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Abstract— This paper is concerned with rigid formations of
mobile autonomous agents that have leader-follower architec-
ture. In a previous paper, Baillieul and Suri gave a proposition
as a necessary condition for stable rigidity. They also gave a
separate theorem as a sufficient condition for stable rigidity.
This paper suggests an approach to analyze rigid formations
that have leader-follower architecture. It proves that the third
condition in the proposition given by Baillieul and Suri is
redundant, and it proves that this proposition is a necessary
and sufficient condition for stable rigidity. Simulation results
are also presented to illustrate rigidity.

I. INTRODUCTION

Formations of autonomous agents have lately received
considerable attention due to recent advances in compu-
tation and communication technologies (see for example
[1], [2], [8], [9], [10], [14], [15], [18]). A formation is
a group of agents moving in real 2- or 3-dimensional
space. A formation is called rigid if the distance between
each pair of agents does not change over time under
ideal conditions. Sensing/communication links are used for
maintaining fixed distances between agents. The intercon-
nection structure of sensing/communication links is called
sensor/network topology. In practice, actual agent groups
cannot be expected to move exactly as a rigid formation
because of sensing errors, vehicle modelling errors, etc.
The ideal benchmark point formation against which the
performance of an actual agent formation is to be measured
is called a reference formation. In reality, agents are entities
with physical dimensions. For modeling purposes, agents
are represented by points called point agents. Distances
between all agent pairs can be held fixed by directly
measuring distances between only some agents and keeping
them at desired values.
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Two agents connected by a sensing/communication link
are called neighbors. There are two types of neighbor
relations in rigid formations. In the first type, the neighbor
relation is symmetric, i.e., if agent i senses/communicates
with agent j and uses the received information (such as
distance or bearing information) for motion planning, so
does agent j with agent i. A link with a symmetric neighbor
relation is represented graphically by a straight line. In the
second type, the neighbor relation is asymmetric, i.e., if
agent i senses/communicates with agent j and uses the re-
ceived information (such as distance or bearing) for motion
planning, then agent j does not make use of any information
received from agent i although it may sense/communicate
with agent i. For example, rigid formations with a leader-
follower architecture have the asymmetric neighbor relation.
A link with an asymmetric neighbor relation between a
leader and a follower is represented by a directed edge
pointing from the follower to the leader. The terms ‘undi-
rected formation’ and ‘directed formation’ are also used to
describe formations with symmetric neighbor relations and
formations with leader-follower architecture [14]. Eren et
al. [5], [6] and Olfati-Saber and Murray [9] suggested an
approach based on rigidity for maintaining formations of
autonomous agents with sensor/network topologies that use
distance information between agents, where the neighbor
relation is symmetric. For formations that have a leader-
follower architecture, Baillieul and Suri gave two separate
conditions for stable rigidity for formations that use distance
information between agents, one of which is a necessary
condition and the other is a sufficient condition [1]. Desai
et al. made use of both distance and bearing information to
maintain formations that have a leader-follower architecture
[4]. This paper suggests an approach to analyze rigid
formations with a leader-follower architecture and proves
that the necessary condition given by Baillieul and Suri is
a necessary and sufficient condition for stable rigidity in
formations that have a leader-follower architecture.

In this paper, we will restrict our attention to formations
in 2-dimensional space. The paper is organized as follows.
In §II, we start with definitions of point formations and
rigidity. We then review rigid formations with symmetric
neighbor relations. We investigate stably rigid formations
that have a leader-follower architecture in §III. Simulation
results are given in §IV Finally, the paper ends with con-
cluding remarks in §V.
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II. RIGIDITY AND POINT FORMATIONS

A point formation Fp � (p,L) provides a way of repre-
senting a formation of n agents. p � {p1, p2, . . . , pn} and
the points pi represent the positions of agents in R

d {d = 2
or 3} where i is an integer in {1, 2, . . . , n} and denotes the
labels of agents. L is the set of “maintenance links,” labelled
(i, j), where i and j are distinct integers in {1, 2, . . . , n}.
The maintenance links in L correspond to constraints be-
tween specific agents, such as distances, which are to be
maintained over time by using sensing/communication links
between certain pairs of agents. Each point formation Fp

uniquely determines a graph GFp
� (V,L) with vertex set

V � {1, 2, . . . , n}, which is the set of labels of agents,
and edge set L. A formation with distance constraints can
be represented by (V,L, f) where f : L �−→ R. Each
maintenance link (i, j) ∈ L is used to maintain the distance
f((i, j)) between certain pairs of agents fixed.

