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Abshaet-Sensor and network topologies of formations of 
autonomous agents are considered. The aim of the paper is to 
suggst an approach for such topologies for formations with 
direction, bearing and angle information between agents in the 
plane and in 3-space. A number of results are translated fmm 
prior work in this field and in the study of constraints in CAD 
programming, in rigidity theory, in structural engineering and 
in discrete mathematics. Some new results are presented both 
for the plane and for 3-space. A number of unsolved problem 
are also mentioned. 

I. INTRODUCTION 
- In a previous paper ([4], see also [SI) we suggested an 

approach based on rigidity for maintaining formations of 
autonomous agents with sensor and network topologies that 
use distance information between agents. In this paper, the 
approach is extended to the case in which agents use other 
types of information to maintain rigidity such as directions, 
bearings and angles. The challenge is that a comprehensive 
theory of such topologies of formations with communica- 
tion limitations does not exist. By a formation, we mean 
a group of mobile autonomous agents moving real 2 
or 3-space. A formation is called rigid if the distance 
between each pair of agents does not change over time 
under ideal conditions. Sensing and communication links 
are used for maintaining fixed distances between agents. 
It is not necessary to have sensing and communication 
links between each pair of agents to maintain a rigid 
formation [4]. Distances between all agent pairs can be held 
fixed by directly measuring distances between only some 
agents and keeping them at desired values. Alternatively, 
the distance between each pair of agents can be held fixed 
with constraints prescribing dxections,.bearings and angles 
between agents ‘along with fewer distances. We refer the 
reader to [3] for a combination of bearings and distances 
in formations. 

Rigidity of frameworks has studied distance constraints 
in the plane and in ?,-space [12]. Other studies in Computer 
Aided Design have investigated configurations constrained 
by mixed types of constraints in the plane [8], and for 
directions alone in 3-space [9], [IO]. The current com- 
binatorial and geometric theory of topologies constrained 
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by distances, directions, bearings and angles is still far 
from complete in 3-space. A well-developed foundation is 
eventually needed to provide rigorous techniques to create 
such formations and to maintain them under operations like 
agent departure, splitting, merging and reconfiguration. 

The aims of this paper are: 
1) to suggest an approach for analyzing formations 

of autonomous agents with a variety of types of 
information between agents: directions, bearings and 
angles; 

2) to summarize and transfer what is known about 
direction constraints in the plane, and 3-space, as well 
as angles, from work in discrete geometry; 

3) to develop some useful steps for creating rigid for- 
mations in the plane and in 3-space for sensor and 
network topologies based on directions, bearings and 
angles. 

The paper is organized as follows. We start with an 
overview of point formations and rigidity in 92. Then we 
discuss formations with direction and bearing constraints 
in $3, where there is a complete theory for both the plane 
and for 3-space. In 94 some initial work on pure angle 
constraints is described. The paper ends with concluding 
remarks in 95. 

11. POINT FORMATIONS AND RIGIDITY 
A point formation €Fp 5 (p ,&)  provides a way of 

representing a formation of n agents. p {ppl,pz,. . . ,pn} 
and the points pi represent the positions of agents in 
Wd { d  = 2 or 3) at time t where i is an integer in 
{1,2, .  . . ,n} and denotes the labels of agents. & is the 
set of “maintenance links”, labelled ( i , j ) ,  where i and 
j are distinct integers in {I, 2 , .  . . , n}. The maintenance 
links in & correspond to constraints between specific agents, 
such as distances, directions, bearings or angles, which 
are to be maintained over time by using sensing and 
communication links between certain pairs of agents. Each 
point formation €Fp uniquely determines a graph 6 
(V ,&)  with vertex set V {1,2, .  . . , n}, which is the set 
of labels of agents, and edge set E. We will denote the set 
of maintenance links with distance constraints by L, the set 
of maintenance links with direction constraints by ’D and 
the set of maintenance links with hearing constraints by B. 
In the sequel, we will explain a way of converting bearings 
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to directions, and hence shall be concerned with direction 
constraints only for studying bearings. Note that an angle 
constraint is defined on two maintenance links. We will 
denote an angle constraint by a pair { ( i , j ) , ( j , k ) }  where 
j is the angle's veaex. We will denote the set of angles 
{ { ( i , j ) ,  (j, k)}: ( i , j ) ,  ( j ,  k )  E E }  by d. A formation with 
distance constraints can be represented by (V,  L, f) where 
f : L H R. Each maintenance link ( i , j )  E L is used 
to maintain the distance f((i,j)) between certain pairs of 
agents fixed. A formation with direction constraints can be 
represented by ( V ,  D, g) where g : D H Sd-' (the unit 
sphere of directions). Each maintenance link ( i , j )  E 'D is 
used to maintain the direction g ( ( i ,  j)) of the line joining 
certain pairs of agents fixed with respect to a reference 
coordinate system. A formation with angle constraints can 
he represented by ( V , d ,  h )  where h : d H [0,2rr) 
and A C E x E. Each angle is used to maintain the 
angle between two selected links fixed. A single type of 
constraints [41, [5]. [71. [l] or a combination of types of 
constraints [3] can be used to maintain a rigid formation. 

