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Abstract— An approach to formulate geometric relations  of a mobile beacon [5], etc. Distances between sensors
among distances between nodes as equality constraints is and anchors can be obtained via direct measurements if
introduced in this paper to study the localization problem they are within sensing range of one another; otherwise,

with imprecise distance information in sensor networks. imati thod h dist M1 13 d
These constraints can be further used to formulate opti- 2PProximation methods such as sum-dist [1], [3] an

mization problems for distance estimation. The optimiza- DV-hop [2], [4] can be used to estimate the sensor-
tion solutions correspond to a set of distances that are anchor distances. No matter which method is used
consistent with the fact that sensor nodes live in the same to obtain the distances, the data acquired are usually
plane or 3D space as the anchor nodes. These techniquesiyacise compared with the true distances because of
serve as the foundation for most of the existing localization . . .

algorithms that depend on the sensors’ distances to anchors measgrement noise and estlmat|on- errors. Because the
to compute each sensor’s location. true distances between nodes are interdependent, these
inaccuracies have undesirable consequences of causing
inconsistency with respect to geometric relations, and
sometimes may even cause localization algorithms to
?collapse. For example, in a 2D scenario, triangulation

In sensor networks, sensors’ location information i ails due to nonexistence of feasible solutions when the
vital in location-aware applications and influences net-

work performances when algorithms like geographif'Stances allre not consistent with the fact that all sensors
routing are used. Hence, localization is crucial in th Ve on a plane.
development of low-cost sensor networks where it is not jowever these imprecise distances can be made

feasible for all the nodes’ locations to be directly meas,ore accurate and consistent by exploiting fully the

surable via GPS or other similar means. The locationgeometric and algebraic relations among the distances
of some of the nodes have to be inferred by utilizingyetyeen nodes. One possible approach is to first find a
estimated distances to their nearby nodes. Hence, gsiple set of consistent distances in the sense that the
pointed out in [1], the first and the most fundamentqresponding sensors’ locations live in a given space:
tal phase of most localization algorithms [2], [3], [4]then, distances are selected from this feasible set by
is the determination of the distances between sensgpiimizing a desired objective function such as least
nodes whose locations are to be computed and “anchgfares. Hence, given imprecise distances, the goal is
nodes”. Ananchor nodeis a node whose location is 4 fing the set of distances that minimizes the desired
assumed to be known during the current computatioRyacive function with respect to the given distances,
An anchor node may be a node with a GPS device, Q¢ is also consistent with the requirement that sensors
a node W!th a tentative estimated chat!on in an |_terat|vge in the given space. Using these processed distances
computation process [3], or a point in the trajectoryhe positions of the corresponding sensor nodes can then
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I. INTRODUCTION



determinantthat is defined in the following section. try in spaces where “distance” is defined and invari-
Although inequality constraints, usually variations ofant. When the two sequences of points are the same,
the triangle inequality where the sum of the lengths oM(p4,...,PniP1,---,Pn) and D(P1,---,PniP1s---5Pn)

two sides of the triangle must be greater than the thir@ire denoted for convenience bW(p4,...,p,) and
have been discussed before [6], the equality constrain®py,...,p,) respectively, and the latter is simply called
reported in this paper disclose more insightfully the dea Cayley-Menger determinant

pendency among distances between nodes. Furthermore, _ )
these equality constraints can be utilized to estimate The Cayley-Menger determinant provides another

errors in the measured or computed distances. ON&Y Of expressing the hyper-volume of a “simplex” by
specific estimation approach presented in this paper #ing only the lengths of the edges. #mplexof n

to solve a least squares problem where the objectiRPINts is the smallestn — 1)-dimensional convex hull
is to minimize the sum of the squared errors in th&ontaining these points. The hyper-volurie of the
distances that are measured or computed by a sensyfPlex formed by the pointg,,...,p, is given by

In [7], geometric conditions about the locations of the (="

nodes are investigated to guarantee the uniqueness of theV (P1,---,Pn) = 42n71((n_ 1)!)2D(p17 sbn) @)
localization solution in 2D when imprecise distances arg e

given; the results there can also be integrated into out - o chec.k equation (3) for the following low dimen-
method. Sional cases:

