
Information Structures
to Control Formation Splitting and Merging

Tolga Eren Brian D. O. Anderson A. Stephen Morse Walter Whiteley Peter N. Belhumeur

Abstract— This paper focuses on developing techniques and
strategies for the analysis and design of sensor and network
topologies required to achieve rigid formations of mobile
autonomous agents for cooperative tasks. These strategies
ensure minimum number of changes in the set of sensing
and communication links between agents during splitting and
merging operations. That is, in splitting, all the links between
agents in the same post-split sub-formation are preserved and
a minimum number of links are inserted into each post-split
sub-formation to regain minimal rigidity. In merging, all the
links in each pre-merged rigid sub-formation are preserved
and a minimum number of links are inserted between sub-
formations to create one single post-merged minimally rigid
formation.

I. INTRODUCTION

A formation is defined as a group of mobile agents
moving in real 2- or 3-dimensional space. This paper
addresses “rigid formations.” A formation is rigid if the
distance between each pair of agents does not change
over time, at least under ideal conditions. In the context
of this paper, “agents” are considered to be autonomous
vehicles such as autonomous underwater vehicles (AUVs),
microsatellites, uninhabited air vehicles (UAVs), mobile
ground-based robots.

A key element in all future multi-agent systems will
be the role of sensor and communications networks as an
integral part of coordination. In a rigid formation, distances
between agents are held fixed by measurements and in-
formation gathered through “sensing and communication
links” between agents. One of the challenges in building
sensor and communications networks between agents is
the “topology” of the network. By topology, we mean
the interconnection structure of sensing and communication
links among agents. Two networks have the same topology
if the interconnection structure is the same, although the
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networks may differ in physical interconnections, distances
between agents, transmission rates, and signal types. Rigid
formations with the minimum number of sensing and com-
munication links required to achieve rigidity are called
minimally rigid formations. We refer the reader to the
companion paper by Eren et al. [5] for an introduction to
rigid formations.

Formations of autonomous agents usually operate under
time-varying conditions where sensor and network topolo-
gies need to be restructured. Such conditions can be changes
in the environment, obstacles along the trajectories of agents
or departures of agents from formation. In this paper, we
focus on such topological changes during “operations” on
formations. By an operation, we mean missions and maneu-
vers that include agent departures, splitting, and merging,
which result in changes in agent set and/or interconnection
structure of sensing and communication links.

First, we consider the problem of splitting rigid forma-
tions. By splitting, we mean creating two or more rigid
post-split sub-formations from a rigid pre-split formation.
When a formation encounters an obstacle, splitting may be
useful to maneuver around the obstacle. Instead of all agents
moving to the same side of the obstacle, it might be more
efficient in terms of trajectory lengths of agents, if some
agents move to one side of the obstacle and the others move
to the other side.

One strategy to solve the splitting problem would be
determining entirely new sets of links for the post-split
sub-formations. Olfati-Saber and Murray present such a
strategy [7]. When splitting a rigid formation, it is necessary
to break the links between agents belonging to different
post-split sub-formations. However we can preserve a link
between two agents belonging to the same sub-formation.
Generating entirely new sets of links for post-split sub-
formations is impractical when we can preserve the links
that can be maintained. Such a strategy achieves splitting
with a minimum number of changes in the topology of
sensing and communication links. Our goal is to find such
a strategy by inserting a minimum number of links in post-
split non-rigid sub-formations to make each of them rigid
while preserving the links between agents belonging to the
same sub-formations. To motivate our discussion of splitting
a rigid formation, we have the following example:

Example: Consider a rigid formation as shown in Figure
1 in 3-dimensional space. We would like to split the forma-
tion in such a way that agents with labels {1, 2, 3, 4, 5} be-
long to one post-split sub-formation and agents with labels
{6, 7, 8, 9, 10} belong to the other post-split sub-formation.



Fig. 1. A rigid formation is split into two sub-formations by removing the
links shown with dashed edges, i.e., (1,6), (3,6), (4,6), (4,7), (4,8), (5,6),
(5,7), (5,10), which results in two non-rigid sub-formations. The splitting
problem is to find the new links that need to be inserted into each non-
rigid post-split sub-formation so that each post-split sub-formation regains
rigidity. In this example, the new links are (3,5), (6,10) shown with double
lines.

