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Abstract

The paper deals with the supervisory control of a nonlinear uncertain system in which the switching is directed by the recently introduced
state-dependent dwell-time switching logic. The proposed supervisory control architecture is shown to regulate to zero the state of the
system without requiring the switching to stop in 4nite time. A signi4cant class of systems to which the control architecture can be applied
is the class of linear systems with input saturation.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The supervisory control of linear uncertain systems is now
very well understood (cf. e.g. Morse, 1995, 1996; Narendra
& Balakrishnan, 1997; Hockerman-Frommer, Kulkarni, &
Ramadge, 1998). In the case of nonlinear systems, the papers
of Hespanha and Morse (1999b) and Hespanha, Liberzon,
andMorse (2002) have shown that supervisory control based
on scale-independent hysteresis switching logic (Hespanha
& Morse, 1999a) and on a family of input-to-state (or inte-
gral input-to-state) stabilizing controllers guarantees asymp-
totic regulation to zero of the state of the plant. (See Angeli
& Mosca (2002) for an additional study of ISS and super-
visory control.) The analysis relies on the property that the
hysteresis switching logic stops switching in 4nite time. In
a realistic scenario, however, this property may not hold.

� An abridged version of the paper was presented at the 15th IFAC
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direction of Editor Robert R. Bitmead.
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This motivated the introduction in De Persis, De Santis, and
Morse (2003) of a state-dependent dwell-time switching
logic. In that paper, the asymptotic convergence of nonlinear
switched systems with state-dependent dwell-time is shown
in the case the switching occurs among integral input-to-state
stable systems driven by input signals with “bounded en-
ergy”. The analysis can be carried out even for those situa-
tions in which switching never stops.
In this paper, the results of De Persis et al. (2003) are

used to design a supervisory control scheme for regulating to
zero the state of a nonlinear system under suitable assump-
tions. The contribution can be viewed as a 4rst step towards
the design of supervisory control of uncertain processes af-
fected by disturbances or even time-varying uncertainties.
An overview of the supervisory control problem for nonlin-
ear uncertain systems is given in the next section, and its
solution is presented in Section 3, along with a brief review
of some relevant results from De Persis et al. (2003). This
general scheme is then applied to a very important problem
in Section 4: the supervisory control of linear systems in
the presence of input saturation. It is shown that—under the
standard assumption of stabilizability and detectability—the
proposed control scheme achieves global regulation of lin-
ear uncertain systems whose eigenvalues lie in the closed
left-half plane.
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2. An overview of the supervisory control problem

The problem of interest is that of designing a supervisory
control system (Hespanha &Morse, 1999b) which regulates
to zero the state xP of an imprecisely modeled process P
with control input u and output y

ẋP = f(xP; u); y = h(xP) (1)

with f and h locally Lipschitz. The model of P is an un-
known member of a family of dynamical systems of the
form F =

⋃
p∈PFp where each Fp is a singleton consist-

ing of a given nominal process model Np, and P is a 4nite
set of indices, 1 i.e. P := {p1; : : : ; pm}.
The supervisory control approach employs a family of

candidate controllers C= {Cp :p∈P}, each one designed
for a nominal model in F so as to guarantee desired con-
trol objectives. An estimator-based supervisor generates—
depending on the signals produced by an estimator—a
piece-wise constant switching signal 
(·) which takes on
values in P and whose value p determines at each time the
controller Cp to be put in the feedback loop. More precisely,
an estimator-based supervisor consists of a multi-estimator
E, a bank of monitoring signal generators Mp; p∈P, and
a switching logic S. The multi-estimator E

ẋE = E(xE; y; u); yp = hp(xE); p∈P (2)

is an input-to-state stable dynamical system (Sontag &
Wang, 1996) with hp(0) = 0 whose pth output is a signal
yp which asymptotically converges to y, provided that Np
is the actual process model.
Amonitoring signal generatorMp is a dynamical system

whose input is the pth output estimation error

ep = yp − y (3)

and whose output p is a signal which measures the size of
ep. We consider monitoring signal generators described by
equations of the form

̇p = �(p; ep); p∈P (4)

with � such that (4) is input-to-state stable (ISS) with re-
spect to the input ep. The time history of the monitor sig-
nal p can be viewed as a measure of the similarity during
the time of the pth nominal model to the actual plant and
drives the decision process of the switching logic S. From
time to time, S searches for the monitoring signal p with
the smallest value, set 
(·) equal to the corresponding index
p and maintains 
(·) 4xed at that value until a new search
is completed and a new minimal value is found. This deci-
sion process is based on certainty equivalence principle and
a formal justi4cation of this strategy has been provided in
Hespanha and Morse (1999b) and Hespanha et al. (2002).