The rest of the paper is organized as follows. In ® FOrnN=2, D(py1,p2) = 2d?(py. P2), andV (py, p,) =
section 2, the definition of the Cayley-Menger deter-  9(P1:P2): _ _ _
minant is introduced as well as related classic results * FOF =3, the simplexis the triangle formed by
in Distance Geometry. In section 3, geometric relations ~ P1: P2» @ndps. ThenV(py, py,p) is the area of this
among nodes’ positions are formulated as quadratic tfangle. Let, b, cbe the lengths of the three edges
constraints by using the Cayley-Menger determinant.  Of the triangle, namela = d(py,pz), b=d(p;, ps).
In section 4, we show that errors in the imprecise Ezd(p&pl)' Let s denote the semi-perimetsr=
distance information can be estimated by solving an  z(@+b+Cc). Then from Heron's formula [10], we
optimization problem. Finally, concluding remarks are ~ Know thatV(py,pz,ps) = V/s(s—a)(s—b)(s—0).
made in section 5. Hence, it is easy to check that’(pi,pz,ps) =

76 D(P1,P2,P3)-
o For n =4, the simplex is the tetrahedron formed

Il. CAYLEY-MENGERDETERMINANTS by p;, Py P, and p,. We can obtain Eulers
formula [11] relating the volume of a tetrahe-
The Cayley-Menger Matrixof two sequences ohf dron with its edge-lengthsV?(p,,p,,P3,P4) =
points, {py,...,Pn} and {qy,...,q,} € R™, is defined Z%SD(plvpz,p&le)_
as
A The following theorem is a classical result on the
M(Py,---:PniGas---,0n) = Cayley-Menger determinant and is later generalized in
d*(p1,q1) d*(p1,Gp) - d*(pg,qn) 1 [12].
d*(pz, 1) d*(pp ) o+ d*(pp0n) 1 , _
: ) . : . a . Theprem .1:ConS|der am-tuple of pointspy,...,p,
0 o P : in m-dimensional space. i > m+ 2, then the Cayley-
d (pi’ql) d (pi,qz) e d (pI»qn) é Menger matrixM(py,...,p,) is singular, namely
D(py;---,pn) =0 (4)

where d(p;,q;), i,j € {1,...,n} is the Euclidean dis-
tance between the poings andq;. The Cayley-Menger A stronger statement can be made as follows in terms
bideterminant{8] of these two sequences ofpoints is  of the rank of the Cayley-Menger matrix.

defined as ) )
Theorem 2:(Theorem 1121 in [9]) Consider ann-

D(p1,---,PniG1s---,0n) 4 detM(py,...,Pn01,---,4,)  tuple of pointspy,...,p, in mdimensional space with
(2) n>m+1 The rank of the Cayley-Menger matrix

. ) o o M(py,...,Pn) is at mostm+ 1.
This determinant is widely used in Distance Geometry

theory [9], [8] which deals with Euclidean geome-In fact, the rank ofM(p4,...,p,) equalsm+1 if and



only if at leastm+ 1 points of then points are in where
generic positions. A similar statement made in terms

_ T
of the cofactors of the Cayley-Menger determinant can e=lar & & (1)

be found in Corollary 1 of [12]. A=
2d%, df, —dfy—df; df;—d3;—df,
d2,—d2, —d? 2d? d2,—d?, —d? 8
IIl. GEOMETRIC RELATIONS AS EQUALITY A A A e ®
diz—di,—dy; djz—di,—di; 2d7,
CONSTRAINTS 5 > 2 2 2\ >
bl = 4d23d01 + 2(d12 - d13 - d23) d02
In this section, we will illustrate how one can describe +2(d25— 02, — d25)d3; + 2035(d3; — df, — dZs)  (9)
thed geome}ricbre!ations tamotng tE_e hdistantcez betwgen by = 4df3d_§2 +2(d2, — d2; — d2;)d3,
nodes as algebraic constraints, which are, to be precise, 1 2(02, — 2, — o2g) Ry + 2025(o2y — 0, — o2y (10)

guadratic algebraic equations. We first consider the two

— 2422 2 42 42\ 32
dimensional case, and the result will then be generalized bs = 4d1,dys +2(di5 — di> — d23)dgy

to the three dimensional case. +2(d3;— d2, — d23)d3, + 20%,(dZ, — d25 — d35) (11)
C = 2d5,0750%; + 20530, + 20505, + 207,53
A. 2D Case +2(df, — d2; — d33)dg;dd, + 2(dF; — dZ, — d33)dG; dds

