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Abstract— This paper gives a lower bound on the con-
vergence rate of a class of network consensus algorithms.
Two different approaches using directed graphs as a main
tool are introduced: one is to compute the “scrambling
constants” of stochastic matrices associated with “neighbor
shared graphs” and the other is to analyze random walks
on a sequence of graphs. Both approaches prove that
the time to reach consensus within a dynamic network
is logarithmic in the relative error and is in worst case
exponential in the size of the network.

I. I NTRODUCTION

Distributed algorithms where processors reach con-
sensus by exchanging locally computed results have
been studied extensively in the field of distributed and
parallel computations [1], [2]. In recent years, network
consensus algorithms have attracted more attention from
control scientists and engineers interested in distributed
coordination of groups of mobile autonomous agents.
Some simple local rules can cause a group of agents to
behave cooperatively without the existence of a central
controller. The cooperative behaviors include moving in
the same direction [3], [4], aggregating in swarms [5],
and rendezvousing at the same location [6], [7]. Two
salient features make the convergence of the consensus
algorithms difficult to analyze in the context of dis-
tributed coordination within multi-agent systems: First,
the final consensus value cannot be determined a priori
and depends on the initial value of each agent as well
as the dynamic interaction between them; and secondly,
because agents move, the underlying network topology
may not be fixed during system evolutions.

A special class of network consensus algorithms for
flocking via distributed averaging was first studied in [8],
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and convergence was proved under mild connectivity
assumptions in [3] by using switching linear system
theory and algebraic graph theory. Since then various
works have been done to develop this class of algorithms
in continuous time [9], on weakly connected graphs [4],
and in asynchronous scenarios [10]. However, so far few
if any specific convergence rates have been derived for
this class of algorithms. This is due to the fact that tools
such as joint spectrum theory cannot compute an explicit
bound for this particular class of switched linear systems
without equilibriums that can be determined beforehand.

This paper will study the convergence rate for the
flocking process based on the encountered directed
graphs. A lower bound on the convergence rate is
presented using “scrambling constants” for “neighbor
shared graphs”. It will be shown that the time needed for
all the agents’ headings to converge to aε-neighborhood
of the steady state is logarithmic inε and in worst case
exponential in the total number of agents. To better
understand the factors that influence the convergence
rate, a separate approach using random walks on graphs
is also discussed.

The rest of the paper is organized as follows. In
section 2, the flocking algorithm based on distributed
averaging is introduced. In section 3, the convergence is
proved for the case when graphs encountered during the
flocking process are all “neighbor shared”. In section 4,
we study the more general case when graphs encoun-
tered are all rooted. In section 5, a separate approach
using random walks on graphs is introduced.

II. FLOCKING VIA DISTRIBUTED AVERAGING

Consider a system that consists ofn mobile au-
tonomous agents, labelled 1 throughn, that try to reach
agreement on a scalar variable which will be called
the heading. Each agent’s headingθi is updated using



a simple local rule based on the average of its own
heading and the headings of its “neighbors”. Agenti’s
neighborsat time t are those agents, including itself,
whose value at timet is available to agenti. Because
of motion or other possible causes, agenti’s neighbors
may change with time. LetNi(t) andni(t) denote the
set of labels and the number of agenti’s neighbors at
time t respectively. Then agenti’s heading evolves in
discrete-time in accordance with a model of the form

θi(t + 1) =
1

ni(t)

∑

j∈Ni(t)

θj(t) (1)

wheret is a discrete-time index taking values in the non-
negative integers{0, 1, 2, . . .}. We assume that the time
between such updates is bounded below by a positive
numberτB called a dwell time, and that all agents update
their values synchronously.

The explicit form of the update equations determined
by (1) depends on the neighbor relationships which
exist at timet. These relationships can be conveniently
described by a directed graphG with vertex setV =
{1, 2, . . . n} and arc setA(G) ⊂ V×V which is defined
in such a way so that(i, j) is an arc or directed edge
from i to j just in case agenti is a neighbor of agentj.
ThusG is a directed graph onn vertices with at most
one arc from any vertex to another and with exactly one
self-arc at each vertex. We writeG for the set of all
such graphs. We use the symbolP to denote a suitably
defined set indexingG. ThusG = {Gp : p ∈ P} where
for p ∈ P, Gp denotes thepth graph inG. It is natural
to call a vertexi a neighborof vertexj in G if (i, j) is
an arc inG. In addition we sometimes refer to a vertex
k as anobserverof vertexj in G if (j, k) is an arc inG.
Thus every vertex ofG canobserveits neighbors, which
with the interpretation of vertices as agents, is precisely
the kind of relationshipG is suppose to represent.

