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Abstract—Knowing the positions of the nodes in a network is sensors need to know their positions; in order to detect events
essential to many next generation pervasive and sensor network gnd track targets, the tracking sensors need to know their

functionalities. Although many network localization systems have positions to pinpoint the movement of the targets and to
recently been proposed and evaluated, there has been no system: -

atic study of partially localizable networksi.e., networks in which |mplfament eff|_0|ent state transfee.g., [45]). .

there exist nodes whose positions cannot be uniquely determined. Given the importance of knowing the positions of the
There is no existing study which correctly identifies precisely network nodes, much research effort has been invested into
which nodes in a network are uniquely localizable and which are network localization, which refers to the process of determin-
not. This absence of a sufficient uniqueness condition permits ing these positions. Two straightforward methods to achieve

the computation of erroneous positions that may in wrn lead localization are manual configuration and the Global Posi-
applications to produce flawed results. In this paper, in addition g

to demonstrating the relevance of networks that may not be fully tioning System (GPS) [18]-. However, neither 'm(.ath'ods scales
localizable, we design the first framework for two dimensional well and both suffer from inherent physical limitations. For

network localization with an efficient component to correctly example, GPS receivers are costly both in terms of hardware
determine which nodes are localizable and which are not. 5,q power requirements. More importantly, since GPS requires

Implementing this system, we conduct comprehensive evaluations . . . . .
of network localizability, providing guidelines for both network line-of-sight between the receiver and the GPS satellites, it

design and deployment. Furthermore, we study an integration May not work well indoors, underground, or in the presence of
of traditional geographic routing with geographic routing over obstructions such as dense vegetation, buildings, or mountains
virtual coordinates in the partially localizable network setting.  blocking the direct view to these satellites.

We show that this novel cross-layer integration yields good  The |imjtations of manual configuration and GPS have mo-

performance, and argue that such optimizations will be likely .. . ) .
be necessary to ensure acceptable application performance ir]tlvated the search for alternative ad-hoc methods, with a large

partially locaiizable networks. number of localization systems having recently been proposed
and evaluatede(g, [2], [3], [5], [6], [7], [8], [9], [11], [13],
I. INTRODUCTION [14], [17], [20], [26], [27], [28], [31], [33], [35], [39], [40],

. o : [42]). The predominant type of approach, called fine-grained
Knowing the correct positions of network nodes is essenuﬁ ]). e pr yp ppr C 9
X L n : . ocalization, involves nodes measuring the distances between
to many functionalities in next-generation pervasive and sen- . . .
- L .themselves and their neighbors, with only some nodes called
sor networks. For example, realizing the vision of pervasiy,

computing €.g, [12], [41]) requires that the locations of the Beacons having to be informed of their position through

Gortesand e usrs be ko (17 [65) 10 ety ot Sorfoualon, Wl some o e e
route traffic to a geographic locatior.¢, [21], [44]), the y eng ' P

: S : challenge in the field to determine precisely which nodes are
nodes need to know their locations; to cover a region, the. . )

. . . ; uniquely localizableFor example, one prominent scheme has
sensors use their positions to determine the quality of covera € hosed that each node with three node-disioint paths to three
(e.g, [24]); to guide a user across a field [23], the guidingqir P ) P

stinct beacons is uniquely localizable. We will see later that
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of the localization problem, the returned configuration may The contributions of this paper can be summarized as
not be the one that corresponds to reality. If an erroneofadlows.

configuration is used by an application, for instance event, We propose the novel PLN paradigm. We develop effi-
detection, then incorrect or misleading conclusions may be cient algorithms to ascertain which nodes can be uniquely
drawn. In [10], Eren et al. proposed the construction of a |gcalized and which cannot.
grounded graptwhose properties can be used to check the, |mplementing our system, we conduct comprehensive
unique localizability of a network. However, their condition experimental evaluations of network localizability, and
decides whether thentire network including all of its nodes, describe implications on both network design and on the
can be uniquely localized. As we will show later, for realistic use of novel network dep|oyment a|gorithmsl
networks in many environm_ents, it is unlikely that aII_ of the “« We argue that a cross-layer approach involving feedback
nodes can be uniquely localized. Thus, such a collective testis petween the localization layer and the application layer
likely to fail, unless the network is highly dense and regular.  should be adopted in PLNs. As an example of this,
Furthermore, many applications can function properly as long we study an integration of geographic routing without
as a sufficient number of nodes are uniquely localized, so itis |ocation information and standard geographic routing. We
not imperative that every single node be uniquely localizable. show that this cross-layer integration improves network
Motivated by above observations, in this paper we propose performance.
the concept of theartially localizable networKPLN). These  tpe regt of this paper is organized as follows. In Section I,

are networks in which not all nodes can be uniquely localizege omylate the unique localizability problem, derive con-
We believe that partially IocaI!zabIe n_etworks are likely to bgitions for a node to be uniquely localizable, and present
the mos_t preva]ent networks n practl.ce. ) . _our algorithm to identify the nodes that can be localized. In

The first major challenge in studying PLNs is to identifisection 111, we apply the algorithm to explore the parameter
the uniquely localizable nodes. In this paper, we presentsgace of the localization problem. In Section IV, we present
sufficient graph-theoretic condition for a node to be uniquely,,, algorithms for geographic routing in PLNs. We discuss

localizable. Applying the condition, we identify localizablgg|ated work in Section V. Our conclusions and future work
nodes by efficiently partitioning the network into componentg.e qescribed in Section VI.

which are redundantly rigid and triconnectedCoordinates
for the nodes in these components can then be uniquelyll. IDENTIFYING LOCALIZABLE NODES IN PARTIALLY
determined subject to error due to noise in the distance LOCALIZABLE NETWORKS