A trajecrory of a formation is a continuously parameter- 
ized one parameter family ofcurves (qI(t),gz(t), ...,qn( t ) )  
in Wnd which contain p and on which for each t ,  p ( t )  is a 
formation with the same measured values under f, g, h. A 
rigid motion is a trajectory along which point formations 
contained in this trajectory are congruent to each other. 
We will say that two point formations F, and F, are 
congruent if they have the same graph and if p and g 
are congruent. p is congruent to g in the sense that there 
is a distance preserving map T : IRd --t IRd such that 
T(qi) = P i , i  E {1,2, 
only possible trajectories then the formation is called rigid, 
otherwise flexible. We refer the reader to [4], [ 5 ]  for such 
formations. 

A parallel rigid motion is a trajectory along which point 
formations contained in this trajectory are translations or 
dilations of each other. Two point formations F, and F, 
are paralkl if they have the same graph and their cor- 
responding maintenance links are parallel to each other. If 
parallel rigid motions are the only possible trajectories then 
the formation is called paralkl rigid, otherwise parallel 
flexible. 

A homothetic rigid motion is a trajectoty along which 
point formations contained in this trajectory are similar to 
each other. Two point formations F, and F, are similar if 
they have the same graph and one can be obtained from 
the other by congruence and scaling transformations. If 
homothetic rigid motions are the only possible trajectories 
then the formation is called homothetic rigid, otherwise 
homorheric flexible. 

$111 shall be concerned with parallel rigid formations, and 
§IV shall be concerned with homothetic rigid formations. In 
the context of each section we will use the word rigid and 
flexible throughout the section knowing that the adjectives 
(parallel, homothetic) are implicit unless there is a danger 
of confusion. 

,n}. If rigid motions are the 

111. POINT FORMATIONS BASED ON 
DIRECTlONS AND BEARINGS 

A direction constraint is determined hy the direction of 
the line joining two agents. We will denote a point for- 
mation based on directions by F, = ( I p l  , p z , .  . . , %}, D ) ,  
where D is the set of direction constraints. Central to the 
development of direction constraints will be the use of 
parallel drawings of configurations ( [9] ,  [IO] [XI). 
A. Direcfian Constraints in the Plane 

Note that bearing constraints in the plane can easily con- 
vert into direction constraints. Bearing constraints between 
agents are determined by the angle between a maintenance 
link and the reference coordinate system of an agent. For 
example, the bearing constraints between two agents i and 
j are the angles B i j  and B j ,  between the link ( i , j )  and 
the reference coordinate systems of agents i and j respec- 
tively. The conversion of. bearing constraints to direction 
constraints is as follows: We pick an arbitrary point pi in p 
and establish its location and reference coordinate system 
as the base by freezing out rotations and translations. Then 
for each attached link, we have the direction of that link. 
Noy, at new vertices linked in, we can propagate through to 
that reference coorduiate system, and then give directions 
to all attached links. Then we go out from those links to any 
new vertices, and repeat the process of extracting directions 
for new links. In the end, every link has directions (up 
to initial choice) and we can apply the usual theory of 
directions and parallel drawings. From now on, we will be 
concerned with only directions in the section. 

