powerof G, written
G2, is the graph with vertex setV and edge setE∪E2, where
(i, j) ∈ E2 just in casei, j ∈ V and there existsk ∈ V
such that(i, k), (k, j) ∈ E . Define aring graph as a graph
whose vertices can be labelled as{1, . . . , n} so that vertex
i, 1 < i < n, is adjacent to only verticesi − 1 and i + 1,
vertex 1 is adjacent to only vertices2 and n, and vertexn
is adjacent to only verticesn− 1 and1.

III. T HE SWEEPSALGORITHM

In the following, we will describe a localization algorithm
in R2 that consists of a finite number of steps to be carried
out sequentially. We will subsequently give examples where
the number of steps is at most 2, and separately, at mostn.

Let N be a network ofn sensors labelled1 through
n where sensori is positioned atπ(i), and π(1), π(2),
. . . , π(n) are distinct points inR2. Suppose that1, 2, . . . , m
are the labels ofN’s anchors and thatm ≥ 3. LetG = (V, E)
be the graph ofN. Without loss of generality, suppose that
for each i ∈ {1, 2, . . . , n}, vertex i of G corresponds to
sensori and vice versa. For eachv ∈ V, let N (v) denote
the set consisting of all verticesu where(u, v) ∈ E , and for
eachu ∈ N (v) write duv for the distance between sensors
u and v. By an assignmentfor N is meant any function
α : {1, 2, . . . , n} → R2. An assignment forN is consistent
if for all v ∈ {1, 2, . . . , n}, ||α(u) − α(v)|| = duv for all
u ∈ N (v), andα(v) = π(v) whenever sensorv is an anchor,
i.e. v ∈ {1, 2, . . . , m}. Hence,N is localizable if and only if
there is exactly one consistent assignment forN.

Let 2R
2

be the power set ofR2 and writeR+ for the set
of positive real numbers. Letf : 2R

2 × R+ → 2R
2

denote
the function(S, d) 7−→ S ′ whereS ′ is the set ofp ∈ R2

such that||p − q|| = d for someq ∈ S. If S is not empty,
then geometricallyf(S, d) is the union of all points in the

plane which lie on circles with the same radiusd centered at
the points inS. Of course ifS is empty then so isf(S, d)
and conversely. We will be especially interested in the case
when S is a non-empty “finite set” andd > 0, where by
finite setwe mean a set with a finite number of points inR2.
In this casef(S, d) is simply the union of a finite number
of circles in the plane which all have radiusd. An easily
verified property off is that if u ∈ N (v), andS(u) is a set
for which π(u) ∈ S(u), thenπ(v) ∈ f(S(u), duv). We call
this theposition keepingproperty off .

Let S denote the set of all non-empty subsets ofR2

with finitely many elements. Letq be a positive integer
no smaller than 2 and writeSq for the q-fold Cartesian
product ofS with itself. Similarly, let (R+)q denote theq-
fold Cartesian product ofR+ with itself. Our aim is to define
a functiongq : Sq × (R+)q → 2R

2
in such a way so that for

each{S1,S2, . . . ,Sq} ∈ Sq and {d1, d2, . . . , dq} ∈ (R+)q,
gq(S1,S2, . . . ,Sq, d1, d2, . . . , dq) is at most a finite set. Fur-
thermore, we shall require the definition ofgq to be such that
whenever there are distinct pointsui ∈ Si, i ∈ {1, 2, . . . , q},
if v ∈ R2 satisfies‖v − ui‖ = di, i ∈ {1, 2, . . . , q},
thenv must be a point ingq(S1,S2, . . . ,Sq, d1, d2, . . . , dq).
Defining gq(S1,S2, . . . ,Sq, d1, d2, . . . , dq) in the most ob-
vious way as the intersection of the setsf(Si, di), i ∈
{1, 2, . . . , q}, will not be adequate for it may be the case
that the resulting intersection is a continuous circle of points
in the plane rather than a finite set.

