
The Multi-Agent Rendezvous Problem - The
Asynchronous Case

J. Lin and A.S. Morse
Yale University

jie.lin, as.morse@yale.edu

B. D. O. Anderson
Australian National University and

National ICT Australia
brian.anderson@anu.edu.au

Abstract— This paper is concerned with the collective
behavior of a group of n > 1 mobile autonomous agents,
labelled 1 through n, which can all move in the plane.
Each agent is able to continuously track the positions of all
other agents currently within its “sensing region” where
by an agent’s sensing region is meant a closed disk of
positive radius r centered at the agent’s current position.
The multi-agent rendezvous problem is to devise “local”
control strategies, one for each agent, which without any
active communication between agents, cause all members
of the group to eventually rendezvous at single unspecified
location. This paper describes a family of asynchronously
functioning strategies for solving the problem. Correctness
is established appealing to the concept of “analytic syn-
chronization.”

Current interest in cooperative control has led to
a number of distributed control algorithms capable of
causing large groups of mobile autonomous agents to
perform useful tasks. Of particular interest here are
provably correct algorithms which solve what we shall
refer to as the “multi-agent rendezvous problem.” This
problem, which was posed in [1], is concerned with
the collective behavior of a group of n > 1 mobile
autonomous agents, labelled 1 through n, which can all
move in the plane. Each agent is able to continuously
track the positions of all other agents currently within
its “sensing region” where by an agent’s sensing region
is meant a closed disk of positive radius r centered at
the agent’s current position. The multi-agent rendezvous
problem is to devise “local” control strategies, one for
each agent, which without any active communication
between agents, cause all members of the group to
eventually rendezvous at single unspecified location.

In this paper, as in [1], [2], we consider distributed
strategies which guide each agent toward rendezvous by
performing a sequence of “stop-and-go” maneuvers. A
stop-and-go maneuver takes place within a time interval

Proofs and references will appear in the full length version of
this paper. This research was supported by the National Science
Foundation and by the Australian Government’s Backing Australia’s
Ability initiative, in part through the Australian Research Council.

consisting of two consecutive sub-intervals. The first,
called a sensing period, is an interval of fixed length
during which the agent is stationary. The second, called
a maneuvering period, is an interval of variable length
during which the agent moves from its current position
to its next ‘way-point’ and again come to rest. Succes-
sive way-points for each agent are chosen to be within
rM units of each other where rM is a pre-specified
positive distance no larger than r. It is assumed that for
each agent i, a positive number τMi , called a maneuver
time, is chosen to be large enough so that the required
maneuver for agent i from any one way-point to the next
can be accomplished in at most τMi seconds. Since our
interest here is exclusively with devising of high level
strategies which dictate when and where agents are to
move, we will use point models for agents and shall
not deal with how maneuvers are actually carried out or
with how vehicle collisions are to be avoided.

In the synchronous case treated in [1], [2], the kth
maneuvering periods of all n agents begin at the same
time t̄k. The kth way-point of each agent is a function
of the positions of its “ registered neighbors” at time t̄k.
Agent i’s registered neighbors at time t̄k are those other
agents positioned within its sensing region at time t̄k.
This notion of a neighbor induces a symmetric relation
on the group since agent j is a registered neighbor of
agent i at time t̄k just in case agent i is a registered
neighbor of agent j at the same time. Because of this it is
possible to characterize neighbor relationships at time t̄k
with a simple graph whose vertices represent agents and
whose edges represent existing neighbor relationships.
Although the neighbor relation is symmetric, it is clearly
not transitive. On the other hand if agent i is at the same
position as neighbor j at time t̄k, then any registered
neighbor of agent j at time t̄k must certainly be a
registered neighbor of agent i at the same time. It
is precisely because of this weak transitivity property
that one can infer a global condition of the entire
agent group from a local condition of one agent and

43rd IEEE Conference on Decision and Control
December 14-17, 2004
Atlantis, Paradise Island, Bahamas

0-7803-8682-5/04/$20.00 ©2004 IEEE

WeB03.3

1926

its neighbors. In particular, if the graph characterizing
neighbor relationships at time t̄k is connected, and any
one agent is at the same position as all of its neighbors,
then the weak transitivity property guarantees that all n
agents have rendezvoused at time t̄k.

