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Abstract-This paper is concerned with the collective 
behavior of a group of n > 1 mobile autonomous agents, 
labelled 1 through n, which can all move in the plane. 
Each agent is able to continuously track the positions of 
all other agents currently within its “sensing region” where 
by an agent’s sensing region is meant a closed disk of 
positive radius r centered at the agent’s current position. The 
mulli-agent rendezvous problem is to desjse ‘local” control 
shategies, one for each agent, which without any active 
communication between agents, cause all members of the 
group to eventually rendezvous at single unspecified location. 
This paper describe two types of strategies for solving the 
problem. The fint consists of agent strategies which are 
mutually sjnchronized in the Sense that all depend on a 
common clock. The second consists of strategies which can 
be implemented independent of each other, without reference 
to a common clock. 

Current interest in cooperative control has led to the 
development of a number of distributed control algorithms 
capable of causing large groups of mobile autonomous 
agents to perform useful tasks. Of particular interest here 
are provably correct algorithms which solve what we 
shall refer to as the “multi-agent rendezvous problem:’ 
This problem, which was posed in [l], is concerned with 
the collective behavior of a group of n > 1 mobile 
autonomous agents, labelled 1 through n, which can all 
move in the plane. Each agent is able to continuously 
track the positions of all other agents currently within 
its “sensing region’’ where by an agent’s sensing region 
is meant a closed disk of positive radius T centered at 
the agent’s current position. The multi-agent rendezvous 
problem is to devise “local” control strategies, one for each 
agent, which without any active communication between 
agents, cause all members of the group to eventually 
rendezvous at single unspecified location. 

In this paper, as in [I], we consider distributed strategies 
which guide each agent toward rendezvous by performing 
a sequence of “stop-and-go” maneuvers. A stop-and-go 
maneuver takes place within a time interval consisting of 
two consecutive sub-intervals. The first, called a sensing 
period, is an interval of fixed length during which the 
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agent is stationary. The second, called a maneuvering 
period, is an interval of variable length during which the 
agent moves from its current position to its next ‘way- 
point’ and again come to rest. Successive way-points for 
each agent are chosen to be within TM units of each 
other where TA, is a pre-specified positive distance no 
larger than r .  It is assumed that there has been chosen for 
each agent i, a positive number TM,, called a maneuver 
tin=, which is large enough so that the required maneuver 
for agent i from any one way-point to the next can be 
accomplished in at most rA,, seconds. Since our interest 
here is exclusively with devising of high levd strategies 
which dictate when and where agents are to move, we 
shall not deal with how maneuvers are actually carried 
out or with how vehicle collisions are to be avoided. 

In the sequel we describe two families of stop-and-go 
strategies. The first, which includes the specific strategies 
proposed in [I], consists of agent strategies which are 
mutually synchronized in the sense that all depend on a 
common clock. The second consists of strategies which 

reference to a common clock. We begin with the syn- 
can be implemented independent of each other, without 

chronous case. 

I .  SYNCHRONOUS CASE 

In the synchronous case, the maneuvering times for all 
agents are all the same length positive value T ~ .  Along 
any trajectory of the system to be considered, the real time 
axis can be partitioned into a sequence of time intervals 
[ O , t , ) ,  [ t l , tZ ) , . .  . [ t k - - l , t k ) , . .  ., each of length at least 
TA(. Each interval consists of a sensing period followed 
by a maneuvering period of fixed length TM. All agents 
function in synchronization in the sense that all are at rest 
during sensing periods and all can maneuver only during 
maneuvering periods. In particular, all agents actions are 
synchronized to the time sequence CI, 4,. . . &. . . where 
& denotes the real time t k  - TM at which the kth 
maneuvering period begins. Agent i’s registered neighbors 
at each time during its kth maneuvering period [&, t k ) ,  
are those agents, except for agent i ,  which are within agent 
2’s sensing region at time f k .  Note that this definition is a 

mailto:as.morse@yale.edu


symmetric relation on the set of all agents; i.e., if agent 
z is a registered neighbor of agent j during maneuvering 
period k, then agent j is a neighbor of agent i during the 
same maneuvering period. As we shall see, special steps 
will have to be taken to achieve a similar property in the 
asynchronous case. 