Let I =
⋂q

j=1 Sj , and let p1, p2, . . . , pk denote the
elements ofI. For any setS ∈ S, and any subsetT ⊂ S,
let S\T denote the complement ofT in S. The following
definition of gq satisfies both of the requirements listed
above:

gq(S1,S2, . . . ,Sq, d1, d2, . . . , dq) =(
f(S1\I, d1) ∩ f(S2, d2) ∩ . . . ∩ f(Sq, dq)

) ⋃

( k⋃

i=1

f({pi}, d1) ∩ f(S2\{pi}, d2) ∩ . . .

. . . ∩ f(Sq\{pi}, dq)
)

(1)

An orderingv1, v2, . . . , vn of the vertices inV for which

vi = i, i ∈ {1, 2, . . . , m}
and at least one of the sets

M(vi) = N (vi) ∩ {v1, v2, . . . , vi−1},
i ∈ {m + 1,m + 2, . . . , n}

is non-empty is called asweepof N and is denoted by[v].
Hence, if an orderingv1, v2, . . . , vn is a sweep, then there is
at least one vertexvi wherei > m and vi is adjacent to at
least one vertex preceding it. We shall require the networks
we consider to have at least one “finite position generating”
sweepv1, v2, . . . , vn, where byfinite position generatingwe
mean that each vertexvi, i > m, is adjacent to at least
two distinct vertices preceding it. Ifv1, v2, . . . , vn is a finite



position generating sweep, then each of theM(vi), i > m,
is a set of at least two elements.

In the following, we will describe a recursive procedure for
computing a sequence of finite sets for each vertexv ∈ V,
i.e. S(v, 1), S(v, 2), · · · S(v, i), · · · , such that eachS(v, i)
is a finite set,π(v) ∈ S(v, i), and if i < j, thenS(v, i) ⊃
S(v, j). We begin by choosing a finite position generating
sweep[v] of N. For i ∈ {m + 1,m + 2, . . . , n}, let

M(vi) = N (vi) ∩ {v1, v2, . . . , vi−1}
We denote the cardinality ofM(vi) by qi and the elements of
M(vi) by ui1, ui2, . . . , uiqi

. We define the setsS(vi, 1), i ∈
{1, 2, . . . , n} as follows. Fori ∈ {1, 2, . . . , m}, we define

S(vi, 1) = {π(vi)} (2)

and for i ∈ {m + 1, m + 2, . . . , n}, we define

S(vi, 1) = gqi
(S(ui1, 1),S(ui2, 1), . . . ,S(uiqi

, 1),
dui1vi

, dui2vi
, . . . , duiqi

vi
) (3)

Note that since[v] is assumed to be a finite position gen-
erating sweep, eachM(vi) has at least 2 elements and so
qi ≥ 2. Hence, fori ∈ {m+1,m+2, . . . , n}, gqi

is defined
andS(vi, 1) is a finite set because the image ofgqi consists
only of finite sets. SinceS(vi, 1), i ∈ {1, 2, . . . ,m}, are also
finite sets because of (2), we have thatS(v, 1) is a finite set
for eachv ∈ V. Note also thatπ(vi) ∈ S(vi, 1), vi ∈ V.
This is clearly true fori ∈ {1, 2, . . . , m} because of (2).
The assumption thatπ(v), v ∈ V, are distinct together with
the definition ofgqi and the position keeping property off
imply that π(vi) ∈ S(vi, 1) for i ∈ {m + 1,m + 2, . . . , n}.
We call the computation ofS(v, 1), v ∈ V, thecomputation
of the initial sweepof N.

