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The sensor network localization problem with distance information is to determine the positions
of all sensors in a network given the positions of some sensors and the distances between some pairs
of sensors. Knowing the positions of sensors is essential in many network algorithms such as
geographic routing and coverage. The sensor network localization problem is solvable if and only if
the network is “localizable”. A network is said to be localizable if there exists exactly one position
corresponding to each sensor such that the given inter-sensor distances are satisfied. The authors of
[1] use rigidity theory to give the necessary and sufficient conditions for a network to be localizable.
However, the process of localizing a network has been shown to be NP-hard even when the network
is known to be localizable [2]. This leaves us to consider the more refined question of what kinds of
localizable networks can we efficiently localize? This has been investigated in [3] and we extend the
results of that paper. While some ingenious heuristics-based schemes have been proposed [4, 5, 6, 7],
we are interested in provably correct localization algorithms and the kinds of networks that can be
efficiently localized by them. In the following we will give a localization algorithm that consists of
a finite number of steps to be carried out sequentially. We will also give some classes of networks
that can be efficiently localized by the algorithm. In the process, we will raise a number of graph
theoretic questions related to rigidity theory. The resolution of these questions can in turn help us
shed light on which networks can be efficiently and provably correctly localized. This is another
indication that the sensor network localization problem and rigidity theory are intricately related.

We begin by giving some terms and definitions to be used in the exposition which follows. A
configuration p = {p1, . . . , pm} in d-dimensional space is a set of m points in Rd, and p is said to
be generic if the coordinates of points in p are algebraically independent. Two configurations p
and q of m points are congruent if for all i, j ∈ {1, . . . ,m}, the distance between the ith and jth
points of p is equal to the distance between the ith and jth points of q. A point formation of m
points at a configuration p consists of configuration p and a simple undirected graph G with vertex
set V = {1, . . . , m}, and is denoted by (G, p). If (i, j) is an edge in G, then we say the length of
edge (i, j) in point formation (G, p) is the distance between the ith and jth points of p. A point
formation (G, p) is globally rigid in Rd if p and q are congruent configurations in Rd whenever (G, p)
and (G, q) have the same edge lengths. A graph G is said to be generically globally rigid in Rd if
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(G, p) is globally rigid in Rd whenever p in Rd is generic. Henceforth we will fix d = 2 and omit
any mention of Rd. Since almost all configurations are generic, we will also ignore the non-generic
configurations and consider the generic global rigidity of a graph. A graph is minimally generically
globally rigid if the removal of any edge causes the graph to not be generically globally rigid. A
sensor network is modelled by a point formation (G, p) where p is the set of sensor positions, and
each sensor corresponds to exactly one vertex of G, and vice versa, with (i, j) being an edge of G
if the distance between the corresponding sensors is known. We say that G is the graph of the
network. A vertex v of G is called an anchor vertex if the position of sensor v is given and a sensor
vertex if it is not. It is known that if a network is modelled by point formation (G, p) and p is
generic, then the network is localizable if and only if it has at least 3 non-collinear anchors and G
is generically globally rigid. The second power of G = (V, E), written G2, is the graph with vertex
set V and edge set E ∪ E2, where (i, j) ∈ E2 just in case i, j ∈ V and there exists k ∈ V such that
(i, k), (k, j) ∈ E .

A graph is said to be a trilateration graph with trilateration ordering {v1, . . . , vn} if its vertices
can be relabelled as {v1, . . . , vn} so that the subgraph induced by v1, v2, v3 is complete and each
vi with i > 3 is adjacent to at least three distinct vertices vj which “precede” it in the ordering,
where by precede we mean j < i ([1]). It is shown in [1] that trilateration graphs are generically
globally rigid. A graph is a bilateration graph with bilateration ordering {v1, . . . , vn} if its vertices
can be relabelled as {v1, . . . , vn} so that (1) the subgraph induced by v1, v2, v3 is complete, (2)
each vi, 3 < i < n, is adjacent to at least two distinct vertices vj which precede it in the ordering
and one vertex vk which “follows” it in the ordering, where by follows we mean k > i, and (3)
vertex vn is adjacent to at least three distinct vertices preceding it in the ordering. We show
that bilateration graphs are 2-connected but not necessarily 3-connected. We define the maximal
anchor-free subgraph of the graph G of a network to be the maximal subgraph of G containing only
sensor vertices. We say that G is partially acyclic if its maximal anchor-free subgraph is acyclic.
A graph is edge 2-connected if there exists two paths with no edge in common between any two
vertices. It is known that the second power of an edge 2-connected graph is generically globally
rigid in R2 [3]. We show that the second power of an edge 2-connected graph is also a bilateration
graph.

