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Abstract: A supervisory control system which globally regulates to zero the state of a
very poorly modeled linear process in the presence of input constraints is proposed in
this paper. The model of the process is an unknown member of a family of systems
which are open-loop unstable but not exponentially unstable. For the analysis, tw o
switc hing logics are considered: The lysteresis switching logic and a new type of dwell
time switching logic. In both cases, the supervisory control system is shown to regulate
to zero all the continuous states of the systern.
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1. INTRODUCTION

We propose a supervisory control system to glob-
ally regulate to zero the state of a very poorly
modeled linear process P in the presence of in-
put constraints. The model of P is an unknown
member of a family of dynamical systems of the
form F = UpepF, where each F, is a subfamily
consisting of a given nominal process madel N, to-
gether with a collection of “perturbed versions” of
N, , and P is a finite set of indices. The approach of
supervisory control (Morse, 1996; Morse, 1995) is
that of employing a family of candidate controllers
C := {C, : p € P}, chosen in such a w aythat
for each p € P, C, w ould“solve”the regulation
problem were P to be any element of F),. The idea
then is to generate a switching signal o taking
values in P, which causes the state zp of the
process PP in closed-loop wistvitc  hed controller
C, to be regulated to zero. The algorithm which
generates o is called a “supervisor”. An estimator-
based supervisor consists of three subsystems, a
multi-estimator E, a bank of monitoring signal
generators M,,, p € P, and a switching logic
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S. E is a finite-dimensional, input-to-state sta-
ble (Sontag and Wang, 1996) dynamical system
with state  whose input is the pair {v, y} (the
pair of input and, respectively, output vectors of
P), and whose p-th output is a signal y, which
would be an asymptotically correct estimate of
y, if N, w ere the actual process model and there
w ereno measurement noise or disturbances. F or
E to ha ve this propery, its p-th candidate model
would have to exhibit (under appropriate feedbadk
interconnection and initialization (Hespanha and
Morse, 1999b)) the same input-output behavior
betw eenv and y, as N, does between its input
and output. A monitoring signal generator M, is
a dynamical system whose input is the p-th output
estimation error e, := y, —y and whose output p,
is a suitably defined signal which measures the size
of the e,. The third subsystem of an estimator-
based supervisor is a switching logic S whose role
is to generate o.

In this paper, we consider the case in which F, =
{N, } and design each controller C, so as to make
the closed-loop system N, — C, integral input-to-
state stable (Sontag, 1998) with respect to the
output estimation error e,, while fulfilling the
input constraint. When no noise, disturbances or



unmodelled dynamics are present, the hysteresis
switching logic generates a signal o which stops
switching in finite time (Hespanha, 1998; Hes-
panha and Morse, 1999a) and the analysis of the
overall system is straightforward. In particular
(Hespanha et al., 2001), this family of integral
input-to-state stabilizing controllers along with
a supervisor employing an hysteresis switching
logic globally regulates to zero the state of P. In
less idealistic situations, however, the switching
to stop in finite time is an event which is unlikely
to happen. In (Morse, 1996), the analysis of ro-
bustness for linear supervisory control systems is
carried out by adopting the so-called “dwell time"
switching logic, which constrains the switching
signal to “dwell" at a value p € P for at least
7p units of time before switching again, with mp a
positive constant— the “dwell time". We use here a
similar switching logic, introduced in (De Persis et
al., 2002a) (see also De Persis et al., 2002b), with
the major difference being that, since the system
is non-linear (because of the nonlinearities that
model the constraint on the input), the dwell time
is allowed to change with the time according to
a suitable law. It is proven that the supervisory
control with time-varying dwell time switching
logic regulates the state to zero even in the case
the switching does not stop in finite time. Most
of the results presented in this paper are given
without a proof, for which we refer the reader to
(De Persis et al., 2002a). The approach can be
extended to deal with the case in which the set P
is a continuum of points.

After formulating the problem in Section 2, we
design each component of the supervisory control
system, namely the multi-estimator, the monitor-
ing signal generators and the multi-controller in
Sections 3, 4 and 5, respectively. In Section 6,
we analyze the supervisory control system con-
sidering both the hysteresis switching logic and
the dwell time switching logic. In both cases, we
show global regulation to zero of all the continuous
states of the system. Conclusions are drawn in
Section 7.