One way to ensure that a neighbor graph is connected
at time t̄k, assuming it is connected when the ren-
dezvousing process begins, is to constrain each agent’s
way points to be positioned in such a way so that no
agent can lose any of its registered neighbors when
it moves from one way point to the next. This can
be accomplished using a clever idea proposed in [1].
An immediate consequence is that each agent’s set of
registered neighbors is non-decreasing and, because of
this, ultimately converges to a fixed neighbor set for t̄k
sufficiently large.

A second local constraint is to require the way-point
of each agent i at the beginning of its kth maneuvering
period to lie in the “local” convex hull Hi(k) of agent i’s
own position and the sensed positions of its registered
neighbors at time t̄k. It is easy to prove that the global
convex hull H(k + 1) of all n agent positions at time
t̄k+1 to be non-increasing under this constraint.

A third constraint is to stipulate that for each i, the
only condition under which agent i’s kth way point can
be positioned at a corner of Hi(k), is when Hi(k) is a
single point. The global implication of doing this is that
the diameter of H(k +1) must either be strictly smaller
than the diameter of H(k) or every agent must be at the
same position as all of its registered neighbors at time t̄k
– and this is true whether or not the graph characterizing
neighbor relationships at time t̄k is connected.

In [2], a more or less standard Lyapunov based argu-
ment is used to prove that if the preceding constraints
are adopted by all agents and if the graph characterizing
initial neighbor positions is connected, then all n agents
will eventually rendezvous at a single point. Not sur-
prisingly, the Lyapunov function used is the diameter of
the global convex hull. However, although connectivity
of the graph characterizing initial neighbor positions
is sufficient for rendezvousing, it is not necessary. An
example illustrating this is given in [2].

The strategies described in [1], [2] cannot be regarded
as truly distributed because each agent’s decisions must
be synchronized to a common clock shared by all other
agents in the group. In this paper we redefine the
strategies so that a common clock is not required. To
do this it is necessary to modify somewhat what is
meant by a registered neighbor of agent i at time t̄ik

where t̄ik is the time at which agent i’s kth maneuvering
period begins. Our definition is guided by considerations
discussed above for the synchronous case. For example,
the new definition is crafted to retain versions of the
symmetry and weak transitivity properties of the neigh-
bor relation inherent in the synchronous case. Doing this
is challenging, because unlike the synchronous case, the
time each agent registers its neighbors and its neighbor’s
positions is not synchronized with one another.

The same way-point update rules considered in the
synchronous case are adopted for the asynchronous case.
Thus the only functional differences between the two
cases are the definitions of registered neighbors and their
positions. Of course in the asynchronous case, way-point
updates are computed asynchronously, whereas in the
synchronous case they are not.

Not surprisingly, the analysis of the asynchronous
version of the problem is considerably more challenging
than that of the synchronous version. For example, while
it is more or less obvious in the synchronous case
that agents retain their neighbors as the system evolves,
proving that this is also true in the asynchronous case
involves a number of steps.

A single ordered time set can be formed by merg-
ing the distinct “event times” t̄ik, i ∈ {1, 2, . . . , n},
k ≥ 1 generated by all n agents. The elements of
this set are relabelled as t1, t2, · · · in such a way that
tj < tj+1, j ∈ {1, 2, . . .}. With this notation, agent
i’s registered neighbors at its kth event time t̄ik are
its registered neighbors at time tPi(k) where Pi(k)
denotes that value of p for which tp = t̄ik. For each
i ∈ {1, 2, . . . , n}, the domain of definition of agent
i’s registered neighbors is then extended from the set
{tPi(k) : k ≥ 1} to the set {tp : p ≥ Pi(1)} by
stipulating that for values of tp which are between two
successive event times of agent i, agent i’s registered
neighbors remain the same. This means that registered
neighbors of each agent are defined at each time tp ≥ tp̄

where p̄
∆= max{P1(1), P2(1), . . . Pn(1)}. Because of

this, it is possible to describe neighbor relationships
with a directed graph with vertex set {1, 2, . . . , n} and
directed edge set defined so that (i, j) is a directed edge
from vertex i to j just in case agent j is a registered
neighbor of i at event time ts. The main result of this
paper {Corollary 1} is that if this graph is ever strongly
connected, then all n agents will eventually rendezvous.