The set of agent heading update rules defined by (1)
can be written in state form. Toward this end, for each
p ∈ P, define theflocking matrix

Fp = D−1
p A′p (2)

whereA′p is the transpose of theadjacency matrixof
the graphGp andDp is the diagonal matrix whosejth
diagonal element is thein-degreeof vertexj within the
graph1. Then

θ(t + 1) = Fσ(t)θ(t), t ∈ {0, 1, 2, . . .} (3)

1By the adjacency matrixof a directed graphG ∈ G is meant an
n× n matrix whoseijth entry is1 if (i, j) is an arc inA(G) and0
if it is not. The in-degreeof vertex j in G is the number of arcs in
A(G) of the form(i, j); thusj’s in-degree is the number of vertices
it observes.

where θ is the state vectorθ = [θ1 θ2 · · · θn]′ and
σ : {0, 1, . . .} → P is a switching signal whose value at
time t, is the index of the graph representing the agents’
neighbor relationships at timet.

We will show for a large class of switching signals
that all the agents will reach the same steady state value
θss given any initial set of agent headings. Convergence
of the θi to θss is equivalent to the state vectorθ
converging to a vector of the formθss1 where1 is the
n× 1 vector [1 1 · · · 1]′. In addition, we will also give
a sharp lower bound on the rate of this convergence
process. The main challenge lies in how to define and
analyze the rate of convergence for a multi-agent system
under changing neighbor relationships.

III. N EIGHBOR SHARED GRAPHS

We will first give a convergence result for the case
where the graphs encountered along a trajectory of
(3) are all “neighbor shared”. This requirement can be
relaxed significantly as explained in the next section. Let
us callG ∈ G neighbor sharedif each set of2 distinct
vertices share a common neighbor. It is now possible to
state the following elementary convergence result.

Theorem 1:Let Q denote the subset ofP consisting
of those indicesq for whichGq ∈ G is neighbor shared.
Let x(0) be fixed and letσ : {0, 1, 2, . . .} → P be a
switching signal satisfyingσ(t) ∈ Q, t ∈ {0, 1, . . .}.
Then there is a constant steady state headingθss de-
pending only onθ(0) andσ for which

lim
t→∞

θ(t) = θss1 (4)

where the limit is approached exponentially fast.

In order to explain why this theorem is true, we
will make use of certain structural properties ofFp. As
defined, eachFp is square and non-negative, where by
a non-negativematrix is meant a matrix whose entries
are all non-negative. EachFp also has the property that
its row sums all equal1 {i.e., Fp1 = 1}. Matrices
with these two properties are called{row} stochastic.
Because each vertex of each graph inG has a self-arc,
the Fp have the additional property that their diagonal
elements are all non-zero.

Stochastic matrices have been studied extensively in
the literature for a long time largely because of their
connection with Markov chains [11]. One problem of
particular relevance here is to describe the asymptotic
behavior of products ofn×n stochastic matrices of the



form
SjSj−1 · · ·S1

as j tends to infinity. This is equivalent to looking at
the asymptotic behavior of all solutions to the recursion
equation

x(j + 1) = Sjx(j) (5)

because any solutionx(j) can be written as

x(j) = (SjSj−1 · · ·S1) x(1), j ≥ 1

One especially useful idea, which goes back at least to
[12], is to consider the behavior of the scalar-valued non-
negative functionV (x) = dxe − bxc along solutions
to (5) wherex = [x1 x2 · · · xn]′ is a non-negative
n×1 vector anddxe andbxc are its largest and smallest
elements respectively. The key observation is that for
any n × n stochastic matrixS, bSxc ≥ bxc, dSxe ≤
dxe and, as a consequence, thatV (Sx) ≤ V (x). These
inequalities and (5) imply that the sequences

bx(1)c, bx(2)c, . . . dx(1)e, dx(2)e, . . .
V (x(1)), V (x(2)), . . .

are each monotone. Hence, because each of these se-
quences is also bounded, the limits

lim
j→∞

bx(j)c, lim
j→∞

dx(j)e, lim
j→∞

V (x(j))

all exist. Note that whenever the limit ofV (x(j)) is
zero, all components ofx(j) must tend to the same value
and moreover this value must be a constant equal to the
limiting value of bx(j)c.

