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Abstract— Sensor and network topologies of rigid forma-
tions with distance information between mobile autonomous
agents are considered. An approach based on rigidity for
creating such topologies were suggested in our previous work.
Here, we first illustrate some potential scenarios on forma-
tions that require unambiguity in the knowledge of distances
between every pair of agents in a formation. Then, we show
how a stronger type of rigidity, namely global rigidity, plays
a role in creating such unambiguous formations. We draw
out and summarize some relevant results from the related
mathematical theory of global rigidity; and present some new
results on globally rigid formations.

I. I NTRODUCTION

In previous papers ([5], [6], [8]), we suggested an ap-
proach based on rigidity for maintaining formations of mo-
bile autonomous agents with sensor and network topologies
that use distance, direction, bearing and angle information
between agents. In this paper, we investigate globally rigid
formations.

By a formation, we mean a group of mobile autonomous
agents moving in real 2- or 3-dimensional space. A for-
mation is calledrigid if the distance between each pair of
agents does not change over time under ideal conditions. A
formation is calledglobally rigid, if the distance between
each pair of agents is unambiguous. Sensing and commu-
nication links are used for maintaining distances between
agents fixed. Distances betweenall agent pairs can be held
fixed by directly measuring distances between onlysome
agents and keeping them at desired values [5]. It is also true
that it is not necessary to have sensing and communication
links between every pair of agents to create a globally rigid
formation, which we will explore in this paper.

First, we present some reasons why it is desirable to have
globally rigid formations. Departure of an agent from a rigid
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formation creates a need for generating new links between
remaining agents to maintain a formation while preserving
the links between remaining agents. In Eren et al. [4], an
approach was given to determine which pairs of agents these
new links should be created between. With these new links,
the remaining agents will be able to maintaina formation.
However, if the remaining agents desire to maintain exactly
the same relative distances between themselves as before
the agent departure, then there is a need for additional
information about distances between agents where new links
are created. In other words, by knowing relative distances
betweensomepairs of agents, there is a need to compute
the relative distances betweenall pairs of agents (or all new
pairs to be added).

As another example, consider a formation splitting into
two when it encounters an obstacle so that one half can
proceed to one side and the other half to the other, instead of
making a maneuver in which the whole formation proceeds
to the same side. When the formation splits, the links
between agents in different sub-formations are broken while
the links between agents in the same sub-formations are
preserved. As this takes place, there is a need to create new
links in each sub-formation to maintain rigid formation. A
method of generating such links is given in a companion
paper by Eren et al. [4]. If, furthermore, there is a need
to preserve the relative distances between agents in each
sub-formation that are exactly the same as before, then we
encounter the same need to know distances between all pairs
of agents.

There are two steps needed in overcoming these prob-
lems. The first is finding a globally rigid formation and the
second is, given such a globally rigid formation, finding
relative distances between every pair of agents. The first
step is characterizing globally rigid formations [7], which
we will explore in this paper. The second step is related
to the Euclidean distance matrix completion problem [9].
Because of space constraints, we present only globally
rigid formations with distance information between agents,
and we leave out globally rigid formations with direction,
bearing and angle information. We refer the reader to Eren
[3] for a detailed treatment of such formations.

The paper is organized as follows: We start with an
overview of point formations and rigidity in§II. Globally
rigid formations are investigated in§III.

II. POINT FORMATIONS AND RIGIDITY

By a d-dimensional point formation at p ,
column {p1, p2, . . . , pn}, written Fp, is meant a set



of n points {p1, p2, . . . , pn} in IRd together with a setL
of k maintenance links, labelled(i, j), where i and j are
distinct integers in{1, 2, . . . , n}; the length of link (i, j)
is the Euclidean distance between pointspi and pj . For
our purposes, a point formationFp = ({p1, p2, . . . , pn},L)
provides a natural high-level model for a set ofn agents
moving in real 2- or 3- dimensional space. In this context,
the points pi represent the positions of agents inIRd

{d = 2 or 3} and the links inL label those specific agent
pairs whose inter-agent distances are to be maintained
over time. In practice actual agent positions cannot be
expected to move exactly in formation because of sensing
errors, vehicle modelling errors, etc. The ideal benchmark
formation against which the performance of an actual
agent formation is to be measured is called areference
formation.