To establish the correctness of Corollary 1 requires the
analysis of the asymptotic behavior of the asynchronous
process which describe the n-agent system. Despite

1927

the apparent complexity of this process, it is possible
to capture its salient features using a suitably defined
synchronous discrete-time, hybrid dynamical system S.
We call the sequence of steps involved in defining
S analytic synchronization. Analytic synchronization is
applicable to any finite family of continuous or discrete
time dynamical processes {P1, P2, . . . , . . . , Pn} under
the following conditions. First, each process Pi must be
a dynamical system whose inputs consist of functions
of the states of the other processes as well as signals
which are exogenous to the entire family. Second, each
process Pi must have associated with it an ordered
sequence of event times {ti1, ti2, . . .} defined in such
a way that the state of Pi at event time ti(ki+1) is
uniquely determined by values of the exogenous signals
and states of the Pj , j ∈ {1, 2, . . . , n} at event times
tjkj which occur prior to ti(ki+1) but in the finite past.
Event time sequences for different processes need not
be synchronized. Analytic synchronization is a straight
forward procedure for creating a single synchronous
process for purposes of analysis which captures the
salient features of the original asynchronous processes.
As a first step, all n event time sequences are merged
into a single ordered sequence of even times T . The
“synchronized” state of Pi is then defined to be the
original of Pi at Pi’s event times {ti1, ti2, . . .}; at values
of t ∈ T between event times tiki and ti(ki+1), the
synchronized state of Pi is taken to be the same as the
value of its original state at time tik. What results is a
synchronous dynamical system evolving on T with state
composed of the synchronized states of the n individual
processes. The definition of S in section §II illustrates
the analytic synchronization procedure.

I. THE ASYNCHRONOUS AGENT SYSTEM

For each agent i, the real time axis can be partitioned
into a sequence of time intervals [0, ti1), [ti1, ti2), . . . ,
[ti(ki−1), tiki), . . . each of length at most τD + τMi

where τD is a number greater than τMi called a dwell
time. Each interval [ti(ki−1), tiki) consists of a sensing
period [ti(ki−1), t̄iki) of fixed length τD during which
agent i is stationary, followed by a maneuvering period
[t̄iki

, tiki
) of length at most τMi

during which agent i
moves from its current position to its next way-point.
Although all agents use the same dwell time, they oper-
ate asynchronously in the sense that the time sequences
ti1, ti2, · · · , i ∈ {1, 2, . . . , n} are uncorrelated. Thus
each agent’s strategy can be implemented independent
of the rest, without the need for a common clock.

Because of the asynchronous nature of the control

strategies under consideration, care must be exercised in
defining what is meant by a registered neighbor if one
is to end up with something similar to the symmetry
property of the neighbor relationship defined in the
synchronous case. For the asynchronous case, agent i’s
registered neighbors at time t̄ik are taken to be those
agents which are fixed at one position within agent i’s
sensing region for at least τS > 0 seconds during agent
i’s kth sensing period Si(k) ∆= [ti(k−1), t̄ik). Here τS is
a positive number called a sensing time. For reasons to
be made clear below, we shall require τS to satisfy

τS ≤ 1
2
(τD − τMi) ∀i ∈ {1, 2, . . . , n} (1)

For any agent j, there may be more than one distinct
interval of length at least τS within Si(k) during which
agent j is stationary. Let t∗ denote the end time of the
last of these. For purposes of calculation, agent i takes
the registered position of agent j at the beginning of
its kth maneuvering period, to be the actual position of
agent j at registration time t∗. To attain a symmetry-
like property for the asynchronous case, it is necessary
to make sure that the registration interval [t∗ − τS , t∗)
lies within one of agent j’s sensing periods. One way
to guarantee that this is so is to require each agent to
keep moving during each of its maneuvering periods
except possibly for brief periods which are each shorter
than τS . In the sequel we will assume that registration
of each agent j during one of agent i’s sensing periods
always occurs at the end of a registration interval [t∗ −
τS , t∗) which also lies within one of agent j’s sensing
periods. Note that this and the requirement that agent j is
stationary during its sensing periods together imply that
agent j’s registered position xj(t∗) is equal to xj(t̄jk∗)
where k∗ is the sensing/maneuvering interval of agent j
during which registration takes place.