measurements. We note that in simulations under realisticin this section, we describe how to identify uniquely local-
conditions, nodes determined to be uniquely localizable Byable nodes in a partially localizable network. We call this
our tests are only very rarely rendered ambiguous by errorsgfbblem thenode-localizability problemHowever, before we
edge length measurements as described in [25]. study this problem, we first review previous results on how
Since our algorithm identifies localizable nodes efficientlyp check whether a complete network is localizable, all
we are also able to use it to thoroughly explore appropriat@des in the network are uniquely localizable. We refer to
network parameters in order to achieve a desired localizatiqRis problem as thenetwork-localizability problemReaders
dependent application goal. For the first time, it is possibigho are familiar with [10] can skip to Section II-C. Note that
to observe exactly how many nodes one can expect to lfless otherwise stated, we work in two dimensions.
localizable in medium density and sparsely connected random . o
networks. Using our tool, we are also able to guide tHd. Problem Formulation of the Network-Localizability Prob-
deployment of networks by adding nodes systematically to tm
network so as to increase the proportion of localizable nodesin the network-localizability-problem formulation, we have
As applications progress and adapt to operation in PLNs, aunetwork in reall-dimensional spacé = 2 or 3} consisting
tool will undoubtedly find uses in more sophisticated planningf a set ofm > 0 nodes labeled throughm which represent
and analysis tasks. “beacons” together witlh — m > 0 additional nodes labeled
The second major challenge in studying PLNs is t@:+1 throughn which represent sensors. Each node is located
determine how to best make use of nodes that cannot dtea fixed position ifR¢ and has associated with it a specific
uniquely localized. One possibility is for applications taet of “neighboring” nodes.
simply ignore such nodes as if they do not exist, but this isLet G = {V,E} be the network with vertex set’ =
clearly a worst-case option. The application setting in whicfl,2,...,n} and edge seE defined so thati, j) is one of
we study this issue is geographic routing over PLNs. Whae graph’s edges precisely in the case that nodesd j
propose an integration of geographic routing without locaticare neighbors. Thaetwork localization problem with exact
information and standard geographic routing. We show thdistance informationis to determine the locationg; of all
by using virtual localization techniques for the non-localizableetwork nodes inR¢ given the graph of the networlG,
nodes, one can achieve a higher routing success rate betwtbenpositions of the beacons, j € {1,2,...,m} in R,
localized nodes than by ignoring non-localizable nodes.  and the distancé; ; between each neighbor pdit, j) € E.
The network-localizability problemis to determine if there



is exactly one set of vector§p,,.1,...p,} in R? which other than global rotation, translation, and reflection; other-
is consistent with the given dat&, {pi,ps,...,pm}, and wise, itis calledrigid. Flexible graphs have an infinite number
l: E — R. If there is exactly one set, we say that the networtf realizations. Fig. 1 shows a flexible network. The figure
is localizable. also provides a counter example to the claim that if a node
We can see that the network-localizability problem is closelyas three node-disjoint paths to three distinct beacons, it is
related with the Euclidean graph realization problem in whidlniquely localizable.
coordinates are assigned to vertices of a weighted graph such
that the distance between coordinates assigned to nodes joined a
by an edge is equal to the weight of the edge. Clearly, if the
graphG of a network is uniquely realizable, the network is
localizable up to global rotations, translations, and reflections. e
However, this connection to Euclidean graph realization
is still incomplete. The network-localizability problem is not
equivalent to the unique realizability d&, but of a graph

with a slightly larger edge set that includes edges from eve'fry- 1. An example flexible graph. It also shows that although nodias
beacon to every other. We call this auamented araph tbr‘rﬁee node-disjoint paths to the three beacons on the right (the implicit edges
Yy : g grap ong the beacons are not drawn), the position of roenot unique. For

grounded graphof the network. In the graph abstraction, amxample, imagine dragging nodeto the left.
edge represents a distance constraint between its endpoints.
Since the distance between each pair of beacons is knownglexibility arises due to unconstrained degrees of freedom
edges must exist between all pairs of beacons. This observajignhe graph structure. One can see that in two dimensions,
is crucial in order to capture all available constraints in thg graph ofn nodes has at mostn degrees of freedom.
network. If the grounded graph of the network is uniquelfach edge constraint eliminates at most a single degree of
realizable, then the network is uniquely localizable up theedom, but there arg degrees of freedom corresponding to
rotations, translations, and reflections. In two dimensionge rotation and translations of a rigid body that cannot be
three non-collinear beacons are necessary to resolve the gl@ahinated by any number of edges. One would guess then
orientation of the network to a single possibility. that at leas2n — 3 edges are necessary for rigidity in a graph
o N of n vertices. However, having the requisite total number of
B. A Sufficient and Necessary Condition for Network Locayges is not sufficient for rigidity, as the edges could all be
izability crammed between only a few vertices, leaving the rest under-
Now that we have defined the network-localizability probconstrained. The intuition then, is thzt — 3 well-distributed
lem and its grounded graph abstraction, we can proceede@gesare needed. More precisely, in graphs wéith-3 edges,
describe the precise conditions for unique localizability. =~ N0 subset of.’ nodes may have more than its fair share of
We must first state that the following isgenericcharacteri- 2n’ —3 edges between its nodes. If a subgraph has more than
zation of unique realizability,e., one that holds foalmost all 27" — 3 edges, some of them aredundant Non-redundant
configurations of network nodes. What this means is that f6figes are callethdependentEach independent edge elimi-
all network configurations other than a set of configuratior¥¥tes a degree of freedom in the structure, so the presence
containing certain degeneracies among node positions, uni@fie2n — 3 independent edges is sufficient for rigidity. This
|Oca|izabi|ity is a graph_theoretic property of the netwoﬂj(ntl.lition turns out to be correct in two-dimensions, resulting
connectivity and independent of the positions of the noddB.the well-known Laman condition [22]. Unfortunately, this
Given this fact, randomization aids in the classification girgument does not hold in three dimensions and no graph-
networks as uniquely realizable. For any reasonable probaf§fleoretic characterization of rigidity for dimensions greater
ity distribution on node positions, degenerate configuratioff3an 2 is yet known.
have zero probability of appearing, and one can be justifiedTheorem 1:(Laman) The edges of a gragh= (V, E) are
in assuming the network nodes to be in general position. Itikdependent in two dimensions iff no subgragh= (V’, E’)
worth noting however, that in the presence of errors in ed§@s more than’ — 3 edges, where)’ = |V'|.
length measurements, configurations indistinguishable fromCorollary 1: A graph havingn vertices andn — 3 edges
degenerate may very well occur. We begin with descriptions rigid in two dimensions iff no subgrapti’”’, E’) has more
of the three ways in which a graph can fail to have a uniquban2n’ — 3 edges, where’ = |V’|.

realization.
2) Not d + 1-connected

1) Not rigid Rigid graphs are still susceptible to discontinuous non-
A realization of a graph may be subject to deformations thahiqueness. Specifically, they may be subject to fold ambigu-
allow the coordinates assigned to vertices to vary continuoudigs in which a set of nodes have two possible configurations
while simultaneously satisfying all of the edge constraintsorresponding to a “reflection” across a set of mirror nodes
This non-uniqueness can either be continuous or discontas shown in Fig. 2. This type of ambiguity is not possible in

uous. A graph idlexibleif it admits a continuous deformation d + 1-vertex-connected graphs.