Each point formationFp uniquely determines a graph
G , (V,L) with vertex setV , {1, 2, . . . , n} and edge
set L, as well as a distance functionδ : L → IR whose
value at(i, j) ∈ L is the distance betweenpi and pj . Let
us note that the distance function ofFp is the same as the
distance function of any point formationFq with the same
graph asFp providedq is congruentto p in the sense that
there is a distance preserving mapT : IRd → IRd such that
T (qi) = pi, i ∈ {1, 2, . . . , n}. In the sequel we will say that
two point formationsFp andFq arecongruentif they have
the same graph and ifq andp are congruent.

By a trajectoryof Fp, we mean a continuously parameter-
ized, one-parameter family of points{q(t) : t ≥ 0} in IRnd,
which containsp. We can define a rigid point formation as
follows: A formation is said to undergorigid motionalong a
trajectoryq([0,∞)) , {column {q1(t), q2(t), . . . , qn(t)} :
t ≥ 0} if the Euclidean distance between each pair of points
qi(t) andqj(t) remains constant all along the trajectory. Let
us note thatFp undergoes rigid motion along a trajectory
q([0,∞)) just in case each pair of pointsq(t1), q(t2) ∈
q([0,∞)) are congruent. The set of pointsMp in IRnd

which are congruent top is known to be a smooth manifold.
It is clear that any trajectory along whichFp undergoes
rigid motion must lie completely withinMp; conversely
any trajectory ofFp that lies withinMp is one along which
Fp undergoes rigid motion. A point formationFp is said to
be rigid if rigid motion is the only kind of motion it can
undergo along any trajectory on which the lengths of all
links inL remain constant. Thus, ifFp is rigid, it is possible
to “keep formation” by making sure that the lengths of the
formation’s maintained links do not change as the formation
moves.

Whether a given point formation is rigid or not can
be studied by examining what happens to the given point
formation Fp = ({p1, p2, . . . , pn},L) with m mainte-
nance links, along a trajectoryq([0,∞)) , {{q1(t), q2(t),
. . . , qn(t)} : t ≥ 0} on which the Euclidean distances
dij , ||pi − pj || between pairs of points(pi, pj) for which
(i, j) is a link are constant. Along such a trajectory

(qi − qj) · (qi − qj) = d2
ij , (i, j) ∈ L, t ≥ 0 (1)

Assuming a smooth (piecewise analytic) trajectory, we can
differentiate to get

(qi − qj) · (q̇i − q̇j) = 0, (i, j) ∈ L, t ≥ 0 (2)

The m equations can be collected into a single matrix
equation R(q)q̇ = 0 (3)

whereq̇ = column {q̇1, q̇2, . . . , q̇n} andR(q) is a specially
structuredm× dn matrix called therigidity matrix [13].

Because any trajectory ofFp which lies withinMp, is
one along whichFp undergoes rigid motion, (2) automat-
ically holds along any trajectory which lies withinMp. It
follows that the tangent space toMp at q, written Tq, must
be contained in the kernel ofR(q). Since p must be on
any such trajectory, it must be true thatTq ⊂ kernelR(q).
If q̇ satisfies (3), then it lies in the tangent space. If the
affine span of the pointsp1, p2, . . . , pn is IRn, thenMp is
n(n+1)/2 dimensional since it arises from then(n−1)/2-
dimensional manifold of orthogonal transformations ofIRn

and then-dimensional manifold of translations ofIRn. Thus
Mp is 6-dimensional forFp in IR3, and 3-dimensional for
Fp in IR2. We haverank R(q) = nd− dimension kernel
R(q) ≤ nd − n(n + 1)/2. We have the following theorem
[11]:

Theorem 1. AssumeFp is a formation with at leastd
points in d-space {d = 2, or 3} where rank R(p) =
max{rank R(x) : x ∈ IRd}. Fp is rigid in IRd if and only
if

rank R(p) =

{
2n− 3 if d = 2,

3n− 6 if d = 3.