1 The case in which the unknown model of the process coincides with
a member of a 4nite family of nominal plants is usually referred to as
the “exact matching” case.

3. Supervisory control with state-dependent dwell-time
switching logic

We assume for the controllers Cp the general form
(Hespanha et al., 2002)

ẋC = gp(xC; xE; ep); up = kp(xC; xE; ep); (5)

with gp(0; 0; 0) = 0; kp(0; 0; 0) = 0 and gp; kp locally
Lipschitz, which includes static and dynamic output feed-
backs. Notice that such a controller is actually imple-
mentable because both xE and ep are available for measure-
ments. Consider the system obtained from multi-estimator
(2) in closed-loop with controller (5) and replacing y with
yp − ep. Denote it as
ẋ = Ap(x; ep); (6)

where xT=(xTC; x
T
E), x∈Rn, and assume that for each p∈P

it is possible to design the candidate controller Cp in such a
way that the closed-loop system (6) is integral input-to-state
stable (iISS) (cf. Sontag, 1998) and, when ep ≡ 0, locally
exponentially stable, namely:

Assumption 1. There exist 2 class-K∞ functions �(·);
�̃1(·); �̃2(·), and a class-K function 3 �(·) such that, for each
p∈P, the solution x(t) of (6) from the initial condition
x(t0) = x0 under the input ep(·) exists for all t¿ t0 and
satis4es

�(|x(t)|)6 �̃1(�̃2(|x0|)e−(t−t0)) +
∫ t

t0
�(|ep(�)|) d� (7)

for all t¿ t0¿ 0, all x0 ∈Rn and all ep(·). Also, there exist
classK∞ functions �1(·), �2(·), �3(·), positive real numbers
a1; a2; a3, Ns and smooth functions Wp(·) :Rn → R, such that
for all x∈Rn

�1(|x|)6Wp(x)6 �2(|x|);
@Wp
@x
Ap(x; 0)6− �3(|x|) (8)

and for all s∈ [0; Ns; ]

�i(s) = ais2; i = 1; 2; 3: (9)

Remark. The iISS property, expressed in Assumption 1 by
relation (7), implies that system

ẋ = Ap(x; 0) (10)

is globally asymptotically stable, i.e. if (7) holds neces-
sarily (8) holds for some �1(·), �2(·), �3(·), and Wp(·).

2K is the class of functions [0;∞) → [0;∞) which are zero at zero,
strictly increasing and continuous, K∞ is the subset of K consisting of
all those functions that are unbounded.

3 The function �(·) will be sometimes referred to in the sequel as gain
function.
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Requiring (10) to be also locally exponentially stable im-
plies that we can assume, without loss of generality (see
e.g. Isidori, 1999, Lemma 10.1.5), the functions �i(·) to be
quadratic in a neighborhood of the origin. The iISS property
is implied by the ISS property (cf. Sontag, 1998). Hence,
the methods presented in the paper can be adapted to deal
with uncertain nonlinear systems which are ISS. Further-
more, as there are systems which can be made iISS but not
ISS—such as those considered in Section 4—assuming iISS
property to hold broadens the applicability of the method.
Notice that simply assuming asymptotic stability of system
(10) does not guarantee any “robustness” property of the
system with respect to input ep(·). Finally, observe that sys-
tems which are both iISS and locally exponentially stable
include—besides those in Section 4—the class of nonlinear
feedforward systems (cf. Teel, 1996; De Persis et al., 2003).