A trajectory of a formation is a continuously parameter-
ized one-parameter family of curves (q1(t), q2(t), ..., qn(t))
in R

nd which contain p and on which for each t, Fq(t) is
a formation with the same measured values under f, g. A
rigid motion is a trajectory along which point formations
contained in this trajectory are congruent to each other.
We will say that two point formations Fp and Fr, where
p, r ∈ q(t), are congruent if they have the same graph and
if p and r are congruent. p is congruent to r in the sense
that there is a distance-preserving map T : IRd → IRd such
that T (ri) = pi, i ∈ {1, 2, . . . , n}. If rigid motions are the
only possible trajectories then the formation is called rigid;
otherwise it is called flexible [6].

A. Rigidity in Point Formations with Symmetric Neighbor
Relations

Whether a given point formation is rigid or not can
be studied by examining what happens to the given point
formation Fp = ({p1, p2, . . . , pn},L) with m maintenance
links, along the trajectory q([0,∞)) � {{q1(t), q2(t),
. . . , qn(t)} : t ≥ 0} on which the Euclidean distances
dij � ||pi − pj || between pairs of points (pi, pj) for which
(i, j) is a link are constant. Along such a trajectory

(qi − qj) · (qi − qj) = d2
ij , (i, j) ∈ L, t ≥ 0 (1)

We note that the existence of a trajectory is equivalent to the
existence of a piecewise analytic path, with all derivatives
at the initial point [12]. Assuming a smooth (piecewise
analytic) trajectory, we can differentiate to get

(qi − qj) · (q̇i − q̇j) = 0, (i, j) ∈ L, t ≥ 0 (2)

Here, q̇i is the velocity of point i. The m equations can be
collected into a single matrix equation

RL(q)q̇ = 0 (3)

where q̇ = [q̇1, q̇2, . . . , q̇n]T (T stands for transpose) and
RL(q) is a specially structured m × 2n matrix called the
rigidity matrix [11], [16], [17].

Example 2.1: Consider a planar point formation Fp

shown in Figure 1. This has a rigidity matrix as shown
in Table I.

Let Mp be the manifold of points congruent to p.
Because any trajectory of Fp which lies within Mp, is one
along which Fp undergoes rigid motion, (2) automatically
holds along any trajectory which lies within Mp. From this,
it follows that the tangent space to Mp at p, written Tp,
must be contained in the kernel of RL(p). If the points
p1, p2, . . . , pn are in general position (which means that the
points p1, p2, . . . , pn do not lie on any hyperplane in IRn),
then Mp is n(n+1)/2 dimensional since it arises from the
n(n−1)/2-dimensional manifold of orthogonal transforma-
tions of IRn and the n-dimensional manifold of translations
of IRn [11]. Thus Mp is 3-dimensional for Fp in IR2.
We have rank RL(p) = 2n − dimension{kernel(RL(p))}
≤ 2n−n(n+1)/2. The following theorem holds [11], [16]:

Theorem 2.2: Assume Fp is an n-point formation with at
least 2 points in 2-dimensional space where rank RL(p) =
max{rank RL(x) : x ∈ IR2}. Fp is rigid in IR2 if and only
if rank RL(p) = 2n − 3.
This theorem leads to the notion of the “generic” behavior
of rigidity. When the rank is less than the maximum, the
formation may still be rigid. However this type of rigidity
lacks the generic behavior and thus is not addressed in this
paper.

1) Generic Rigidity: We define a type of rigidity, called
“generic rigidity,” that is more useful for our purposes.
A set A = (α1, . . . , αm) of distinct real numbers is said
to be algebraically dependent if there is a non-zero poly-
nomial h(x1, . . . , xm) with integer coefficients such that
h(α1, . . . , αm) = 0. If A is not algebraically dependent, it
is called generic [3]. We say that p = (p1, . . . , pn) is generic
in 2-dimensional space, if its 2n coordinates are generic.
It can be shown that the set of generic p’s form an open
connected dense subset of IR2n [13]. A graph G = (V,L) is
called generically rigid, if Fp = (p,L) is rigid for a generic
p.