Splitting can be achieved by removing the links between
agents belonging to different post-split sub-formations while
preserving the links between agents belonging to the same
post-split sub-formations. In this example, the links (1,6),
(3,6), (4,6), (4,7), (4,8), (5,6), (5,7), (5,10) (shown with
dashed lines) are removed. This results in two non-rigid
post-split sub-formations. The splitting problem is to find
new sets of links to insert into each non-rigid post-split sub-
formation resulting in rigid post-split sub-formations. In this
example, those new links are (3, 5) and (6, 10) shown with
double lines.

Second, we address merging rigid sub-formations. By
merging, we mean inserting links between these rigid sub-
formations which results in a single post-merged rigid for-
mation. During a merging operation, it is a natural starting
point to preserve the links in each pre-merged rigid sub-
formation. Hence a reasonable goal is to create a new post-
merged rigid formation by inserting a minimum number of
links between sub-formations. A merging operation, for ex-
ample, can be used to create one single rigid formation after
split sub-formations pass around an obstacle. To motivate
our discussion of merging a rigid formation, we have the
following example:

Example: Consider two rigid sub-formations in 3-
dimensional space as shown in Figure 2. We would like
to merge these two formations resulting in a single rigid
formation in such a way that all pairs of links in each
formation are preserved and a minimum number of links
is inserted between these two sub-formations.

Merging rigid bodies has been studied in rigidity theory.
We refer the reader to Whiteley [8] for a detailed expla-
nation. Here, we use a different approach to find the new
links for merging formations. This approach can be used
for both splitting and merging formations.

The approach in this paper is based on the strategies
developed in Eren et al. [4]. Olfati-Saber and Murray gave
an approach to merging sub-formations in 2-dimensional
space so that the resulting formation is rigid [7]. The

Fig. 2. Two rigid sub-formations are merged to form one single
rigid formation. Finding the new links to be inserted between these two
formations, which will make the whole formation rigid, is the merging
problem.

approach we develop here allows us to merge two rigid sub-
formations with different types of combinations of inserting
links including their strategy. Furthermore the approach in
this paper also solves the merging problem in 3-dimensional
space.

The splitting and merging problems can be considered as
special cases of the “minimal cover problem.” The minimal
cover problem is basically to find new links to insert into a
non-rigid formation so that it becomes rigid. To solve the
minimal cover problem, we develop a novel procedure. This
procedure can be used for creating minimally rigid post-split
sub-formations from non-rigid post-split sub-formations and
also for creating a minimally rigid post-merged formation
from rigid pre-merged sub-formations.

The paper is organized as follows: We address the min-
imal cover problem in §II. Splitting rigid formations and
merging rigid sub-formations are addressed in §III and §IV,
respectively.

II. THE MINIMAL COVER PROBLEM

Before giving the definition of the minimal cover prob-
lem, we state our assumption:

Assumption: Let G = (V,L) represent the underlying
graph of each post-split formation in the splitting problem
in d-space (d=2,3), and the union of the underlying graphs
of pre-merged sub-formations in the merging problem in
d-space (d=2,3). In splitting, we assume that G = (V,L) ⊆
Ḡ = (V̄ , L̄), where Ḡ = (V̄ , L̄) is a graph created by
a Henneberg sequence in d-space (d=2,3) as explained in
the companion paper [5]. In splitting, Ḡ refers to the pre-
split rigid formation created by a Henneberg sequence. In
merging, we assume that each pre-merged rigid subgraph is
created by a Henneberg sequence.

We note that the assumption is not a limitation on pre-
split and pre-merged graphs in 2-dimensional space since
there is a Henneberg sequence for all minimally rigid
graphs in 2-dimensional space. However, the assumption
is a limitation on pre-split and pre-merged graphs in 3-
dimensional space since it is currently unknown whether
there is a Henneberg sequence for all minimally rigid graphs



in 3-dimensional space as explained in the companion paper
[5]. The minimal cover problem is to find a set of new edges
to be inserted into graph G = (V,L) so that the resulting
graph G

∗ = (V,L∗) after insertions, is minimally rigid.
Note that G and G

∗ have the same vertex set. We have the
following lemma.

