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Abstract— This paper gives a lower bound on the con- and convergence was proved under mild connectivity
vergence rate of a class of network consensus algorithms. assumptions in [3] by using switching linear system
Two different approaches using directed graphs as a main theory and algebraic graph theory. Since then various

tool are introduced: one is to compute the “scrambling ks h b d to d lob this cl f alqorith
constants” of stochastic matrices associated with “neighbor Works have been done to develop this class or algorthms

shared graphs” and the other is to analyze random walks N continuous time [9], on weakly connected graphs [4],
on a sequence of graphs. Both approaches prove that and in asynchronous scenarios [10]. However, so far few
the time to reach consensus within a dynamic network if any specific convergence rates have been derived for
g‘x'%%aerr"tg‘g'icn 't';];h:i’zge'oaf“;’ﬁe ‘?]réct’\;l ;rlld IS In worst case  this class of algorithms. This is due to the fact that tools
P ' such as joint spectrum theory cannot compute an explicit
bound for this particular class of switched linear systems
|. INTRODUCTION without equilibriums that can be determined beforehand.

Distributed algorithms where processors reach con- This paper will study the convergence rate for the
sensus by exchanging locally computed results havocking process based on the encountered directed
been studied extensively in the field of distributed andraphs. A lower bound on the convergence rate is
parallel computations [1], [2]. In recent years, networkpresented using “scrambling constants” for “neighbor
consensus algorithms have attracted more attention frashared graphs”. It will be shown that the time needed for
control scientists and engineers interested in distributeall the agents’ headings to converge te-aeighborhood
coordination of groups of mobile autonomous agent®of the steady state is logarithmic &nand in worst case
Some simple local rules can cause a group of agents éaxponential in the total number of agents. To better
behave cooperatively without the existence of a centrainderstand the factors that influence the convergence
controller. The cooperative behaviors include moving imate, a separate approach using random walks on graphs
the same direction [3], [4], aggregating in swarms [5]js also discussed.
and rendezvousing at the same location [6], [7]. Two ) )
salient features make the convergence of the consensug N€ rest of the paper is organized as follows. In
algorithms difficult to analyze in the context of dis_sectlon. 2,_th_e flocking algorlthm based on d|str|buted_
tributed coordination within multi-agent systems: First@veraging is introduced. In section 3, the convergence is
the final consensus value cannot be determined a prigfoved for the case when graphs encountered during the
and depends on the initial value of each agent as welPcking process are all “neighbor shared”. In section 4,
as the dynamic interaction between them: and secondKf@ Study the more general case when graphs encoun-
because agents move, the underlying network topoloé?r_ed are all rooted. In sect|on_5,_ a separate approach
may not be fixed during system evolutions. using random walks on graphs is introduced.

A special class of network consensus algorithms for

. L . . . Il. FLOCKING VIA DISTRIBUTED AVERAGING
flocking via distributed averaging was first studied in [8],
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a simple local rule based on the average of its owwhere§ is the state vectod = [0; 6, --- 6,] and
heading and the headings of its “neighbors”. Agést o : {0,1,...} — P is a switching signal whose value at
neighborsat time ¢ are those agents, including itself, time ¢, is the index of the graph representing the agents’
whose value at time is available to agent. Because neighbor relationships at time

of motion or other possible causes, agéstneighbors . o ]

may change with time. Le\;(t) andn;(t) denote the We will show for a large class of switching signals
set of labels and the number of ageist neighbors at that §II the agt_ant_s will reach the same steady state value
time ¢ respectively. Then agerits heading evolves in fss given any initial set of agent headings. Convergence

discrete-time in accordance with a model of the form Of the 6i to 6., is equivalent to the state vectd
converging to a vector of the fory,1 wherel is the
Y 0() (1)
)

nx1vector[11 --- 1. In addition, we will also give
JEN;(t a sharp lower bound on the rate of this convergence
wheret is a discrete-time index taking values in the nonProcess. The main challenge lies in how to define and
negative integerg0, 1, 2, ...}. We assume that the time a@nalyze the rate of convergence for a multi-agent system
between such updates is bounded below by a positi#der changing neighbor relationships.
numberrg called a dwell time, and that all agents update
their values synchronously.

