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Abstract— An approach to formulate geometric relations
among distances between nodes as equality constraints is
introduced in this paper to study the localization problem
with imprecise distance information in sensor networks.
These constraints can be further used to formulate opti-
mization problems for distance estimation. The optimiza-
tion solutions correspond to a set of distances that are
consistent with the fact that sensor nodes live in the same
plane or 3D space as the anchor nodes. These techniques
serve as the foundation for most of the existing localization
algorithms that depend on the sensors’ distances to anchors
to compute each sensor’s location.

I. I NTRODUCTION

In sensor networks, sensors’ location information is
vital in location-aware applications and influences net-
work performances when algorithms like geographic
routing are used. Hence, localization is crucial in the
development of low-cost sensor networks where it is not
feasible for all the nodes’ locations to be directly mea-
surable via GPS or other similar means. The locations
of some of the nodes have to be inferred by utilizing
estimated distances to their nearby nodes. Hence, as
pointed out in [1], the first and the most fundamen-
tal phase of most localization algorithms [2], [3], [4]
is the determination of the distances between sensor
nodes whose locations are to be computed and “anchor
nodes”. An anchor nodeis a node whose location is
assumed to be known during the current computation.
An anchor node may be a node with a GPS device, or
a node with a tentative estimated location in an iterative
computation process [3], or a point in the trajectory
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of a mobile beacon [5], etc. Distances between sensors
and anchors can be obtained via direct measurements if
they are within sensing range of one another; otherwise,
approximation methods such as sum-dist [1], [3] and
DV-hop [2], [4] can be used to estimate the sensor-
anchor distances. No matter which method is used
to obtain the distances, the data acquired are usually
imprecise compared with the true distances because of
measurement noise and estimation errors. Because the
true distances between nodes are interdependent, these
inaccuracies have undesirable consequences of causing
inconsistency with respect to geometric relations, and
sometimes may even cause localization algorithms to
collapse. For example, in a 2D scenario, triangulation
fails due to nonexistence of feasible solutions when the
distances are not consistent with the fact that all sensors
live on a plane.

However, these imprecise distances can be made
more accurate and consistent by exploiting fully the
geometric and algebraic relations among the distances
between nodes. One possible approach is to first find a
feasible set of consistent distances in the sense that the
corresponding sensors’ locations live in a given space;
then, distances are selected from this feasible set by
optimizing a desired objective function such as least
squares. Hence, given imprecise distances, the goal is
to find the set of distances that minimizes the desired
objective function with respect to the given distances,
that is also consistent with the requirement that sensors
lie in the given space. Using these processed distances
the positions of the corresponding sensor nodes can then
be determined by lateration [2], [4], min-max optimiza-
tion [3], or any of the other appropriate methods.

In this paper a novel technique is presented which
describes the geometric relations among the sensor-
anchor distances as one or multiple quadratic equality
constraints. The key step is to use theCayley-Menger



determinant that is defined in the following section.
Although inequality constraints, usually variations of
the triangle inequality where the sum of the lengths of
two sides of the triangle must be greater than the third,
have been discussed before [6], the equality constraints
reported in this paper disclose more insightfully the de-
pendency among distances between nodes. Furthermore,
these equality constraints can be utilized to estimate
errors in the measured or computed distances. One
specific estimation approach presented in this paper is
to solve a least squares problem where the objective
is to minimize the sum of the squared errors in the
distances that are measured or computed by a sensor.
In [7], geometric conditions about the locations of the
nodes are investigated to guarantee the uniqueness of the
localization solution in 2D when imprecise distances are
given; the results there can also be integrated into our
method.

The rest of the paper is organized as follows. In
section 2, the definition of the Cayley-Menger deter-
minant is introduced as well as related classic results
in Distance Geometry. In section 3, geometric relations
among nodes’ positions are formulated as quadratic
constraints by using the Cayley-Menger determinant.
In section 4, we show that errors in the imprecise
distance information can be estimated by solving an
optimization problem. Finally, concluding remarks are
made in section 5.