Proof: Suppose the underlying (grounded) grapldris-
(V, E). Suppose that there are three beacon nodesaadch
== localizable node.
Let a nodew located at the centroid of the three beacon
nodes be adjoined té:. Furthermore, suppose that is a
degree3 vertex with edges joiningv to each of the three

beacon nodes. Call the new graph. Then clearlyw is a
localizable node of the grapfi’.

Now consider the nodesandw, and letr be the maximum
3) Not redundantly rigid number of nonintersecting paths that will join them. Since
A d+ 1-vertex-connected rigid graph may still be subject to Bas degreg, r < 3. If » = 3, there is one nonintersecting path
flex ambiguity. Fig. 3 shows a triconnected rigid graph whicffom v to w passing through each beacon node. If in each of
becomes flexible upon removal of an edge. More specificalfiese paths the edge joiningto the beacon node is deleted,
after the removal of an edge, a subgraph can swing intothgre results three nonintersecting paths joinintp each of
different configuration in which the removed edge constraiffte three beacon nodes.
is satisfied and then reinserted. This type of ambiguity is SO suppose, in order to derive a contradiction to the result
eliminated byredundant rigidity the property that a graphWe are trying to prove, that < 3. Then G’ cannot be
remains rigid upon removal of any single edge. triconnected. So there exists a separating vertex paind y
such thatG’ = H, U H, with the vertex set of the intersection
of the two subgraphdi; and H, given by V(H, N Hs) =
{z,y} and with H; and H, possessing three or more vertices
each (includingr andy).

We can argue that the three beacon nodesanchn be
taken to lie in one of the subgraphs, without loss of generality
H,. For suppose this is not the case. Then of the four nodes,
at least one must lie id/; and not inHs, and one must lie
Fig. 3. An example from [15] showing a rigid triconnected graph with twdn Ho but not in H;. As a consequence, these last two nodes
realizations. If edgda, a’) is removed, triangles/t'c’ swings along a path cannot be adjacent. But since the three beacon nodesvand
until the distance(a, a”) is the same as it originally was. form a complete graph, these last two nodes are necessarily
r;fldjacent, which is a contradiction.

Fig. 2. An example showing two realizations due to reflection.

Summarizing the conditions for eliminating ambiguities i o : .
graph realization, we have the following: The vertexv may lie in Hy, or in H, and not inH;. We

Theorem 2:A graph G with n > 4 vertices is uniquely analydze thhese two gossm!ll;t'll.es. fect fq
realizable in two dimensions iff it is redundantly rigid and Under the second possibility, a reflection argument (reflect-
triconnected. Ing about the line joining: andy) can be applied to conclude

Hendrickson [15] proved the necessity of triconnectednegkat” is not localizable, ‘_’VhiCh Is a_contradiction.
and redundant rigidity for unique graph realizability, and it was ' ¥ € Hl/and there is a path il from z to y, then
recently shown by Berg and Jordan [4] that it these conditiof€ "ePlaceG” by Hy augmented with a new edde, y) and
also sufficient repeat the process that decompos&das H, U Hs. If v €
. . H /
Recalling that three non-collinear beacons are necessary fbr @nd there is no path idf; from = to y, we replaceG

unique network localizability to absolute positions, we hav@MPly by 1 and/ repeat the Process. In either case, denote the
the following result: replacement ofy’ as Hj. Within Hj, the maximum number

Theorem 3:([10]) Let N be a network inR? containing at of nonintersecting paths that will jointo w must be less than

least three non-collinear beacons. Let the grounded netwdrk€!Se there would be a contradicion of the property that in

graph G be the graph whose vertices correspond to tifa » there are less than three nonintersecting paths between

network nodes and whose edges include all neighbor paffadw- HenceH is not triconnected. This argument can be

and all beacon pairs ifN. The network is localizable in repeated, until we arrive at a graphwhich is not triconnected,

two dimensions if and only ifG is redundantly rigid and a decomposition of, as L = L, and L, given by, V,(Ll n
triconnected. Ly) = {xr,yr} such that the beacon nodes andie in L,

while v lies in Ly but not in ;. That such a graph must
C. Identifying Uniquely Localizable Nodes eventually be found follows from the fact that at each step in
The results in the preceding subsection for network localithe process, the number of vertices in the subgraph containing
ability can be extended to the node-localizability problem. Tine three beacon nodes anddecreases, while it is clearly
determine if a node is uniquely localizable, we first have tHeounded below.
following necessary condition: At this point a reflection argument can be applied to
Lemma 1:If a node is uniquely localizable, it must haveconclude thatv is not localizable, which is a contradiction.
three node-disjoint paths to three distinct beacons. ]



Lemma 1 notwithstanding, Fig. 1 shows that the existenceThis formulation leads to an algorithm in which a set of
of three-node disjoint paths is not the only necessary conditiomependent edges is grown by adding one edge at a time. A
for node localizability. Intuition tells us that the node shoultdew edge is added if it is determined to be independent of
also belong to some “rigid” structure. In addition, Fig. 3he existing set. IPn — 3 independent edges are found, where
provides an example suggesting that a uniquely localizableis the number of vertices in the graph, then the graph is
node should belong to a subgraph that is even “strongei§id. We will see that the structure of the problem allows us
than rigid. However, whether it is necessary that uniquetp efficiently check new edges for independence.
localizable nodes belong to some redundantly rigid subgraphTo elaborate, assume we have a set of independent edges
is an open problem at this time. E c E. Recall that the independence of edges in a graph

A sufficient condition which follows from Theorem 3 re-can be conceptualized as a property of “well-distributedness”.
quires that a uniquely localizable node belong to a redundantlg such, to determine if another edgec E is independent
rigid subgraph that is triconnected and contains three beacasis E, we see by the alternative Laman condition thais
We call this condition theRRT-3Beacon conditiorshortened independent of if and only if there is no subgraph with too
here to RRT-3B. This condition allows us to identify uniquelynany edges (i.en’ vertices and> 2n’ edges) after any edge
localizable nodes one component at a time, instead of one nawle” U ¢ is “quadrupled” (three additional copies added). It
at a time. Before we discuss how to identify RRT componentsirns out that only the candidate edgeeeds to be quadrupled
we comment that since the RRT-3B condition is a sufficieig¢ee [19] for proof), meaning that the complexity of testing a
condition, it may identify only a subset of all of the uniquelygraph for rigidity amounts t@(n) times the complexity of
localizable nodes, as illustrated by Fig. 4. A necessary aodecking a graph for the well-distributedness of its edges.
sufficient condition for generic node localizability is not yet In order to test a graph for the well-distributedness of its
known. edges, we use the following “pebble game”. Every node is
given two pebbles which it must keep, each of which can be
used to “cover” an edge incident upon it. We would like to
assign pebbles to edges so that all the edges in the graph are
covered. Such an assignment is callegedble coveringThe
existence of a pebble covering is equivalent to there being no
n' node subgraph with more th&n’ induced edges. Stepping
back for a moment, we see that edgss independent of? if
and only if there exists a pebble covering orde quadrupled.