This theorem leads us to the notion of the “generic” rigidity
behavior of the graph. When the maximum rank forR(x)
over all x is less than this upper bound, the formationFp

may still be rigid for some particularp. However, this is
unstable. For almost all changes in the positionsp (or in
the lengths of maintenance links which are realizable), the
formation will no longer be rigid. We are interested in
“generic rigidity”, a property that will hold for all small
changes inp.

A point formationFp is generically rigid if it is rigid for
almost all choices ofp in IRdn. It is possible to characterize
generic rigidity in terms of the “generic rank” ofR where
by R’s genericor maximal rank we mean the largest value
of rank{R(q)} as q ranges over all values inIRnd. The
following theorem is due to Roth [11].

Theorem 2. A formationFp with at leastd points in d-
space{d = 2, or 3} is generically rigid if and only if

generic rank {R} =

{
2n− 3 if d = 2,

3n− 6 if d = 3.



To understand this type of rigidity, it is useful to ob-
serve that the set of pointsp that satisfy the condition
rank R(p) = max{rank R(x) : x ∈ IRd} is a dense
open subset ofIRnd [11]. Generic rigidity is a property
of only the set of maintenance links, or the underlying
graph. It does not even claim thatFp itself is rigid but
only that almost all nearby pointsq give rigid formations
Fq. The concept of generic rigidity does not depend on the
precise distances between the points ofFp but examines
how well the rigidity of formations can be judged by
knowing the vertices and their incidences, in other words,
by knowing the underlying graph. A point formationFp

is strongly generically rigidif it is generically rigid and
if rank R(p) = generic rank {R}. Hence, a strongly
generically rigid point formation is rigid and it remains rigid
under small perturbations. For this reason, it is a desirable
specialization of the concept of a “rigid formation” for our
purposes. We have the following theorem for a strongly
generically rigid point formation and a generically rigid
graph [13]:

Theorem 3. For a formationFp in d-space with at leastd
points, the following are equivalent:

1) the formation’s underlying graphG = (V,L) is
generically rigid ind-dimensional space (d = 2, 3);

2) for somep,

rank {R(p)} =

{
2n− 3 if d = 2,

3n− 6 if d = 3.

3) for almost allp, the formationFp is strongly generi-
cally rigid.

For 2-dimensional space, we have a complete combinato-
rial characterization of generically rigid graphs, which was
first proved by Laman in 1970. In the theorem below,| . |
is used to denote the cardinal number of a set.

Theorem 4 (Laman). A graphG = (V,L) (whereL 6= ∅
or n > 1) is generically rigid in 2-dimensional space if and
only if there is a subsetL′ ⊆ L satisfying the following two
conditions: (1)|L′| = 2|V| − 3, (2) For all L′′ ⊆ L′,L′′ 6=
∅, |L′′| ≤ 2|V(L′′)| − 3, where |V(L′′)| is the number of
vertices that are end-vertices of the edges inL′′.

There is no comparable complete result for 3-dimensional
space, though there are useful partial results [13], [14].
Although we lack a characterization in 3-dimensional space,
there are sequential techniques to generate rigid classes of
graphs both in 2- and 3-dimensional space [1], [13]. We
explain these techniques in the sequel.

A dependenceon the maintenance link set of a point
formation Fp = ({p1, p2, . . . , pn},L) is an assignment
λ : L → R, with λ(i, j) = λi,j = λj,i (and not all
zero), such that for each vertexi:

∑
j|(i,j)∈L λij(pi−pj) =

0. This equation gives a row dependence of the rigidity
matrix. A point formation isindependentif its maintenance
link set is such that the rows of the rigidity matrix are

all independent. A point formation isminimally rigid if
removing any link makes it non-rigid. There are2n−3 and
3n − 6 maintenance links in minimally rigid formations
in 2- and 3-dimensional space respectively. A graph is
called (generically)1 minimally rigid in d-space if it is

rigid and has exactlydn −
(

d + 1
2

)
edges. Minimally

rigid point formations are also maximally independent point
formations, corresponding to bases in vector spaces as
minimally spanning sets and maximally independent sets.