A. Cooperation Assumption

Prompted by the preceding, we say that for each
i, j ∈ {1, 2, . . . , n}, agent j’s qth sensing period Sj(q)
strongly overlaps agent i’s kth sensing period Si(k) if
the overlap is a non-empty interval of length at least τS

seconds. In the sequel we write Ω(i, k, j, q) � 0 when-
ever Si(k) and Sj(q) strongly overlap. The definition of
a registered neighbor determines a relationship between
agents similar to the symmetric relation determined by
that of a registered neighbor in the synchronous case. Let
�t̄ik�j denote the smallest integer q such that t̄jq ≥ t̄ik.

Proposition 1: Suppose that agent j is a registered
neighbor of agent i at the beginning of agent i’s kth ma-
neuvering period. Then agent i is a registered neighbor

1928

of agent j at the beginning of agent j’s qth or (q− 1)st
maneuvering period where q = �t̄ik�j .

The notion of a pairwise motion constraint imposed
in the synchronous case [2] can be replaced with the
following constraint. Agent i is said to satisfy the motion
constraints induced by its neighbors, if for each j ∈
{1, 2, . . . , n} for which j �= i and each k ∈ {1, 2, . . .}
for which agent j is a registered neighbor of agent i at
the beginning of maneuvering period k, the position to
which agent i moves at the end of the period is within
a closed disk of diameter r centered at the mean of
agent i’s position and the registered position of agent j
both at the beginning of the period {i.e., at time t̄ik}.
In the synchronous case, satisfaction of the pairwise
motion constraint by agent i and neighbor j causes
each to retain the other as a neighbor. The following
proposition implies that essentially the same thing holds
in the asynchronous case.

Proposition 2: Suppose that agents i and j satisfy the
motion constraints induced by their registered neighbors.
If agent j is a registered neighbor of agent i at the
beginning of agent i’s kth maneuvering period, then
agent j is also a registered neighbor of agent i at the
beginning of agent i’s k + 1st maneuvering period.

We are interested in strategies which cause agents to
retain their registered neighbors. We therefore make the
following assumption.

Cooperation Assumption: Each agent i satisfies the
motion constraints induced by each of its registered
neighbors.

Suppose that the cooperation assumption is satisfied.
Proposition 2 states that if agent j is a registered
neighbor of agent i during maneuvering interval k then
it will also be a registered neighbor of agent i during
maneuvering interval k+1. In other words, if the cooper-
ation assumption is satisfied, each agent retains all of its
prior registered neighbors as the system evolves. Thus if
Ni(k) denotes the sent of labels of agent i’s neighbors
at the beginning of its kth maneuvering period, then
Ni(k) ⊂ Ni(k + 1), k ≥ 1.

Agent i’s kth way-point x̄i(k) is the point to which
agent i moves at the end of its kth maneuvering period.
Thus if xi(t) denotes the position of agent i at time t
represented in a world coordinate system, then xi(tik)
and agent i’s kth way-point are one and the same.
The rule which determines x̄i(k) is essentially the same
as considered previously for the synchronous case in
[1], [2], except that now x̄i(k) depend on agent i’s its

own position at the beginning of its kth maneuvering
period and the registered {relative} positions of agent
i’s registered neighbors at the beginning of the period.
In particular if agent i has mik registered neighbors
at time t̄ik with registered positions z1, z2, . . . , zmik

relative to agent i’s, then agent i moves to the position
x̄i(k) = xi(ti(k−1)) + umik