Hi(t‘i‘l):%(t)

Il1. NEIGHBOR SHARED GRAPHS

The explicit form of the update equations determined
by (1) depends on the neighbor relationships which We will first give a convergence result for the case
exist at timet. These relationships can be convenientlywhere the graphs encountered along a trajectory of

described by a directed gragh with vertex set) =
{1,2,...n} and arc setd(G) C V x V which is defined
in such a way so thai, j) is anarc or directed edge
from ¢ to j just in case agentis a neighbor of agent.
Thus G is a directed graph on vertices with at most

(3) are all “neighbor shared”. This requirement can be
relaxed significantly as explained in the next section. Let
us callG € G neighbor sharedif each set of2 distinct
vertices share a common neighbor. It is now possible to
state the following elementary convergence result.

one arc from any vertex to another and with exactly one

self-arc at each vertex. We writé for the set of all

Theorem 1:Let Q denote the subset ¢? consisting

such graphs. We use the symilto denote a suitably Of those indiceg; for which G, € G is neighbor shared.
defined set indexing. ThusG = {G,, : p € P} where Let z(0) be fixed and letr : {0,1,2,...} — P be a

for p € P, G, denotes theth graph ing. It is natural
to call a vertexi a neighborof vertexj in G if (4, 7) is

switching signal satisfyingr(t) € Q, ¢t € {0,1,...}.
Then there is a constant steady state headingde-

an arc inG. In addition we sometimes refer to a vertexPending only or9(0) ando for which

k as anobserverof vertexj in G if (4, k) is an arc inG.
Thus every vertex ofs canobservédts neighbors, which

with the interpretation of vertices as agents, is precise

the kind of relationshiffs is suppose to represent.

The set of agent heading update rules defined by (
can be written in state form. Toward this end, for eac

p € P, define theflocking matrix
F,=D,'A] @)

where A}, is the transpose of thadjacency matrixof
the graphG, and D,, is the diagonal matrix whosgth
diagonal element is thim-degreeof vertexj within the
grapH. Then

9(t + 1) = Fa(t)e(t)a (3)
1By the adjacency matrixof a directed graplc € G is meant an

n X n matrix whoseijth entry is1 if (¢,5) is an arc inA(G) and0

if it is not. The in-degreeof vertex j in G is the number of arcs in

te{0,1,2,...}

A(G) of the form (3, j); thusj’s in-degree is the number of vertices

it observes.

lim 6(t) = 0,1

t—oo

(4)

I\X/here the limit is approached exponentially fast.

In order to explain why this theorem is true, we

1). . .
N\)/lll make use of certain structural properties 8f. As

defined, eacl¥), is square and non-negative, where by
a non-negative matrix is meant a matrix whose entries
are all non-negative. Eachi, also has the property that
its row sums all equall {i.e., F,1 = 1}. Matrices
with these two properties are callddow} stochastic
Because each vertex of each graphgimas a self-arc,
the £, have the additional property that their diagonal
elements are all non-zero.

Stochastic matrices have been studied extensively in
the literature for a long time largely because of their
connection with Markov chains [11]. One problem of
particular relevance here is to describe the asymptotic
behavior of products of. x n stochastic matrices of the



form Lemma 1:For any twon x n stochastic matrices;
Sij_l -9 anng,

o . . . S251] < u(S2)[S 8
as j tends to infinity. This is equivalent to looking at [525:] < #(S2)151] ®)
the asymptotic behavior of all solutions to the recursiomvhere for anyn x n stochastic matrixs,