2 2 2\ 12 2 2 (42 2 2\ 12
As shown in Fig. 1, nodes 1, 2 and 3 are anchor nodestZ((i23 zdlz 2d13)(202d_g3+2d§3(d§3 déz déa)d—gl
and node 0 is a sensor node with unknown position to +2d15(diz — dip — d3)dy, + 2di,(dT; — di3 — d33)dgs (12)
be localized. We assume that nodes 1, 2 and 3 are in  pygof: From Theorem 1 we know that
non-collinear positions. D(pg,P1,P2,P3) = 0, namely
0 d di, df
d; 0 df, di;
det d§2 dfz 0 d§3
di; dfs d5; O
1 1 1 1

Since nodes 1, 2 and 3 are non-collingxip4,p,,Ps) #
0. So we can define

PZ
-0 (13)

ok kR PP

Py Ps 0 d, d%, 1
: . : Al d2, 0 di 1
Fig. 1 Sensor node 0 with anchor nodes 1, 2 and 3 in EZ 2 5 23 (14)
2D di d3 0 1
1 1 1 0
Let d;j = d(p;,p;) denote the accurate Euclidean dis-Then from (13) we know that
tance between noddsand j with i,j =0,1,2,3. Now dgl
. ; L ) g
supppse that_lnaccurate distandgsi=1,2,3 acquwed. [ 2 2 & 1 } E d, o (15)
by either noisy range measurements or computations o1 o2 “o3 dgs

[2], [3], [4], are available while thedjj, the accurate 1
Euclidean distances between anchor nodes withj,

i.j=1,2.3 are known. Then Here we have used the fact that for an arbitrary matrix

- g_ | Pu b
ds =d§ —=& G [ bl B
singular, then

, Wherebs4 is a scalar, ifBy, is non-

for somes;. . —1T
detB = (bll — blZBzz b12) detBy,

. Theqrem 3:The eIrorse; for i = 1,2,3 as _deflned' It follows that
immediately above satisfy a single algebraic equality

32
which is quadratic though not homogeneous in &t& dglJrsl
and whose coefficients are determined dyy for i = [ d_§1+el d_§2+52 d_(2,3+e3 1]E d%z+ & | _p
1,2,3 anddjj for i,j = 1,2,3 andi # j: d031+€3

e"As+&"b+c=0 (6) (16)



which defines a quadratic surface in ths. Multiplying Py
both sides of (16) by the determinant of the inverse of
E, we arrive at (6). [ ]

Now we will show the semi-definiteness of matéx
that is defined in (8).

Theorem 4:With the same hypothesis as for Theorem
3 and withA as defined in (8), the matri& is positive P
semi-definite. !

Proof: Let the coordinates of anchds location

be x; andy; with i =1,2,3. Let Ps

Fig. 2 Tetrahedron formed by four anchor nodes in 3D

X3—X2 Y3—Y2 o
X=| x1—Xs y1—V3 (17) Similarly to the 2D case, we have

o Yam D(Po. P1. P2, P3,P4) = O (20)
Then it is easily verified that which defines a quadratic surfacednwith i =1,2,3,4
e"As+e"b+E=0 (21)
A=2XX" (18)  After examining carefully each entry in matrik, we
define
which is a positive semi-definite matrix. By —[(p,—ps) % (P3—Ps) (P1—Pa) X (P3—Pg)

If the distance information between sensor node 0  (P1—Pa) X (P2—Ps)  (P1—P3) % (P2—p3)]" (22)

and r (r > 3) anchor nodes are available to sensof .. is a 4-by-3 matrix, where>*” denotes the usual
0, we can write downr — 2 independentquadratic ..o o product of two vectors in 3D. Then
equality constraints. This can be obtained by de- '

manding the coplanarity of the following node sets: A=kY YT (23)
{0,1,2,3},{0,1,2,4},...,{0,1,2,r}. Each coplanarity ) , ~
condition gives rise to a quadratic equality constraint ifV1€rek is a nonzero scaling factor. Hence, matfixs
the following form through a procedure similar to thatalso semi-definite.

described above, Similar to the 2D case, if the distance information

between sensor node O arsd(s > 4) anchor nodes
fi(e1,62,86) =0, i=34,...r (19) are available to sensor 0, we can write dowr- 3
independent quadratic equality constraints.

Further coplanarity constraints can be written down
using other selections for 4 nodes, €{6.2,3,4}, but
such constraints will not be independent of the set in

IV. AN OPTIMIZATION PROBLEM

Given all the algebraic constraints obtained in the last

19). . . . .