(z1, . . . , zmik
) at the end of

the period where

zj = xiij
(t̄ik) − xi(ti(k−1)), j ∈ {1, 2, . . . , mik},

(2)
and xiij (t̄ik) is the registered position of neighbor ij at
time t̄ik. As in [2], u0 = 0 and for m ∈ {1, . . . , n− 1}
um is a continuous control law mapping D

m into DM

where D and DM are the closed disks of radii r and
rM respectively, centered at the origin in IR2. For m >
0, um is defined so that the aforementioned neighbor
motion constraint is satisfied and, in addition so that
for each {z1, z2, . . . , zm} ∈ D

m, um(z1, z2, . . . , zn) is
in the convex hull of {0, z1, z2, . . . , zm}, but not at a
corner unless z1 = z2 = · · · = zm = 0. Examples
satisfying these conditions can be found in [1], [2].

Since each agent is assumed to move to its kth way-
point at the end of its kth maneuvering period, agent i’s
position at time tikis given by

xi(tik) = xi(ti(k−1)) + umik
(z1, . . . , zmik

) (3)

where zj is as in (2). In the full length version of this
paper it is shown that xij(t̄ik) can be written explicitly
as

xij(t̄ik) =

{
xj(t̄jq) if Ω(i, k, j, q) � 0
xj(t̄j(q−1)) otherwise

}
(4)

where j ∈ Ni(k), q = �t̄ik�j , and Ni(k) =

{j : ||xi(t̄ik) − xj(t̄iq)|| ≤ r, Ω(i, k, j, q) � 0}⋃
{j : ||xi(t̄ik) − xj(t̄i(q−1))|| ≤ r, Ω(i, k, j, q − 1) � 0}

(5)
Of course the neighbor set Ni(k) and the registration
positions xij , j ∈ Ni(k) all depend on i and k.

1) Main Results: Note that because agents do not
move during sensing periods, for each i ∈ {1, 2, . . . , n}
the positions of agent i at times ti(k−1) and tik are the
same as at times t̄ik and t̄i(k+1) respectively. Thus (3)
can also be written as

xi(t̄i(k+1)) = xi(t̄ik) + umik
(xii1(t̄ik) − xi(t̄ik),

. . . , xiimik
(t̄ik) − xi(t̄ik)) (6)

The n equations given by (6) for i ∈ {1, 2, . . . , n}
together with (4) and (5) completely describes the evolu-
tion of the positions of the n agents under consideration

1929

as each maneuvers from way-point to way-point. Just
as in the synchronous case, the analysis of these equa-
tions depends on the relationships between registered
neighbors and how these relationships evolve with time.
To characterize these relationships, we first extend the
domain of definition of each agent’s registered neighbors
from its set of maneuvering period start times to a
suitably defined set of “event times” common to all
n agents. By an event time is meant any time t̄ik at
which any maneuvering period [t̄ik, tik) of any agent
begins. Let {t̄ik : i ∈ {1, 2, . . . , n}, k ≥ 1} denote
the set of all distinct event times. Label this set’s
elements as t1, t2, · · · , tp, · · · in such a way so that
tp < tp+1, j ∈ {1, 2, . . .}. For i ∈ {1, 2, . . . , n}, let
Pi denote that strictly monotone function from the set
of positive integers I to I which assigns to k ∈ I that
value of p ∈ I for which tp = t̄ik. Thus with this
notation, tPi(k) = t̄ik so agent i’s registered neighbors
at its kth event time tPi(k), are its registered neighbors
at time t̄ik. For each i ∈ {1, 2, . . . , n} we extend the
domain of definition of agent i’s registered neighbors
from the set {tPi(k) : k ≥ 1} to the set {tp : p ≥ Pi(1)}
by stipulating that for values of tp which are between
two successive event times of agent i, say between tik
and ti(k+1), agent i’s registered neighbors are the same
as its registered neighbors at time tik.

Let T ∆= {tp̄, tp̄+1, tp̄+2 . . .} denote the set of all

event times greater than or equal to tp̄ where p̄
∆=

max{P1(1), P2(1), . . . Pn(1)}. Note that the registered
neighbors of each agent are defined at each time in T .
For each p ≥ p̄, it is therefore possible to describe
neighbor relationships using a directed graph Gp with
vertex set {1, 2, . . . , n} and directed edge set defined so
that (i, j) is a directed edge from vertex i to j just in
case agent j is a registered neighbor of agent i at event
time ts.