A pair of agents which are registered neighbors during 
maneuvering period k are said to satisfy the painvise 
motion constraint during the period if the positions to 
which they move at time tk are both within an closed 
disk of diameter T centered at the mean of their registered 
positions at time 8. The definition implies that any two 
agents which are registered neighbors during maneuvering 
period k will be registered neighbors during maneuvering 
period k + 1 if they satisfy the painvise motion constraint 
during the kth. We are interested in strategies possessing 
this property and accordingly make the following assump- 
tion. 

Cooperation Assumption: During each maneuvering pe- 
riod k, each pair of registered neighbors restrict their 
motions to satisfy the pairwise motion constraint. 

Agent i.'s kth way-point is the point to which agent i is 
to move to at time tk. Thus if xi(t) denotes the position of 
agent i at time t represented in a world coordinate system, 
then z i ( t k )  and agent 2's kth way-point are one and the 
same. The rule which determines each such way-point 
is a function depending only on the number and relative 
positions of agent i's registered neighbors. In particular, if 
agent i has mi registered neighbors at time 4, positioned 
relative to agent i at points 

A 
z3 =xi,(&) - x i ( & ) ,  j E {1 ,2 , . .  . ,m.,} (1) 

then agent i's kth way-point is 

xi(th-l) + nmi(zl, zz,. . . , z,,) (2) 

whereno = O,a, : Dm +DM, m E {l, ..., n-l},and 
D and DM are the closed disks of radii T and T A ~  respec- 
tively, centered at the origin in E%'. In other words, if agent 
i has no registered neighbors at time 6, {i.e., mi = 0}, 
it does not move during the kth maneuvering period. On 
the other hand, if agent i has mi > 0 neighbors at time i k  

with relative positions zl, zz, . . . , zmir then agent i moves 
tothepositionii(tk --l)+nmi(zlrz~,...,zmi) attimets. 
Thus 

A. Definition of U, 

We've already defined uo = 0. To define U, for m > 0 
it is necessary to take into account the pairwise motion 
constraint. Toward this end, for each z E D, let C(z )  
denote the closed disk of diameter T centered at the point 
fz. More generally, for each { z l ,  2 2 , .  . . , z,} E Dm, let 

m 

c ( ~ ~ ~ ~ ~ , . . . , ~ ~ )  = n C ( z J )  (4) 
j=1 

Note that 0 is in each C(z,) and moreover that each 
such C(z,) is closed and strictly convex. Consequently 
C(z l , z z , .  . . , 3,) is either the singleton {0} or a strictly 
convex, closed set containing 0. We can now define U, 
to be any continuous function on Dm satisfying 

n,(zl,zZ, . . . ,zm) E D~ nc(zl .zz, . .  . , tm) 

n(o,zl,zz, ... ,zm) (5 )  

for all {ZI, zz,  . . . , zm} E Dm where ( O , Z I ,  ZZ,. . . , 2,) 
is the convex hull of the points O,ZI, ZZ.. . . ,z,. The U, 
are further required to have the property that 

um(zlr zz,. . . , 2,) # a corner of (O , z l ,  22,. . . ,z,) 
(6)  

unless z1 = zz = . .. = z, = 0. In other words, 
U, is required to be (i) a continuous function on D'" 
which maps each { z l , z z ,  ... ,zm} E Dm into Dnr n 
C(z1, ZZ,. . . , 2,) n (0 ,z l .  zz,. . . ,z,) and (ii) a function 
with the property that um(zlr zz,. . . ,zm) is not a comer 
of (O,ZI,ZZ, .  . . ,z,) unless zl = zz = . . . = z, = 0. 
Examples of functions satisfying these conditions will be 
given in the sequel. 

One way to go about defining specific U, which are 
continuous and which satisfy these requirements, is by 
first defining what we shall refer to as a target point. 
By a target point is meant a continuous function r : 
Dm + (O,z1, zz,. . . , z,) defined in such a way so that 
for each { z l ,  zz, . . . , z,} E Dm for which 0 is a comer 
of (O,zl ,  22,. . . , 2,). the segment of the line from 0 to 
r ( a ,  zz,. . . ,z,) which lies within C(zl,zz,. . . ,z,) has 
positive length. For should it be possible to define such a 
T, one could satisfy ( 5 )  and (6) as well as the continuity 
requirement with a control of the form 

=S(zl,zz,. ..,zm)r(zl,tz,...,z,) 

... 
At the very least we will require each to be a continuous 
function. 