II. CAYLEY-MENGERDETERMINANTS

The Cayley-Menger Matrixof two sequences ofn
points, {p1, . . . ,pn} and {q1, . . . ,qn} ∈ Rm, is defined
as

M(p1, . . . ,pn;q1, . . . ,qn)
∆=



d2(p1,q1) d2(p1,q2) · · · d2(p1,qn) 1
d2(p2,q1) d2(p2,q2) · · · d2(p2,qn) 1

...
...

.. .
...

...
d2(pn,q1) d2(pn,q2) · · · d2(pn,qn) 1

1 1 · · · 1 0




(1)

where d(pi ,q j), i, j ∈ {1, . . . ,n} is the Euclidean dis-
tance between the pointspi andq j . TheCayley-Menger
bideterminant[8] of these two sequences ofn points is
defined as

D(p1, . . . ,pn;q1, . . . ,qn)
∆= detM(p1, . . . ,pn;q1, . . . ,qn)

(2)

This determinant is widely used in Distance Geometry
theory [9], [8] which deals with Euclidean geome-

try in spaces where “distance” is defined and invari-
ant. When the two sequences of points are the same,
M(p1, . . . ,pn;p1, . . . ,pn) and D(p1, . . . ,pn;p1, . . . ,pn)
are denoted for convenience byM(p1, . . . ,pn) and
D(p1, . . . ,pn) respectively, and the latter is simply called
a Cayley-Menger determinant.

The Cayley-Menger determinant provides another
way of expressing the hyper-volume of a “simplex” by
using only the lengths of the edges. Asimplex of n
points is the smallest(n− 1)-dimensional convex hull
containing these points. The hyper-volumeV of the
simplex formed by the pointsp1, . . . ,pn is given by

V2(p1, . . . ,pn) =
(−1)n

2n−1((n−1)!)2 D(p1, . . . ,pn) (3)

We can check equation (3) for the following low dimen-
sional cases:

• For n= 2, D(p1,p2) = 2d2(p1,p2), andV(p1,p2) =
d(p1,p2).

• For n = 3, the simplex is the triangle formed by
p1, p2, andp3. ThenV(p1,p2,p3) is the area of this
triangle. Leta, b, c be the lengths of the three edges
of the triangle, namelya= d(p1,p2), b= d(p2,p3),
c = d(p3,p1). Let s denote the semi-perimeters=
1
2(a+b+c). Then from Heron’s formula [10], we
know thatV(p1,p2,p3) =

√
s(s−a)(s−b)(s−c).

Hence, it is easy to check thatV2(p1,p2,p3) =
−1
16 D(p1,p2,p3).

• For n = 4, the simplex is the tetrahedron formed
by p1, p2, p3, and p4. We can obtain Euler’s
formula [11] relating the volume of a tetrahe-
dron with its edge-lengths:V2(p1,p2,p3,p4) =

1
288D(p1,p2,p3,p4).

The following theorem is a classical result on the
Cayley-Menger determinant and is later generalized in
[12].

Theorem 1:Consider ann-tuple of pointsp1, . . . ,pn
in m-dimensional space. Ifn≥m+2, then the Cayley-
Menger matrixM(p1, . . . ,pn) is singular, namely

D(p1, . . . ,pn) = 0 (4)

A stronger statement can be made as follows in terms
of the rank of the Cayley-Menger matrix.

Theorem 2:(Theorem 112.1 in [9]) Consider ann-
tuple of pointsp1, . . . ,pn in m-dimensional space with
n ≥ m+ 1. The rank of the Cayley-Menger matrix
M(p1, . . . ,pn) is at mostm+1.

In fact, the rank ofM(p1, . . . ,pn) equalsm+ 1 if and



only if at least m+ 1 points of the n points are in
generic positions. A similar statement made in terms
of the cofactors of the Cayley-Menger determinant can
be found in Corollary 1 of [12].