In this paper, the switching logic S which generates 
(·)
is the state-dependent dwell-time switching logic introduced
in De Persis et al. (2003), from now on referred to as SSD.
Let �(·), �̃1(·) and �̃2(·) be as in (7). De4ne the functions
�1(r) := �̃−1

1 (�(r=3)=2), �2(r) := �̃2(r), and 4 ��(r) :=
ln(�2(r)=�1(r)), r ¿ 0. Set Nr := �−1

2 (�1(3 Ns)), with Ns as in
Assumption 1. Let a1; a2; a3 be as in (9) and 4x a constant
k ∈ (0; a3=(2a2)] and a dwell-time function �D(·) :R¿0 →
R¿0 satisfying

�D(r)¿

{
��(r); r¿ Nr;

max{��( Nr); 1k ln a2a1 }; r ¡ Nr:
(11)

The functioning of the switching logic can be explained as
follows.
The state-dependent dwell-time switching logic SSD:

Suppose that at some time t0 
(·) has just changed its value
to p. At this time, a timing signal � is reset to 0 and a
variable X is set equal to |x(t0)|, that is in X is “stored”
the magnitude of the state of system (6) at that switching
time. Compute now the dwell-time �D(X ). At the end of the
switching period, when �= �D(X ), if there exists the mini-
mal value q∈P such that q is smaller than 
, then 
(·)
is set equal to q, � is reset to zero and the entire process is
repeated. Otherwise, 
(·) is kept equal to p, until a minimal
value q∈P is found such that q is smaller than 
.

Remark. If in Assumption 1 relations (8) and (9) hold for
all s∈ [0;∞), that is for each p∈P system (10) is glob-
ally exponentially stable, then it is not hard to see that the
dwell-time function �D(r) can be taken equal to a constant
for values of r ranging over the interval [0; Nr; ], with Nr arbi-
trarily large.

4 Note that ��(r)¿ 0 for all r ¿ 0. Indeed, setting t = t0 and replac-
ing |x(t0)| with r in (7) we obtain that �(r)6 �̃1(�̃2(r)). As �(·) is a
strictly increasing function, the previous inequality also implies �(r=3)=2
¡�̃1(�̃2(r)). Therefore, �̃−1

1 (�(r=3)=2)=: �1(r)¡�̃2(r)=: �2(r), and
hence �2(r)=�1(r)¿ 1 for all r ¿ 0.

Remark. Observe that the switching signal 
(·) can never
experience an in4nite number of switchings in a 4nite inter-
val of time. This is a consequence of the fact that without
loss of generality function �D(·) can always be assumed to
be bounded away from zero. As a matter of fact, by (11),
over the interval [ Nr;∞), �D(·) depends on the continuous,
positive function ��(·) . If the latter is bounded away from
zero, then one can take �D(·)=��(·) over the interval [ Nr;∞).
If not, then it is always possible to 4nd a function �D(·)
which is bounded away from zero and satis4es (11).

Before proceeding, we recall some technical results from
De Persis et al. (2003), to which we refer the reader inter-
ested in the proofs.

Theorem 1 (Lemma 3, Corollary 1 and Theorem 2 in
De Persis et al., 2003). Let Assumption 1 hold and consider
system

ẋ = A
(x; e
) (12)

with 
(·) produced by the switching logic SSD. The follow-
ing properties hold:
(i) There exist a switching time ti and a class-K function
$(·) such that the solution x(t) of (12) satis>es

a1|x(t)|26 a2|x(ti)|2e−k(t−ti) +
a2
a1

∫ t

ti
$(|e
(�)|) d� (13)

for all t¿ ti, where k is the constant in (11).
(ii) In the case in which there exists a continuous non-

negative function % :Rn → [0;∞), such that |Ap(x; d) −
Ap(x; 0)|6%(x)|d| for each p∈P, for all x and d:

• if k = a3=(2a2), then (13) holds with $(r) = N$r, for some
N$¿ 0;

• if k = a3=(3a2), and for each p∈P, Ap(x; 0) is contin-
uously di?erentiable for all |x| ∈ [0; Ns], then (13) holds
with $(r) = $̃r2, for some $̃¿ 0.