2. PROBLEM FORMULATION

The process P is presumed to admit the model

Tp = Apxp + Bpsat(v) (1)
y = Cpap ,
where zp € R”, v € R®, y € RP, and sat(-), which
models constraints on the control magnitude, is an
R?-valued saturation function, i.e. a function with
the following properties (see e.g. Isidori, 1999).

Definition. A locally Lipschitz function sat(-) :
R — R is said to be a saturation function if

(i) sat(0) = 0 and rsat(r) > 0 for all r # 0,
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Fig. 1. Feedback interconnection.

(i) there exist k, k > 0 such that [sat(r)| < k for
all 7 and liminf |, [sat(r)| > k,

(iii) sat(-) is differentiable in a neighborhood of
the origin and sat’(0) = 1.

A function sat(-) : R®* — R® is an R¥-valued sat-
uration function if sat(vy,...,vs) = (saty (v1),.. .,
sats(vs)) and sat;(-) is a saturation function for
alle=1,...,s. <

The input to this function is the signal v generated
by the switched controller C, and its output is the
bounded control signal v = sat(v) acting on the
underlying linear process P. The feedback loop we
are considering is thus that depicted in Figure 1.

The actual state-space representation (1) of PP is
unknown but it is assumed to belong to a known
family of nominal model plants N,, each one
admitting the following state-space representation

»T + Bpsat(v)

p

(2)
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with P = {p1,...,pm} a finite set. These systems
are assumed to satisfy the following

Assumption 1. The models N, for each p € P are
stabilizable and detectable and all the eigenvalues

of A, are in the closed left-half plane of the
complex plane.

We consider the so-called “exact matching" case,
that is the case in which P € F = UpepFp, with
Fp = {N,}. We note that, as a consequence of
the exact matching case assumption, there exists
a value p* € P such that Ap = Ay, Bp = B,
Co = Cpe.

The problem of interest is (cf. Morse, 1996): For
the plant (1) design the family of output-feedback
controllers C = {C, : p € P} and a supervisor
(multi-estimator E, monitoring signal generators
M,,, switching logic S) which generates a switching
signal o so as to achieve asymptotic regulation to
zero of the state of the process P and boundedness
of all the systemn signals.

3. IDENTIFIER-BASED MULTI-ESTIMATOR
AND MONITORING SIGNAL GENERATOR

The most convenient and simple way to design a
multi-estimator is that of designing single estima-
tors for the nominal model plants N, and then
stack them all together. A multi-estimator of this
kind will typically have a structure like



T, = (fip — K,Cp)zp + Bysat(v) + Kpy (3)
yp = Cpzp,, peEP,

with K, designed in such a way that (4, — K,C,)
is a Hurwitz matrix. It is immediate to verify that
the multi-estimator (3) is input-to-state stable
with respect to the input pair {v,y} and that its
p-th output y, would be an asymptotically correct
estimate of the process output y were the actual
process model equal to N,. Multi-estimator (3)
can also be rewritten in the more compact form

& = Az + Bsat(v) + Ky @)
yp = Cpx, peEP.

The outputs y,, p € P, generated by the multi-
estimator (4) are used to obtain the output estima-
tion errors e, = y, —y which feed the monitoring
signal generators M,

ftp = =M + lep|" 1p(0) >0, pe P, (5)

in which ¢ is a fixed integer in the set {1,2}.
The monitoring signal generators are input-to-
state stable, provided that A > 0. Also note that
the exact matching condition and the equations of
the output estimation errors show that ey« decays
exponentially to zero, i.e. |e,(t)] < Cexp(—At),
for some positive numbers C, .

4. MULTI-CONTROLLER

Following (Hespanha and Morse, 1999b; Hespanha
et al., 2001; De Persis et al., 2002a), the controller
is designed for a system obtained from the multi-
estimator in such a way that it is input-output
equivalent to the p-th model N, (cf. Hespanha
and Morse, 1999b, Section 6). Namely, consider
the multi-estimator (4) under the feedback inter-
connection y =y, — e,

& = (A+ KCp)z + Bsat(v) — Ke,
yp = Cpx .

(6)

A system like (6) can be made integral input-to-
state stable (iISS) with a suitable feedback. We
recall that (Sontag, 1998)

Definition. A system§ = f(& u) is iISS if there
exist functions? a(-),01(-),02(-) € Ko, 7(-) € K,
such that for all &, all u, and for all t > 0,

a(lf(t,ﬁo,U)l)S51(52(|£o|)6’t)+/7(IU(8)I)ds-(7)
0

Hereafter v(-) is referred to as the gain function.