In the following, we will describe a localization algorithm that consists of a finite number of steps
to be carried out sequentially. We will then use trilateration, bilateration and edge 2-connected
graphs to identify and construct some networks that can be efficiently localized by this algorithm.

Let N be a network of n sensors labelled 1 through n and positioned at distinct points π(1), π(2),
. . . , π(n) in R2. Suppose that 1, 2, . . . ,m are the labels of N’s anchors and that m ≥ 3. Let
G = (V, E) be the network’s graph. For each vertex v ∈ V, let N (v) denote the set consisting of
v and all vertices in G which are adjacent to v. For each such vertex u ∈ N (v) write duv for the
distance between sensors u and v.

Let 2R
2

be the power set of R2 and write R+ for the set of positive real numbers. Let f :
2R

2 × R+ → 2R
2

denote the function (S, d) 7−→ S ′ where S ′ is the set of p ∈ R2 such that
||p− q|| = d for some q ∈ S. If S is not empty, then geometrically f(S, d) is the union of all points
in the plane which lie on circles with the same radius d centered at the points in S. Of course if S
is empty then so is f(S, d) and conversely. We will be especially interested in the case when S is a
non-empty “finite set” and d > 0, where by finite set we mean a set with a finite number of points
in R2. In this case f(S, d) is simply the union of a finite number of circles in the plane which all
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have radius d. An easily verified property of f is that if vertex u is adjacent to vertex v ∈ V, and
S(u) is a set for which π(u) ∈ S(u), then π(v) ∈ f(S(u), duv). We call this the position keeping
property of f .

Let S denote the set of all non-empty subsets of R2 with finitely many elements. Let q be
a positive integer no smaller than 2 and write Sq for the q-fold Cartesian product of S with it-
self. Similarly, let (R+)q denote the q-fold Cartesian product of R+ with itself. Our aim is to
define a function gq : Sq × (R+)q → 2R

2
in such a way so that for each {S1,S2, . . . ,Sq} ∈ Sq

and {d1, d2, . . . , dq} ∈ (R+)q, gq(S1,S2, . . . ,Sq, d1, d2, . . . , dq) is at most a finite set. Furthermore,
we shall require the definition of gq to be such that whenever there are distinct points ui ∈ Si,
i ∈ {1, 2, . . . , q}, if v ∈ R2 satisfies ‖v − ui‖ = di, i ∈ {1, 2, . . . , q}, then v must be a point in
gq(S1,S2, . . . ,Sq, d1, d2, . . . , dq). Defining gq(S1,S2, . . . ,Sq, d1, d2, . . . , dq) in the most obvious way
as the intersection of the sets f(Si, di), i ∈ {1, 2, . . . , q}, will not be adequate for it may be the case
that the resulting intersection is a continuous circle of points in the plane rather than a finite set.

Let I =
⋂q

j=1 Sj , and let p1, p2, . . . , pk denote the elements of I. For any set S ∈ S, and any
subset T ⊂ S, let S\T denote the complement of T in S. The following definition of gq satisfies
both of the requirements listed above:

gq(S1,S2, . . . ,Sq, d1, d2, . . . , dq) =
(

f(S1\I, d1) ∩ f(S2, d2) ∩ . . . ∩ f(Sq, dq)
) ⋃

( k⋃

i=1

f({pi}, d1) ∩ f(S2\{pi}, d2) ∩ . . . ∩ f(Sq\{pi}, dq)
)

(1)

An ordering v1, v2, . . . , vn of the vertices in V for which vi = i, i ∈ {1, 2, . . . ,m}, and the sets

M(vi) = N (vi) ∩ {v1, v2, . . . , vi−1}, i ∈ {m + 1,m + 2, . . . , n}
are all non-empty is called a sweep of N and is denoted by [v]. Note that an ordering v1, v2, . . . , vn

is a sweep just in case that each vi, i > m, is adjacent to at least one vertex preceding it. We
shall require the networks we consider to have at least one “finite position generating” sweep
v1, v2, . . . , vn, where by finite position generating we mean that each vertex vi, i > m, is adjacent
to at least two distinct vertices preceding it. If v1, v2, . . . , vn is a finite position generating sweep,
then each of the M(vi), i > m, is a set of at least two elements.