We will make use of the standard partial ordering
≥ on n × n nonnegative matrices by writingB ≥ A
wheneverB−A is nonnegative. We extend the domain
of definitions of b·c and d·e to the class of all non-
negativen × m matrix M , by letting bMc and dMe
now denote the1 × m row vectors whosejth entries
are the smallest and largest elements respectively, of the
jth column ofM . For any infinite sequence ofn × n
stochastic matricesS1, S2, . . ., we henceforth use the
symbolb· · ·Sj · · ·S1c to denote the limit

b· · ·Sj · · ·S2S1c = lim
j→∞

bSj · · ·S2S1c (6)

From the preceding discussion it is clear that this limit
exists whether or not the productSj · · ·S2S1 itself has
a limit. In the sequel we will be interested in the non-
negative matrix

bd|S|ec = 1(dSe − bSc) (7)

Note that wheneverbd|S|ec = 0, all rows of S must be
equal.

Lemma 1:For any twon× n stochastic matricesS1

andS2,
bd|S2S1|ec ≤ µ(S2)bd|S1|ec (8)

where for anyn× n stochastic matrixS,

µ(S) = max
i,j

(
1−

n∑

k=1

min{sik, sjk}
)

(9)

The proof of this lemma will appear in the full length
version of this paper. The quantityµ(S) has been widely
studied before [13], [11] and is known as thescrambling
constantof the stochastic matrixS. Note that since the
row sums ofS all equal1, µ(S) is non-negative. It is
easy to see thatµ(S) = 0 just in case all the rows ofS
are equal. Let us note that for fixedi andj, thekth term
in the sum appearing in (9) will be positive just in case
bothsik andsjk are positive. It follows that the sum will
be positive if and only if for at least onek, sik andsjk

are both positive. Thusµ(S) < 1 if and only if for each
distinct i andj, there is at least onek for which sik and
sjk are both positive. Matrices with this property have
been widely studied and are calledscrambling matrices.
Thus a stochastic matrixS is a scrambling matrix if and
only if µ(S) < 1. It is easy to see that the definition of
a scrambling matrix also implies thatS is scrambling if
and only if its associated graph is neighbor shared.

Suppose thatFp is a flocking matrix for whichGp is
neighbor shared. In view of the definition of a flocking
matrix, any non-zero entry inFp must be bounded
below by 1

n . Fix distinct i and j and suppose thatk
is a neighbor thati and j share. Thenfik and fjk

are both non-zero, somin{fik, fjk} ≥ 1
n . This implies

that the sum in (9) must be bounded below by1
n and

consequently thatµ(Fp) ≤ 1− 1
n .

Now let Fp be that flocking matrix whose graph
Gp ∈ G is such that vertex1 has no neighbors other
than itself, vertex2 has every vertex as a neighbor, and
vertices3 throughn have only themselves and agent1
as neighbors. Since vertex1 has no neighbors other than
itself, fi,k = 0 for all i and fork > 1. Thus for alli, j, it
must be true that

∑n
k=1 min{fik, fjk} = min{fi1, fj1}.

Now vertex 2 has n neighbors, sof2,1 = 1
n . Thus

min{fi1, fj1} attains its lower bound of1n when either
i = 2 or j = 2. It thus follows that with thisFp, µ(Fp)
attains its upper bound of1− 1

n . We summarize.

Lemma 2:LetQ be the set of indices inP for which
Gp is neighbor shared. Then

max
q∈Q

µ(Fq) = 1− 1
n

(10)



Lemma 1 and 2 will be used in the proof of Theorem
1.