Given a point formation in the plane with direction 
constraints I F p ,  we are interested in parallel point formations 
F, in which gi - q, is parallel to p i  - p j  for all ( i , j )  E 
'D. Using the I operator, for turning a vector by 90" 
counterclockwise, these constraints can be written 

(Pi-p3)i.(gi(t)-pjo(t)) = 0 ,  ( ~ j )  ED, t >_ o (1) 

Such constraints are also called normal constraints. This 
gives a system of ID1 homogenous h e a r  equations. A 
solution of this system is called a parallel point formarion. 
Trivially parallel point formations are translations and dila- 
tions of the original point formation, including the parallel 
point formation in which all points are coincident. All 
others are non-trivial. A point formation with direction 
constraints is called rigid if all parallel point formations 
are trivially parallel. Otherwise it is calledflexible. Taking 
the derivative of (I), we obtain 

(Pi -P , ) l ' (Q i ( t ) -Q , ( t ) )  = 0, ( i > j )  E D, t 2 0 (2) 

These equations can be rewritten in matrix form as 

T(F,)(i = 0 (3) 

where Q = column {QI,&,.. . ,&I. If the formation 
contains at least 3 points which are not contained in any 
proper hyperplane within ELz, then there are always three 
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independent solutions of (2) corresponding to the derivative 
of parallel rigid trajectory: translations along each two axes 
and one scaling. If the system of equations in (2) has no 
other solutions, i.e. 

rank T(F,) = 2n - 3 

then the rigidity of formation would be implied. 
The two problems of infinitesimally rigid point forma- 

tions with distance constraints in the plane and parallel 
rigid paint formations with direction constraints in the 
plane are ‘dual’, and the characterizations and methods 
for infinitesimally rigid point formations can be translated 
to parallel rigid point formations [SI, [lo]. A rigid point 
formation with minimum number of constraints is called 
a minimully rigid point formation. A direction constraint 
between two points is sometimes denoted with a tick mark 
denoting the normal constraint. 

A point formation F, is generically rigid if it is rigid 
and if there is an open neighborhood of points about p in 
IRd“ at which F, is also rigid. The generic rigidity question 
can be posed solely in terms of the graph 6~~ d (V, D) 
without any reference to F,’s actual points. The translation 
of Laman’s conditions [4] for generic direction formations 
in the plane can be given as follows. 

Theorem 1. A graph 6 = ( V , D )  where /VI 2 2 is a 
generically minimally rigid direction formation if and only 
if; ( iJ  ID1 = 21V1 - 3; (iilfor every 6’ = (V’, D’) E 6 = 
(V ,D) ,  where lV’,l 2 2, ID‘I 5 21V’I - 3. 

where IVI and ID1 denote the number of elements in the 
sets V and D respectively. 

There are sequential techniques to generate rigid classes 
of graphs both in the plane and in 3-space based on 0 and 
1 extension and vertex splitting operations. We explain and 
use only the first two operations in the sequel. We refer 
the reader to [ I  I] for the vertex splitting operation. Before 
explaining these operations and sequences, we introduce 
some additional terminology which will be useful. If (i,j) 
is an edge then we say that i and j are neighbors of each 
other. The degree or valency of a vertex i is the number of 
neighbors of i. If a vertex has k neighbors, it is called a 
vertex of degree k or a k-valent vertex. Now we are ready 
to present the following operations. 

0-Extension (Vertex Addition): Let 6 = {V, L} be a 
graph with a vertex i of degree d in d-space; let 6’ = 
{V*,  L?} denote the subgraph obtained by deleting i and 
the edges incident with it. Then 6 is generically minimally 
rigid if and only if 6’ is generically’minimally rigid. 

1-Extension (Edge Splitting): Let 6 = { V , L }  be a 
graph with a vertex i of degree d + 1, let V, be the set 
of vertices adjacent to i, and let 6‘ = {U’,L*} be the 
subgraph obtained by deleting i and its d+l  incident edges. 
Then 6 is generically minimally rigid if and only if there is 
a pair j ,  k of vertices of Vi such that the edge (j, k) is not 
in L’ and the graph 6’ = (V’, L’ U(j, k)) is generically 
minimally rigid. 