2 K is the class of functions [0,00) — [0,00) which are
zero at zero, strictly increasing and continuous. K is the
subclass of functions /C which are unbounded.

The feedback we use to make the system iISS is
the same which has been already proposed for the
robust stabilization of linear systems subject to
input saturation (Teel, 1996).

Lemma 1. Consider the system

€ = A¢ + Bsat(v) + Ke.. (8)

If the pair (4, B) is stabilizable and all the eigen-
values of A are in the closed left-half plane of
the complex plane, then there exist a positive
integer v, matrices L;, ¢ = 1,...,v, constants c¢j,
j=2,...,v and a feedback of the form 3

v=Li&+cosat(La&+czsat(...+cypsat(L,€))) (9)

such that the closed-loop system (8), (9) is iISS
with respect to the input e with gain function

v(r) = r?, and is locally exponentially stable when
e=0.

Remark. The same result holds for the more
general class of nonlinear feedforward systems
(Teel, 1996; De Persis et al., 2002b; De Persis
et al., 2002a). It is also possible to prove the
integral input-to-state stability of the closed-loop
system (8), (9) with different gain functions ~(-).
However, we are interested in a quadratic function
because it allows to extend the analysis to the case
in which P is a continuum of points (Morse, 1996).
When P is a finite set, as in this paper, other gain
functions are acceptable. In Section 5.3, we give a
sketch of the proof of the integral input-to-state
stability of the closed-loop system (8), (9) with a
linear gain function y(r) = r in the case in which
the models N, are critically stable.

Application of the previous result to system (6)
is straightforward since, for each p € P, system
(6) is stabilizable and has no eigenvalue in the
open right-half plane of the complex plane. The
controller C, has the equation

U:XP(x) ’ pep: (10)

with xp () the function on the right-hand side of

(9)-

Corollary 1. For each p € P, system (6) in closed-
loop with v = x,(z), namely

& =(A+KCp)x+Bsat(xp(x))—Kep,,  (11)

is iISS with respect to e, with quadratic gain func-
tion. In particular, there exist class-K, functions
a(-),01(-),0(-), and a constant 7 > 0 such that
the solution x(t) of (11) from the initial condition

3~ The number v depends on the eigenstructure of A If
A is critically stable, i.e. there exists a P > 0 such that
ATP + PA <0, then v = 1 and the feedback (9) is linear.
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Fig. 2. Supervisory control system in the presence
of input saturation.

= zo under the input e, satisfies, for all
0 >0, all zg and all e,

t

a(|z(t)]) < 61(@2(|wo)e ")) + /’7I€p(7)lldﬂ

to

with £ = 2. Also, there exist positive real numbers
a1, az,as, s, and smooth functions W, : R* — R
such that, for all |z| € [0,5], a1]|z|? < Wp(z) <
az|z|? and
oW,
oz

(A+ K Cy)e+Bsat (xy (2)) <—aslal” .

5. ANALYSIS

To complete the supervisory control architecture
we need to define the switching logic S.

5.1 Hysteresis switching logic

We consider the scale-independent hysteresis switch-

ing logic proposed in (Hespanha, 1998; Hespanha
and Morse, 1999a).

Hysteresis Switching Logic Sy (Hespanha,
1998; Hespanha and Morse, 1999a). Fix a con-
stant h > 0 (the so-called hysteresis constant)
and consider the monitoring signals p, gener-
ated according to the equations (5). Set o(0) =
argmin,cp{p,(0)}. Suppose that at a certain time
t; the value of ¢ has just switched to some g € P.
o is then kept fixed until a time ¢;1 > ¢; such that
(1 + h)minpep{pp(tit1)} < pq(tis1), at which
point o(tiy1) = argmin,cp{jp(ti+1)}. Repeating
this procedure a piecewise constant switching sig-
nal o is generated.