(iii) Let �(·) be the function for which (7) holds. If there
exists a >nite c¿ 0 such that $(r)6 c�(r) for all r¿ 0,
then, for each x0 ∈Rn, for each input e
(·) ful>lling∫ ∞

0
�(|e
(�)|) d�¡∞; (14)

the solution x(t) of (12) exists for all t¿ 0 and is such that
limt→∞ |x(t)| = 0.

The interconnected system described by Eqs. (1), (3), (6)
and (4) de4nes a hybrid dynamical system of the form

ż = ’
(z) (15)

with zT = (xTP; x
T; p1 ; : : : ; pm). It is not hard to see

(Hespanha & Morse, 1999b) that, for each initial con-
dition (z(0); 
(0)), there exists a unique pair (z(·); 
(·))
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de4ned on the maximal interval of existence 5 [0; T ) which
satis4es (15) with 
(·) generated by the state-dependent
dwell-time switching logic SSD.

Following Morse (1996), we require the pair (z(·); 
(·))
to be such that

Assumption 2. There exists at least one p∗ ∈P such that
ep∗ is bounded on [0; T ). Furthermore, there exists a 4-
nite subset P∗ ⊂ P containing p∗ with the following
properties:

(i) there exists a 4nite switching time t∗¡T such that

(t)∈P∗ for all t ∈ [t∗; T );

(ii) for all p∈P∗,∫ T

0
�(|ep(�)|) d�6C∗¡∞ (16)

with �(·) the class-K function appearing in (7).

Remark. The ful4llment of the assumption is closely re-
lated to the existence of suitable asymptotic observers. We
shall see in Section 4 a considerable example of nonlinear
systems—linear systems with input saturation—for which
the supervisory control scheme outlined in this section can
be designed so as to actually guarantee the ful4llment of
Assumptions 1 and 2.

Before stating the main result of this section, we recall
a notion of detectability (Sontag & Wang, 1997; Hespanha
et al., 2002) for plant (1).

De"nition. Plant (1) is input/output-to-state stable (IOSS),
if there exist a class-KL function ,(·; ·) and class-K func-
tions �1(·); �2(·) such that, for every initial condition xP(0)
and every input u(·), the solution of (1) satis4es

|xP(t)|6 ,(xP(0); t) + �1(‖u|[0; t]‖) + �2(‖y|[0; t]‖)
for all t¿ 0.

Remark. It is a consequence of the de4nition that the state
response of an IOSS system is bounded if inputs and outputs
are bounded, and converges to zero if inputs and outputs do
the same.

Theorem 2. Consider the unknown plant (1) and as-
sume it is IOSS. Consider multi-estimator (2) and
multi-controller (5). Assume that for each p∈P the
multi-estimator/multi-controller closed-loop system (6)
satis>es Assumption 1. In particular, assume that (7) holds
with a class-K function �(·) such that $(r)6 c�(r), for
$(·) as in Theorem 1 and a >nite c¿ 0. Consider also the

5 System (15) is the interconnection of di*erent subsystems, among
which the plant (1) and the multi-estimator/multi-controller (6). Even
though the multi-estimator/multi-controller is an iISS system for each
p∈P, we know that it is driven by signals coming from the plant, whose
existence for all t cannot be a priori guaranteed.

ISS monitoring signal generator (4), and the switching
logic SSD. Assume that for each initial condition, the re-
sponse of the overall system and the switching signal 
(·)
are such that Assumption 2 is satis>ed. Then, the response
of the system exists for all t¿ 0 and all the continuous
states converge to zero as t goes to in>nity.

Proof. Due to lack of space the proof is omitted. It can be
found in De Persis, De Santis, and Morse (2002b).