Now suppose that the initial sweep ofN has been com-
puted. The setsS(v, 2), v ∈ V, are computed as follows.
Let [u] = u1, u2, . . . , un be a sweep, and letM(ui) =
N (ui) ∩ {u1, u2, . . . , ui−1} for i ∈ {m + 1,m + 2, . . . , n}.
Note that[u] need not be a finite position generating sweep.
For i ∈ {1, 2, . . . ,m} we define

S(ui, 2) = {π(ui)} (4)

and for i ∈ {m + 1, m + 2, . . . , n} we define

S(ui, 2) =

S(ui, 1)
⋂

w∈M(ui)

f(S(w, 2), dwui) if M(ui) 6= ∅ (5)

S(ui, 2) = S(ui, 1) if M(ui) = ∅ (6)

For eachui, i ∈ {m + 1,m + 2, . . . , n}, (5) and (6) implies
that S(ui, 2) must be a finite set sinceS(ui, 1) is a finite
set. Moreover, sinceS(ui, 2), i ∈ {1, 2, . . . , m}, are all finite
sets because of (4), we have thatS(v, 2) is a finite set for
eachv ∈ V. Also, π(v) ∈ S(v, 2) for all v ∈ V. This is
clearly true forui, i ∈ {1, 2, . . . , m} because of (4). For
i ∈ {m + 1,m + 2, . . . , n}, that π(ui) ∈ S(ui, 1) and the
position keeping property off imply π(ui) ∈ S(ui, 2). We
call the computation ofS(v, 2), v ∈ V, the computation of

the second sweep ofN. It is obvious from (4), (5) and (6)
that S(v, 2) ⊂ S(v, 1) for all v ∈ V.

Now suppose thekth sweep ofN has been computed,
and that for eachv ∈ V , π(v) ∈ S(v, k) andS(v, k) is a
finite set. The(k + 1)th sweep is computed as follows. Let
[x] = x1, x2, . . . , xn be a sweep, and letM(xi) = N (xi)∩
{x1, x2, . . . , xi−1} for i ∈ {m + 1,m + 2, . . . , n}. For i ∈
{1, 2, . . . , m}, we define

S(xi, k + 1) = {π(xi)} (7)

and for i ∈ {m + 1,m + 2, . . . , n} we define

S(xi, k + 1) =

S(xi, k)
⋂

w∈M(xi)

f(S(w, k + 1), dwxi
)

if M(xi) 6= ∅ (8)

S(xi, k + 1) = S(xi, k) if M(xi) = ∅ (9)

For eachv ∈ V, we have thatS(v, k + 1) is a finite set,
π(v) ∈ S(v, k + 1) andS(v, k + 1) ⊂ S(v, k) by the same
reasoning as before.

The preceding shows that if we compute a sequence of
sweeps starting with one which is finite position generating,
we can generate a sequence of finite sets for eachv ∈ V, i.e.
S(v, 1), S(v, 2), · · · S(v, i) · · · , where each set is obtained
by means of a finite number of computations and

S(v, 1) ⊃ S(v, 2) ⊃ · · · ⊃ S(v, i) · · ·
andπ(v) ∈ S(v, i) for eachi. Thus if we can select a finite
number of sweeps, sayk, such that for allv ∈ V, each
S(v, k) will contain just the positionπ(v) of sensorv, then
localization will be complete. We call this thesequential
localization of the network, and we say that the network
is sequentially localizablein k sweeps. Hence, sequential
localization of a network is carried out in a finite number
of steps, each of which is solvable in a straightforward
manner. This is in sharp contrast to a direct assault on the
localization problem by attempting to solve a large number
of simultaneous quadratic equations in2(n −m) variables.
In the exposition which follows, we will give the graph
properties of some networks that are sequentially localizable
in just one or two sweeps. The sweeps are selected by con-
sidering properties of the network’s graph, hence localizing
the network in as few sweeps as possible.