The concept of generic rigidity does not depend on the
precise distances between the points of Fp but examines
how well the rigidity of formations can be judged by

Fig. 1. A planar point formation.
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RL(p) i j r s
(i, j) xi − xj yi − yj xj − xi yj − yi 0 0 0 0
(i, r) xi − xr yi − yr 0 0 xr − xi yr − yi 0 0
(i, s) xi − xs yi − ys 0 0 0 0 xs − xi ys − yi

(j, r) 0 0 xj − xr yj − yr xr − xj yr − yj 0 0
(j, s) 0 0 xj − xs yj − ys 0 0 xs − xj ys − yj

(r, s) 0 0 0 0 xr − xs yr − ys xs − xr ys − yr

TABLE I

RIGIDITY MATRIX EXAMPLE FOR DISTANCES

knowing the vertices and their incidences, in other words,
by knowing the underlying graph. For this reason, it is a
desirable specialization of the concept of a “rigid forma-
tion” for our purposes. The following theorem holds for a
generically rigid graph [16]:

Theorem 2.3: The following are equivalent:

1) a graph G = (V,L) is generically rigid in 2-
dimensional space;

2) for some p, the formation Fp with the underlying
graph G has rank{RL(p)}= 2|V| − 3 where |V|
denotes the cardinal number of V;

3) for almost all p, the formation Fp with the underlying
graph G is rigid.

For 2-dimensional space, we have a complete combinato-
rial characterization of generically rigid graphs, which was
first proved by Laman in 1970 [7].

Theorem 2.4 (Laman [7]): A graph G = (V,L) is
generically rigid in 2-dimensional space if and only if there
is a subset L′ ⊆ L satisfying the following two conditions:
(1) |L′| = 2|V| − 3, (2) For all L′′ ⊆ L′,L′′ �= ∅, |L′′| ≤
2|V(L′′)|− 3, where |V(L′′)| is the number of vertices that
are end-vertices of the edges in L′′.

III. RIGIDITY IN POINT FORMATIONS WITH

LEADER-FOLLOWER ARCHITECTURE

First, we give some definitions from graph theory, which
are relevant to point formations with leader-follower ar-
chitecture. A graph in which each edge is replaced by
a directed edge is called a directed graph, also called a
digraph. When there is a danger of confusion, we will
call a graph, which is not a directed graph, an undirected
graph. A directed graph having no multiple edges or loops
(corresponding to a binary adjacency matrix with 0’s on the
diagonal) is called a simple directed graph.

An arc, or directed edge, is an ordered pair of end-
vertices. It can be thought of as an edge associated with a
direction. Each directed edge is denoted with a line directed
from the first element to the second element of the pair. For
example, for a given directed edge (i, j), the direction is
from i to j. Symmetric pairs of directed edges are called
bidirected edges. In the context of formations, a birected
edge is equivalent to an undirected edge in the underlying
graph of a formation. We will use only directed graphs
with no bidirected edges in formations that have a leader-
follower architecture. The number of inward directed graph
edges to a given graph vertex i in a directed graph G is

called the in-degree of the vertex and is denoted by d−
G

(i).
The number of outward directed graph edges from a given
graph vertex i in a directed graph G is called the out-degree
of the vertex and is denoted by d+

G
(i). The set of neighbors

of i such that the directed edge is pointed from i to the other
vertex, denoted by NG(i), is called a (open) neighborhood.
When i is also included, it is called a closed neighborhood
and is denoted by NG[i]. The out-neighborhood N+

G
(i) of

a vertex i is {j ∈ V : (i, j) ∈ L}, and the in-neighborhood
N−

G
(i) of a vertex i is {j ∈ V : (j, i) ∈ L}. A path is a

sequence {i, j, k, . . . , r, s} such that (i, j), (j, k), . . . , (r, s)
are edges of the graph. A cycle of a graph G is a subset of
the edge set of G that forms a path such that the first vertex
of the path corresponds to the last. A directed cycle is an
oriented cycle such that all arcs go the same direction. A
directed graph is acyclic if it does not contain any directed
cycle.

In a formation with leader-follower architecture, each link
is denoted with a line directed from follower to leader. There
is one global leader and one first-follower of the global
leader. The global leader does not follow any other agent,
and the first-follower only follows the global leader. They
are connected with one link pointed from the first-follower
to the global leader. The rest of the agents are followers of
at least two other agents. They can also be leaders of other
agents.