Fig. 4. An example showing that the RRT-3B condition fails to identify we Wi“ now discuss how to find a pebble covering. Assume

nod.ea. as uniquely localizable. The three nodes on the boundary are bea&gqucuvely that we have a set of edges a'rea‘?'y covered by
nodes. Node: is uniquely localizable despite the fact that the graph is nqde€bbles and we want to add a new edge. We first look at the
triconnected. node endpoints of the new edge. If either of them has a free

To identify the RRT components, we first extract all tripebble, it can be used to cover the new edge, and we are done.
connected subgraphs. There are multiple ways to test for fifi@either of them has a free pebble, then both of their pebbles
triconnectivity of a subgraph. We do this in the simplesire being used to cover existing edges. If the node at the other
possible way; for each vertex in a subgraph, we remove é@nd of one of these existing edges has a free pebble, then we
test the reduced component for biconnectivity, and replace tten use that pebble to cover the existing edge, freeing up a
vertex. If the subgraph remains biconnected after removal pébble to cover the new edge. The general procedure is to
each of its vertices, then the subgraph is triconnected. We trsgarch along a directed version of the underlying graph with
use the Pebble Game [19] to discover and tag redundantly rigidges directed away from their pebble-covered end until a free
subgraphs. pebble is found, use that free pebble to cover the last edge,

1) Identifying redundantly rigid subgraphs using the Pebbland perform a series of swaps reversing the direction of all
Game: Recalling Laman’s condition for rigidity in the plane,the edges along the successful search path until a pebble is
we see that as stated it suggests a very poor algorithm for tésted up at an endpoint of the new edge.
ing graph rigidity involving counting the number of edges of In order to test a graph for rigidity, at most(n — 1)/2
all exponentially many subgraphs. There are several alternatadges will be tested for independence. Each independence test
formulations of Laman’s condition that yield polynomial timenvolves4 pebble searches, each of which requités) time,
algorithms. The Pebble Game uses the following formulatidor a total ofO(n-|E|) time, where E| is the number of edges

that results in a particularly intuitive algorithm. in the graph. For a network with edges only between nodes
Theorem 4:For a graphG = (V, E) with n vertices, the located close to each other, the number of edges witl(bg.
following are equivalent: Therefore, the running time of the Pebble Game on sensor

« The edges of G are independent in two dimensions. networks iso(n?).

o For each edgéa,b) in G, the graph formed by adding The Pebble Game is attractive for its intuitive appeal as
three additional edge&:, b) has non’ vertex subgraph well as for its efficiency. Each pebble can be interpreted to
with more than2n’ edges. represent a degree of freedom of the node it belongs to. We



have seen that there cannot be more than- 3 independent another. Imperfections in this unit disk model will merely
edges betweem nodes. Therefore, at all times, there willserve to reduce connectivity, and hence localizability, so this
be at leasB free pebbles in the assignment, representing tistudy explores the best case scenario for localizability in ad-
three degrees of freedom of any rigid body in two dimensionsoc networks.

Because of this, three copies of an edge will be alwaysThe percentage of nodes found to be localizable by the RRT-
be successfully covered. If the fourth copy is not pebbl#B condition as we increase the number of nodes placed in a
coverable, then the current set of independent edges alrefidgd region is shown in Fig. 6. Throughout these experiments,
consists of2n’ — 3 edges connecting’ nodes, and we have all results are obtained by creating 20 instanced(dfnode
identified a fully constrained portion of the network. Becaussetworks with the desired parameters and calculating the mean
of this, redundantly rigid regions of the graph are identifiednd 95% confidence interval for the relevant quantity. Node
as the edges and nodes traversed by failed pebble searchedensity is expressed as the expected node degree given the
this way, the Pebble Game is an efficient tool to identify theumber of nodes uniformly placed in the field and the sensing
redundantly rigid regions of a graph. radius of each node, neglecting boundary effects.

2) An algorithm to identify RRT components order to As expected, the percentage of localizable nodes increases
discover all of the RRT components of the network, it iwith density. Nevertheless, even at expected node degree as
not enough to simply intersect the triconnected componerfiigh as 15, the percentage of non-localizable nodes remains
with the redundantly rigid components, as this intersectigignificant. As the Gaussian distribution tends to produce
will not necessarily possess both properties. We employnatworks with high connectivity in a central region and a
recursive decomposition in which the algorithm for triconsparsely connected periphery, average degree is not a very
nected component discovery alternates with the Pebble Gage®d characterization of these networks. Nevertheless, due
for redundantly rigid component discovery. Our algorithm it these properties of the distribution, at low expected node

outlined in Fig. 5. degree, more nodes are localizable under the Gaussian than
the uniform distribution, whereas for higher expected degree,
FindRRTComponents(Graph G) more nodes are localizable under the uniform distribution.

1
2 if not triconnectedhen To observe how the presence of beacons affects the lo-
3 recurse on each triconnected component calizability of network nodes, we produced Fig. 7. For three
4  else ifnot redundantly rigidhen different densities, we vary the number of beacons and observe
5 recurse on each redundantly rigid component how th b f localizabl d h Wi b
6 elsereturn “graph G is an RRT” ow the number of localizable nodes changes. We can observe
that the addition of beacons exhibits diminishing rewards in
terms of the number of localizable nodes. By adding beacons
past the point at which 10% of the nodes are beacons, the
number of nodes rendered localizable per beacon is less than
1. PARTIALLY LOCALIZABLE NETWORKS one. Since beacons are likely to be relatively expensive, such

We also generated regular networks using a fixed-density

‘_I'he al_gorithm developed in the_ preceding section allows Wncentric ring deployment with beacons at the periphery as
to investigate at least three questions that could not heretofﬂ{e[sz] This deployment is by design isotropic, yet we still

he qddressed: 1) in wh_at deplgynjgnt scenarios wil NORAd that the number of localizable nodes varies as in Fig. 6,
localizable nodes comprise a significant proportion of the)\ .« 4o not show the results here

network, 2) how does the presence of non-localizable nodes
affect the performance of typical location-dependent network
functionalities, and 3) how might one deploy networks so as
to optimize for localizability. In this section, we motivate and