If a point formation is rigid but not minimally rigid,
we say that there isredundancyin the link setL. Let us
suppose that a link(i, j) is removed from a rigid point
formation. If the formation remains rigid then(i, j) is called
a redundant linkin the initial formation (redundant edge
in the underlying graph). If adding a link(i, j) does not
increase the rank of the rigidity matrix, then we call(i, j)
an implicit link (implicit edgein the underlying graph).

In 2-dimensional space, by Theorem 4, a set of edgesL is
independentor anindependent edge set, if |L| ≤ 2|V(L)|−3
and for everyL′ ⊆ L, |L′| ≤ 2|V(L′)| − 3. If the set of
edgesL of a graph in the planeG = (V,L) is independent,
thenG = (V,L) is called anindependent graph.

Sequential Techniques:First, we introduce some addi-
tional terminology. If(i, j) is an edge, then we say thati
and j are adjacentor that j is a neighborof i and i is a
neighbor ofj. 2 The verticesi and j are incident with the
edge(i, j). Two edges areadjacentif they have exactly one
common end-vertex. Thedegreeor valencyof a vertexi is
the number of neighbors ofi. If a vertex hask neighbors,
it is called avertex of degreek or a k-valent vertex.

One operation is thevertex addition: given a minimally
rigid graphG = (V,L), we add a new vertexi with d edges
betweeni andd other vertices inV. The other is theedge
splitting: given a minimally rigid graphG = (V,L), we
remove an edge(j, k) in L and then we add a new vertex
i with d + 1 edges by inserting two edges(i, j), (i, k) and
d− 1 edges betweeni andd− 1 vertices (other thanj, k)
in V. Now we are ready to present the following theorems:

Theorem 5 (vertex addition [12]). Let G = (V,L) be a
graph with a vertexi of degreed in d-space; letG∗ =
(V∗,L∗) denote the subgraph obtained by deletingi and
the edges incident with it. ThenG is generically minimally
rigid if and only if G∗ is generically minimally rigid.

Theorem 6 (edge splitting [12]). Let G = (V,L) be a
graph with a vertexi of degreed + 1 in d-space; letVi be
the set of vertices incident toi; and letG∗ = (V∗,L∗) be
the subgraph obtained by deletingi and itsd + 1 incident
edges. ThenG is generically minimally rigid if and only
if there is a pair j, k of vertices ofVi such that the edge
(j, k) is not inL∗ and the graphG′ = (V∗,L∗⋃

(j, k)) is

1In the sequel, we use the term rigid graph instead of generically rigid
graph unless there is a danger of confusion.

2The neighbor relation is symmetric throughout the paper, i.e., if agent
i senses or communicates with agentj, so does agentj with agenti.



generically minimally rigid.

Henneberg sequences are a systematic way of generating
minimally rigid graphs based on the vertex addition and
edge splitting operations. Ind-space, we are given a se-
quence of graphs:Gd,Gd+1, . . . ,G|V| such that: 1)Gd is
the complete graph ond vertices; 2)Gi+1 comes fromGi

by adding a new vertex either by (i) the vertex addition or
(ii) the edge splitting operation.

Note thatGi andGi+1 correspond toG∗ andG in the
statements of Theorem 5 and Theorem 6. All graphs in the
sequence are minimally rigid ind-space. In 2-dimensional
space, the two operations of vertex addition and edge
splitting are sufficient to generate all minimally rigid graphs
starting from a single edge. In 3-dimensional space, they
generate a proper subclass of minimally rigid graphs starting
from a triangle. The reason behind this difference between
planar and spatial cases is the following observation.

A minimally rigid graph in 2-dimensional space may have
all vertices of degree larger than 2;|L| = 2|V| − 3 or
equivalently2|L| = 4|V| − 6 guarantees that some vertices
have degree 3 or less. IfG = (V,L) is a graph with|V|
vertices which is minimally rigid, the existence of at least
one vertex of degree 2 or 3 means that by Theorem 5 or
Theorem 6 there exists a minimally rigid graphG∗ with
|V|−1 vertices, and one can go fromG toG∗ by the vertex
addition or edge splitting operations. Then one uses the
same procedure onG∗. Hence, all minimally rigid graphs
can be generated by the vertex addition and edge splitting
operations alone. It is also true that starting with a single
edge only minimally rigid graphs are generated with these
operations in 2-dimensional space.