We recall that the system (see Figure 2) is com-
posed by an unknown process P of the form (1), a
multi-estimator E described by the equations (4),
a controller C,

v = Xo () (12)

and monitoring signal generators M, described by
the set of equations (5). Equations (1), (4), (12),
(5) define a hybrid dynamical system of the form

5= f,(2), with z = [z} 27 py ... pm)", (13)

whose solution, along with the signal o gener-
ated by the hysteresis switching logic S, exists
and is unique on [0, 00) for each initial condition
{2(0),0(0)} (see Hespanha and Morse, 1999b).
The switching logic Sy in the present context has
the desirable property to stop switching in finite
time without any extra assumption. Indeed, in
view of the construction of the multi-estimator,
and of the exact matching assumption, the hy-
pothesis of the so-called Scale-Independent Hys-
teresis Switching Theorem (Hespanha and Morse,
1999a) are fulfilled, provided that the parameter
Ain (5) is taken sufficiently small. In particular,
we have (Hespanha and Morse, 1999a)

Lemma 2. If X € (0,€)), then for each initial state
z(0) with p,(0) > 0 for p € P, for each o(0) € P,
the solution z of (13) and the output o of Sy exist
and are unique for all ¢ € [0, 00). Moreover, there
exists a time 7" < oo such that o(t) = ¢* for all
t > T*. Finally, eg- € £4]0,00).

Let’s consider the multi-estimator (4) under the
feedback interconnection y = Cpz —e€,, p € P,
(cf. (6)) in closed-loop with the controller (12),
and the monitoring signal generators (5) with
¢ = 2. In view of Lemma 2, we know that from
T* on ¢ = ¢*. Hence, from 7™ on this feedback
interconnection has equations (11) written for p =
q¢*. From Corollary 1, we know that the system is
iISS with a quadratic gain function with respect
to the input eg«. As ey« € L£3]0,00), by Lemma
2, then by Proposition 6 in (Sontag, 1998) = must
converge to zero as ¢ tends to infinity. The analysis
now follows that in (Hespanha et al., 2001) and
the following holds.

Theorem 1. Let P be the process (1), unknown
member of the family of nominal plant models
(2). Suppose that Assumption 1 holds. Consider
the supervisory control system described by the
equations (4), (12), and (5), with £ = 2, along with
the hysteresis switching logic Sig. Then, for each
set of initial conditions zp(0), z(0), ©,(0) > 0,
p € P, 0(0), the response of the supervisory
control system exists for all ¢ > 0 and all the
continuous states converge to zero as t goes to
infinity.

5.2 Dwell time switching logic

Let a(-), 61(-), B2(-) € Koo and ay, ay, az, 5 > 0 be
as in Corollary 1. Define the functions

01(r) = 0, (1/2a(1/3r)), 82(r) = 02(r) , (14)

and set?

4 Note that 0(r)/01(r) > 1 for all r > 0, and (15) is
well-posed (cf. De Persis et al., 2002b).



TA(r) = In(02(r)/01(r)), r>0. (15)

Let 7 := 6;'(6:(35)), and fix a “dwell-time"
function ™ : R>9 — Ry satisfying

TA(T) ) 3 r>T
>
™(r) max{7a(7), 292 a—2} , < T.
a3 a1

With the notations introduced above, we consider
the following switching logic.

State Dependent Switching Logic Sgp (Morse,
1996; De Persis et al., 2002b). Set o(0) =
argmin e {11, (0) }. Suppose that at some time to,
o has just changed its value to p. At this time, a
timing signal T is reset to 0 and a variable X is set
equal to |z(to)|, that is in X is “stored" the mag-
nitude of the state of the plant at that switching
time. Compute now the dwell-time H(X). At the
end of the switching period, when 7 = 75 (X), if
there exists the minimal value ¢ € P such that p,
is smaller than pu,, then o is set equal to ¢, 7 is
reset to zero and the entire process is repeated.
Otherwise, a new search for the minimal value
g € P such that p, is smaller than p, is carried
out.

Along the same lines of the proof of Lemma 1 in
(Morse, 1996), it is possible to prove the following
property for the switching signal o generated by
Sgp driven by the u,’s (5).

Lemma 3. Let T := {0 =: to,t1,...,tj,...} be
the sequence of switching times of o. Then there
exists a finite subset P* C P containing p* with
the following properties.

(i) There exists a finite switching time t* € T
such that o(t) € P* for all t > t*;
(ii) For each p € P*, e, € L]0, 0).

The lemma is instrumental in proving the follow-
ing theorem.

Theorem 2. Let P be the process (1), unknown
member of the family of nominal plant models
(2). Suppose that Assumption 1 holds and that
the function sat(+) is continuously differentiable in
a neighborhood of the origin. Consider the super-
visory control system described by the equations
(4), (12), and (5), with £ = 2, along with the state
dependent dwell time switching logic Sgp, with
T (+) satisfying (16). Then, for each set of initial
conditions zp(0), z(0), 1p(0) > 0, p € P, 0(0), the
response of the supervisory control system exists
for all ¢ > 0 and all the continuous states converge
to zero as t goes to infinity.