In [8], an extension to the Sweeps algorithm is proposed
that results in significant reductions in the computational
complexity of using Sweeps to localize certain networks.
More specifically, suppose[x] is thekth sweep. Forxi, i ≤
m, let D(xi, k) = {xi}. For xi, i > m, defineD(xi, 0) =
{xi} and letD(xi, k) =

⋃
u∈M(xi)

D(u, k) ∪ D(xi, k − 1).
For xi, i ≤ m, defineS(xi, k) as in (7). Forxi, i > m,
first let S(xi, k) be as defined in (3) ifk = 1, or (8) and
(9) if k > 1. For p ∈ S(xi, k), we say thatp is a consistent
position if there is a consistent assignmentᾱ for the sub-
network ofN corresponding to the subgraph ofG induced by
vertices inD(xi, k), whereᾱ(xi) = p andᾱ(xj) ∈ S(xj , k)



for xj ∈ D(xi, k), j < i, and ᾱ(xj) ∈ S(xj , k − 1) for
xj ∈ D(xi, k), j > i. In the extension to Sweeps, all points
in S(xi, k) that are not consistent positions are removed from
S(xi, k) before computing anyS(xj , k), j > i.

IV. GRAPHICAL PROPERTIES OFSEQUENTIALLY

LOCALIZABLE NETWORKS

A graph is abilateration graph with bilateration ordering
v1, . . . , vn if its vertices can be relabelled asv1, . . . , vn so
that the subgraph induced byv1 and v2 is complete, and
eachvi, 2 < i, is adjacent to at least two distinct vertices
vj which “precede” it in the ordering, where byprecede
we meanj < i. A necessary condition for a network to
be sequentially localizable is that its graph is a bilateration
graph. A graph isk-connectedif the graph remains connected
after removing anyk− 1 vertices and the edges incident on
those vertices. It is easy to see that bilateration graphs are
2-connected.

All the networks referred to below are inR2 and the coor-
dinates of their multi-points are assumed to be algebraically
independent over the rationals. We note that for any positive
integerd, the coordinates ofalmost all multi-points inRd

are algebraically independent over the rationals.

A. Networks Sequentially Localizable in One and Two
Sweeps

A graph is said to be atrilateration graph with trilat-
eration orderingv1, . . . , vn if its vertices can be relabelled
as v1, . . . , vn so that the subgraph induced byv1, v2, v3 is
complete and eachvi with i > 3 is adjacent to at least three
distinct verticesvj which precede it in the ordering ([1]). It is
shown in [1] that trilateration graphs are generically globally
rigid in R2.

A network is said to beeasily localizableif its sensors
can be relabelled asv1, . . . , vn so that the distance between
vi andvj is known wheni, j ≤ 3, and the position of sensor
vi, i > 3, can be uniquely determined from just the positions
of sensorsvj wherej < i and the distance betweenvj and
vi is known, together with the distances from those sensors
to vi ([1], [3]). It is easy to see that a network with at least
three anchors is easily localizable if and only if its graph is
a trilateration graph.

SupposeN has at least three anchors and the graph ofN is
a trilateration graph with trilateration orderingv1, . . . , vn. If
v1, v2 and v3 are anchor vertices, thenN is sequentially
localizable in one sweep. Otherwise,N can be localized
using one sweep of the Sweeps algorithm in combination
with a simple Euclidean transformation. For complete details,
please see the full length version of the paper.

Let G be the graph of a network. We define themaximal
anchor-free subgraphof G to be the maximal subgraph of
G containing only sensor vertices. We say thatG is partially
acyclic if its maximal anchor-free subgraph is acyclic.

Lemma 1:Let G be the graph of a network. IfG is
generically globally rigid inR2 and partially acyclic, then

G is a bilateration graph.

Remark 1:A stronger version of lemma1 also holds.
If each sensor vertex ofG has degree at least three and
G is partially acyclic, thenG is a bilateration graph. This
is stronger since each vertex of a graph that is generically
globally rigid in R2 must have degree at least three.

Theorem 1:A network with at least three anchors is
sequentially localizable in two sweeps if its graph is
generically globally rigid inR2 and partially acyclic.