4. Supervisory control of linear systems subject to input
saturation

In this section, we specialize the previous results to a rel-
evant class of supervisory adaptive control problems. Plant
(1) we consider is a linear system with input nonlinearities.
Namely, we are given a process P

ẋP = APxP + BPsat(u); y = CPxP (17)

with xP ∈Rn, u∈Rs, y∈Rp, and sat(·)—which models
constraints on the control magnitude—is an Rs-valued sat-
uration function (see e.g. Isidori, 1999, De4nition 14.1.1).
As before (cf. the 4rst part of Section 2), we consider

the exact matching case, that is the case in which the actual
state-space representation (17) of P is unknown but it is as-
sumed to belong to a known family of nominal linear model
plantsNp=( NCp; NAp; NBp), with p∈P={p1; : : : ; pm}. These
systems are assumed to satisfy the following assumption.

Assumption 3. For each p∈P the pairs ( NAp; NBp) are sta-
bilizable, ( NCp; NAp) are detectable and all the eigenvalues of
NAp are in the closed left-half plane.

We note that, as a consequence of the exact matching
case assumption, there exists a value p∗ ∈P such that
(CP; AP; BP) = ( NCp∗ ; NAp∗ ; NBp∗).
We next show how to design the family of output-

feedback controllers C = {Cp :p∈P} and a supervisor
(multi-estimator E, monitoring signal generators Mp,
switching logic S) which is capable of generating a switch-
ing signal 
(·) which satisfy Assumptions 1 and 2, i.e.
how to design a supervisory control system able to achieve
asymptotic regulation to zero of the state of the process
(17) and boundedness of all the system signals.

4.1. Identi>er-based multi-estimator and monitoring
signal generator

The most convenient and simple way to design a
multi-estimator is that of designing single estimators for the
nominal model plants Np and then stack them all together.
This results in a multi-estimator of the form

ẋE = AExE + BE sat(u) + KEy;

yp = CEpx; p∈P:
(18)
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The outputs yp, p∈P, generated by multi-estimator (18)
are used to obtain the output estimation errors ep=yp−y
which feed the monitoring signal generators Mp
̇p = −/p + |ep|‘; p(0)¿ 0; p∈P; (19)

in which ‘ is a 4xed integer in the set {1; 2}. The monitoring
signal generators are ISS, provided that /¿ 0. Also note
that, in the exact matching case, the equations of the output
estimation errors show that ep∗ decays exponentially to zero,
i.e. |ep∗(t)|6 Nc exp(− N/t), for some positive numbers Nc; N/.

4.2. Multi-controller

Following Hespanha and Morse (1999b), Hespanha et al.
(2002), and Section 2, the controller is designed for a
system obtained from the multi-estimator in such a way
that it is input–output equivalent to the pth model Np (cf.
Hespanha & Morse, 1999b, Section 6). Namely, consider
multi-estimator (18) under the feedback interconnection
y = yp − ep:
ẋE = (AE + KECEp)xE + BEsat(u) − KEep;
yp = CEpxE: (20)

For each p∈P, the pair of matrices ((AE + KECEp); BE) is
stabilizable and all the eigenvalues of (AE+KECEp) are in the
closed left-half plane. Then, as a consequence of the results
of Teel (1996) and Angeli, Sontag, and Wang (2000), it can
be proved that

Lemma 1 (Lemma 4 in De Persis et al., 2003). For each
p∈P, there exist a positive integer 1p, matrices Lpi ,
i = 1; : : : ; 1p, constants c

p
j , j = 2; : : : ; 1p and a feedback of

the form

u = 4p(xE)

:= Lp1 xE + c
p
2 sat(L

p
2 xE + c

p
3 sat(+ · · · + cp1p sat(Lp1pxE)));

(21)

such that the closed-loop system (20); (21) is iISS with
respect to the input ep with gain function �(r) = r2, and is
locally exponentially stable when ep = 0.

That is to say, in this case a static controllerCp in the form
given by Eq. (21) guarantees Assumption 1 to be satis4ed.

Remark. The number 1p depends on the eigenstructure of
(AE + KECEp) := AEp. If AEp is critically stable, i.e. there
exists a P¿ 0 such that ATEpP+PAEp6 0, then 1p=1 and
feedback (21) is linear.

4.3. Analysis

To complete the supervisory control architecture we need
to de4ne the switching logic S. We adopt as in Section 3,
the state-dependent dwell-time switching logic, i.e. we set

S=SSD. Along the same lines of the proof of Lemma 1 in
Morse (1996), it is possible to prove the following property
for the switching signal 
(·) generated by SSD driven by the
p’s.