Recall that the first follower has a link of out-degree 1.
Since each agent in rigid formation, except the global-leader
and the first follower, has at least two links with an out-
degree of 2, we expect at least 2(n− 2)+1 = 2n− 3 links
in total.

For point formations with leader-follower architecture,
Baillieul and Suri define stably rigid formations [1]. They
first introduce a general model for distributed relative dis-
tance control of a point formation:

(
ẋi

ẏi

)
=

∑
j∈N+

G
(i)

uij(dij ,
√

(xi − xj)2 + (yi − yj)2)

(
xi − xj

yi − yj

)
(4)

for i �= 1, 2 where dij is the set-point distance between
agents i and j, and uij is a function of both the set-point
and the measured distance. The definition of stable rigidity
is as follows: a formation is stably rigid under a distributed
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Fig. 2. The figure given by Baillieul and Suri in [1] as a counterexample.

relative distance control law as given in (4), if for any
sufficiently small perturbation in the relative positions of
the agents, the control law steers them asymptotically back
into the prescribed formation in which the relative distance
constraints are satisfied. The following theorem is given in
[1] as a sufficiency condition for stably rigid formations:

Theorem 3.1 (Baillieul and Suri - Theorem 1 [1]): If a
formation is constructed from a single directed edge by a
sequence of vertex addition operation, then it is stably rigid.

The following proposition is given in [1] as a necessary
condition for stable rigidity:

Proposition 3.2 (Baillieul and Suri - Proposition 1 [1]):
If a formation with directed links is stably rigid then the
following three conditions hold for the underlying graph:
i) the undirected underlying graph is generically minimally
rigid; ii) the directed graph is acyclic; iii) the directed
graph has no vertex with an out-degree greater than 2.

It is stated in Proposition 3.2 that the conditions in Propo-
sition are not sufficient because there is a counterexample
graph shown in Figure 2. It is stated that this graph satisfies
the conditions of Proposition 3.2 but it is not stably rigid.
However, we note that this graph actually does not satisfy
the conditions of Proposition 3.2, because there is a cycle
(3, 5, 4, 6, 3) in the graph; hence it violates the condition ii)
of Proposition 3.2.

It can be proved that the conditions given in Proposition
3.2 are also sufficient conditions; hence these conditions
are necessary and sufficient conditions for stable rigidity.
Minimal rigidity together with acyclicity in a directed graph
implies all vertices have out-degree at most 2. Therefore,
the third condition in Proposition 3.2 is redundant. We have
the following proposition:

Proposition 3.3: A point formation in 2-dimensional
space with directed links is stably rigid if and only if
the following conditions hold for the underlying directed
graph G = (V,L): i) the undirected graph is generically
minimally rigid; ii) the directed graph is acyclic.

Proof: The necessity part of the proof is proved in
[1]. Here we prove the sufficiency part only. Let us assume

that the directed graph is acyclic. Then we can take the
directed edges to define a partial order on the vertices:
a ≥ b if the directed edge is pointed from a to b. We can
extend this by transitivity. Since there are no cycles, this is
a partial order with all vertices distinct. Since the graph is
minimally generically rigid, all vertices have degree at least
2. Any maximal elements in this partial order have only
outgoing edges - and therefore has two such edges. This
can be removed (by the reversed vertex addition operation)
to give a smaller, minimally rigid graph satisfying all of the
conditions. We continue this down to one directed edge. The
end points of this directed edge become the global leader
and the first follower. Since this reduction sequence can
be reversed, the graph is constructed using only the vertex
addition operation. By Theorem 3.1, such graphs are stably
rigid.

Corollary 3.4: Equivalently a point formation in 2-
dimensional space that has a leader-follower architecture
is stably rigid if and only if the point formation can be
constructed from the initial edge by the vertex addition
operation.

The edge split operation is not used in [1] because this
operation, as described in [1], results in vertices of out-
degree 3. However, the edge split operation can be defined
in such a way that the out-degrees of vertices remain
less than 3. The definition given below for the edge split
operation on directed minimally rigid graphs results vertices
of out-degree 2.

2) Sequential Techniques: As with undirected graphs,
one operation for graph expansion is vertex addition: given
a minimally rigid graph G

∗ = (V∗,L∗), we add a new
vertex i of out-degree 2 with two edges directed from i
to two other vertices in V∗. The second operation is edge
splitting: given a minimally rigid graph G

∗ = (V∗,L∗),
we remove a directed edge (j, k) (directed from j to k) in
L∗ and then we add a new vertex i of out-degree 2 and
in-degree 1 with three edges by inserting two edges (j, i),
(i, k), and one edge between i and one other vertex (other
than j, k) in V∗ such that the edge (j, i) is directed from
j to i and the other two edges are directed form i to the
other vertices.