Lemma 1. The edge set of a graph G = (V,L) that satisfies
the assumption of the minimal cover problem is a set of
independent edges.

We refer the reader to Eren [2] and Eren et al. [3] for the
proofs of the lemmas and theorems in this paper.

The minimal cover problem can be posed using concepts
from lattice theory. Let G denote the set of all simple
graphs G = (V,L) with vertex set V including the graph
with empty edge set which is called the edgeless graph.
Containment, denoted by ⊂, is a relation on G such that
G1 = (V,L1) is contained in G2 = (V,L2) if L1 ⊂ L2.
Containment is a partial ordering on G, and the complete
graph and edgeless graph are G’s largest and smallest
elements with respect to this ordering (see for example
MacLane and Birkhoff [6]). Every graph G in G is contained
in at least one rigid graph. We are interested in minimally
rigid graphs in G that contain G, and we call such a
minimally rigid graph a minimal cover. The set of edges
we want to preserve is represented by L.

We can define the minimal cover problem in terms of
partial ordering and graph rigidity. Suppose that a graph
G = (V,L) ∈ G, which satisfies the assumption of
the minimal cover problem, is given. The minimal cover
problem is to find some G

∗ = (V,L∗) ∈ G such that
G ⊂ G

∗ and G
∗ is minimally rigid. In other words, we

want to find a set of new edges, namely Lnew, between the
vertices of V to add to the set L such that the resulting graph
G

∗ = (V,L∗) is minimally rigid, where L∗ = L ∪ Lnew.
Note that G

∗ is not necessarily unique.
Generic rigidity is directly related to the rank of a matrix

[5]. As such, it has all the “exchange properties” associated
with the independence of rows of a matrix [8]. For example,
we note that minimally rigid graphs are also maximally
independent graphs, corresponding to bases in vector spaces
as minimal spanning sets and maximal independent sets.
Given any independent set of edges I which is a subset of
a basis (maximally independent set of edges) B for a vertex
set V , a set of edges J is a minimal cover of I, if the union
of I and J is a (new) basis B′ for V .

One crude approach to solve the minimal cover problem
is based on the “generate and test” method. It is as follows:
Given a graph G = (V,L) ∈ G, we test whether with
the addition of a new edge e, the graph G = (V,L ∪
{e}) is independent or not. If it is then we add e to L.
For testing independence, one could contemplate picking
coordinate positions for the vertices at random, and forming
a numerical rigidity matrix and testing additional rows of
it. We repeat adding such new edges until we have a set
of 2n − 3 independent edges in 2-dimensional space, and

3n−6 independent edges in 3-dimensional space, where n is
the number of vertices. The resulting graph with the vertex
set V and those independent edges is the minimal cover
of G. This approach works based on random trials. If a
new randomly generated edge gives us a set of independent
edges then it turns out to be a success, otherwise it is a
failure.

A. Planar Case

We present a systematic strategy to solve the planar
minimal cover problem. We note that the knowledge of
the original Henneberg sequence (i.e. the sequence used to
create Ḡ = (V̄, L̄)) is needed to solve the minimal cover
problem in 3-dimensional space. The resulting algorithm
has linear time complexity. On the other hand, this infor-
mation is not needed in 2-dimensional space. If we use
this information of the original Henneberg sequence in 2-
dimensional space, we have a linear time algorithm. If we
do not use it, we have an exponential time algorithm. In
this section, which is on planar case, we present the strategy
that does not use the information of the original Henneberg
sequence. In the next section, which is on spatial case, we
present the strategy that uses the information of the original
Henneberg sequence. First, we state the following lemma,
then we introduce two types of reduction steps that will be
used in the sequel.

Lemma 2. Let G = (V,L) denote a graph satisfying the
assumption of the minimal cover problem in 2-dimensional
space. Then there exists a vertex of degree 3 or less in G.