Note that g' E (0, zlr z z , ,  . . , z,), Vg E [0,1] hecause 
0 E (O,zl ,  z2,. . . , z,). The role of g is therefore to scale 
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down the magnitude of T enough to insure that g r  is in 
the constraint set DM nC(z l ,  z2,. . . , 2,). 

By conswction, each point in 'D(z1, 22,. . . , 2,) is within 
T units of each point in {zi, zzr . . . ,z,}. Thus 0 E 
'D(zl,zz,, . . ,zm) because z, E D, 2 E {1 ,2 , .  . . , m} 

It might be thought that one could choose for r,  the . 
centroid of (O,zl, zz, . . . , 2,) or perhaps the average of Second, note that if TI, z2,. . . , t, is any set of 
the z, and 0, namely m > 0 points in D which are not all zero and 

for which 0 is a comer of (O,z l ,z~ , . .  . ,zm). then 
by Proposition 1 the segment of the line from 0 
to any non-zero point D n 'D(tl ,  z z , .  . . , t,) which 

7 =  A I m  --E., 
m+ 1 

Both candidate definitions satisfy the requirement that 
7(zl,zzr. . . , z , )  must be a point in (O,zl ,  zz, . . . , zm). 
Unfortunately, simple examples show that centroid defini- 
tion does not necessarily yield a function which satisfies 
the continuity requirement while the averaging definition 
may lead to a function which fails to satisfy the require- 
ment that when 0 is a comer of (0, ZI, zz, . . . , zm), the 
segment of the lime from 0 to ~(21, zz, . . . , 2,) which lies 
within C(zl, zzr . . . , 2,) has positive length. For example, 
the centroid of the convex hull of the points (O,O),  z1 = 
(0 , l )  and z2 = fp, 1) is at ( g ,  3) for p > 0 and at (0,;) 
for p = 0 so the centroid is discontinuous at p = 0. As 
a counterexample to the use of coordinate averaging to 
define a target point, note that the average of the four 
points located at (O,O),  z1 = (-r,O), zz = (9,  g), 
and 23 = ( 5 ,  f) is at (0, T) while the constraint set 
C(zl, 22,23) determined by these points must be contained 
in the constraint disk C(z1) .  Since the line I: from 
(0,O) to ( 0 , ~ )  is tangent to this disk at the origin, the 
intersection of L: with C ( q ,  L Z , Z ~ )  is just the point (0,O) 
and consequently not a line segment of positive length. 

In the sequel we shall approach the problem of defining 
of T in a slightly different way. We begin by stating 
the following proposition which provides a simple con- 
dition on T(. ) ,  which if satisfied, automatically implies 
satisfaction of the requirement that when 0 is a comer 
of (O,zl, 2 2 , .  . . , 2,). the segment of the line from 0 to 
T ( L ] ,  22,. . . ,z,) which lies within C ( q ,  z2,. . . , z,) has 
positive length. 

Proposition 1; Let 21, z2,. . . , t, be a set of m > 0 
points in D which are not all 0. If 0 is a comer of 
(0, z1,tz.. . . , tm) and z is any non-zero point in B withim 
T units of each point in {q, 22 , .  . . , zm}, then the segment 
of the line from 0 to z which lies in C(zi, ZZ, . . . , z,), has 
positive 1en-d. 

Proposition 1 suggest the following approach for defining 
a target point. First, for each z E D, let 'D(z) denote a 
closed disk of radius r centered at z. More generally for 
any set of m > 0 point z l , z z , .  . . , t, in D, write 

m 

D ( ~ ~ ,  z 2 r . .  . , zm) = n DW 
i= l  

lies in C(zi,zz,. . . ,zm). must have positive length. 
It follows that any continuous function T : Dm + 

(0, zlr 2 2 , .  . . , z,) which satisfies r ( z l , z z , .  . . z,) E 

non-zero whenever 0 is a comer of (0, ti, 22,. . . , z,) and 
zl, tZ, . , . , z, are not all zero, fulfills all the conditions 
required to be a target point. In the sequel we will show 
that there are at least two different ways to so define T .  