In the following, we will describe a recursive procedure for computing a sequence of finite
sets for each vertex v ∈ V, i.e. S(v, 1), S(v, 2), · · · S(v, i), · · ·, such that each S(v, i) is a finite set,
π(v) ∈ S(v, i), and if i < j, then S(v, i) ⊃ S(v, j). We begin by choosing a finite position generating
sweep [v] of N. For i ∈ {m + 1,m + 2, . . . , n}, let

M(vi) = N (vi) ∩ {v1, v2, . . . , vi−1}
We denote the cardinality of M(vi) by qi and the elements of M(vi) by ui1, ui2, . . . , uiqi . We define
the sets S(vi, 1), i ∈ {1, 2, . . . , n} as follows. For i ∈ {1, 2, . . . ,m}, we define

S(vi, 1) = π(vi) (2)

and for i ∈ {m + 1,m + 2, . . . , n}, we define

S(vi, 1) = gqi(S(ui1, 1),S(ui2, 1), . . . ,S(uiqi , 1), dui1vi , dui2vi , . . . , duiqi
vi) (3)
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Note that since [v] is assumed to be a finite position generating sweep, each M(vi) has at least
2 elements and qi ≥ 2. Hence, for i ∈ {m + 1,m + 2, . . . , n}, gqi is defined and S(vi, 1) is a
finite set because the image of gqi consists only of finite sets. Since S(vi, 1), i ∈ {1, 2, . . . , m}, are
also finite sets because of (2), we have that S(v, 1) is a finite set for each v ∈ V. Note also that
π(vi) ∈ S(vi, 1), vi ∈ V. This is clearly true for i ∈ {1, 2, . . . , m} because of (2). The assumption
that π(v), v ∈ V, are distinct together with the definition of gqi and the position keeping property of
f imply that π(vi) ∈ S(vi, 1) for i ∈ {m+1,m+2, . . . , n}. We call the computation of S(v, 1), v ∈ V,
the computation of the initial sweep of N.

Now suppose that the initial sweep of N has been computed. The sets S(v, 2), v ∈ V, are
computed as follows. Let [u] = u1, u2, . . . , un be a sweep, and letM(ui) = N (ui)∩{u1, u2, . . . , ui−1}
for i ∈ {m + 1,m + 2, . . . , n}. Note that [u] need not be a finite position generating sweep. For
i ∈ {1, 2, . . . , m} we define

S(ui, 2) = π(ui) (4)

and for i ∈ {m + 1,m + 2, . . . , n} we define

S(ui, 2) = S(ui, 1)
⋂

w∈M(ui)

f(S(w, 2), dwui) (5)

For each ui, i ∈ {m + 1,m + 2, . . . , n}, (5) implies that S(ui, 2) must be a finite set since S(ui, 1)
is a finite set. Moreover, since S(ui, 2), i ∈ {1, 2, . . . , m}, are all finite sets because of (4), we have
that S(v, 2) is a finite set for each v ∈ V. Also, π(v) ∈ S(v, 2) for all v ∈ V. This is clearly true for
ui, i ∈ {1, 2, . . . , m} because of (4). For i ∈ {m + 1,m + 2, . . . , n}, that π(ui) ∈ S(ui, 1) and the
position keeping property of f imply π(ui) ∈ S(ui, 2). We call the computation of S(v, 2), v ∈ V,
the computation of the second sweep of N. It is obvious from (4) and (5) that S(v, 2) ⊂ S(v, 1) for
all v ∈ V.

Now suppose the kth sweep of N has been computed, and that for each v ∈ V , π(v) ∈ S(v, k)
and S(v, k) is a finite set. The (k +1)th sweep is computed as follows. Let [x] = x1, x2, . . . , xn be a
sweep, and letM(xi) = N (xi)∩{x1, x2, . . . , xi−1} for i ∈ {m+1, m+2, . . . , n}. For i ∈ {1, 2, . . . , m},
we define

S(xi, k + 1) = π(xi) (6)

and for i ∈ {m + 1,m + 2, . . . , n} we define

S(xi, k + 1) = S(xi, k)
⋂

w∈M(xi)

f(S(w, k + 1), dwxi) (7)

For each v ∈ V, we have that S(v, k+1) is a finite set , π(v) ∈ S(v, k+1), and S(v, k+1) ⊂ S(v, k)
by the same reasoning as before.