III. G EOMETRIC RELATIONS AS EQUALITY

CONSTRAINTS

In this section, we will illustrate how one can describe
the geometric relations among the distances between
nodes as algebraic constraints, which are, to be precise,
quadratic algebraic equations. We first consider the two
dimensional case, and the result will then be generalized
to the three dimensional case.

A. 2D Case

As shown in Fig. 1, nodes 1, 2 and 3 are anchor nodes
and node 0 is a sensor node with unknown position to
be localized. We assume that nodes 1, 2 and 3 are in
non-collinear positions.

P2

P0

P3P1

Fig. 1 Sensor node 0 with anchor nodes 1, 2 and 3 in
2D

Let di j = d(pi ,p j) denote the accurate Euclidean dis-
tance between nodesi and j with i, j = 0,1,2,3. Now
suppose that inaccurate distancesd̄0i , i = 1,2,3 acquired
by either noisy range measurements or computations
[2], [3], [4], are available while thedi j , the accurate
Euclidean distances between anchor nodes withi 6= j,
i, j = 1,2,3, are known. Then

d̄2
0i = d2

0i − εi (5)

for someεi .

Theorem 3:The errorsεi for i = 1,2,3 as defined
immediately above satisfy a single algebraic equality
which is quadratic though not homogeneous in theεi ’s,
and whose coefficients are determined bȳd0i for i =
1,2,3 anddi j for i, j = 1,2,3 and i 6= j:

εTAε + εTb+c = 0 (6)

where

ε = [ε1 ε2 ε3]T (7)

A =


2d2
23 d2

12−d2
13−d2

23 d2
13−d2

23−d2
12

d2
12−d2

13−d2
23 2d2

13 d2
23−d2

12−d2
13

d2
13−d2

12−d2
23 d2

23−d2
12−d2

13 2d2
12


 (8)

b1 = 4d2
23d̄

2
01+2(d2

12−d2
13−d2

23)d̄
2
02

+2(d2
13−d2

12−d2
23)d̄

2
03+2d2

23(d
2
23−d2

12−d2
13) (9)

b2 = 4d2
13d̄

2
02+2(d2

12−d2
13−d2

23)d̄
2
01

+2(d2
23−d2

12−d2
13)d̄

2
03+2d2

13(d
2
13−d2

12−d2
23) (10)

b3 = 4d2
12d̄

2
03+2(d2

13−d2
12−d2

23)d̄
2
01

+2(d2
23−d2

12−d2
13)d̄

2
02+2d2

12(d
2
12−d2

13−d2
23) (11)

c = 2d2
12d

2
13d

2
23+2d2

23d̄
4
01+2d2

13d̄
4
02+2d2

12d̄
4
03

+2(d2
12−d2

13−d2
23)d̄

2
01d̄

2
02+2(d2

13−d2
12−d2

23)d̄
2
01d̄

2
03

+2(d2
23−d2

12−d2
13)d̄

2
02d̄

2
03+2d2

23(d
2
23−d2

12−d2
13)d̄

2
01

+2d2
13(d

2
13−d2

12−d2
23)d̄

2
02+2d2

12(d
2
12−d2

13−d2
23)d̄

2
03 (12)

Proof: From Theorem 1 we know that
D(p0,p1,p2,p3) = 0, namely

det




0 d2
01 d2

02 d2
03 1

d2
01 0 d2

12 d2
13 1

d2
02 d2

12 0 d2
23 1

d2
03 d2

13 d2
23 0 1

1 1 1 1 0




= 0 (13)

Since nodes 1, 2 and 3 are non-collinear,D(p1,p2,p3) 6=
0. So we can define

E
∆=




0 d2
12 d2

13 1
d2

12 0 d2
23 1

d2
13 d2

23 0 1
1 1 1 0




−1

(14)

Then from (13) we know that

[
d2

01 d2
02 d2

03 1
]
E




d2
01

d2
02

d2
03
1


 = 0 (15)

Here we have used the fact that for an arbitrary matrix

B =
[

b11 b12

bT
12 B22

]
, whereb11 is a scalar, ifB22 is non-

singular, then

detB =
(
b11−b12B

−1
22 bT

12

)
detB22

It follows that

[
d̄2

01+ ε1 d̄2
02+ ε2 d̄2

03+ ε3 1
]
E




d̄2
01+ ε1

d̄2
02+ ε2

d̄2
03+ ε3

1


 = 0

(16)



which defines a quadratic surface in theεi ’s. Multiplying
both sides of (16) by the determinant of the inverse of
E, we arrive at (6).