DnZ)(zi ,zz , .  .. ,z,)n(o,~,,~,, . . . ,z,) and which is 

I )  % cenfmid ofDnD(zl, zz,. . . , z,,,); In order for 
the centroid of Dn'D(z1, zz, . . . , z,) to be a target point, it 
must depend continuously on the zi and, in addition, must 
have the property that it is non-zero for any set of m points 
in lL9 which are not all zero and for which 0 is a comer 
of (0, z1 ,22 , .  . . , zm). These properties are shown to hold 
in the full-length version of this paper. The continuity of 
the centroid of D n 'D(z1, zz, . . . , I,) proves to 'depend 
crucially on the fact that the centroid is at 0 whenever the 
area of Dfl'D(zl, zz,. . . , z,) is zero. This property is not 
shared by the centroid of (O,zl, a,. . . ,z,) and it is for 
this reason that the centroid of (0, zl, zz, . . . , z,) is not a 
continuous function of the 2;. 

2) nte center of the skzullest, circle containing 
(0, zlr z2,. . . ,z ,):  It is also possible to define T to be the 
center of the smallest circle containing (0, zi ,  2 2 , .  . . , z,). 
To understand why this is so, let us note first that for. any 
set of points zi E D, i E {I, 2 , .  . . , m}, the set of points 
Q = {O, 21, .  . . , z,} is contained in a circle of radius 
r. It follows that the center of this circle, which is at 0, 
is at most r units from every other point. This suggests 
that one might choose for i ( z 1 ,  zz,. . . , zm) the center 
~ ~ ( z l ,  2 2 , .  . . z,) of the smallest circle containing Q or 
equivalently (O,zl, 22, .  . . , z,), since rc(z1,z2,. . . ,z ,)  
would have to be within r units of every point in Q. 
It is known that there is such a smallest circle [2] and 
that if the zi are not all zero, T C ( Z ~ , Z Z , .  . . 2,) is either 
the midpoint between two of the points in Q or a point 
within the interior of a triangle formed from at least one 
set of three points in Q [l]. In either case it is clear that 
r&l, 22,.  . .tm) E (O,ZI,  z2,. . . , z,) and, if the ti are 
not all zero and 0 is a comer of (0, ti, 2 2 , .  . . , zm), that 
T&I, zz?.  . . z,) is nonzero as well. Furthermore it can 
be shown that ~ ~ ( z l ,  22,. . . 2,) depends continuously on 
the z, [3]. In other words, r=(zl, zz, . . . z,) satisfies all 

A 
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the conditions required to be a target point. This elegant 
choice for r is the one proposed in [l]. 

B. Main Results 

Note that because agents don't move during sensing 
periods, the position of each agent at time tk-1  is the 
same as its position at time &. Thus (3) can be re-written 
as 

~ ( t l i )  = z i ( tk -1 )  + um,(tk_,)(zi1(tk-1) - z i ( t k - l ) v  

z i , ( t k - l )  - zi(tk-i), , , . , zi- .<(+*+,)( tk-d 
- z i ( t k - l ) )  (7) 

A where mi(tk-1) = mi(&) Because of this, 
the system just defined admits the model of 
a nonlinear discrete-time system with state 
z(&) = column {21(tk), zz ( ta ) ,  . . . z,,(tk)} evolving 
on the time set t o ,  t l ,  . . . t k ,  . . .. Analysis of this system 
depends on the relationships between neighbors and 
how they evolve with time. These relationships can be 
conveniently described by a simple, undirected graph 
with vertex set {1,2,. . . , n) which is defined so that 
( & j )  is one of the graph's edges just in case agents 
i and j are registered neighbors during maneuvering 
period k. Since these relationships can change from one 
maneuvering period to the next, so can the graph which 
describes them. In the sequel we use the symbol P to 
denote a suitably defined set, indexing the class of all 
simple graphs G,, on n vertices. Let us partially order 
the set {GP : p E P} by agreeing to say that G,, is 
contained in G, if the edge set of Gp is a subset on the 
edge set of 6,. It is natural then to define the union of 
a collection of such graphs, {Gpl ,Gp2 , .  . . ,G,,,,.}, to be 
the simple graph 6 with vertex set {I, 2,. . . , n} and 
edge set equaling the union of the edge sets of all of the 
graphs in the collection. 