Fig. 5. A recursive algorithm to identify RRT components.
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address these three questions. eq\? 90
5 80
A. Percentage of Localizable Nodes § 70
. L . . ©
We first evaluate the incidence of non-localizable nodes in S gg
typical scenarios. We generate random placements of nodes in % 0
a region according to two distributions: uniform and Gaussian. £ 30
Uniform node placement is commonly used in simulations, § 20 Uniform distribution
even though Gaussian is likely to more accurately model 10 Gaussian distribution <

i 0
practlcgl random node deploymehtée.g, nodes scattered ' 5 4 6 8 10 12 14 16 18
from aircraft). We assume that two nodes can measure their

separation distance if they lie within a given radius of one Expected average degree
Fig. 6. Percent localizable nodes vs. density. Results shown at@demode

2with the caveat that the arbitrarily large deviations from the mean allowéandomly deployed networks includirig) beacons.
by the Gaussian distribution are unrealistic.
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Fig. 7. Percent localizable nodes vs. number of beacons. Fig. 9. Percent localizable nodes vs. density using obstacle map shown in

Fig. 8. Results shown are for 5 beacon networks. We decided against using
rank control in order to show extreme variance of confidence intervals in

In random deployments in realistic environments, networ§Stacle map domains.
are likely not to be isotropic. Distance measurements may
be impaired by obstacles, degrading node localizability. We
observe the effects of obstacles on the percentage of nodes E1 . . i .

. : . ach of these metrics has its own merits depending on the

cannot be localized in the College campus environment shown . . ) o
- . . . specifics of the considered application.
in Fig. 8 and plot our results in Fig. 9. In this experiment, an ) o N
edge exists between two nodes only if the straight line betweerr Spatial coveragethe likelihood that a position chosen
them does not pass through any obstacles. We observe that the Uniformly at random is within sensing range of a node.
presence of obstacles renders a substantial percentage of nodes! his metric expresses the chance an event in the region
unlocalizable. In addition, the proportion of localizable nodes ~ Of interest will be observed by some node. _
in such an urban environment is more unpredictable than ine Closest coveragefor a point, the distance between it
open ones, as evidenced by the much wider range ok and its nearest sensor node. For a network, this metric is
confidence intervals. defined as the mean value of closest coverage over points

Overall, we observe that for virtually all practical node  chosen uniformly at random in the area of interest. This
densities, randomly deployed networks are only partially lo- Metric reflects the most closely one can expect an event
calizable. Thus, in order to realize the potential of random in the field to be observed.

ad-hoc networks, it is essential to more fully explore the PLN ¢ \Worst-case coveragéhe largest distance between a point
paradigm. in the network domain and a sensor node. This metric

expresses how poorly an event can possibly be observed

- in the field.
h « Aggregate coveragea measure of the aggregate sensing

“quality” of points in the field. Suppose a node at distance
d from an event achieves a sensing qualitylgfi> and
that sensing quality from multiple nodes is additive. The
- aggregate coverage of that event is defined as the distance
away from the event at which a single sensor would need
to lie in order to achieve by itself the same sensing quality
- as the network. The aggregate coverage of the network is
the expectation of aggregate coverage taken over points
Fig. 8. Obstacle map used for all evaluations involving obstacles. Map is of  in the field chosen uniformly at random.

vale University's Cross Campus plaza. Note that these metrics could be generalized into multiple
node measures that would be relevant to applications requiring
B. Coverage of PLNs events to be detected by multiple sensors. For instance, spatial
The percentage of localizable nodes, while an importacoverage could be varied to read: the likelihood that a position
quantity, is hard to associate directly with application perfochosen uniformly at random is within the sensing range of
mance. The impacts of partial localizability on networks casensors (wherg is some fixed integer).
be better evaluated by considering specific network metricsFig. 10 shows the single sensor coverage achieved by all
relevant to some of the envisioned applications that requinedes, regardless of their localizability, and the coverage
knowledge of node positions. Towards this end, we evaluaehieved by localizable nodes only. We make a distinction
the behavior of network coverage metrics in partially localizsetween localizable and non-localizable coverage because the
able networks. value of sensed data may depend heavily on the ability

;ﬁle define four metrics to evaluate coverage performance.
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localizable nodes may still be of use, but it is important o ond lavgest RRT size -
. . . 100 F 4
nevertheless to make this distinction. We observe that for a
wide range of network density, coverage by all nodes and ¢ 4 |
coverage by localizable nodes have very different values under €
all four coverage metrics. More specifically, all-node coverage 5, 60 1
does not exhibit much improvement over the evaluated den- €
. . . . 40 4
sity range, while localizable-node coverage requires a much “
higher density to achieve performance comparable to all-node 20 |
metrics. By making a simple conversion from node degree to x ,
. . . . P S e e s )
sensing range, it can be seen in part b) of Fig. 10 that for node 0

2 4 6 8 10 12 14 16 18 20
Expected average degree

Statistics regarding RRTSs irf)0-node networks with no beacons.
12 T T T T T T T T

degree all the way up to 6 neighbors on average, the expected
closest coverage of an event in the fieldgieater than the Fig. 11.
sensing rangeThis means that even at moderate density, a
randomly placed event will not be sensed by a localizable node
in the average case. Looking at parts a) and c), we can see
that even at the average node degree of 10 at which localizable
spatial coverage is equal to all-node spatial coverage, sizeable
gaps often occur in the localized coverage, as evidenced by
the high values in part c) of localizable worst-case coverage
as compared with all-node worst-case coverage. The coverage
results for Gaussian distributions of nodes are similar to these
shown for the uniform case.

These r.e.sults are fqrther ev'lder.lce t.hat' the performance .Of 0 5> 4 6 8 10 12 14 16 18 20
many envisioned sensing applications is likely to be dramati-

. . . Expected average degree
cally affected by the localizability properties of the network. o P aedey ) )
Fig. 12. The distribution of the number of RRTs1ifi0-node networks with
no beacons. The addition of beacons shifts the curve slightly down and to the
C. Beacon Placement through Smart Deployment left.

Number of RRT components

In this section, we will discuss practical and novel methods At its core,smart deploymentses our tools to partition the
of smart deployment made possible by our localizabilityraph into its RRT components. Each of these components
algorithm. We have seen that non-localizability of networlwould be localizable if it were to contain three beacons.
nodes significantly impacts some of the network metricSuided by this observation, we seek to place three beacons
relevant to typical location-dependent applications. The metin- RRT components so that the maximum number of non-
ods evaluated in this section seek to mitigate such effet¢galizable nodes will be rendered localizable. Of course,
by yielding networks with fewer non-localizable nodes thabefore there are beacons in the network, it is impossible
random deployment. to determine precise target points for beacon deployment.