equation N
x(j +1) = Sjz(j) (5) w1(S) = max (1 - Zmin{sik, sjk}> 9)
k=1

%,
because any solution(j) can be written as
. , The proof of this lemma will appear in the full length
x(j) = (8;8j-1---S1)z(1), j=1 version of this paper. The quantityS) has been widely
One especially useful idea, which goes back at least &udied before [13], [11] and is known as therambling
[12], is to consider the behavior of the scalar-valued norfonstantof the stochastic matri. Note that since the
negative functionV'(z) = [z] — |z] along solutions oW sums ofS all equall, n(S5) is non-negative. It is
to (5) wherez = [z, x5 --- x,]' is a non-negative €asy to see thai(S) = 0 just in case all the rows of
nx 1 vector and[z] and |z | are its largest and smallest are equal. Let us note that for fixédnd j, the kth term
elements respectively. The key observation is that fdp the sum appearing in (9) will be positive just in case
any n x n stochastic matrixS, [Sz| > |z|, [Sz] < bothsi. ands;,. are positive. It follows that the sum will
I_m—‘ and, as a consequence, thé(th) < V(.’l?) These be pOSitiVe if and Only if for at least Oﬂe, Sik and Sk

inequa”ties and (5) |mp|y that the Sequences are bOth pOSitive. Thuﬁ(S) <1 |f and Only |f fOI’ eaCh
distinct: andj, there is at least onk for which s;; and

lz(D)], [z(2)],... [z, [=(@2)],... s, are both positive. Matrices with this property have
V(x(1)),V(2(2)),... been widely studied and are callsdrambling matrices

h H b h of th Thus a stochastic matri¥ is a scrambling matrix if and
quence: 'mOIHOtCtJ)ne. d ednci, Iecguse each of these Gffly if 11(S) < 1. It is easy to see that the definition of
quences Is also bounded, the fimits a scrambling matrix also implies thatis scrambling if

i, [2(5)], jlin;o[x(j)]7 Jim. V(z(j)) @and only if its associated graph is neighbor shared.

Suppose that’, is a flocking matrix for whichG,, is
neighbor shared. In view of the definition of a flocking
I1']r(_£atrix, any non-zero entry inF, must be bounded
below by % Fix distincti and j and suppose that
is a neighbor that and j share. Thenf;, and fjx

We will make use of the standard partial orderingare both non-zero, smin{ fx, fjx} > +. This implies
> on n x n _nonnegative matrices by writingg > A  that the sum in (9) must be bounded below ;‘gwnd
wheneverB — A is nonnegative. We extend the domainconsequently that(F,) <1 — 1.
of definitions of |-] and [-] to the class of all non-
negativen x m matrix M, by letting |[M ] and [M]
now denote thel x m row vectors whosegith entries
are the smallest and largest elements respectively, of t
jth column of M. For any infinite sequence of x n
stochastic matricess,, So,..., we henceforth use the
symbol|---S;--- 5] to denote the limit

all exist. Note that whenever the limit df (x(j)) is
zero, all components af(j) must tend to the same value
and moreover this value must be a constant equal to t
limiting value of |z(j)].

Now let F,, be that flocking matrix whose graph
G, € G is such that verted has no neighbors other
n itself, vertex2 has every vertex as a neighbor, and
vertices3 throughn have only themselves and agent
as neighbors. Since vertéxhas no neighbors other than
itself, f; , = 0 for all < and fork > 1. Thus for alli, j, it
must be true tha}_,_, min{ fix, fx} = min{fi1, fi1}-
[---S;---5251] = lim [S;--- 525 | (6) Now vertex 2 hasn neighbors, sof;; = 1. Thus
Iee min{ f;1, f;1} attains its lower bound of when either
From the preceding discussion it is clear that this limit — 2 or j = 2. It thus follows that with thisF,, u(Fy)

exists whether or not the pI’OdUB‘y -+ 858 itself has attains its upper bound df — % We summarize.
a limit. In the sequel we will be interested in the non-

negative matrix Lemma 2:Let Q be the set of indices i® for which
G, is neighbor shared. Then
[ST = 1(1ST - 1S)) ()
1
Note that wheneve{S] = 0, all rows of S must be %éaé‘“(Fq) =1-- (10)

equal.