Let us partially order the set of all directed graphs
with vertex set {1, 2, . . . , n} by agreeing to say that G

is contained in Ḡ if the edge set of G is a subset on the
edge set of Ḡ. It is natural then to define the union of a
collection of such graphs to be the directed graph with
vertex set {1, 2, . . . , n}, and edge set equaling the union
of the edge sets of all of the graphs in the collection.
Because of the cooperation assumption and Proposition
2, we know that each agent keeps all of its registered
neighbors as the system evolves. What this means is
the sequence of graphs Gp̄, Gp̄+1, . . . , Gp, . . . forms the
ascending chain

Gp̄ ⊂ Gp̄+1 ⊂ · · ·Gp · · · (7)

Because the set of directed graphs on vertices {1, 2,

. . . , n} is a finite set, the chain must converge to the
graph

G
∆=

∞⋃
p=p̄

Gp (8)

in a finite number of steps. More is true. Suppose that
agent i has agent j as a registered neighbor at the
beginning of one of agent i’s maneuvering periods. Then
because of Proposition 1, agent i must be a registered
neighbor of agent j at the beginning of one of agent
j’s maneuvering periods. These observations together
with the cooperation assumption imply that agents i and
j must both eventually become and remain registered
neighbors of each other. As a consequence, there must
be directed arcs in G from vertex i to vertex j as well as
from vertex j to vertex i. Clearly G must be a directed
graph with the property that for each distinct pair of
vertices - say i and j - either there is no directed arc
connecting one to the other or there are two directed arcs
one from vertex i to vertex j and the other from vertex j
to vertex i. Directed graphs with this property are usually
regarded as simple graphs whose edges represent such
pairs of directed arcs. In the sequel we shall adopt this
viewpoint and refer to G as a simple graph. Our main
result is as follows.

Theorem 1: Let u0 = 0 ∈ DM and for each m ∈
{1, 2, . . . , n − 1}, let um : D

m → DM be any con-
tinuous function satisfying the aforementioned control
law conditions. For each set of initial agent positions
x1(0), x2(0), . . . , xn(0), each agent’s position xi(t) con-
verges to a unique point πi ∈ IR2 such that for each
i, j ∈ {1, 2, . . . , n}, either πi = πj or ||πi − πj || > r.
Moreover, if agent j is a registered neighbor of agent i at
the beginning of one of agent i’s maneuvering periods,
then πi = πj .

Theorem 1 states that the strategies under consider-
ation cause all agents’ positions to converge to points
in the plane with the property that each pair of such
points are either equal to each other, or separated by
a distance greater than r units. The theorem further
states that if one agent is ever a registered neighbor
of another, then both converge to the same point. Thus
all n agents position will converge to a single point if
any one directed graph in the ascending chain is weakly
connected. We are led to the following corollary.

Corollary 1: If at any event time tp ≥ tp̄, the directed
graph Gp characterizing registered neighbors is strongly
connected, then positions of all n agents converge to a
common point in the plane.

1930

II. A SYNCHRONOUS MODEL OF THE

ASYNCHRONOUS AGENT SYSTEM

To establish the correctness of Theorem 1 requires the
analysis of the asymptotic behavior of the asynchronous
process described by (4) - (6) for i ∈ {1, 2, . . . , n}.
Despite the apparent complexity of this process, it is
possible to capture its salient features for tp sufficiently
large using a suitably defined synchronous discrete-time,
hybrid dynamical system S. We will define S to be a
synchronous discrete-time dynamical system evolving
on the index set P = {p; p ≥ p∗} where p∗ is the
smallest values of p ≥ p̄ for which the ascending chain
shown in (7) has converged to the limit graph G in (8).
Thus for p ∈ P , each agent’s registered neighbors of do
not change. For simplicity, we will only deal with the
case when each agent has at least one neighbor. Thus
for i ∈ {1, 2, . . . , n}, agent i’s set of neighbor indices
Ni is constant.