Now we will show the semi-definiteness of matrixA
that is defined in (8).

Theorem 4:With the same hypothesis as for Theorem
3 and withA as defined in (8), the matrixA is positive
semi-definite.

Proof: Let the coordinates of anchori’s location
be xi andyi with i = 1,2,3. Let

X =




x3−x2 y3−y2

x1−x3 y1−y3

x2−x1 y2−y1


 (17)

Then it is easily verified that

A = 2XXT (18)

which is a positive semi-definite matrix.

If the distance information between sensor node 0
and r (r > 3) anchor nodes are available to sensor
0, we can write downr − 2 independentquadratic
equality constraints. This can be obtained by de-
manding the coplanarity of the following node sets:
{0,1,2,3},{0,1,2,4}, . . . ,{0,1,2, r}. Each coplanarity
condition gives rise to a quadratic equality constraint in
the following form through a procedure similar to that
described above,

fi(ε1,ε2,εi) = 0, i = 3,4, . . . , r (19)

Further coplanarity constraints can be written down
using other selections for 4 nodes, e.g.{0,2,3,4}, but
such constraints will not be independent of the set in
(19).

B. 3D Case

In 3D space, we consider the tetrahedron, as shown
in Fig. 2, spanned by four anchor nodes 1, 2, 3 and 4,
whose inaccurate distances relative to sensor node 0 are
available to sensor 0. We assume the four anchor nodes
are not in co-planar positions.

P1

P2
P4

P3

Fig. 2 Tetrahedron formed by four anchor nodes in 3D

Similarly to the 2D case, we have

D(p0,p1,p2,p3,p4) = 0 (20)

which defines a quadratic surface inεi with i = 1,2,3,4

εT Ãε + εT b̃+ c̃ = 0 (21)

After examining carefully each entry in matrix̃A, we
define

Y = [(p2−p4)× (p3−p4) (p1−p4)× (p3−p4)
(p1−p4)× (p2−p4) (p1−p3)× (p2−p3)]

T (22)

which is a 4-by-3 matrix, where “×” denotes the usual
cross product of two vectors in 3D. Then

Ã = kY ·YT (23)

wherek is a nonzero scaling factor. Hence, matrixÃ is
also semi-definite.

Similar to the 2D case, if the distance information
between sensor node 0 ands (s > 4) anchor nodes
are available to sensor 0, we can write downs− 3
independent quadratic equality constraints.

IV. A N OPTIMIZATION PROBLEM

Given all the algebraic constraints obtained in the last
section, we now try to estimate the error in the inaccurate
distances between sensor nodes and anchor nodes. One
approach is to formulate the problem as a least squares
problem to minimize the sum of the squared errors.
Other objective functions are also adoptable depending
on the specific application context. As discussed in [7],
the least squares approach is sometimes not the most
appropriate one to use. We use it here simply because of
its clarity and simplicity of expression. The main point is
that the quadratic constraints, once established, can be a
powerful tool in various applications such as least square



optimizations. Here we use the 2D case to illustrate the
least squares approach while 3D case can be dealt with
by using the same procedures.

Let εi as defined in (5) be the error in the estimated
squared distances between sensor 0 and anchori. We
want to minimize the sum of the squared errors

J = ε2
1 + ε2

2 + · · ·+ ε2
r r ≥ 3 (24)

subject tor−2 quadratic equality constraints as defined
in equation (19).