We first apply our localizability tool to guide the deploy-Therefore, we initially try to randomly place beacons into
ment of beacons. In this section, we use a network deploym&RTs before then placing additional beacons deterministically.
model in which beacons can be placed approximately atNste that this approach may be too conservative in that there
targeted location. As an example, this could be achievedrimay be non-RRT components that could be rendered RRT
practice by firing a specially outfitted beacon node towardsby the addition of three beacons at appropriate positions. As
target from a mortar launcher, or by using mobile beacons. \We have no way of identifying these situations, we adopt the
are motivated by the consideration that the relative expersanservative approach.
of beacon nodes will likely make deterministic placement Shown in Fig. 11 is the distribution of the size of the
worthwhile. largest and second largest RRT components versus average



node degree. In Fig. 12 is shown the distribution of the numbeffective network density available to the localization layer for
of RRTs. We can see from these figures that above averagene-time computation of positions, and then reaping the cost
node degree 10, the network consists usually of one largenefits of a sparser network for extended operation. It is of
RRT and only one or two other small RRTs. At these densitpurse possible that the event-based distance mesasurements
levels, random beacon placement yields very good localimay be less accurate than inter-node measurements, but for
ability performance. At lower densities, the potential existsimplicity we do not go into the details in this paper. However,
for some improvement over random deployment. Howevewe introduce a novel formulation of joint source and network
through simulation of a best-case oracle scheme, we foulodalization that arises from this issue in the Appendix.
that this potential gain is rather small except at very low We evaluate the feasibility and potential benefit of event-
density (only greater than 20% for average node degree belbased training by considering two simple algorithms. The first
5). Because of this, we study smart beacon deployment isna uniform dispersal of events over the network field. As
non-isotropic networks of Gaussian distributed clusters witkxpected, this dispersal is equivalent to an increase in density
uniformly distributed cluster centers. This type of network magf the network and results in an increase in the number of
be a good model for potentially important network deploymeicalizable nodes consistent with Fig. 11. We investigate here
scenarios. whether it is possible to do better than this by deploying events
Our smart deployment algorithm randomly deploys with some control. We assume that positions for the localizable
beacons, wheren is the number of RRTs in the network.nodes in the network are computed before event deployment.
Next, it places additional beacons deterministically near placeée introduce a random jitter between the targeted position
beacons connected to an RRT until the entire connected R&Td actual deployment position of each event. This simulates
is made localizable. The results of smart deployment showsalistic deployment uncertainty, as well as small errors in the
in Fig. 13 are compared against uniform random deploymesdmputed positions of localizable nodes.
which inserts all beacons uniformly at random. We see thatThrough evaluation of various techniques, we found that
even our simple scheme results in large performance gains dothybrid approach which switches between two methods
anisotropic networks by virtue of it being aware of the numbetepending on the density level performs best. In each method,

and size of the RRT clusters. each potential event deployment position is repeatedly chosen
uniformly at random until it satisfies a certain condition. At

100 —— T TTT I low average node degree, (less than 5.8), the condition is that

g PO i 1 the event position must be within range of at least one beacon
o 807 fi I and at mosB localizable nodes exclusive of beacons. At high

g 107 I RS o 1 densities, we ensure that the distance between the target and
5 0r 1 the centroid of the set of positions of localizable nodes within

% ig = range of the target is at least half the sensing radius.

& 0| % | The rationale for these approaches can be understood by
§ 20| - | referring to Fig. 12. At densities below the peak in the number
B 00 2 smart deployment —— | of RRTSs, the network may contain a few small RRTSs, but is
0 *uniform random deployment not quite dense enough to allow widespread localization. By

0 2 4 6 8 10 12 14 16 18 adding events close to beacons, density is locally increased in

Number of beacons inserted those regions of the network that have the potential to become

Fig. 13. Percent localizable nodes vs. number of beacons inserted. In i#fgmediately localizable by virtue of the presence of beacons.
figure, m beacons were initially placed at random, whetds the number of This approach does not work in the denser networks, as the

RRTs in the network. Subsequently, up2m additional beacons are placedprob|em becomes less one of connecting beacons to clusters
by the two algorithms. . .
of unlocalizable nodes on the verge of becoming part of

D. Event-Based Network Training an RRT, but rather one of connecting outlying unlocalizable

The other smart deployment paradigm we introduce imodes in local voids to the few large RRTs in the network. In
this section we callevent-based trainingThis is a novel dense networks, requiring events to be within range of 8nly
approach consists of placingventsin the network field to localizable nodes places them uselessly in obscure corners of
which network nodes can measure their distance. For instantte network away from the large RRTs. Because of this, we
if the network nodes use time difference of arrival ranging, thastead place events so that they are not too close to localizable
events could be simultaneous ultrasound and RF bursts pmodes, but still likely to be within range of the large RRTs, so
duced by inexpensive disposable devices designed specifictiigt they can bridge the gaps to isolated nodes.
for this configuration purpose. When an event is detected byWe observe in Fig. 15 that the hybrid method compares
network nodes, it is treated as if it were a node for purpostssorably with uniform deployment for all densities other than
of localization. Time-synchronization will be necessary fathose corresponding to the peak in the number of RRTs. At
this scheme, and a deployment of training events could aldts point, networks consist of a few medium-sized RRTs and
follow a staggered pattern between potentially interfering sitemany small RRTs. It has proven difficult to exploit structure
Using this technique, it is possible to greatly increase tle order to outperform uniform deployment for such networks.