On the other hand, a minimally rigid graph in 3-
dimensional space may have all vertices of degree larger
than 4; |L| = 3|V| − 6 or equivalently2|L| = 6|V| − 12
guarantees only that some vertices have degree 5 or less.
A quick check with the vertex addition and edge splitting
operations in 3-dimensional space tells us that we can
generate vertices of degree 3 and 4 with these operations,
but not of degree 5. We need other types of operations
to generate minimally rigid graphs in 3-dimensional space
with all vertices having a degree of 5 or higher, and to
remove a vertex of degree 5 from a minimally rigid graph
in 3-dimensional space. The following theorem is about
removing a 5-valent vertex in a minimally rigid graph.

Theorem 7 (Removing a 5-valent vertex [12]).Let G =
(V,L) be a minimally rigid graph with a 5-valent vertex
a and edges(a, bi), 1 ≤ i ≤ 5. Let G∗ = (V∗,L∗) be a
graph obtained by removing vertexa and the edges(a, bi),
1 ≤ i ≤ 5 fromG. Then one of the following is true: 1) for
some choice of two non-adjacent edges with vertices drawn
from b1, b2, . . . , b5, the graph obtained by inserting these
edges is minimally rigid in 3-dimensional space; 2) for two
choices of adjacent pairs of edges with vertices drawn from
b1, b2, . . . , b5 (not all adjacent with a single vertex), the two
graphs obtained fromG∗ by inserting these pairs are both

minimally rigid in 3-dimensional space.

Adding a 5-valent vertex to a minimally rigid graph in
3-dimensional space to guarantee preservation of minimal
rigidity is a long-standing problem. So far there are only
partial results [12]. There are two sequential operations for
adding 5-valent vertices to minimally rigid graphs. They are
conjectured to preserve minimal rigidity in 3-dimensional
space. The first operation is replacing an X (i.e., two edges
that do not share any vertices) by a vertex of degree five
by connecting the vertex to the end vertices of these two
edges plus an additional vertex. The second operation is the
double V replacement. This operation takes two graphsG1

andG2 that are minimally rigid in 3-dimensional space to
a graphG that is generically rigid in 3-dimensional space.

Conjecture 8 (Adding a 5-valent vertex by replacing a
single X [12]). If G = (V,L) is a minimally rigid graph
in 3-dimensional space containing edges(a, b), (c, d), then
the graph obtained by deleting these two edges and adding
a 5-valent vertexi attached to the verticesa, b, c, d and
another vertexe ∈ V is minimally rigid in 3-dimensional
space.

Conjecture 9 (Adding a 5-valent vertex by replacing
2 V’s [12]). If G1 = G ∪ {(a, b), (b, c)} and G2 = G ∪
{(ã, b̃), (b̃, c̃)} are minimally rigid graphs in 3-dimensional
space with b 6= b̃, then the graphG∗ obtained from
G by adding a 5-valent vertexi, attached to vertices
including a, b, c, ã, b̃, c̃, is also a minimally rigid graph in
3-dimensional space.

Every minimally rigid graph can be generated by this
extended Henneberg sequence, which includes the two
operations in the conjectures with the vertex addition and
the simpler edge splitting operations. What is unproven is
that only minimally rigid graphs in 3-dimensional space are
generated in this way. The lack of a simpler technique for
adding 5-valent vertices is connected to the failure of any
simple spatial analogues of Laman’s Theorem.

There are two partial results which give sufficient condi-
tions for the replacement of two edges by a 5-valent vertex
and three edges by a 6-valent vertex. These operations are
called vertex splitting. If the graphG′ is a vertex split of
a generically rigid graphG on d edges ind-space or a
vertex split ond− 1 edges, thenG′ is generically rigid in
d-space [13]. Vertex 3-splits on two edges and three edges
are depicted in Figures 1a and 1b. By vertexd-split, we
mean a split ind-space.