Let o ( k )  denote the index of the graph in {Gp : 
p E P} which describes the relationship between reg- 
istered neighbors during maneuvering period k. Because 
of the cooperation assumption, we know that each agent 
keeps all of its registered neighbors as the system 
evolves. What this means is the sequence of graphs 
G a ( l ) , G a ~ z ~ ,  . . . ,Go(k), . . . forms the ascending chain 

%(I) c G@) c ."Ga(k)"' (8) 

Because {G,, : p E P )  is a finite set, the chain mnst 
converge to the graph 

m 

6 A U Ga(k)  (9) 
k=l 

in a finite number of steps. Since the sequence of graphs 
stops changing in a finite number of steps, rendezvousing 
at a single point can only occur if G is a complete 
graph. There. is however, no a priori guarantee that along 
a particular trajectory, G will tnm ont to be complete. On 
the other hand, it is clear that 6 will always be at least 
connected if the initial graph G,(l) in the ascending chain 
is. It tums out that connectivity of implies not,only 
that G is connected but also that the types of distributed 
control strategies just described actually cause all agents 
to rendezvous at a single p in t .  

Theorem 1: Let u g  = 0 E !DM and for each m E 
{1,2,. . . , n - l}, let U, : Bm + IDM be any continuous 
function satisfying ( 5 )  and (6). For each set of initial agent 
positions zl (0) ,z~(O),  . . . ,zn(0), each agent's position 
zi(t) converges to a unique point y, E E* such that for 
eacb i , jE{1 ,2  ,..., n) ,e i thery i=yj  or11yi-yjll>r. 
Moreover, if agents i and j are registered neighbors at any 
time t ,  then yi = yj. 

Theorem 1 states that the strategies under consideration 
cause all agents positions to converge to points in the plane 
with the property that each two such points are either equal 
to each other, or separated by a distance greater than T 

units. The theorem further states that if two agents are ever 
registered neighbors of each other, then their positions 
converge to the same point. We are led to the following 
corollary. 

Corollary I: If the graph characterizing registered 
neighbors during maneuvering period 1 is connected, then 
the positions of all n agents converge to a common point 
in the plane. 

It is quite straight forward to extend these results to 
the leader-follower case when the rendezvous point is 
specified at the outset. This can be accomplished by 
simply fixing one additional agent {i.e., a virtual agent} 
at the desired rendezvous point and letting the remaining 
n agents maneuver just as before. With initial graph 
connectivity of all n + 1 agent positions, convergence to 
the position of the virtual agent is then assured. 

A more interesting case occurs when two virtual agents 
are fixed at distinct points in the plane. In this case it 
can be shown that with initial connectivity of the R + 2 - 
agent graph, all n agents will eventually move to positions 
on the line connecting the two virtual agents and will 
distribute themselves in a predictable manner depending 
only the number of agents, T and the distance between the 
two fixed, virtual agents. This behavior will be explored 
in greater depth in another paper dealing with forming 
formations using distributed control. 

' 
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I) Trapping: While the graph connectivity hypothesis 
of Corollary 1 is sufficient for rendezvousing, it is not 
necessary. For example, suppose that the has a con- 
nected component Gc which contains a simple closed cy- 
cle whose vertices are il, iz, . . . , i,. Then in the plane, the 
geometric form obtained by connecting by a straight line, 
the initial position of each agent ij E {il, iz, . . . , i,} with 
its registered neighbors with labels in {il, 22,. . . , i,}, 
will he a simple, closed, polygon P. It turns out that if 
the initial positions of all agents whose labels are not in 
the vertex set of Gc, are within P, then rendezvous will 
necessarily occur. While this conclusion might appear to 
be an obvious consequence of the established property 
that agents i, E {i,, i p ,  . . . , im} eventually rendezvous at 
a point, actually proving that this is so is not so straight 
forward. There are two reasons for this. First there is no 
guarantee that the polygon P ( t )  formed by the positions at 
time t of agents ij E {ZI, iz, . . . , i,} will remain simple 
as the system evolves, even if it is initially; thus just what 
it means for an agent to he “inside” of P(t) requires a 
more sophisticated notion of interior than the obvious one 
for a simple closed curve in the.plane and this in turn 
complicates the analysis. Second, it is quite possible that 
an agent initially positioned inside of P(O), will be outside 
of P ( t )  for some t > 0. In the sequel we explain how 
to overcome both of these difficulties and in ‘so doing 
we establish a rendezvousing result along the lines just 
described. 