Proof of Theorem 1: By definition, the graphGp of
each matrixFp in the finite set{Fp : p ∈ Q} is neighbor
shared. By assumption,Fσ(t) ∈ {Fp : p ∈ Q} for t ≥ 0.
Let λ = 1− 1

n . In view of Lemma 1 and 2,

bd|Fσ(t) · · ·Fσ(0)|ec ≤ bd|Fσ(t)|ec · · · bd|Fσ(0)|ec ≤ λt+1

and λt+1 approaches zero exponentially fast ast →
∞. Thus the productFσ(t) · · ·Fσ(0) converges to
1b· · ·Fσ(t) · · ·Fσ(0)c exponentially fast at a rate no
slower thanλ. But it is clear from (3) that

θ(t) = Fσ(t−1) · · ·Fσ(1)Fσ(0)θ(0), t ≥ 1

Therefore (4) holds withθss = b· · ·Fσ(t) · · ·Fσ(0)cθ(0)
and the convergence is exponential.

Hence, we have proved that1 − 1
n is a worst case

bound on the rate of convergence of products of flocking
matrices whose graphs are all neighbor shared.

IV. ROOTED GRAPHS

The proof of Theorem 1 depends crucially on the fact
that the graphs encountered along a trajectory of (3) are
all neighbor shared. The aim of this section is to show
that this requirement can be relaxed. To do this we need
to have a meaningful way of “combining” sequences of
graphs so that only the combined graph need be neighbor
shared, but not necessarily the individual graphs making
up the combination. Let us agree to say that thecompo-
sition [10] of a directed graphGp1 ∈ G with a directed
graphGp2 ∈ G, writtenGp2 ◦Gp1 , is the directed graph
with vertex set{1, . . . , n} and arc set defined in such
a way so that(i, j) is an arc of the composition just
in case there is a vertexq such that(i, q) is an arc
of Gp1 and (q, j) is an arc ofGp2 . Thus (i, j) is an
arc of Gp2 ◦ Gp1 if and only if i has an observer in
Gp1 which is also a neighbor ofj in Gp2 . Note that
G is closed under composition and that composition
is an associative binary operation; because of this, the
definition extend unambiguously to any finite sequence
of directed graphsGp1 , Gp2 , . . . ,Gpk

. Note that the
definition of composition takes into account the order in
which the graphs are encountered along a trajectory.

In the sequel we will call a vertexi of a directed graph
G ∈ G a root of G if for each other vertexj of G, there
is a path from i to j2. We will say thatG is rooted ati

2In a directed graphG ∈ G, by the path from vertex i1 to
vertex ik is meant a sequence of vertices{i1, i2, . . . , ik} such that
(i1, i2), (i2, i3), . . . , (ik−1, ik) are arcs ofG.

if i is in fact a root. ThusG is rooted ati just in case
each other vertex ofG is reachablefrom vertexi along
a path within the graph. By arooted graphG ∈ Ḡ we
mean a graph which possesses at least one root.

Lemma 3:Each neighbor shared graph inG is rooted.

Proof: In a graphG ∈ G, we sayv is a root for
vertices1, . . . , k if each of vertices1, . . . , k is reachable
from v. In a neighbor shared graph, vertices 1 and 2 have
a root. One may now prove by induction that if1, . . . , k
have a root for an integer2 ≤ k < n, then1, . . . , k + 1
do as well: any common neighbor of vertexk + 1 and
the root of1, . . . , k will suffice.

It is worth noting that although neighbor shared
graphs are rooted, the converse is not necessarily true.
The reader may wish to construct a three vertex example
which illustrates this. Although rooted graphs inG need
not be neighbor shared, it turns out that the composition
of any n− 1 rooted graphs inG is.

Lemma 4:The composition of any set ofm ≥ n− 1
rooted graphs inG is neighbor shared.

The proof of this lemma will appear in the full length
version of this paper.

It is also possible to derive a worst case convergence
rate for products of flocking matrices which have rooted
rather than neighbor-shared graphs. We will use the
following result without providing its proof.

Lemma 5:Let b be a positive number less than1. Let
Sm

r , m ≥ 1, denote the set of allm-term matrix products
S = SmSm−1 · · ·S1 where eachSi is ann×n stochastic
matrix with a rooted graph inG and all nonzero entries
bounded below byb. Then

max
S∈Sn−1

r

µ(S) = 1− b(n−1)

It turns out that this bound is actually attained if all the
Si are the same taking the form




1 0 0 0 · · · 0
b 1− b 0 0 · · · 0
0 b 1− b 0 · · · 0
...