Remark 2:The network’s graph must be generically
globally rigid in R2 in order for theorem 1 to hold. This is
because the network cannot be localizable if its graph is not
generically globally rigid inR2, and it is straightforward to
show that a sequentially localizable network must also be
localizable.

A number of partially acyclic graphs that are generically
globally rigid in R2 are also minimally generically globally
rigid in R2. This and theorem1 implies there are localizable
networks with just enough edges to ensure localizability that
are also sequentially localizable.

Many practical networks are such that the distance
between two sensors is known if the sensors are within
sensing radius of each other. SupposeN̄ is such a network,
and letḠ be the graph of̄N.

Theorem 2:Suppose there exists a subgraphGr of Ḡ
with the same vertex set as̄G, andGr is a ring graph with
at least three anchor verticesi, j andk wherej is adjacent
to both i and k. Then N̄ is sequentially localizable in two
sweeps after doubling the sensing radius of each sensor.

Remark 3:Theorem 2 can be used to show the following.
Suppose there exists a subgraphGr of Ḡ with the same
vertex set as̄G, andGr is a ring graph. IfN̄ has at least
three anchors, then after doubling the sensing radius of
each sensor,̄N is either sequentially localizable in two
sweeps orN̄ can be localized using two sweeps of the
Sweeps algorithm in combination with a simple Euclidean
transformation. For the complete details, see the full length
version of the paper.

A graph is edge 2-connectedif there exists two paths
with no edge in common between any two vertices. It
is known that the second power of an edge 2-connected
graph is generically globally rigid inR2 ([3]). An important
consequence of this and theorem2 is that if the graph of
a network is edge 2-connected with at least three anchor
vertices, and the network is such that the distance between
two sensors is known if the sensors are within sensing radius,
then the network is sequentially localizable after doubling the
sensing radius of all the sensors.



B. Networks Sequentially Localizable in at mostn Sweeps

Let N be a network ofn sensors labelled1 through
n where sensori is positioned atπ(i), and π(1), π(2),
. . . , π(n) are distinct points inR2. Let G = (V, E) denote
the graph ofN, and supposeA = {1, . . . , m} is the set
of N’s anchors. Without loss of generality, suppose that for
eachi ∈ {1, 2, . . . , n}, vertex i of G corresponds to sensor
i and vice versa. For eachv ∈ V, let N (v) denote the set
consisting of all verticesu where(u, v) ∈ E , and for each
u ∈ N (v) write duv for the distance between sensorsu
and v. A sensorv of N is said to belocalizable if for all
consistent assignmentsα for N, we have thatα(v) = π(v)
([9]). Note that if sensorv ∈ A, then v is localizable by
definition. While all sensors in a localizable network are
localizable, it is possible to have localizable sensors in a
non-localizable network. Using the notions of localizable
sensors and partially acyclic graphs, we will define the
graph properties of a class of networks that are sequentially
localizable in at mostn sweeps, wheren is the number of
sensors in the network.

We say thatG is recursively acyclic if its vertices
can be ordered asv1, v2, . . . , vn so that for eachvk,
k ∈ {1, 2, . . . , n}, there is a subgraphGk = (Vk, Ek)
of G that satisfies the following conditions. Before
stating the conditions, we give some definitions. For each
k ∈ {1, . . . , n}, defineVAk = {vi ∈ Vk | i < k or vi ∈ A}.
For eachk ∈ {1, . . . , n}, let Nk be the network with sensor
set Vk where the position of sensorv ∈ Vk is π(v). Also,
if v ∈ VAk , then the position of sensorv in Nk is given,
and the distance between sensorsu and w in Nk is given
whenever(u,w) ∈ Ek. The conditions are:

1) Each vertex inVk\VAk has degree at least three inGk.

2) The maximal subgraph ofGk containing only vertices
in Vk\VAk is acyclic.

3) Sensorvk is a localizable sensor of the networkNk.