Reduction Step - Type I: Let G = (V,L) be a graph
satisfying the assumption of the minimal cover problem in
2-dimensional space. Let i be a vertex of degree ρ(i), where
ρ(i) ∈ {0, 1, 2}. Suppose that we create a set of 2 − ρ(i)
new edges incident to i and denote this set of new edges by
Linew

. Let G
′ = (V,L′) denote this new graph where L′ =

L ∪ Linew
. We register Linew

to use in subsequent steps.
It can be easily verified that L′ is independent. Now let us
remove i and all the edges incident to i in G

′ = (V,L′).
Let G

′′ = (V ′,L′′) denote this reduced graph where V ′ =
V \ {i} and L′′ = L′ \ {all edges incident to i}. It can
again be verified that the edge set of G

′′ = (V ′,L′′) is also
independent. Therefore there exists a vertex of degree 3 or
less in G

′′ by Lemma 2.
Reduction Step - Type II: Let G = (V,L) be a graph

satisfying the assumption of the minimal cover problem in
2-dimensional space. Let i be a vertex of degree 3 and
adjacent to a set of vertices denoted by Ni. We remove i

and its three edges and create a new edge (precisely one
edge) between arbitrary vertices in Ni forming a reduced
graph G

′ = (V ′,L′) where V ′ = V \ {i} and L′ = L\ { all
edges incident to i}∪{ a new edge between the vertices in
Ni} such that L′ is a set of independent edges. 1 Therefore
there exists a vertex of degree 3 or less in G

′ by Lemma 2.

1The existence of such a new edge can be seen from the proof of the
edge splitting operation in Whiteley [8].



Now we present a reduction sequence in which the
two types of reduction steps previously described are used
as main steps. This sequence is used to reduce a set of
independent edges down to a set of two vertices connected
by an edge.

Reduction Sequence: Suppose that a graph G = (V,L)
satisfying the assumption of the minimal cover problem in
2-dimensional space is given. From Lemma 2 it follows that
there exists a vertex of degree 3 or less in G. Hence, at least
one of the reduction steps (type I or type II) can be applied
to G. Note that the reduced graphs we obtain after applying
any one of these reduction steps are also independent. We
apply these two types of steps repeatedly until we are left
with only two vertices. While we apply the reduction steps
to the vertices, we number those vertices in a descending
order as n, n−1, n−2, . . . , 4, 3. For example, we number
the vertex removed in the first reduction step with n, we
number the vertex removed at the second reduction step
with n − 1 and so on until we are left with two vertices.
The last vertex on which a reduction step is applied is
numbered with 3. Then the very last two remaining vertices
are numbered with indices 2 and 1. Each time we apply the
reduction step type I on a vertex i, we keep registering its
new set of edges Linew

as described in reduction step type
I. Depending on the initial set of independent edges, there
may or may not be left an edge between the last two vertices
after the execution of the reduction sequence. If there is no
edge between them at the end of the reduction sequence,
we create such an edge and register it as L2new

. If there is
already an edge between vertices indexed by 1 and 2, then
we register L2new

= ∅. The union of the registered sets of
the new edges is Lnew =

⋃
i
Linew

where i denotes the
label of the vertices removed with a type I reduction step
and the vertex with index 2.

Theorem 3. (Planar Minimal Cover Theorem) Let G =
(V,L) be a graph satisfying the assumption of the minimal
cover problem in 2-dimensional space. Suppose that we
apply the reduction sequence described above on G and
find Lnew. Then G

∗ = (V,L ∪ Lnew) is a minimal cover
of G.

Note that Lnew obtained in the reduction sequence is not
unique because the edges in Lnew depend on the choice of
the order of vertices in the reduction sequence. We will not
consider algorithmic complexities in this paper. But one can
argue that each time the reduction step type II is applied,
there are up to three possible insertions for a new edge. This
results in an exponential time algorithm for the reduction
sequence. To overcome this problem, as we explained at
the beginning of this section, the approach for the spatial
case presented in the sequel can be easily applied to the
planar case. This approach gives a linear time algorithm.
Alternatively one can use a polynomial time algorithm
called “the pebble game” for the planar case. There is a
recent paper by Berg and Jordan [1] which addresses this
kind of algorithms.