Lemma 1 and 2 will be used in the proof of Theoremf i is in fact a root. Thu<s is rooted ati just in case
1. each other vertex df is reachablefrom vertexi along

Proof of Theorem 1By definition, the graptG, of  a path within the graph. By eooted graphG € G we
each matrixF), in the finite sef{ F}, : p € Q} is neighbor mean a graph which possesses at least one root.
shared. By assumptiotty, ;) € {F}, : p € Q} fort > 0.

LetA=1— L. In view of Lemma 1 and 2, Lemma 3: Each neighbor shared graphgris rooted.
[Fot) - Fo)] < [Fow] - [Fo)] < o Proof: In a graphG € G, we saywv is a root for
verticesl, ..., k if each of verticed, . . ., k is reachable

and \'*! approaches zero exponentially fast @s—  from . In a neighbor shared graph, vertices 1 and 2 have
co. Thus the productfy () - - Fy) converges to garoot. One may now prove by induction thatlif.. ., &
1]+ Fyy - Fo0)) exponentially fast at a rate no have a root for an integer < k < n, then1,...,k+1
slower than). But it is clear from (3) that do as well: any common neighbor of vertéx+ 1 and

the root of1, ..., k will suffice. ]
0(t) = Foir—1) - Fo) Fo(0)0(0), t>1 ;

Therefore (4) holds Witlf,, = |- Fy) - - Fy (o) |6(0) It is worth noting that although neighbor shared
and the convergence is exponential. graphs are rooted, the converse is not necessarily true.

The reader may wish to construct a three vertex example
Hence, we have proved that— % is a worst case Wwhich illustrates this. Although rooted graphsdmeed
bound on the rate of convergence of products of flockingot be neighbor shared, it turns out that the composition
matrices whose graphs are all neighbor shared. of anyn — 1 rooted graphs i1gj is.

Lemma 4:The composition of any set ofi > n —1
IV. ROOTED GRAPHS rooted graphs irg is neighbor shared.

The proof of Theorem 1 depends crucially on the facThe proof of this lemma will appear in the full length
that the graphs encountered along a trajectory of (3) amersion of this paper.
all neighbor shared. The aim of this section is to show _ _
that this requirement can be relaxed. To do this we need 't IS @lso possible to derive a worst case convergence
to have a meaningful way of “combining” sequences ofate for products of flocking matrices which have rooted

graphs so that only the combined graph need be neightGNer than neighbor-shared graphs. We will use the

shared, but not necessarily the individual graphs makinfg(;’IIOWing result without providing its proof.

up the combination. Let us agree to say that¢bmpo- Lemma 5:Let b be a positive number less thanLet

sition [10] of a directed grapl,, € G with a directed S™,m > 1, denote the set of alh-term matrix products
graphG,, € g, written Gy, o Gy,,, is the directed graph ¢'_ ¢ s " . g, where eacts; is annxn stochastic
with vertex set{l,...,n} and arc set defined in sUCh 4y \with a rooted graph ig and all nonzero entries
a way so that(i, j) is an arc of the composition just bounded below by. Then

in case there is a vertex such that(i,¢) is an arc

of G,, and (¢,j) is an arc ofG,,. Thus (i,;) is an max p(S) =1-b""Y

arc of G,, o G,, if and only if i has an observer in sesr

Gp, which is also a neighbor of in G,,. Note that

G is closed under composition and that compositiom turns out that this bound is actually attained if all the
is an associative binary operation; because of this, thg are the same taking the form
definition extend unambiguously to any finite sequence - -

of directed graphs,,, G,,,...,G,,. Note that the L0 0 0 -0
o b . . b 1-b6 0 o --- 0

definition of composition takes into account the order in
: . 0 b 1-b 0 --- 0

which the graphs are encountered along a trajectory. o _ o _ (11)
In the sequel we will call a verteixof a directed graph