We begin by reviewing the concept of a “winding 
numbe? and what it means for a point to he inside of a 
closed curve in Elz. Let K : [0,1] + IR2 be any continuous 
closed curve and let y he any point in Rz which does 
not lie on K .  The winding number of y with respect to 
K ,  written wn(K,y). is the number of times a point p 
traversing K encircles y in a counter-clockwise direction 
as p makes a full circuit of K .  Points not on K with non- 
zero winding numbers are inside of K while those with a 
winding number of zero are outside of K.  There is a well- 
known formula for wn(n, y), involving the integral around 
a closed contour R : [O, l] - C in the complex plane [4]. 
k is a representation of K resulting from the assignment to 
each vector z = [ a  b]’ in R’, the associated complex 
number Z = a + j b .  In this setting, wn(K, y) is given by 
the contour integral 

A 

The closed curves of interest here are of a specific type 
determined by finite point sets in IRz. In particular, let us 
note that any ordered set of m > 0 points {YI, yz, . . . , ym} 
in IR2 uniquely determines a continuous, piecewise-linear, 
closed curve c : [O,m] Rz defined so that c( t )  = (t + 

l-i)yi+l +(i-t)yi, 2-1 5 t 5 i, i E {1,2,. . . , m} 
where ym+l = y1. An ordered set {yl, yz,. . . , ym} of 
threeormoresuchpointsiscalled acycki f  ~ ~ y i + ~ - y ; ~ ~  5 
T,  i E {1,2,. . . ,m}; in the sequel we denote such a 
cycle by [yl, y2,. . . , y,]. A point z E ELz is called an 
interior point of [yl, yz, . . . , y,] if it is an interior point 
of the closed, piece-wise linear curve c determined by 
{yl, yz, . . . , y,}. A point z E Rz is said to be connected 
to non-empty set of vectors {y1, yz, . . . , y,} through a set 
of vectors { q , z z , .  . . ,zn} in IRz if there exists a subset 
{zil,ziZ,. . . , z i k }  with zik E {y~, yz, . . . , y,} such that 

The following corollary to Theorem 1 is the main result 
on trapping. 

I l z - z i , l l 5 ~ a n d I l z i , _ , - z i ~ l l ~ ~ ,  i E { 2 , 3  ,... k}. 

Corollary 2: Suppose that the set of initial positions 
{zl(O), zz(O), ..., z,(O)} of the n agents con- 
tainsacycle Tz,,(O),zi,(O), ..., zi,(0)1. Thenallagents 
with positions initially connected to the cycle through 
{XI (0), zz(O), . . . , z,(O)} eventually rendezvous at one 
point with all agents initially positioned inside the cycle. 

11. ASYNCHRONOUS CASE 

The strategy described in the previous section cannot 
be regarded as truly distributed because each agent’s 
decisions must be synchronized to a common clock shared 
by all other agents in the group. In this section we redefine 
the strategies so that a common clock is not required. To 
do this it will be necessary to modify somewhat what 
is meant by a registered neighbor and by a registered 
neighbor’s position. 

In the asynchronous case, for each agent i, the real time 
axis can be partitioned into a sequence of time intervals 
[0, til), [til, t i z ) ,  . . . , [ti(ki-l) ,  t jk i ) .  . ..each of length at 
most TD + TA,< where TD is a number greater than TM+ 

called a dwell time. Each interval [ t i ( k i - - l ) ,  t i k , )  consists of 
a sensing period [t,(k.-l), & k i )  of fixed length TD during 
which agent i is stationary, followed by a maneuvering 
period [&, t i k , )  of length at most r ~ ,  during which agent 
i moves from its current position to its next way-point. It 
is assumed that during each of its maneuvering periods, 
an agent keeps moving except possibly for brief periods 
which are each shorter than a’pre-specified positive time 
rs called a sensing time. For reasons to be made clear 
below, we shall require rs to satisfy 

1 
2 TS 5 -(TD - T u ; )  vi E {1,2,. . . ,n} (10) 

Although all agents use the same dwell time, they func- 
tion asynchronously in the sense that the time sequences 
t i l ,  tiz, . . . , i E { 1,2, . . . , n} are uncorrelated. Thus each 
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agent’s strategy can be implemented independent of the 
rest, without the need for a common clock. 