Applied in sequence, these operations generate all gener- 

ically minimally rigid point formations in the plane based 
on directions. These methods translate the Henneberg se- 
quences nsed for formations with distance Constraints in 
[41, [81, [121 and can be given as follows. Starting from two 
vertices connected by an edge denoted by G2, the underly- 
ing graphs of point formations 6 3 ,  6 4 , .  . . , 6, are created 
by either (i) adding a new vertex to Gi with two edges, or 
(ii) splitting an edge in 6; by removing it and adding a new 
vertex Connected to the end points of the removed edge and 
another third vertex. At each step, a generically minimally 
rigid point formation is created. Moreover, all generically 
minimally rigid graphs are created by such sequences. A 
visual example of the analogous Henneberg sequence in 
3-space is given in the next section. 

B. Direcfion Constraints in Sspace 

While the direction of a line in the plane can be uniquely 
determined by a normal vector, two normal vectors are 
needed for determining the direction of a line in 3-space. 
One normal vector only determines a plane in 3-space. 
Hence for a given pair of points pi and p i ,  the direction 
constraint leads to two linear equations involving the two 
normals (pi - pj)” and (Pi - pj)”. To get a nice 
mathematical theory, with one equation per constraint, we 
will split the ‘direction constraint’ into such a pair, and 
permit only one of the pair to occur as a constraint. We 
recognize that it is unlikely, but not impossible that the 
maintenance links will measure only one component of a 
direction, but that might be true, with either the horizontal 
or vertical component selected. 

In the theory which follows, drawn from parallel draw- 
ings 191, [IO], D will become a multigraph which can 
have two ‘edges’ between a pair of vertices. The constraint 
equations take the form: 

(Pi - ~ j ) ”  ’ ( ~ i ( t )  - q j j ( t ) )  = 0, 
(Pi -pjIN2.. (q i ( t )  - q j ( t ) )  = 0, 

(i,j) E D, 
(i,j) E D, 

t 2 o 
t 2 o 

The selected constraint equations have to be satisfied along 
the trajectories. If we take the derivative of these equations, 
we obtain 

(Pi -Pj)” ’ (W - d j ( t ) )  = 0, 
(Pi - P j P  ’ - 4 j ( t ) )  = 0, (id E D, t 1 0  

(id) E D, t 2 0 

(4) 
Of course we can choose to only impose one normal for 
a given pair, rather than two independent normals. Which 
normal we choose would have to be specified (for example 
as the normal to the plane defined with a third point, 
when we are comparing with angles). These equations can 
be rewritten in matrix form as in (3). If the formation 
contains at least 4 points which are not contained in any 
proper hyperplane within Et3, then there are always four 
independent solutions of (4) corresponding the derivatives 
of trajectories of a parallel point formation, where there are 
translations along each three axes and one scaling. If the 
system of equations in (4) has no other solutions, i.e. 

rank T(F,) = 3n - 4 

3066 



then the rigidity of formation would be implied. Laman 
type conditions are still necessary and sufficient for rigid 
graphs in 3-space [9], [IO]. A sequence for generating 
generically minimally rigid direction based point forma- 
tions in 3-space can be given as follows. 

Theorem 2. Starring from two vertices connected by 
normal constraints N1N2, denoted by GI, the underlying 
graphs of formations 6 2 ,  6 3 ,  . . . ,G, are created by one 
of three steps: 

1) connecting a new vertex by three normal constraints 
to the existing vertices; 

2)  removing an edge in the current formation and 
adding a new vertex connecting if to tlze end-points of 
tlze removed edge with one normal constraint to each 
and then two more normal constraints to any of tlw 
vertices without exceeding two normal constraints to 
each vertex; 

3)  removing two edges in the current fomtation and 
adding a new vertex connecting to the four end-points 
of the removed edges with one nomwl constraint 
to each (and two edges if the removed edges both 
contacted a given vertex) and then two more normal 
N constrainrs to any of the vertices without exceeding 
two normal constraints to each vertex. 

Then at each step, ‘a minimally rigid formation is created. 
Moreove,: all generically minimally rigid formations are 
created in this way. 

This theorem is a direct corollary of the recent results of [6] 
and the older results of [91. An example of such a sequence 
is shown in Fig. 1. 

This complete combinatorial theory, with correspond- 
ing fast algorithms for independence and parallel rigidity, 
stands in contrast to the long-standing unsolved problem 
of finding a polynomial time algorithm for which graphs 
are generically rigid in 3-space. Put simply, direction con- 
straints are easier to handle than distance constraints. 