Now we are ready to present the following theorems (We
omit the proofs here, and leave it to the full paper version.):

Theorem 3.5 (vertex addition - directed case): Let G =
(V,L) be a directed graph with a vertex i of out-degree
2 in 2-dimensional space; let G

∗ = (V∗,L∗) denote the
subgraph obtained by removing i and the edges incident
with it. Then G is stably rigid if and only if G

∗ is stably
rigid.

Example 3.6: The vertex addition operation for a di-
rected graph is shown in Figure 3.

Theorem 3.7 (edge splitting - directed case): Let G =
(V,L) be a graph with a vertex i of out-degree 2 and
in-degree 1 (where this edge is between i and j), and let
G

′ = (V ′,L′) be the subgraph obtained by deleting i and
its three incident edges. Then G is stably rigid if and only
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Fig. 3. Vertex Addition - directed case.

Fig. 4. Two examples of the edge splitting operation on a minimally rigid
directed graph. The split edge is (d, b). We note that the resulting directed
graph on the left has no cycles. On the other hand, the resulting directed
graph on the right has a cycle (c, d, e, c). We note that the acyclic directed
graph on the left can also be obtained by a series of vertex additions starting
from a single edge.

if there is a directed edge of a pair j, k (directed from j to
k) of the neighborhood NG(i) such that the directed edge
(j, k) is not in L and the graph G

∗ = (V ′,L′ ⋃(j, k)) is
stably rigid.

Example 3.8: The edge splitting operation for a directed
graph is shown in Figure 5.

When edge splitting does not lead to a cycle, the resulting
graph can always be created by using only vertex addition
(from Proposition 3.3 and Corollary 3.4). Hence all stably
rigid formations can be created by using the vertex addition
operation.

IV. SIMULATION RESULTS

Figure 6 shows a 5-point formation created by vertex
addition only. This formation satisfies the criteria given
in Proposition 3.3. The agent with out-degree 0 (global
leader) is indexed with 1 and the agent with out-degree 1
is indexed with 2. As the global leader moves, the rigidity
is preserved. This can be seen in Figure 7. The distances
between all agent pairs remain constant over time as the
formation moves.

Fig. 5. Edge Splitting - directed case.

Fig. 6. A rigid formation. The agent with out-degree 0 (global leader)
is depicted with color red and index 1. The agent with out-degree 1 is
depicted with green. The agents with out-degree 2 are depicted with color
blue.

Figure 8 shows a 6-point formation. This formation does
not satisfy the criteria given in Proposition 3.3. The agent
of out-degree 0 (global leader) is colored in red and the
agents of out-degree 1 are colored with green. The agents
of out-degree 2 are colored in blue. As the global leader
moves, the rigidity is lost. This can be seen in Figure 9.
The distances between the agent pairs, where there is no
link, change over time as the formation moves.

V. CONCLUDING REMARKS

In this paper, we suggested a way of analyzing rigid
formations that have a leader-follower architecture in 2-
dimensional space. The necessity condition for stable rigid-
ity is given in [1]. We proved that the third condition
in this proposition is redundant. We also proved that this
proposition is a necessary and sufficient condition for stable
rigidity. Equivalently, we proved that a point formation in
2-dimensional space that has a leader-follower architecture
is stably rigid if and only if the point formation can be
constructed from the initial edge by the vertex addition
operation.

The sequel will offer the following:

• an extension of Proposition 3.3 and the associated
sequential techniques in IR3;
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Fig. 7. Distances between agent pairs are shown over time as the global
leader moves. The blue solid lines show the distance between agent pairs
and the existence of links between those agent pairs. The dotted red lines
show the distances between agent pairs and the absence of links between
those agents pairs.

Fig. 8. A flexible formation. The agent with out-degree 0 (global leader)
is depicted with color red and index 1. The agents with out-degree 1 are
depicted with green. The agents with out-degree 2 are depicted with color
blue.

• an analysis of creating leader-follower architectures
from a given undirected rigid formation;

• an analysis of the effects of cycles;
• an analysis of formations that have both directed and

undirected links.
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