B. Spatial Case

The approach in the Planar Minimal Cover Theorem can
be translated to 3-dimensional space with an additional
condition in the order of the reduction sequence. The reason
behind this condition is that if a reduction sequence similar
to the planar case is applied then there is a possibility of
reaching a graph with a set of vertices all of which are of
degree 5. If the conjectures for adding a 5-valent vertex
to minimally rigid graphs that we explain in the companion
paper [5] are proven, then the reduction sequence presented
for the planar case can be easily extended to 3-dimensional
space. Since this is a long-standing unsolved problem, to get
around those difficulties, we present an alternative reduction
sequence with an additional condition in the ordering of
reduction sequence. We have the following lemma in 3-
dimensional space.

Lemma 4. Let G = (V,L) denote a graph satisfying the
assumption of the minimal cover problem in 3-dimensional
space. Then there exists a vertex of G of degree 4 or less.

The two reduction steps presented for the planar case can
be directly extended for 3-dimensional space.

Reduction Step - Type I: Let G = (V,L) be a graph
satisfying the assumption of the minimal cover problem in
3-dimensional space. Let i be a vertex of degree ρ(i), where
ρ(i) ∈ {0, 1, 2, 3}. Suppose that we create a set of 3− ρ(i)
new edges incident to i and denote this set of new edges by
Linew

. Let G
′ = (V,L′) denote this new graph where L′ =

L ∪ Linew
. We register Linew

to use in subsequent steps.
It can be easily verified that L′ is independent. Now let us
remove i and all the edges incident to i in G

′ = (V,L′). Let
G

′′ = (V ′,L′′) denote this reduced graph where V ′ = V \
{i} and L′′ = L′ \{all edges incident to i}. It can be easily
verified that G

′′ = (V ′,L′′) also satisfies the assumption of
the minimal cover problem. Therefore there exists a vertex
of degree 4 or less in G

′′ by Lemma 4.
Reduction Step - Type II: Let G = (V,L) be a graph

satisfying the assumption of the minimal cover problem in
3-dimensional space. Let i be a vertex of degree 4 and
adjacent to a set of vertices denoted by Ni. We remove i

and its four edges and create a new edge (precisely one
edge) between arbitrary vertices in Ni forming a reduced
graph G

′ = (V ′,L′) where V ′ = V \ {i} and L′ = L\ { all
edges incident to i}∪{ a new edge between the vertices in
Ni} such that G

′ satisfies the assumption of the minimal
cover problem. 2 Therefore there exists a vertex of degree
4 or less in G

′ by Lemma 4.
Now we present the modified reduction sequence, in

which the two types of reduction steps previously described
are used as main steps. This sequence is used to reduce
a graph satisfying the assumption of the minimal cover
problem in 3-dimensional space down to a set of three
vertices. It makes use of the order of vertices in the

2The existence of such an edge will become clear in the special reduction
sequence presented in the sequel.



Henneberg sequence that was used to create the original
graph Ḡ = (V̄ , L̄).

Reduction Sequence: Let Ḡ = (V̄, L̄) be a minimally
rigid graph created by the vertex addition and edge split-
ting operations in 3-dimensional space, where vertices are
indexed {1, 2, . . . , n} with respect to their order of addition
in the Henneberg sequence. If i denotes a vertex added by
the edge splitting operation, then let ei denote the edge
removed in this operation. Let the graph G = (V,L) be
created by removing some of the edges and vertices of the
graph Ḡ = (V̄, L̄). To complete G = (V,L) to a minimally
rigid graph, we do the following. Starting from the vertex
with the highest index, we apply reductions steps type I
and II repeatedly on the vertices with descending order of
indices. For example, let i denote the vertex with the highest
index in the remaining graph at some step in the reduction
sequence. If i is of degree ρ(i), where ρ(i) ≤ 3, we apply
reduction step type I. Each time we apply the reduction step
type I on a vertex i, we keep registering its new set of edges
Linew

as described in reduction step type I. If the vertex i

is of degree 4, we then apply reduction step type II by
inserting the edge ei. We continue this until three vertices
are left. Depending on the initial set of independent edges,
there may or may not be three edges left between the last
three vertices after the execution of the reduction sequence.
If there are not three edges between them at the end of the
reduction sequence, we complete the number of edges to
three and register them as L3new

. If there are already three
edges between vertices labelled 1, 2 and 3, then we register
L3new

= ∅. The union of the registered sets of the new
edges is Lnew =

⋃
i
Linew

where i denotes the label of the
vertices removed with a type I reduction step and the vertex
with index 3.