Note that if at least one distance constraint is added to 
a parallel rigid point formation, then only translations of 
the point formation will be the trivial point formations. 

Formations with a combination of distance and direc- 
tion constraints having only translations as trivial motions 
are called translation rigid formations. If a formation is 
translation rigid with dn - d constraints, it is called a 
minimally translation rigid formation in d-space. We refer 
the reader to [8] which characterizes generically translation 
rigid formations of distances and directions in the plane. 

For moving formations, pure directions in a fixed co- 
ordinate system are too restrictive. However, if there is a 
moving reference coordinate system, established for exam- 
ple by a core object or subconfiguration, then the directions 
can be held relative to this reference coordinate system. The 
relevant theory will still apply without change. 

IV. POINT FORMATIONS BASED ON ANGLES 
In practice, one might measure the angle between two 

maintenance links. In the most general form, this problem 
becomes much more complex and there is no complete 
theory. In fact, it is conjectured that there is no polyno- 
mial time algorithm to detect generically minimally rigid 
configurations of angles. What can be said is that, in the 
same sense that directions and distances in the plane gen- 
erate isomorphic theories, the first-order theory of angles 
between segments defined by pairs of points are isomorphic 
to the fust-order theory of ratios of lengths between the 
same segments. Here, we give some initial results. 

A. A A4aIri.r for Firsf-order Angle Constraints. 
The following analysis builds on the preliminary work 

in [21. For an angle between two lines p l p z  and P3p2 

meeting at the vertex p z ,  the cosine of the angle satisfies 
the equation: 

[(PI - P 2 )  . ( P l  - P d ]  [ ( P ,  - PZ) ’ (P3 - PZ)]  cos2(cu) 

= [(PI - P 2 )  ‘ (P3 - P d ]  
2 

If we assume that the points are functions o f t ,  but the 
angle is constant, then implicit differentiation gives: 

+ [ @1 - PZ) . (PI - P2 )I [ (PS - P 2 )  ’ (P3 - P2)l  } 
=2[(Pl - P 2 ) ’ @ 3 - P 2 ) ] [ @ . 1  - P 2 ) ’ @ 3 - P 2 )  

+(Pl - P Z ) .  (P3 - Pd] 
For compactness, we write Ipl -pz l  = 112 and lpz -p31 = 
123. This equation can be simplified to: 

+ [ (P2 p] . p3 = 0 

In matrix form this linear equation gives the row 

6 

Fig. 1 
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where vi is venex i and is just placed at the top of the row 
to point the entry corresponding to this vertex. 

For a set of points and an angle set, we now have ajirst- 
order angle murrix MF,, with two columns for each vertex 
since each pi has x and y coordinates, and a row for each 
angle. The task is to give conditions under which the rows 
of this matrix are independent (or have maximal rank for 
the number of vertices). The reader can immediately see 
that the row for an angle is precisely a linear combination 
of the rows for the two directions of the segments at the 
angle. 

B. Dependence of Angle Polygons. 
The trivial motions of a plane angle formation are the 

translations, the rotations, and the scaling. If we have at 
least three points, these form a space of dimension 4. In 
a triangle, we have three possible angles - but the counts 
indicate we can only have 21111-4 = 6-4 = 2 independent 
angles. As we already know from geometry that the three 
angles are dependent: 6’1,2,3+6’~.3.1+83,1,2 = T. This basic 
dependence will be reflected in a dependence of the rows 
for the matrix. 

Theorem 3. Angle Polygons Given a formation with 
angle constraints with an angle polygon (a cycle in the 
angle diagranl) L1,@1.2, L ~ , e 2 , 3 ~ .  . . , e k - l . k ,  L k , e k , l ,  L1, 
the rows of the constraint matrix A l p p  corresponding fo 
the po$gon form o minimal dependent set. 

One can offer some necessary counting properties of min- 
imally rigid sets of angles in a generic formation F, with 
a pair of sets of veaices and angles (V,A) .  

1) /AI= 21VI - 4; 
2) for all non-empty subsets of angles A’ c A, on 

3) for the set of angles do centered at UO, with end 

Unfortunately, these conditions are not sufficient, as the 
general polygonal result above demonstrates. It is con- 
jectured that there is no combinatorial characterization of 
all independent sets of angles which can be checked in 
polynomial time [12]. 