All the methods evaluated had very unpredictable performance

on this regime. While these event-based training methods g
do not yield different asymptotic behavior from the random = .
deployment of additional nodes, we can see in Fig. 16 thatthe &
performance gains are quite robust. This is especially true for 3 ]
sparser networks, which are likely to be important in any large- g
scale random network deployment, as locally sparse regions % ]
will surely arise as problem regions in such deployments. £ M
Performance along the orthogonal axis of humber of training §
events is plotted in Fig. 14. -10 ) ) ) ) )
2 4 6 8 10 12
60 — : : : : Expected average degree
= 551 untrained ——— ) . . . ) .
S uniform - N Fig. 16. Percent increase in the number of localizable nodes using hybrid
o 50t training as compared with uniform training. We switch event deployment
8 457 conditions at an average node degree of 5.8.
Ny
® 0 r
S 3B : . o
© 30| performance in such scenarios. Note that our main objective
%’ 25 is to illustrate the relevance of the PLN paradigm and thus we
§ 20 |; o ek v 1 use simplistic models.
15 et L I .
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10
15 30 4 60 75 90 We consider a geographic-routing application in which a
Number of training events network of sensor nodes is deployed in a field. The nodes
Fig. 14. Event-based training on1@0 node network with 10 beacons andperform localization, but as we have seen, some nodes can
an average node degree 2fi. The trends are similar for higher densities. determine their positions while others cannot. Users may issue
queries to the network specific to a destination position. For
example, a user may want to query the temperature reading

100 —————— E——" at the sensor which is at (or closest to) a given position, and
0 M#ﬁ}g@fﬁé 1 will need nodes to route messages across the network to a
80 ) 5 s . particular physical location.

70
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B. Solution Technique

Our solution technique for determining node positions is a
three step process. First we determine the RRT components

Percentage localizable (%)

30
20
10

untrained —— -
uniform  «---e—
L hybrid =

4 5 6 7 8 9 10 1n
Expected average degree

using the decomposition algorithm in Fig. 5. Second, upon
those RRTs that contain at least three beacons, we use a
standard localization method, MDS, to localize the nodes
contained therein. We use the MDS-MAP implementation
of MDS presented in [36]. Third, we compute estimates

for the positions of the remaining nodes, using a position
averaging technique presented in [29], wherein each of the
non-localizable nodes computes a virtual position for itself by
repeatedly taking the average of its neighbors’ positions until
convergence is reached. We refer to this schem&R$ +
avg
We have now established the likelihood that a Slgnlfl- We choose greedy routing to be our geographic routing
cant proportion of nodes in realistic networks will be Nong|gorithm, due to its simplicity and requirement for node
localizable, especially under deployments that do not explicithpsitions. While the aim of this study is to clearly elucidate
seek to Optimize for |Ocallzablllty Furthermore, we have SeRe issues surrounding geographic routing on PLNs, we would
that this can have a significant impact on network performanggte that by using more sophisticated routing techniques, as
as measured by various coverage metrics. Now we sh@w[34] one could further reduce routing error.
how an important location-dependent application, namely geo- o
graphic routing, is affected by the presence of non-localizatffe Localization in PLNs
nodes. Before we investivate geographic routing in PLNs, we
In this section, we evaluate the performance of geographiiscuss the actual localization process in these networks. As
routing on PLNs and propose methods to improve routimgentioned above, we use MDS-MAP to compute the positions

Fig. 15. Event-based training on180 node10 beacons network deploying
30 training events100 samples were taken for each data point.

IV. GEOGRAPHICROUTING IN PARTIALLY LOCALIZABLE
NETWORKS



of localizable nodes in the network and estimate the positioashibit computation error but are not mislocalized into a faulty
of non-localizable nodes using averaging. When runfiRJl network configuration.
+ avg, the physical location error can be reduced at lower

connectivities in comparison with running MDS over the entire 1000
graph, as shown in Fig. 17. The key observation to be made
here is that by identifying RRTs and runnii@RT + avg 800 - i
physical location error will decrease and the routing success
rate will increase, supporting the value of our decomposition 600 - i
tools. By identifying localizable portions of the network, we
avoid computing incorrect positions for non-localizable nodes. 200 | i
true positions  ©
20000 . . . 200 | computed positions: exact data  »
RRT + avg. error computed positions: noisy data ¢
. . MDS error - beacon positions  x
% 16000 1 0 ‘ :
c 700 800 900 1000
S 12000 . 1 , . o - .
§ Fig. 18. Faulty outcome in localization with errors in which top right node
° i | is mislocalized. Solid lines represent distance measurements, dashed lines
] 8000 i ] represent implicit inter-beacon distance measurements
D
£ 4000 b
0 | | | , | 1200 . . .
6 65 7 75 8 85 9 truepositions o
computed positions. exact data =
Expected average degree computed positions: noisy data  +
Fig. 17. Physical location error vs. connectivity. Results shown arédor 1000 beacon positions  * 1

node randomly deployed networks includihg beacons.

A potential flaw in this approach, as noted in [25], is that in 800 |
real-life scenarios, due to uncertainty in edge measurements,
nodes determined to be uniquely localizable by generic con-
ditions may not in fact have uniquely determined positions. 600
Through simulation, we find that this does occur, although ‘ ‘ ‘
infrequently enough that the RRT decomposition remains a 0 200 400 600 800

useful tool in realistic deployments. Fig 19, C . i localization with edde lendth Solid i
. . ig. 19. Common outcome in localization with edge length errors. Solid lines
We simulated uniform random deployments 2 node represent distance measurements, dashed lines represent implicit inter-beacon

networks containing beacons with zero-mean Gaussian edggstance measurements

length measurement error with a standard deviatioa%fof

the sensing range over a wide range of expected node degree. i o , ,

We ran a localization algorithm consisting of MDS foIIowe(P' Experimental Investigations: Geographic Routing

by Kalman Filter based refinement on both the set of exactReturning to geographic routing in PLNs, we measure and

edge lengths and on the noisy edge lengths. Nodes which epapare the routing error obtained through various approaches

localized with a small error when using the exact edge lengtttsthe problem. We define routing error as the distance between

but which exhibit a large localization error when using ththe target point of a query to the final point reached by routing,

noisy edge lengths are potentially those nodes upon which theasured for all pairs of nodes between which we attempt to

unique localizability conditions break down in the presence ofute a message.

errors. We evaluate greedy routing in three different settings. We
For expected degree greater thardue to the redundancyfirst establish a lower-bound on routing error by routing using

in the connectivity of RRT components, such nodes are almalsé true positions. We then measure the routing error when

never present. However, the minimally rigid structures prevesuting is performed using the positions obtainedRRT +

lent at lower connectivity are indeed susceptible to becomiagg We also measure the improvement in error as a result of

ambiguous due to edge measurement errors. An examplepefforming a limited one-hop multicast of the query after the

such a situation is shown in Fig. 18. In this example, igreedy routing terminates at a position. Fig. 20 presents the

localizing the node at the top right using noisy edge lengtierformance results. Again, as stated above, the routing error

data, the network is flipped into a faulty configuration. Thasing positions obtained BRRT + avgis close to that of the

common situation however, which occurs for more tbaf lower-bound.

of the tested random networks of average degrds similar These error results are evidence that the performance of

to that shown in Fig. 19. In these cases, the computed positigeographic routing is affected in PLNs. Further, once a portion




of the network is identified as an RRT, applications suadbf the network that outputs redundantly rigid and triconnected

as greedy routing can exploit this knowledge and increasemponents of the network grounded graph.

performance using hybrid schemes suctR&T + avg We study the effects of localization on network coverage
and geographic routing. Although there is a large literature

350 : : — : on both topics (see [1] for a survey), the assumption of the
11 t“;?RQI?S'Jr“ac\’I”S o previous approaches is that the positions of all of the nodes are

30t L] oneh(% ,,,,,, e known. In [34], Seada et al. studied the effects of localization
5 i 1 f 1 .3 errors on geographic face routing; however, they consider only
5 250 | ﬁ % A f*w S 1 local random errors while our geographic routing evaluation
g { E { i fﬁk i A considers global issues due to the existence of both localizable
é 200 fi ﬁ I }E %L £ ** and non-localizable regions. Overall, there is no earlier study

150 | ! % ﬁ ’{f on partially localized networks.