Lemma 2. LetT := {0= :t0; t1; : : : ; tj ; : : :} be the sequence
of switching times of 
(·) and ‘ as in (19). There exists
a >nite subset P∗ ⊂ P containing p∗ with the following
properties:

(i) there exists a >nite switching time t∗ ∈T such that

(t)∈P∗ for all t¿ t∗;

(ii) there exists a >nite real number C∗ such that, for each
p∈P∗, ‖ep(·)‖‘6 (C∗)1=‘.

Proof. See Morse (1996, Lemma 1).

Now that all its components are de4ned, we are ready
to prove that the supervisory control achieves regulation to
zero of the state of (17).

Theorem 3. Let P be process (17), unknown mem-
ber of the family of nominal plant models {Np :Np =
( NCp; NAp; NBp); p∈P}. Suppose that Assumption 3 holds
and that the function sat(·) is continuously di?erentiable
in a neighborhood of the origin. Consider the supervisory
control system described by Eqs. (18), and (21), with
p=
, and (19), with ‘=2, along with the state-dependent
dwell-time switching logic SSD, with �D(·) satisfying (11)
and k = a3=(3a2). Then, for each set of initial conditions
xP(0), xE(0), p(0)¿ 0, p∈P, 
(0), the response of the
supervisory control system exists for all t¿ 0 and all the
continuous states converge to zero as t goes to in>nity.

Proof. The result descends from Theorem 2. Indeed, the
plant is IOSS because, by the exact matching condition
and Assumption 3, the pair (CP; AP) is detectable. The
closed-loop multi-estimator/multi-controller (20), (21) is
aSne in ep for each p∈P. Because of Lemma 1, it also sat-
is4es Assumption 1. In particular (7) holds with �(r) = r2.
Moreover, cf. Theorem 1, (13) holds for $(r) = N$r2, for
some N$¿ 0 and k = a3=(3a2). The inequality $(r)6 c�(r)
is trivially satis4ed with c = 1= N$. The 4rst part of Assump-
tion 2 is a consequence of the exact matching condition, as
observed in Section 4.1. Lemma 2 and comments thereafter
show that, for any initial condition, the switching signal

(·) generated by SSD driven by the monitoring signal
generators (19) are such that also the second part of As-
sumption 2 is ful4lled. Finally, note that system (19) is ISS
with respect to ep. Hence, all the assumptions of Theorem 2
are ful4lled and this yields the thesis.

Remark. We have already noticed in the remark after
Lemma 1 that, if systems Np = ( NCp; NAp; NBp), with p∈P,
are critically stable, then closed-loop multi-estimator/multi-
controller (20), (21) satis4es Assumption 1 with �(r) = r
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in (7). As a consequence, for this class of systems the con-
clusion of the previous theorem still holds setting ‘ = 1 in
(19) and k = a3=(2a2) in (11). Furthermore, it is not hard
to explicitly compute the function ��(·)—which allows to
de4ne the dwell-time function �D(·) given in (11). We have
seen that the calculation of ��(·) amounts to determine the
functions �(·), �̃1(·), �̃2(·) which appear in Assumption 1,
Eq. (7). Details are worked out in De Persis et al. (2002b).
As a result, it is shown that function ��(s) grows polyno-
mially with s.

5. Conclusion

In this paper, the design of a supervisory control archi-
tecture with state-dependent dwell-time switching logic for
controlling nonlinear uncertain system has been presented.
It was shown that it achieves regulation to zero of the state
of the plant in the case each member of the family of can-
didate controllers renders the corresponding nominal plant
iISS and locally exponentially stable. An important appli-
cation of the design methodology presented in the paper is
the control of linear uncertain plants with input saturation in
the standard hypothesis of stabilizability and detectability.
The precise characterization of how the proposed scheme
applies to other classes of nonlinear systems represents an
interesting line of possible future investigation. The exten-
sion of the results in Section 4 to the case where P is a con-
tinuum of points has been studied in De Persis, De Santis,
and Morse (2002a).
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