(19) section, we now try to estimate the error in the inaccurate
distances between sensor nodes and anchor nodes. One
approach is to formulate the problem as a least squares

B. 3D Case problem to minimize the sum of the squared errors.

Other objective functions are also adoptable depending
on the specific application context. As discussed in [7],
In 3D space, we consider the tetrahedron, as shovthe least squares approach is sometimes not the most
in Fig. 2, spanned by four anchor nodes 1, 2, 3 and 4ppropriate one to use. We use it here simply because of
whose inaccurate distances relative to sensor node 0 d@t®clarity and simplicity of expression. The main point is
available to sensor 0. We assume the four anchor nod#sat the quadratic constraints, once established, can be a
are not in co-planar positions. powerful tool in various applications such as least square



optimizations. Here we use the 2D case to illustrate th&obustness” of the quadrilateral formed by sensor 0 and

least squares approach while 3D case can be dealt wiinchors 1, 2 and+ 2. When all the anchors’ positions

by using the same procedures. to be considered satisfy this robustness requirement, if
27) gives rise to two possible choices &f,, then the

Let & as defined in (5) be the error in the estimategne that satisfies the geometric relation just described is
squared distances between sensor 0 and arichdfe \yhat we want. From this, we have

want to minimize the sum of the squared errors

& =0i(e, & Vie{3,...,r 28
J=el+ei+ - +& >3 (24) = i(ene) 3.1} (28)
substituting (28) into (26), we have
subject tor — 2 quadratic equality constraints as definedBy ubstituting (28) into (26), w v
in equation (19). Ai = hi(&1, &) Vie{l,...,r—2} (29)

Whenr =3, we have a least squares problem with on&y substituting (28) and (29) intgf = 0 and =
quadratic constraint, which is well studied [13], [14],We obtain two equations with two variables and e,.

[15]. Whenr > 3, we can use the following Lagrangian Hence, the Lagrangian multiplier method may find the
multiplier method. minimum of the objective function (24).

Let A, i =1,...,r — 2 be the Lagrangian multipliers.  In 3D, the same technique can be used to formulate

We can get the following Lagrangian multiplier form an optimization problem with quadratic equality con-
; ‘2 straints. If a similar analytical approach is adopted, a
H(ew,. ... &AL, Ar_2) = Z£i2+ Zl/\i fiio(€1, 8, 642) sgbtle problem that arises is how to prune dlsc'rete fea-
< i sible sets when each quadratic constraint function leads

. ) . (25)  to two different solutions. A geometrical consideration
Because of the strict convexity of the functidrand the might be helpful like that used in (27).

positive semi-definiteness of the Hessians of functions
fii2, whenA; > 0, the Lagrangiam is a strictly convex

function. Then there exists a unique global minimum.
So numerical methods, such as gradient methods, can bel_h. introd he Cavlev- d .
exploited to search for the minimum. We will present as IS paper Introduces the Cay ey.Menger eterm_|
follows an analytical calculation by taking advantage O]nant as an important tool to formulating the geometric

the special quadratic equality form of the constraints. relations among noo!es posmons_ln sensor ne'Fworks
as quadratic constraints. It also discusses solutions to

By differentiating the Lagrangiai with respect to Optimization problems to estimate the errors in the

V. CONCLUSIONS

&,i=23,...,r and letting the result be zero, we have inaccurate distances between sensor nodes and anchor
9H nodes. The solution of the optimization problem, when
R = 26 + Ai_2(20%,6 + 2(d3, — d% — d2)er used to adjust noisy distance measurements, gives a

i

5 o o - s set of distances between nodes which are completely
+2(dyf; — d3i — dip) €2 + 2di5(di, — df — d2i)) =0 (26)  consistent with the fact that sensor nodes live in the same
By differentiating the Lagrangiahl with respect toA;, plane or 3D-space as the anchor nodes. Th(_asg technique
i=1,...,r—2 and letting the result be zero, we have Serve as the foundation for most of the existing local-

ization algorithms that depend on the sensors’ distances
fira(€1,€2,8642) =0 (27)  to anchors to compute each sensor's location.

For eachi =1,...,r — 2, equation (27) can be used
to solve for ., in terms of & and &. And since
equation (27) is quadratic ig.», it may lead to two
possible solutions fog; ,. If we confine ourselves to
the cases where only “robust” distances [7] are us
in the localization calculation, then only one of theIO
two solutions to this equation is desired. Consider the
following geometrical explanation: the line connecting
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