100 ‘ ‘ ‘ ‘ VI. CONCLUSIONS ANDFUTURE WORK

6 65 7 75 8 85 In this paper, we designed a complete framework for local-
Expected average degree ization with an efficient component which correctly determines
Fig. 20.  Routing error vs. connectivity. Results shown are fad-node  which nodes are localizable and which are not. Implementing
randomly deployed networks with beacons. this system, we have conducted comprehensive evaluations
of network localizability, as it affects both network design

V- RELATED WORK d deployment. We find that thod for identifyi
o . . and deployment. We fin at our method for identifying
Network localization is an active research field (see [17] falcalizable nodes is robust enough in the presence of edge

a survey). The previous approaches can be classified into tPgﬂgth errors to be practical. We further studied routing in

types: coarse-grained and fine-grained. The focus of this pa SFtiaIIy localizable networks. We evaluated an integration of

IS fln_e-gralned Iocall_zanon in which some _nodes know the eographic routing with location and geographic routing with-
locations, and the distances between proximal pairs of no location information and showed that such novel cross-

are mea;ured. As we dlscus§ed n the Intro_duct|on, a m: Q)r/er integrations can greatly improve network performance.
shortcoming of previous studies on fine-grained localization There are multiple avenues for further study. The focus of

is that they cannot correctly identify the nodes that can lfls?is paper is on unigue localizability. Measurement errors also

IOCAa“Zr?)?).Iem related with network localization is the molecuplay an important role in localization and these effects should

P . o . -be investigated. One practical direction is in the identification
lar conformation problem studied in the Chemlstry _communltgf nodes that would be localizable in a scenario of perfect
(g.g, [1.6])' Howevgr, the focus of these .stud|es IS on threeque measurements but whose positions become ambiguous
dimensions. Also, issues of network design and deploymen

are not studied. since the structure of molecules is fixed under the real life edge length error model. We envision that
) . . .. .in order to increase the robustness of the uniqueness testing
One major building block of the uniqueness condition is o
and decomposition, some measurement edges should not be

rigidity theory. Rigidity has long long studied in mathematics . . .

) . sed, if the lengths of the edges are close to singular positions.
and structural engineering (see for example [15], [30], [43 Another Iinegof research g3Nith good potentieﬂ is ppartially
and has a surprising number of applications in many areas

This paper builds on the results from [10] by using groundeacal'zed nerorks for other a_ppllcat_lons beyond coverage,
o L .. event detection, and geographic routing. Almost all previous

graphs for localization. However, the objective of [10] is t(?esearch using node positions assumes that all of the nodes
check the unique localizability of the entire network and thus g Pos i X
in, the network know their positions. Our evaluations show

does not identify subsets of nodes which can localize aﬂ1at there can be a significant portion of the nodes that

consider applications of this identification. . ) . .
We use the Pebble Game developed by Jacobs and H%%r]not determine their positions uniquely. Thus many of these

drickson [19], originally proposed in the field of computationa?mtocms need to be revisited upon a likely setup for the future:

) ; 7 . hybrid network in which some nodes know their positions,
physics, to identify redundantly rigid subgraphs of a grapg.ome know their positions subject to ambiguit.g, two

There are also other algorithms for identifying redundant| bl ition nd others do not know their ition

rigid graphs with better average-case complexity. Howev r? ZTI Segioiino s)r,ot(r:l)colso fotra ssucr? hobrid r?etwo(raks ?soﬁkeol °

we chose the Pebble Game for its simplicity and intuitivd be. both ?:hal?efn g and worthwhilg y

appeal. The original use of the Pebble Game was to fiﬁ% ging '

over-constrained regions in a two-dimesional lattices known as REFERENCES
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APPENDIX

In

In

K. Joint Source and Network Localization

We consider a network of deployed sensors to detect a
Robust distributedknown) target, which we call a source. The sensors can

network localization with noisy range measurementsPloceedings of measure some relative distances among themselves and the
The Second ACM Conference on Embedded Networked Sensor Sysgqg]]ﬁm strength of the target. We assume that the sensors are

(SenSys)Baltimore, Maryland, Nov. 2004.
D. Niculescu and B. Nath. Ad-hoc positioning system.Pimceedings
of IEEE Globecom 20QINov. 2001.

static but the source can move. The objective of the sensors
is to determine the positions of the source.



We formulate a joint source and network localization probrariancew; ;. We assume that all of the measurement noises
lem as follows. For network localization, we assume that ttage independent. Thus the maximum likelihood (ML) estimate,
measured distancé; ; between nodes i and j isL;; = which maximizes the log likelihood function, minimizes the
l;,;(1 + e; ;), wherel; ; is the true distance between nodefollowing:

i and j, ande;; is the measurement noise. We assume ) 2

that this noise is a zero mean Gaussian noise with variance 1 (Li,j _ 1) + Z RS P i

o?; [32]. As for source localization, we assume that the er ol e Wi o 17

sensors have synchronized clocks and collect measuremegénark The above formulation has two terms. If we consider

periodically. Let the detected signal strength at nodier the network localization alone, we have the first term. We can

k-th measurement (called an event) bg;; = l‘%’“ + eki,» easily change this term to handle other types of range mea-
where Sy, is the signal strength of the event at its origin;  surement errors. If we assume that the network is completely
the distance from event k to node i, angl; the noise. Note localizable, we have the second term. By considering both
that the above model assumes an inverse-square model anekeisvork localization and source localization, we have both
valid for many types of signals such as acoustic signals [3Térms. The above optimization formulation can be solved using
We assume that the noise is a zero mean Gaussian noise \Eith or projection algorithms.
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