The preceding shows that if we compute a sequence of sweeps starting with one which is finite
position generating, we can generate a sequence of finite sets for each v ∈ V, i.e. S(v, 1),S(v, 2), · · · ,
S(v, i), · · ·, where each set is obtained by means of a finite number of computations and

S(v, 1) ⊃ S(v, 2) ⊃ · · · ⊃ S(v, i) · · ·

and π(v) ∈ S(v, i) for each i. Thus if we can select a finite number of sweeps, say k, such that
for all v ∈ V, each S(v, k) will contain just the position π(v) of sensor v, then localization will be
complete. We call this the sequential localization of the network, and we say that the network is
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sequentially localizable in k sweeps. Hence, sequential localization of a network is carried out in
a finite number of steps, each of which is solvable in a straightforward manner. This is in sharp
contrast to a direct assault on the localization problem by attempting to solve a large number of
simultaneous quadratic equations in 2(n −m) variables. In the exposition which follows, we will
give the graph properties of some networks that are sequentially localizable in just one or two
sweeps. The sweeps are selected by considering properties of the network’s graph, hence localizing
the network in as few sweeps as possible.

The network N is said to be easily localizable if the vertices of G can be relabelled as {v1, . . . , vn}
so that the position of vi, i > 3, can be uniquely determined from just the positions of the vertices
in N (vi) which precede it together with the distances from all of these vertices to vi [1, 3]. We show
that N is easily localizable if and only if G is a trilateration graph. Obviously, easily localizable
networks are also sequentially localizable in one sweep.

Suppose the set of sensor positions of N is a generic configuration in R2. We show that N is
sequentially localizable in two sweeps if G is a generically globally rigid partially acyclic bilateration
graph. A number of generically globally rigid partially acyclic bilateration graphs are also minimally
generically globally rigid graphs. This implies there are localizable networks with just enough edges
to ensure localizability that are also sequentially localizable. Many practical networks are such that
two vertices of its graph are adjacent if the corresponding sensors are within sensing radius of each
other. Suppose N is such a network. We show that if G is a “ring graph”, then N is sequentially
localizable in two sweeps after doubling the sensing radius of each sensor. Where by a ring graph
we mean a graph whose vertices can be labelled as {1, . . . , n} so that vertex i, 1 < i < n, is adjacent
to vertices i − 1 and i + 1, vertex 1 is adjacent to vertices 2 and n, and vertex n is adjacent to
vertices n− 1 and 1. Note that if G is a ring graph, then the graph of the resulting network after
doubling the sensing radius of all the sensors is a bilateration graph. An important consequence of
the previous is that if G is edge 2-connected, then N is sequentially localizable after doubling the
sensing radius of all the sensors. Note that if G is edge 2-connected, then the graph of the resulting
network after doubling the sensing radius of all the sensors is a bilateration graph. We note that
rigidity theory, especially as regards to global rigidity, play an important part in the proofs of these
assertions.

Sequential localization of a network may take a number of arithmetic operations anywhere from
linear to exponential in the number of sensors depending on the structure of the network’s graph.
However, the complexity of localizing a large network can be made efficient by localizing sections of
the network in sequence. For example, suppose graph G of a network has subgraphs G1,G2, . . . ,GD

where each vertex of G is in at least one of the subgraphs. For i ∈ {1, 2, . . . , D}, let Ni denote
the network modelled by point formation (Gi, pi), where pi is the set of positions of the sensors
corresponding to vertices of Gi. If each Ni is sequentially localizable when all sensors occurring
in Nj , j < i, are considered anchors of Ni, then the complexity of localizing the entire network is
dominated by maxi∈{1,...,D}Z(Ni), where Z(Ni) is the complexity of localizing Ni. If the number
of sensors in each Ni not occurring in any Nj , j < i, is small, then Z(Ni) is not too large even if it
is exponential in the number of sensors of Ni. Consequently the complexity of localizing the entire
network is rendered acceptable.

It is an open question if all networks with generically globally rigid bilateration graphs are
sequentially localizable. And while we know that not all bilateration graphs are generically globally
rigid, the necessary and sufficient conditions for a bilateration graph to be generically globally rigid
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are still unknown.
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