III. G LOBALLY RIGID FORMATIONS

A non-rigid point formation has infinitely many “realiza-
tions” for the given values of the constraints or dimensions.
Assigning coordinates to the vertices of a graph is called
graph realization. More precisely, given a graphG =
(V,L),

⋃{(pi, pj) : (i, j) ∈ L} ∪ ⋃{pi} ⊂ IRd is said
to be a realization ofG in d-dimensional space where
(pi, pj) is the straight line segment with endpointspi and



(a) (b)

Fig. 1. (a) Vertex 3-split on two edges. Edges which are shifted to the
new vertex 0 are shown with dashed edges, and new edges after split are
shown with wider edges. (b) Vertex 3-split on three edges. Edges which
are shifted to the new vertex 0 are shown with dashed edges, and new
edges after split are shown with wider edges.

pj . Translations, rotations and reflections are not considered
to be different realizations. It turns out that even a rigid
formation may have several distinct realizations in this
sense.

Each point formationFp uniquely determines a graph
G , {V,L} with vertex setV , {1, 2, . . . , n} and edge
set L, as well as a distance functionδ : L → IR whose
value at (i, j) ∈ L is the distance betweenpi and pj .
Recall that the distance function ofFp is the same as the
distance function of any point formationFq with the same
graph asFp providedq is congruentto p in the sense that
there is a distance-preserving mapT : IRd → IRd such that
T (qi) = pi, i ∈ {1, 2, . . . , n}. Furthermore, recall that two
point formationsFp andFq arecongruentif they have the
same graph and ifq andp are congruent. It is clear thatFp

is uniquely determined by its graph and distance functionat
mostup to a congruence transformation. A formation which
is exactly determined up to congruence by its graph and
distance function is called “globally rigid.” More precisely,
a d-dimensional point formationFp is said to beglobally
rigid if each d-dimensional point formationFq with the
same graph and distance function asFp is congruent toFp.

As we have already noted, we need formations whose
point formations are uniquely determined up to congruence
by their graphs and distance functions. Unfortunately rigid-
ity is not a strong enough property of a formation to ensure
that this is so. In other words it is possible to construct
two rigid formationsFp andFq which both have the same
graph and distance function, but are not congruent. The
subtlety here stems from the fact that rigidity ofFp stipu-
lates that only those formations encountered on trajectories
containingFp be congruent toFp. Unfortunately there are
formations with the same graph and distance function as
Fp which cannot be reached fromFp on any trajectory;
such formations are typically not congruent toFp. From a
different perspective, a rigid formation is a formation which
is impossible to deformcontinuouslywhile holding fixed
the lengths of all of its links. There are examples of rigid
formations which can indeed be deformed, but not contin-
uously; such formations are rigid but not globally rigid. In
the end, the key feature which distinguishes globally rigid
formations from all others including those which are merely

d
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Fig. 2. Two rigid formations with the same graph and
distance function.

b

a

e

c d

Fig. 3. A globally rigid formation.

rigid is that the former cannot be deformed by any means
whatever, continuous or not, whereas the latter always can.

An example of a rigid formation which can be deformed
discontinuously is shown in Figure 2(a). Observe that a
discontinuous deformation can be obtained by reflecting the
triangle formed by pointsa, b, c about the line determined
by pointsa and b. The resulting rigid formation is shown
in Figure 2(b). Adding a link from pointc to d in Figure
2(a) would make the formation globally rigid. An example
of a globally rigid formation whose graph is not complete
is shown in Figure 3.

Let us agree to say that a formationFp =
({p1, p2, . . . , pn},L) of n points in IRd is generically
globally rigid if for each q in some open neighborhood of
p in IRdn, formationFq = ({q1, q2, . . . , qn},L) is globally
rigid. There is a graph-theoretic characterization of generic
global rigidity for 2-dimensional formations analogous to
the characterization of generic rigidity provided by Laman’s
theorem. To explain the result we need a few more concepts.

A connected graphG is k-connectedif it is possible
to obtain from it a new graph with at least two distinct
connected components by removing at least one set ofk
vertices fromG along with all of those edges ofG which
are incident on thek vertices being removed. A graphG
which is generically rigid inIRd is redundantly rigidin IRd

if removal of any single edge results in a graph which is
also generically rigid inIRd. Finally, a connected simple
graphG = {V,L} with n vertices isgenerically globally
rigid in IR2 if there is an open dense set of pointsp ∈ IRdn

at whichFp is a globally rigid formation with link setL.
The following recent result settles the generic global rigidity
question ford = 2 in graph theoretic terms [2], [10].