Whenr = 3, we have a least squares problem with one
quadratic constraint, which is well studied [13], [14],
[15]. Whenr > 3, we can use the following Lagrangian
multiplier method.

Let λi , i = 1, . . . , r−2 be the Lagrangian multipliers.
We can get the following Lagrangian multiplier form

H(ε1, . . . ,εr ,λ1, . . . ,λr−2)=
r

∑
i=1

ε2
i +

r−2

∑
i=1

λi fi+2(ε1,ε2,εi+2)

(25)
Because of the strict convexity of the functionJ and the
positive semi-definiteness of the Hessians of functions
fi+2, whenλi > 0, the LagrangianH is a strictly convex
function. Then there exists a unique global minimum.
So numerical methods, such as gradient methods, can be
exploited to search for the minimum. We will present as
follows an analytical calculation by taking advantage of
the special quadratic equality form of the constraints.

By differentiating the LagrangianH with respect to
εi , i = 3, . . . , r and letting the result be zero, we have

∂H
∂εi

= 2εi +λi−2
(
2d2

12εi +2(d2
12−d2

1i −d2
2i)ε1

+2(d2
1i −d2

2i −d2
12)ε2 +2d2

12(d
2
12−d2

1i −d2
2i)

)
= 0 (26)

By differentiating the LagrangianH with respect toλi ,
i = 1, . . . , r−2 and letting the result be zero, we have

fi+2(ε1,ε2,εi+2) = 0 (27)

For each i = 1, . . . , r − 2, equation (27) can be used
to solve for εi+2 in terms of ε1 and ε2. And since
equation (27) is quadratic inεi+2, it may lead to two
possible solutions forεi+2. If we confine ourselves to
the cases where only “robust” distances [7] are used
in the localization calculation, then only one of the
two solutions to this equation is desired. Consider the
following geometrical explanation: the line connecting
p1 and p2 divides the plane into two half planes; we
discard the constraintfi+2 = 0 if the corresponding
anchor i + 2 and sensor 0 live in different half planes
with respect to the linep1p2. This is required by the

“robustness” of the quadrilateral formed by sensor 0 and
anchors 1, 2 andi +2. When all the anchors’ positions
to be considered satisfy this robustness requirement, if
(27) gives rise to two possible choices ofεi+2, then the
one that satisfies the geometric relation just described is
what we want. From this, we have

εi = gi(ε1,ε2) ∀i ∈ {3, ..., r} (28)

By substituting (28) into (26), we have

λi = hi(ε1,ε2) ∀i ∈ {1, . . . , r−2} (29)

By substituting (28) and (29) into∂H
∂ε1

= 0 and ∂H
∂ε2

= 0,
we obtain two equations with two variablesε1 and ε2.
Hence, the Lagrangian multiplier method may find the
minimum of the objective function (24).

In 3D, the same technique can be used to formulate
an optimization problem with quadratic equality con-
straints. If a similar analytical approach is adopted, a
subtle problem that arises is how to prune discrete fea-
sible sets when each quadratic constraint function leads
to two different solutions. A geometrical consideration
might be helpful like that used in (27).

V. CONCLUSIONS

This paper introduces the Cayley-Menger determi-
nant as an important tool to formulating the geometric
relations among nodes’ positions in sensor networks
as quadratic constraints. It also discusses solutions to
optimization problems to estimate the errors in the
inaccurate distances between sensor nodes and anchor
nodes. The solution of the optimization problem, when
used to adjust noisy distance measurements, gives a
set of distances between nodes which are completely
consistent with the fact that sensor nodes live in the same
plane or 3D-space as the anchor nodes. These technique
serve as the foundation for most of the existing local-
ization algorithms that depend on the sensors’ distances
to anchors to compute each sensor’s location.

For future work, we will apply the technique pre-
sented in this paper to the existing localization algo-
rithms and determine the most appropriate objective
functions in the optimization process. Other optimization
technique including semi-definite programming can also
be exploited to accelerate the computation processes.
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