G € G aroot of G if for each other vertey of G, there Do 1-b 0

is a pathfrom i to 2. We will say thatG is rooted ati L0 0 0 0 b 1-0 |

It is possible to apply at least part of the preceding to
2In a directed graphG € G, by the path from vertex i; to h P h hpgy fl k'p . P T g
vertex i, is meant a sequence of vertics, is, ..., } such that t e case when the; are tlocking matrices. Towards
(i1,12), (i2,43), ..., (ix—_1,%%) are arcs ofG. this end, letG,,,G,,,...,G,,_, be any sequence of



n — 1 rooted graphs inG and letF, ,...,F, ., be isa constant steady state headijg depending only on
the sequence of flocking matrices associated with the$¢0) and o for which

graphs. Since each), is a flocking matrix, it must be )

true that any non-zero element i}, is bounded below lim 0(t) = 01 (13)

t—oo
by L. Then o .
Yo where the limit is approached exponentially fast at a rate

1\ @b no slower than
> (12

,u’(Fpn—l'”Fpl) <1- (n

(n-1)
Unfortunately, we cannot use the preceding reasoning A= {1 - (n) }
to show that (12) holds with equality for some sequence

of rooted graphs. This is because the stochastic matrix |t is possible to develop analogous resultsstrongly

in (11) is not a flocking matrix whe = 1, except connectedyraphs, where by a strongly connected graph
in the special case when = 2. Nonetheless (12) we mean a directed graph that has a path from each
can be used as follows to develop a convergence raj@rtex to every other vertex. We will state the following
for products of flocking matrices whose graphs are allesult without proof.

rooted. LetQ denote the set gb € P for which G,, is

rooted and writeF ! for the closed set of all products ~ Corollary 1: Under the hypotheses of Theorem 2, and
of flocking matrices of the form¥,, , ---F,, where the additional assumption that takes values only in
eachp; € Q. In view of Lemma 4G,, ,o---0G,, the subset ofd composed of those indices for which
is neighbor shared for every list of — 1 indices G, is strongly connected, convergencedgt) to 6,1
{p1,p2,-..,Pn_1} from Q, and (12) holds for every is exponential at a rate no slower than

such list. Now for any sequenggl),p(2),...,p(j) of e L

indices in Q, the corresponding produdt,; - - - F,1) A\ = {1 - <1> }m

of flocking matrices can be written as n

Eyiy - Fpy = S(5)Sk -+ S wherem is the integer quotient of divided by 2.

where
V. RANDOM WALKS ON DIRECTED GRAPHS

Si = Fpiitn-1)) " Fp(i-1)(n-1)+1), 1 <1<k,
S(j) =F

p

We need some more ideas in this section. By the
reverse graplof G € G, written G’, we mean the graph
andk is the integer quotient of divided byn — 1. In  in G which results when the directions of all arcs in
view of (12) G are reversed. It is clear th&t is closed under the

= T reverse operation. It is also clear thg, o G,) =
) < . P a
wS) <A el 2, . k) Gy, 0 G}, p,q € P. For any flocking matrixF,,p € P,

() Fpk(n—1)41)

where Iet ~v(F, ) denote that graplc € G corresponding to
- 1\ ™Y F,. A different approach to analyzing the convergence
A=1—1( — . . :
n of the flocking process is to multiply;, by row vectors

from the left. In this approach, we are looking at the
random walk [14] where at each time step we apply a
different grath;(t),o : {0,1,2,...} — P. Then the
andom walk will converge to some fixed distribution if
he flocking process converges.