Lemma 5. At each reduction step, the vertex with the
highest index is of degree 4 or less.

Theorem 6. (Spatial Minimal Cover Theorem) Let G =
(V,L) be a graph satisfying the assumption of the minimal
cover problem in 3-dimensional space. Suppose that we
apply the reduction sequence described above on G and
find Lnew. Then G

∗ = (V,L ∪ Lnew) is a minimal cover
of G.

As in the planar case, Lnew obtained in the reduction
sequence is not unique because the edges in Lnew depend
on the choice in the reduction sequence.

III. SPLITTING FORMATIONS

To find a strategy for splitting a rigid formation into two
rigid post-split sub-formations, it is convenient to introduce
a suitable definition of the splitting problem in terms of
graph rigidity. Let G = (V,L) be a minimally rigid graph.
Let V1 and V2 represent the two subsets of V such that
V1 ∪ V2 = V and V1 ∩ V2 = ∅. Let L1 ⊂ L be the set of
all edges whose both end-vertices are in V1 and L2 ⊂ L be
the set of all edges whose both end-vertices are in V2. Let

Lr = L\ (L1 ∪L2) be the set of all edges whose one end-
vertex is in L1 and the other end-vertex is in L2. Let G1 =
(V1,L1) and G2 = (V2,L2). When the graph G = (V,L)
is split into G1 = (V1,L1) and G2 = (V2,L2), all edges in
Lr are removed. The splitting problem is to find new sets
of edges L1new

to insert into G1 and L2new
to insert into

G2 such that the resulting graphs G
∗

1
= (V1,L1 ∪ L1new

)
and G

∗

2
= (V2,L2 ∪ L2new

) are minimally rigid.
With the minimal cover problem in mind as defined in

the previous section, the splitting problem reduces to finding
the minimal covers of G1 = (V1,L1) and G2 = (V2,L2).
As detailed in the analysis in the previous section, the
underlying graphs of the resulting post-split sub-formations
determined by the reduction sequences are minimally rigid
by Theorem 3 and Theorem 6.

IV. MERGING FORMATIONS

As we did in the case of the splitting problem, we
introduce a suitable definition of the merging problem in
terms of graph rigidity. Let G1 = (V1,L1) and G2 =
(V2,L2) be two minimally rigid graphs representing the
underlying graphs of two minimally rigid point formations.
The merging problem is to find a new set of edges Lnew

to insert between G1 and G2 by choosing one end-vertex
in V1 and the other end-vertex in V2 such that the resulting
graph G

∗ = (V1 ∪ V2,L1 ∪L2 ∪Lnew) is minimally rigid.
As in the case of splitting, the merging problem reduces to
finding the minimal cover of G

′ = (V1 ∪ V2,L1 ∪L2). We
exemplify this in the sequel.

Example: Let G1 = (V1,L1) and G2 = (V2,L2) be two
minimally rigid graphs in 2-dimensional space. Suppose that
we apply the reduction sequence first on G2 = (V2,L2)
as described in §II-A. Since G2 is minimally rigid, we
obtain two vertices connected by an edge at the end of
the reduction sequence on G2 without inserting any new
edges. We denote this remaining edge by (i, j). At this
intermediate step, we are left with G1 = (V1,L1) and the
edge (i, j) on which we continue applying the reduction
sequence. Suppose that we apply the reduction step type I
on i, by inserting an edge (i, k) where k ∈ V1. Then we
apply the reduction step type I on j by inserting the edges
(j, k), (j, l) or by inserting the edges (j, l), (j, r) where
k, l, r ∈ V1. After applying those reduction steps on i, j, we
are left with the graph G1 = (V1,L1) only, and we apply
the reduction sequence on G1 without inserting any new
edges. Therefore the two possible combinations of merging
G1 and G2 create the set of edges (i, k), (j, k), (j, l) or
(i, k), (j, l), (j, r). We depict these two different strategies
of merging two rigid sub-formations in Figures 3a and b.
G1 and G2 denote the underlying graphs of these two rigid
point formations.