Theorem 10. A connected simple graphG with n ≥ 4
vertices is generically globally rigid inIR2 if and only if it
is 3-connected and redundantly rigid inIR2.

The proof is built on the sequential construction from the
base case ofK4, the complete graph with four vertices, by



Fig. 4. A sequence for generating a globally rigid formation. The sequence
starts withK4, and a new vertex (shown as a larger circle) is adjoined at
each step by edge splitting operation. Edges about to be split are shown
as dashed lines.

a sequence of edge splits, in a manner which extends the
Henneberg sequences as shown in Figure 4. This suggests
that a sequential approach might give some results for
global rigidity for other classes of formations and for higher
dimensions.

Much like the situation with generic rigidity, the gen-
eralization of Theorem 10 to higher dimensions does not
yet exist [2]. There is no general algebraic test for generic
global rigidity of a graph. There is even a question, in
3-dimensional space, what one means by generic global
rigidity: (a) a graph may be globally rigid for points forming
an open dense subset ofIR3; (b) a graph may be globally
rigid for points forming an open non-empty subset ofIR3. It
appears that (b) does not imply (a) in 3-dimensional space
(though it does in 2-dimensional space). We mean (a) in
our discussions on generic global rigidity. In 2-dimensional
space, it might be possible to turn Theorem 10 into some
algebraic condition involving repeated uses of the rigidity
matrix.

The known bad example in 3-dimensional space isK5,5, a
complete bipartite graph [2]. (A graphG is calledbipartite
if its vertex set can be partitioned into two partsV1 and
V2 such that every edge has one end inV1 and one inV2.)
This is also the counterexample to 3-dimensional version of
Theorem 10, since it is 5-connected and redundantly rigid.
It fails to be globally rigid in some open neighborhood of
points lying on a quadric surface. Therefore, it cannot be
generically globally rigid. It is not known, for sure, that it is
globally rigid at some other open neighborhood of points. It
is suspected that it is, but this is unproven. So it is suspected
that global rigidity is not a generic property, but the last
piece of that proof/counterexample is still missing. We know
that there are classes of graphs for which global rigidity is
a generic property. For example, graphs generated fromK5

by a sequence of edge splits (as explained in the previous
section) and edge additions are generically globally rigid.
By edge additionwe mean inserting edges into a graph.

At the moment we do not have a conjecture for which
graphs are generically globally rigid in 3-dimensional space.
However, we have a partial result and a conjecture for
subclasses of graphs. The result uses the same techniques
described for 2-dimensional space in Connelly [2].

Theorem 11. A graph G = (V,L) with at least five
vertices, is generically globally rigid in 3-dimensional space
if there is an ordering of vertices1, 2, . . . , |V| and a

sequence of graphsG5, . . . ,G|V| such that: 1)G5 is K5; 2)
for 5 ≤ i ≤ |V|, Gi+1 is generated by (i) adding a4-valent
vertex (ii) edge splitting; 3)G|V| is G.

In 2-dimensional space, because of duality [1], vertex
splitting creating two vertices of at least degree3 is also
known to preserve generic global rigidity.

Conjecture 12. If, in the previous result we add a third
step: (iii) vertex splitting of either type (vertex split ond
edges or ond−1 edges ind dimensional space as explained
in §II) such that each of the new vertices is at least 4-valent;
then the resulting graph is also generically globally rigid
in 3-dimensional space.

While these steps will not generate all globally rigid for-
mations, they will generate classes of formations for any
number of vertices. Adding a sequence of 4-valent vertices
to a set ofn points which are in general position (no
four coplanar) will generate a globally rigid formation with
4n− 10 edges, and using edge splitting alone will generate
a globally rigid formation with3n− 5 edges. The number
of edges in these graphs is less than the number of edges
in the complete graph, which hasn(n + 1)/2 edges.
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