We will take as the state space of S, the space X of
all lists {y1, y2, . . . yn, w1, w2, . . . , wn} satisfying

yi, wi ∈ IR2, ||yi−yj || ≤ r, j ∈ Ni, i ∈ {1, . . . , n} (9)

In the sequel we write y for {y1, y2, . . . yn} and w for
{w1, w2, . . . wn}. We refer to {yi, wi} as the state of
“node” i. For i ∈ {1, 2, . . . , n} let P−1

i be a left inverse
of Pi and let Pi = P ∩ image Pi. We now define S to
be a time-varying system with state {y, w}; for each i ∈
{1, 2, . . . , n}, the state of node i evolves on P according
to update equations defined for p ∈ Pi by

yi(p + 1) = yi(p) + umi(vii1(p) − yi(p), . . . ,
viimi

(p) − yi(p)) (10)

wi(p + 1) = yi(p) (11)

where for j ∈ Ni

vij(p) =

{
yj(p) if Ω(i, P−1

i (p), j, �tp�j) � 0
wj(p) otherwise

}
,

(12)
and for p �∈ Pi by

yi(p + 1) = yi(p) (13)

wi(p + 1) = wi(p) (14)

We require yi satisfies the neighbor constraints

||yi(p) − wj(p)|| ≤ r if Ω(i, P−1
i (p), j), �tp�j) �� 0,

p ∈ Pi, j ∈ Ni (15)

Note that these constraints together with the definition
of X and vij insure that ||vij − yi(p)|| ≤ r whenever
p ∈ Pi. This in turn is necessary for (10) to make sense
because the domain of umi is D

mi .

The preceding defines S to be a synchronous discrete-
time dynamical system with state constraints given by
(15). The definition depends on the Ni as well as the n
event time sequences {t̄ik; k ≥ 1}. We’ve assumed that
the Ni are non-empty; in addition, Ni ⊂ {1, 2, . . . , i −
1, i + 1, . . . , n}. It can be shown that the Ni all have
the following symmetry property: If j ∈ Ni then i ∈
Nj . Because of this we can associate with the Ni a
simple graph G with vertex set {1, 2, . . . , n} and edge
set defined such that (i, j) is in the edge set just in case
i ∈ Nj and j ∈ Ni. Note that this is the same as the
simple graph mentioned just before theorem 1.

By a trajectory of S is meant a sequence of states
{{y(p), w(p)} : p ∈ P} which satisfy (10) - (14) as
well as the neighbor constraints (15). In the full length
version of this paper it is proved that the family of
such trajectories is non-empty and contains the trajectory
which represents actual agent system under considera-
tion. In particular it is shown that if we define

yi(p) = xi(t̄ik)
wi(p) = xi(t̄i(k−1))

}
,

Pi(k − 1) < p ≤ Pi(k),
k ∈ P−1

i (P)
(16)

for i ∈ {1, 2, . . . , n}, then {{y(p), w(p)} : p ∈ P} is a
trajectory of S. Note that yi has been defined so that it is
constant between agent i’s event times and agrees with
xi whenever p is such that tp is within one of agent i’s
sensing periods.

In the full length version of this paper it is proved that
the trajectory of S defined by (16) converges to a point
at which y1 = y2 = · · · yn = w1 = w2 = · · · = wn

provided G is connected. Theorem 1 is an immediate
consequence.

III. CONCLUDING REMARKS

The approach taken in this paper appears to have
much in common with the embedding process discussed
in Chapter 7 of [3] for analyzing “partially asynchronous
iterative algorithms.” This suggests that the tools de-
veloped in [3] may be helpful in understanding the
asynchronous system considered in this paper.

REFERENCES

[1] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita. Distributed
memoryless point convergence algorithm for mobile robots with
limited visibility. IEEE Transactions on Robotics and Automation,
pages 818–828, oct 1999.

[2] J. Lin, A. S. Morse, and B. D. O. Anderson. The multi-agent
rendezvous problem. In Proc 2003 CDC, pages 1508–1513, dec
2003.

[3] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed
Computation. Prentics Hall, 1989.

1931

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Helvetica
 /Helvetica-Bold
 /Times-Bold
 /Times-Roman
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