We can pursue a different strategy. Let G1 = (V1,L1)
and G2 = (V2,L2) be two minimally rigid graphs in 2-
dimensional space. Suppose that we apply the reduction
sequence first on G2 = (V2,L2) as described in §II-A until
we are left with three vertices i, j, k connected by three



edges (i, j), (i, k), (j, k). Since G2 is minimally rigid, we
obtain these three vertices connected by three edges at the
end of the reduction sequence on G2 without inserting any
new edges. First, let us insert a new edge (i, r) where r ∈
V1. Now, i is of degree 3. Then, we can apply the reduction
step type II on i by inserting (j, r). Note that while (i, r)
is a new inserted edge which needs to be registered in the
reduction sequence process, (j, r) is not. (j, r) is simply a
result of reduction step type II. Now let us insert a new edge
(j, s) to make j of degree 3 where s ∈ V1. Then we can
apply the reduction step type II on j by inserting an edge
(k, s). Note again that (j, s) is a new edge which needs to
be registered in the reduction sequence process but (k, s)
is not. Then we apply the reduction step type I on k by
inserting a new edge (k, t) where t ∈ V1. At this stage,
we are only left with G1. Then we continue the reduction
sequence on G1. Since G1 is minimally rigid, the reduction
sequence can be applied without inserting any other extra
edges. Therefore another strategy for merging G1 and G2

creates the set of edges (i, r), (j, s), (k, t). We depict this
strategy in Figure 3c.

It can be verified that six links are needed in 3-
dimensional space to merge two minimally rigid sub-
formations to form a minimally rigid post-merged formation
provided that we use at least three points in each sub-
formation as an end-point of these six new links. Here, we
use the solution of the minimal cover problem to determine
these new links. We depict three possible strategies to
determine these six links (Figures 4a, b, c) and explain
one of them in detail (Figure 4a). One can find different
strategies by using a modified version of the idea presented
here by selecting a different combination of vertices and
reduction steps type I and II. Here, we do not go into each
such combinations because the idea is essentially similar to
the planar version.

Let G1 = (V1,L1) and G2 = (V2,L2) be two minimally
rigid graphs in 3-dimensional space. Suppose that we apply
the reduction sequence first on G2 = (V2,L2) as described
in §II-A. Since G2 is minimally rigid, we obtain three
vertices connected by three edges at the end of the reduction
sequence on G2 without inserting any new edges. Let
us denote this remaining vertices by i, j, k and edges by
(i, j), (i, k), (j, k). At this intermediate step, we are left with
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Fig. 4. Three different strategies of merging rigid sub-formations in 3-
dimensional space.

G1 = (V1,L1) and the edge (i, j), (i, k), (j, k) on which
we continue applying the reduction sequence. Suppose that
we apply the reduction step type I on the vertex i, by
inserting an edge (i, l) where l ∈ V1. Then we apply
the reduction step type I on the vertex j by inserting the
edges (j, r), (j, s) where r, s ∈ V1. Then we apply the
reduction step type I on the vertex k by inserting the edges
(k, t), (k, u), (k, v) where t, u, v ∈ V1. After applying those
reduction steps on vertices i, j, k, we are left with the graph
G1 = (V1,L1) only, and we apply the reduction sequence
on G1 without inserting any new edges. Therefore the two
possible combinations of merging G1 and G2 create the set
of edges (i, l), (j, r), (j, s), (k, t), (k, u), (k, v). We depict
this strategy of merging two rigid sub-formations in Figure
4(a). G1 and G2 denote the underlying graphs of these two
rigid point formations.

V. CONCLUDING REMARKS

First, we note that the reduction strategies developed
in this paper can be extended to include other types of
operations such as vertex splitting. Second, solving the
minimal cover problem for rigid formations, which are not
necessarily minimally rigid, is an open problem.
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