It is clear that S,---S; must converge to
1[---S;---S;| exponentially fast ask — oo at
a rate no slower than. But S(j) is a product of at
most n — 1 stochastic matrices, so it is a bounde
function of j. It follows that the product, ;) - -- Fj,(1)
must converge ta | F,; - p(1)J exponentlally fastat  First, we will consider walks that begin at just one
a rate no slower thai = \#—1 . Using the development vertex, that is to begin with a distribution given by an
similar to that used in the proof of Theorem 1, we carelementaryl x n vectore; with e;(i) = 1 ande;(j) =0
prove the following theorem. for j # i. In the sequel, le@ denote the set gf € P

o for which G, is rooted.
Theorem 2:Let Q denote the subset ¢ consisting

of those indiceg for which G, € G is rooted. Letd(0) Lemma 6:For any sequencg(1),p(2),...,p(n—1)
be fixed and letr : {0,1,2,...} — P be a switching of indices inQ, let R; denote the set of indices of those
signal satisfyingo(t) € Q, ¢t € {0,1,...}. Then there vertices that are reachable from verteafter a walk on



a sequence of — 1 graphsy(Fp,—1))’, ..., 7(Fp1))’-
Then for all: andj € R;

1

(eiFpn—1y Foy) () = (50 (14)

we have
Hpr(n—l) to Fp(l)Hl < (1 - (%)(nil)) HxHI

Using Lemma 8, we can arrive at the same conver-
gence result as that in Theorem 2. According to our

Proof: The vectore; can be thought of as a unit €xperience, we can gain insight into the convergence rate

positive mass at vertex From the definition ofk;, we
know vertex; can be reached from verteéxby a walk
of n—1 steps on the sequenceof- 1 graphs. Since in
each step at Iea§nt fraction of the mass is propagated
along an arc, we know vertex has at least )"~
fraction of the unit mass. [ ]

by constructing special sequences of graphs on which
the random walk progresses.

VI. CONCLUDING REMARKS

It is possible to relax still further the conditions under

. _ _ _which the flocking process converges. We only require
Now we will consider the difference between any paithe sequence of graphs encountered during the flocking

of rows of the matrixF, 1y - -+ Fp1)-

Lemma 7:For any sequencg(1),p(2), ...
of indices in@ and for each # j

1,
Iei = €5 Py -+ Fycay s £2=2(5)") - (15)

process be repeatedly “jointly rooted” where a finite
sequence of directed grapis, , ...
rootedif the compositionG,, o --- o G,, is rooted.

, Gy, In G isjointly

In the future, we are interested in designing consensus
algorithms with faster convergence rates once we gain

deeper insight into the factors that affect the convergence

where for a vectot = [a1 as ...

an]'s flalls =32, ladl-

Proof: The initial vectore; —e; can be thought of
as unit positive mass at vertéxand unit negative mass
at vertexj. As the walk progresses, the sum of positive 1]
mass minus negative mass remains zero. When a positive
mass meets a negative mass, they cancel each othgi
out. Sincey(Fpn—1) - - - Fp(1)) by Lemma 4 is neighbor

s . 3
shared, the pair of verticesandj can both reach some g
vertexk in y(Fy,—1) - - - Fp1))'. Hence, aften—1 steps
of the random walk starting from verticesand j, in 4
view of Lemma 6 we will cancel at leagt )"~1) mass
at vertexk. [
(5]
Now we are in a position to give a lower bound on
(6]
the rate of convergence of the random walk process.
Lemma 8:For any sequencg(1),p(2),...,p(n—1) [7
of indices in Q and for every row vector: such that
2oix(i) =0, [8]
2 Fpn—1) - Fpylle < Allzla (16) o
whereX =1 — ()=,
Proof: Let i be the index of the minimal non-zero ™
value |z;|. Assume without loss of generality thaf
is positive. Then pick somg such thatz; is negative. [11]
Lemma 7 says that at least(a — (+)("~") fraction of 15,

the mass propagated from will be cancelled by mass
propagated fromr;. Now, removez; from considera- (3]
tion, andz; of the negative mass at;. Continuing in [14]
this way, we can pair up positive masses with negative
masses, and by observing the fraction of cancellation,

process.
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