Let N1 denote the class of networks with recursively
acyclic graphs. LetN2 denote the class of all networks
N where the graph ofN is a trilateration graph andN is
sequentially localizable in one sweep. LetN3 denote the
class of all networksN whereN has at least three anchors
and the graph ofN is generically globally rigid inR2 and
partially acyclic. From theorem 1, we have that networks
in N3 are sequentially localizable in two sweeps. It is also
straightforward to show thatN2 and N3 are not disjoint,
N2 6⊂ N3 andN3 6⊂ N2.

Theorem 3: 1) If N ∈ N1, then N is sequentially
localizable in at mostn sweeps, wheren is the number
of sensors inN.

2) N2 ⊂ N1, and the containment is strict, soN1 contains
N2 as a proper subset.

3) N3 ⊂ N1, and the containment is strict, soN1

containsN3 as a proper subset.

Hence,N2 ∪ N3 ⊂ N1, and the class of networks with
recursively acyclic graphs gives us a larger and more com-
prehensive class of networks that are sequentially localizable.

V. SEQUENTIAL LOCALIZATION AND COMPUTATIONAL

EFFICIENCY

Sequential localization of a network is not always com-
putationally efficient. However, in some cases it is possible
to efficiently localize a network by localizing sections of
the network in sequence. For example, letN be a network,
and suppose there are subnetworksN1, N2. . . ND of N such
that each sensor ofN is in at least one of the subnetworks.
SupposeN1 is sequentially localizable, and eachNi, i ∈
{2, . . . , D}, is sequentially localizable when each sensorv
of Ni is considered an anchor ofNi if v is in a subnetwork
Nj where j < i. The networkN can be localized by first
sequentially localizingN1, and then sequentially localizing
eachNi, i ∈ {2, . . . , D}, once allNj where j < i have
been sequentially localized. For eachi ∈ {1, . . . , D}, let
Z(Ni) denote the computational complexity of sequentially
localizingNi. Then the complexity of sequentially localizing
the entire network is determined byD and theZ(Ni)s.
If D and eachZ(Ni) are acceptably bounded, then the
complexity of sequentially localizing the entire network is
rendered acceptable.

In the full length version of the paper, we identify the
relationship between the graph properties of networks and
the computational complexity of the sequential localization
of networks.

VI. A PPLICATION OFSWEEPS

Consider a set of agents in the plane where each agent
can communicate with and measure its distance to any
other agent within sensing range. A formation is given by
specifying certain pairs of agents and the desired distance
between each specified pair of agents. The agents are said to
be in a formation if the distance between each pair of agents
specified by the formation is the desired distance. Given a
particular formation, the goal is for all the agents to position
themselves so that they are in the formation. We assume that
if the formation specifies a distanceδ between agentsi and
j, thenδ is known to both agentsi and j, and agentsi and
j are initially within sensing range.

When the given formation satisfies certain conditions, the
Sweeps algorithm can be used to compute a target position
for each agent so that the agents will be in formation when
the agents are at their target positions. The target positions
are all relative positions in the local coordinate system of a
particular agent. The selection of this agent as well as the
computation of the Sweeps algorithm can be carried out by
the agents. Please see the full length paper for the details.

Currently, we are in the process of devising a control
strategy for each agent that will cause all of the agents
to move to their target positions. Note that the agents do
not have GPS and can only measure their distances to and



communicate with other agents within sensing range. Hence,
one of the main challenges will be to ensure that each agent
remains within sensing range of certain other agents as the
agents are moving.

VII. C ONCLUSION

We have presented the localization algorithm Sweeps and
identified several classes of networks that can be successfully
localized by the algorithm. The next step in our research
is to identify the graph properties of all networks that can
be efficiently localized by Sweeps. An important part of
our future works will also be to analyze the effects of
distance measurement errors on the Sweeps algorithm. In
this paper we have studied the sensor network localization
problem and the Sweeps algorithm in the absence of distance
measurement errors. This will help us greatly in pinpointing
key issues when we consider the localization problem with
distance measurement errors.
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