...
...

...
...

...
...

...
...

... 1− b 0
0 0 0 0 b 1− b




(11)

It is possible to apply at least part of the preceding to
the case when theSi are flocking matrices. Towards
this end, letGp1 ,Gp2 , . . . ,Gpn−1 be any sequence of



n − 1 rooted graphs inG and let Fp1 , . . . , Fpn−1 be
the sequence of flocking matrices associated with these
graphs. Since eachFp is a flocking matrix, it must be
true that any non-zero element inFp is bounded below
by 1

n . Then

µ(Fpn−1 · · ·Fp1) ≤ 1−
(

1
n

)(n−1)

(12)

Unfortunately, we cannot use the preceding reasoning
to show that (12) holds with equality for some sequence
of rooted graphs. This is because the stochastic matrix
in (11) is not a flocking matrix whenb = 1

n , except
in the special case whenn = 2. Nonetheless (12)
can be used as follows to develop a convergence rate
for products of flocking matrices whose graphs are all
rooted. LetQ denote the set ofp ∈ P for which Gp is
rooted and writeFn−1

r for the closed set of all products
of flocking matrices of the formFpn−1 · · ·Fp1 where
eachpi ∈ Q. In view of Lemma 4,Gpn−1 ◦ · · · ◦ Gp1

is neighbor shared for every list ofn − 1 indices
{p1, p2, . . . , pn−1} from Q, and (12) holds for every
such list. Now for any sequencep(1), p(2), . . . , p(j) of
indices inQ, the corresponding productFp(j) · · ·Fp(1)

of flocking matrices can be written as

Fp(j) · · ·Fp(1) = S̄(j)S̄k · · · S̄1

where

S̄i = Fp(i(n−1)) · · ·Fp((i−1)(n−1)+1), 1 ≤ i ≤ k,

S̄(j) = Fp(j) · · ·Fp(k(n−1)+1),

andk is the integer quotient ofj divided byn − 1. In
view of (12)

µ(S̄i) ≤ λ̄, i ∈ {1, 2, . . . , k}
where

λ̄ = 1−
(

1
n

)(n−1)

It is clear that S̄k · · · S̄1 must converge to
1b· · · S̄k · · · S̄1c exponentially fast ask → ∞ at
a rate no slower than̄λ. But S̄(j) is a product of at
most n − 1 stochastic matrices, so it is a bounded
function of j. It follows that the productFp(j) · · ·Fp(1)

must converge to1bFp(j) · · ·Fp(1)c exponentially fast at
a rate no slower thanλ = λ̄

1
n−1 . Using the development

similar to that used in the proof of Theorem 1, we can
prove the following theorem.

Theorem 2:Let Q denote the subset ofP consisting
of those indicesq for whichGq ∈ G is rooted. Letθ(0)
be fixed and letσ : {0, 1, 2, . . .} → P be a switching
signal satisfyingσ(t) ∈ Q, t ∈ {0, 1, . . .}. Then there

is a constant steady state headingθss depending only on
θ(0) andσ for which

lim
t→∞

θ(t) = θss1 (13)

where the limit is approached exponentially fast at a rate
no slower than

λ =

{
1−

(
1
n

)(n−1)
} 1

n−1

It is possible to develop analogous results forstrongly
connectedgraphs, where by a strongly connected graph
we mean a directed graph that has a path from each
vertex to every other vertex. We will state the following
result without proof.

Corollary 1: Under the hypotheses of Theorem 2, and
the additional assumption thatσ takes values only in
the subset ofQ composed of those indices for which
Gp is strongly connected, convergence ofθ(t) to θss1
is exponential at a rate no slower than

λ =
{

1−
(

1
n

)m} 1
m

wherem is the integer quotient ofn divided by2.

V. RANDOM WALKS ON DIRECTED GRAPHS

We need some more ideas in this section. By the
reverse graphof G ∈ G, writtenG′, we mean the graph
in G which results when the directions of all arcs in
G are reversed. It is clear thatG is closed under the
reverse operation. It is also clear that(Gp ◦ Gq)′ =
G′q ◦ G′p, p, q ∈ P. For any flocking matrixFp, p ∈ P,
let γ(Fp) denote that graphG ∈ G corresponding to
Fp. A different approach to analyzing the convergence
of the flocking process is to multiplyFp by row vectors
from the left. In this approach, we are looking at the
random walk [14] where at each time step we apply a
different graphG′σ(t), σ : {0, 1, 2, . . .} → P. Then the
random walk will converge to some fixed distribution if
the flocking process converges.