C. Sequential Techniques. 
For plane angles we have similar extension operations to 

those of the previous sections. Again, the analysis builds 
on the prelimin& work in [Z]. 

1)  0-extension with huo angles: The process adds two 
columns (for the new vertex) and two rows for the two 
added angles. 

Theorem 4. The 0-extension with huo angles (Fig. 2 )  take 
a generically minimally rigid formution W = (V,  A, h)  fo 
a generically minimally rigid formution W’ = (V‘, A‘, h’). 

2)  I-extension with angles: These cover the additional 
of one new vertex, removal of one angle and the addition 
of three angles. However, with even four angles and four 
points, we may have 3 x 4 + 3 = 15 nonzero blocks - so 

vertices V’, Id’[ 5 21V’I - 4; 

points VO, Idol I IVol - 1. 

Fig. 2. 

each column may have at least three active rows. Therefore 
the sequential techniques must include methods for creating 
new vertices with three active rows. 

Theorem 5. The 1-extensions with angles illustrated in Fig. 
3 take a generically minimally rigid formurion (V, A, h) to 
U generically mininuzlly rigid formation (V‘, A‘, h’). 

We note that these two sets of extensions do not generate 
all possible generically minimally homothetic rigid graphs. 
To accomplish that, we would need operations for inserting 
vertices of valence up to 5, and we have stopped with a 
last vertex of valence 2 or 3. There are some additional 
conjectured sequential steps, such as forms of vertex split- 
ting, which await further work. However, the conjectured 
sequential steps will not fill this gap. We do not anticipate a 
set of sequential constructions for plane angles which will 
generate all generically minimally homothetic rigid graphs 
for angles. However these techniques do generate useful 
rigid subsets, whose inclusion in larger sets will guarantee 
rigidity. 

There are special sets of angles in the plane which 
are well enough connected that after choosing one line 
of sight (one pair for a direction) then the remaining 
angle constraints simply become additional fixed directions 

Fig. 3. 
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(relative to the original choice). Consider an angle con- 
straint assigned to each vertex so that in the corresponding 
formation, each agent has a set point reference to follow. As 
it tums out, the abstract graph G(V, E )  of such a formation 
can be considered in an alternative graph form that has 
vertex set E and two vertices e, f E E are adjacent if and 
only if they are the two sides of an angle 0 E 0 where 8 
' is the set of angles. Note that the abstract graph of edges as 
vertices and angles as edges in Fig. 4a is connected. Hence 
the angle information can he converted to directions, by 
arbitrarily freezing out the rotations by assigning a direction 
to one of the edges as shown in Fig. 4b. Whenever that is 
m e ,  we might use the direction results. 

D. Angles in 3-space 
We can create a similar matrix for angles in 3- 

space.What we need is the perpendicular to (pi - p j )  within 
the plane of the three vertices of the angle p i , p j , p k .  This 
selected normal (pi - p j ) l < j k  will then work in a fashion 
similar to the normals used in direction diagrams or parallel 
drawing in 3-space. In matrix form this gives the row 

techniques in this paper can be extended to analyze such 
topologies with mixed constraints (see for example [SI). 

It is clear from the developments in this and previous 
papers 141, [5] that ideas from rigidity, discrete geometry 
and CAD programming can play a central role in both the 
analysis and synthesis of sensor and network topologies of 
provably rigid formations of mobile autonomous agents. 
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It is not difficult to state at least some situations in which 
0-insertion of a new vertex, with three attached angles 
works in 3-space, and 1-insertion of a new vertex in 3-space 
replacing one angle with four angles. However, this work is 
very preliminary. Among the special cases of angles in 3- 
space will he the angles for pairs of edges out from a central 
vertex. Effectively, these angles are distances on the unit 
sphere, and as such are isomorphic under central projection 
into a plane, with distance constraints in the plane [12]. 

V. CONCLUDING REMARKS 
The topologies that we have analyzed consist of pure 

direction, hearing and angle information between agents. 
Combinations of these information, such as distance- porary Mathematics, 1996. 
direction, distance-bearing, distance-angle are practically 
used in formations of autonomous agents. The presented 
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