For the asynchronous case, agent i’s registered neigh- 
bors at each time during its kith maneuvering period 
[&, t ic , )  are taken to be those agents which are fixed 
at one position within agent i ’ s  sensing region for at 
least TS seconds during agent i ’s  kith sensing period 
[ti(k,--l)rf,ki) .  If agent j is such a registered neighbor of 
agent i, there may be several distinct intervals of length at 
least TS within sensing period ki during which agent j is 
stationary. Let t* denote the end time of the last of these. 
For purposes of calculation, agent i takes the registered 
position of agent j during maneuver period ki ,  to be the 
actual position of agent j at time t’. 

Note that constraint (IO) implies that each of agent i’s 
sensing periods must overlap either one or two of agent 
j ’ s  sensing periods and moreover that at least one of these 
overlaps must be at least 7s units long. Thus for fixed i 
and any j ,  t’ is well-defined on each of agent i ’ s  sensing 
intervals. It follows that agent i ’s registered neighbors and 
registered neighbor positions are also well-defined on each 
of agent i’s maneuvering periods. Note in addition that if 
agent j is a registered neighbor of agent i on agent i’s k i th  
maneuvering period, then agent i must be a registered 
neighbor of agent j on agent j ’ s  k j ( t * )  maneuvering 
period where for all j ,  kj  : [0, DO) -+ {O, 1 ,2 , .  . . , } is that 
function which assigns to t, the index k; of the interval 
[ t ; ( k j - l ) ,  t j k , )  which contains t. Since t’ is a well-defined 
function of i ,  ki and j ,  in the sequel we sometimes write 
t * ( i , k i , j )  fort’. 

Agent i is said to satisfy the motion construint induced 
by regisrered neighbor j during maneuver period ki if 
agent j is a registered neighbor of agent i during the 
period and if the position to which agent i moves at time 
t i k ,  is within an closed disk of diameter r centered at the 
mean of agent i’s position at the beginning of the period 
and the registered position of agent j at the beginning of 
the period. The following lemma is key. 

Lemma I: Suppose that agent i satisfies the motion 
constraint induced by registered neighbor j during maneu- 
ver period ki and that agent j correspondingly satisfies the 
motion constraint induced by registered neighbor i during 
maneuver period k ; ( t * ( i , k i , j ) ) .  Then agent j will be a 
registered neighbor of agent i during maneuvering period 
ki + 1 and agent i will be a registered neighbor of agent 
j during maneuvering period k j ( t * ( i ,  k i , j ) )  + 1. 

We make the following assumption. 

Cooperation Assumption: Each agent i satisfies the mo- 
tion consmints induced by each of its registered neighbors 

during each of its maneuvering periods. 

Suppose that the cooperation assumption is satisfied. 
Lemma 1 implies that if agent j is a registered neighbor 
of agent i during maneuvering interval k; then it will also 
be a registered neighbor of agent i during maneuvering 
interval ki + 1. In other words, if the cooperation assump- 
tion is satisfied, each agent retains all of its prior registered 
neighbors as the system evolves. 

Just like the synchronous case, agent i’s k i th wuy- 
point is the point to which agent i is to move to at 
the end of its kith maneuvering period. Thus if x i ( t )  
denotes the position of agent i at time t represented in 
a world coordinate system, then x, ( t ik i )  and agent i’s 
kith way-point are one and the same. The rule which 
determines each such way-point is essentially the same as 
in the synchronous case, except that now it is a function 
depending only on its own position at the beginning of its 
kith maneuvering period and the positions of its registered 
neighbors at the beginning of the period. In particular, 
if agent i has mi registered neighbors at the beginning 
of its ki th  maneuvering period, with registered positions 
relative to agent i at points ~ 1 ~ ~ 2 , .  . . , z,, then agent i’s 
kith way-point is 

(11) X i ( t k i  = Zi( tk ; - l )  + Um(Z1, 22, . . ., zm) 

where U, is defined exactly as before. 

111. CONCLUDING REMARKS 

It tums out that the asynchronous system just described 
admits the model of a hybrid dynamical system in which 
non-deterministic state transitions can Dccur. This some- 
what surprising property stems from the fact that low- 
level individual vehicle maneuvering is {intentially} not 
modelled. Nonetheless, in the full-length version of this 
paper it is shown that rendezvousing is achieved in the 
asynchronous case provided a suitably defined “registered 
neighbor graph” similar to the graph defined in the syn- 
chronous case, is initially connected. 
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