First, we will consider walks that begin at just one
vertex, that is to begin with a distribution given by an
elementary1×n vectorei with ei(i) = 1 andei(j) = 0
for j 6= i. In the sequel, letQ denote the set ofp ∈ P
for which Gp is rooted.

Lemma 6:For any sequencep(1), p(2), . . . , p(n− 1)
of indices inQ, letRi denote the set of indices of those
vertices that are reachable from vertexi after a walk on



a sequence ofn− 1 graphsγ(Fp(n−1))′, . . . , γ(Fp(1))′.
Then for all i and j ∈ Ri

(
eiFp(n−1) · · ·Fp(1)

)
(j) ≥ (

1
n

)(n−1) (14)

Proof: The vectorei can be thought of as a unit
positive mass at vertexi. From the definition ofRi, we
know vertexj can be reached from vertexi by a walk
of n−1 steps on the sequence ofn−1 graphs. Since in
each step at least1n fraction of the mass is propagated
along an arc, we know vertexj has at least( 1

n )(n−1)

fraction of the unit mass.

Now we will consider the difference between any pair
of rows of the matrixFp(n−1) · · ·Fp(1).

Lemma 7:For any sequencep(1), p(2), . . . , p(n− 1)
of indices inQ and for eachi 6= j

‖(ei − ej)Fp(n−1) · · ·Fp(1)‖1 ≤ 2− 2(
1
n

)(n−1) (15)

where for a vectora = [a1 a2 . . . an]′, ‖a‖1 =
∑

i |ai|.
Proof: The initial vectorei− ej can be thought of

as unit positive mass at vertexi and unit negative mass
at vertexj. As the walk progresses, the sum of positive
mass minus negative mass remains zero. When a positive
mass meets a negative mass, they cancel each other
out. Sinceγ(Fp(n−1) · · ·Fp(1)) by Lemma 4 is neighbor
shared, the pair of verticesi andj can both reach some
vertexk in γ(Fp(n−1) · · ·Fp(1))′. Hence, aftern−1 steps
of the random walk starting from verticesi and j, in
view of Lemma 6 we will cancel at least( 1

n )(n−1) mass
at vertexk.

Now we are in a position to give a lower bound on
the rate of convergence of the random walk process.

Lemma 8:For any sequencep(1), p(2), . . . , p(n− 1)
of indices inQ and for every row vectorx such that∑

i x(i) = 0,

‖xFp(n−1) · · ·Fp(1)‖1 ≤ λ̄‖x‖1 (16)

whereλ̄ = 1− ( 1
n )(n−1).

Proof: Let i be the index of the minimal non-zero
value |xi|. Assume without loss of generality thatxi

is positive. Then pick somej such thatxj is negative.
Lemma 7 says that at least a

(
1− ( 1

n )(n−1)
)

fraction of
the mass propagated fromxi will be cancelled by mass
propagated fromxj . Now, removexi from considera-
tion, andxi of the negative mass atxj . Continuing in
this way, we can pair up positive masses with negative
masses, and by observing the fraction of cancellation,

we have
‖xFp(n−1) · · ·Fp(1)‖1 ≤

(
1− ( 1

n )(n−1)
) ‖x‖1

Using Lemma 8, we can arrive at the same conver-
gence result as that in Theorem 2. According to our
experience, we can gain insight into the convergence rate
by constructing special sequences of graphs on which
the random walk progresses.

VI. CONCLUDING REMARKS

It is possible to relax still further the conditions under
which the flocking process converges. We only require
the sequence of graphs encountered during the flocking
process be repeatedly “jointly rooted” where a finite
sequence of directed graphsGp1 , . . . ,Gpk

in G is jointly
rooted if the compositionGpk

◦ · · · ◦Gp1 is rooted.

In the future, we are interested in designing consensus
algorithms with faster convergence rates once we gain
deeper insight into the factors that affect the convergence
process.
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