Remark. It is worth noting that the controller
(12) actually depends on z, only. Moreover, if,
for each p € P, the controller C, (10) is such

that system (11) is iISS with respect to e, with
linear gain function (cf. Corollary 1), then, for
the supervisory control system described by the
equations (4), (12), and (5), with ¢ = 1, along
with the state dependent dwell time switching
logic Ssp, the conclusion of Theorem 2 still holds.

5.3 The dwell time function

In this section, we explicitly compute the function
Ta in (15), which allows to define the dwell-
time function 7p given in (16). As is seen from
(14), the calculation of 7A amounts to determine
the functions «(-), 61(-), f2(-) which appear in
Corollary 1. We carry out the computation for
systems (2) which are critically stable. Hence, for
each p € P, there exists a symmetric matrix P, >
0 satisfying (4 + KC,)' P, + P,(A + KC,) <0.
In this case the controller C, (10) is simply

v="Fax, peP, (17)
with F, = —BTP,. In fact, (see (Liu et al,
1996) and also (Isidori, 1999, proof of Proposition
14.1.5)) for each p € P there exists a symmetric
matrix ¢, > 0 and a positive real number v, > 0
such that the function

Wy(z) = 1/227Q,x + Vp/3(xTpr)%

satisfies, for all p € P,

ow,
or

((A+ KC,)z + Bsat(F,z)) < —|z|?

and, for some a,b,c > 0,
alz)? < Wy(x) < blz|® + clz]® . (18)
Consider the function Vjp(z) = In(1 + Wy,(x)).

This function is definite positive and proper and
satisfies

V= %((A+K0p)x+Bsat(pr)—Kep) <
T Sl < —p(le) + Tle]
1+Wp(£17) 7 Pl = p ’7 Pl

with p(r) = r?/(1 + br? + ¢r®) a continuous and
positive definite function, and 7 a positive real
number. That is to say (cf. Angeli et al., 2000),
the closed-loop system (6), (17) is iISS with linear
gain function.

The previous inequality and simple manipulations
also imply that there exists a £ > 0 such that

Vp < —lexp(Vp/3) = 1) exp(=V;) + Tlep -
Following the arguments in (Angeli et al., 2000,

Lemma IV.2 and Corollary IV.3), the Lemma
below can be proven.



Lemma 4. Let 61(-),02(-) € Ko be such that, if
r(t) satisfies the scalar differential inequality

Ht) < =p(r(8)) , r(0) 20, (19)

with p(r) := k(exp(r/3) — 1)*exp(—2r), then
r(t) < 61(02(r(0))e?), for all ¢ > 0. Then the
function V,(-) computed along the solution of the
system (6 ) (17) satisfies, for all ¢ > 0,

Vo ((t)) < 61 (82(Vy ((0))e ) + / e s
0

To compute 6;(-) and 65(-), we consider the Ko
function (Praly and Wang, 1996)

S

0(0) = 0, o(s) = exp( / ‘f

for s >0,
pw))

which is continuously differentiable and satisfies

o' (r)p(r) = o(r). Setting s = o(r), from (19), we
have

which implies s(t) = o(r(t)) < exp(—t
and

r(t) < o ' (o(r(0))e™") =: 61(82(r(0))e™") .

Using Lemma 4 and (18), it is easy then to
conclude that the inequality in Corollary 1 holds
with £ =1 and

afr) =1n(1 +ar?), 6.(r) =0 1(r),

. ‘ (20)
62(r) = o(In(1 + br? + cr?)) .

A straightforward calculation yields the expres-
sion of o(+), which, along with (14) and (20), gives,
for s > 0,
-5 1 5 . 17¢=¢2
rals) = B [1¢0+ 260456 4100+ 5me— 2|
4 3 Cle=cy

where b is such that 1+ bs® + ¢s® < (1 4 bs)? for
all s >0, ¢ = (1+as?/9)% —1and ¢ = (1+
bs? +cs®)/3 — 1. The expression shows that 7 (s)
grows polynomially with s.

6. CONCLUSIONS

In this paper we have presented a solution to the
problem of supervisory control of largely uncer-
tain systems under input constraint. It has been
shown that if the unknown process belongs to a
finite class of linear open-loop unstable but not
exponentially unstable systems which are stabiliz-
able and detectable, then it is possible to design
a supervisory control architecture so as to achieve
global regulation of the state to zero.

(s)|ds .
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