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In 1974 R. V. Monopoli published a paper [1] in which he posed the now classical model reference
adaptive control problem, proposed a solution and presented arguments intended to establish the
solution’s correctness. Subsequent research [2] revealed a flaw in his proof which placed in doubt
the correctness of the solution he proposed. Although provably correct solutions to the model
reference adaptive control problem now exist {see [3] and the references therein}, the problem of
deciding whether or not Monopoli’s original proposed solution is in fact correct remains unsolved.
The aim of this note is to review the formulation of the classical model reference adaptive control
problem, to describe Monopoli’s proposed solution, and to outline what’s known at present about
its correctness.

1 The Classical Model Reference Adaptive Control Problem

The classical model reference adaptive control problem is to develop a dynamical controller capable
of causing the output y of an imprecisely modelled siso process P to approach and track the output
yref of a pre-specified reference model Mref with input r. The underlying assumption is that the
process model is known only to the extent that it is one of the members of a pre-specified class M.
In the classical problem M is taken to be the set of all siso controllable, observable linear systems
with strictly proper transfer functions of the form g β(s)

α(s) where g is a nonzero constant called the
high frequency gain and α(s) and β(s) are monic, coprime polynomials. All g have the same sign
and each transfer function is minimum phase {i.e., each β(s) is stable}. All transfer functions are
required to have the same relative degree n̄ {i.e., deg α(s) − deg β(s) = n̄.} and each must have a
McMillan degree not exceeding some pre-specified integer n {i.e., deg α(s) ≤ n}. In the sequel we
are going to discuss a simplified version of the problem in which all g = 1 and the reference model
transfer function is of the form 1

(s+λ)n̄ where λ is a positive number. Thus Mref is a system of the
form

ẏref = −λyref + c̄xref + d̄r ẋref = Āxref + b̄r (1)

where {Ā, b̄, c̄, d̄} is a controllable, observable realization of 1
(s+λ)(n̄−1) .

2 Monopoli’s Proposed Solution

Monopoli’s proposed solution is based on a special representation of P which involves picking any
n-dimensional, single-input, controllable pair (A, b) with A stable. It is possible to prove [1, 4] that
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the assumption that the process P admits a model in M, implies the existence of a vector p∗ ∈ IR2n

and initial conditions z(0) and x̄(0), such that u and y exactly satisfy

ż =
[

A 0
0 A

]
z +

[
b
0

]
y +

[
0
b

]
u

˙̄x = Āx̄ + b̄(u− z′p∗)
ẏ = −λy + c̄x̄ + d̄(u− z′p∗)

Monopoli combined this model with that of Mref to obtain the direct control model reference pa-
rameterization

ż =
[

A 0
0 A

]
z +

[
b
0

]
y +

[
0
b

]
u (2)

ẋ = Āx + b̄(u− z′p∗ − r) (3)
ėT = −λeT + c̄x + d̄(u− z′p∗ − r) (4)

Here eT is the tracking error
eT

∆= y − yref (5)

and x
∆= x̄ − xref . Note that it is possible to generate an asymptotically correct estimate ẑ of z

using a copy of (2) with ẑ replacing z. To keep the exposition simple we’re going to ignore the
exponentially decaying estimation error ẑ − z and assume that z can be measured directly.

To solve the MRAC problem, Monopoli proposed a control law of the form

u = z′p̂ + r (6)

where p̂ is a suitably defined estimate of p∗. Motivation for this particular choice stems from the
fact that if one knew p∗ and were thus able to use the control u = z′p∗ + r instead of (6), then this
would cause eT to tend to zero exponentially fast and tracking would therefore be achieved.

Monopoli proposed to generate p̂ using two sub-systems which we will refer to here as a “multi-
estimator” and a “ tuner” respectively. A multi-estimator E(p̂) is a parameter-varying linear system
with parameter p̂, whose inputs are u, y and r and whose output is an estimate ê of eT which would
be asymptotically correct were p̂ held fixed at p∗. It turns out that there are two different but very
similar types of multi-estimators which have the requisite properties. While Monopoli focused on
just one, we will describe both since each is relevant to the present discussion. Both multi-estimators
contain (2) as a sub-system.

2.1 Version 1

There are two versions of the adaptive controller which a relevant to the problem at hand. In this
section we describe the multi-estimator and tuner which together with reference model (1) and
control law (6), comprise the first version.

2.1.1 Multi-Estimator 1

The form of the first multi-estimator E1(p̂) is suggested by the readily verifiable fact that if H1 and
w1 are n̄× 2n and n̄× 1 signal matrices generated by the equations

Ḣ1 = ĀH1 + b̄z′ and ẇ1 = Āw1 + b̄(u− r) (7)
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respectively, then w1 −H1p
∗ is a solution to (3). In other words x = w1 −H1p

∗ + ε where ε is an
initial condition dependent time function decaying to zero as fast as eĀt. Again for simplicity we
shall ignore ε. This means that (4) can be re-written as

ėT = −λeT − (c̄H1 + d̄z′)p∗ + c̄w1 + d̄(u− r)

Thus a natural way to generate an estimate ê1 of eT is by means of the equation

˙̂e1 = −λê1 − (c̄H1 + d̄z′)p̂ + c̄w1 + d̄(u− r) (8)

From this it clearly follows that the multi-estimator E1(p̂) defined by (2), (7) and (8) has the
required property of delivering an asymptotically correct estimate ê1 of eT if p̂ is fixed at p∗.

2.1.2 Tuner 1

From (8) and the differential equation for eT directly above it, it can be seen that the estimation
error1

e1
∆= ê1 − eT (9)

satisfies the error equation
ė1 = −λe1 + φ′

1(p̂− p∗) (10)

where
φ′

1 = −(c̄H1 + d̄z′) (11)

Prompted by this, Monopoli proposed to tune p̂1 using the pseudo-gradient tuner

˙̂p1 = −φ1e1 (12)

The motivation for considering this particular tuning law will become clear shortly, if it is not
already.

2.1.3 What’s Known About Version 1?

The overall model reference adaptive controller proposed by Monopoli thus consists of the reference
model (1), the control law (6), the multi-estimator (2), (7), (8), the output estimation error (9)
and the tuner (11), (12). The open problem is to prove that this controller either solves the model
reference adaptive control problem or that it does not.

Much is known which is relevant to the problem. In the first place, note that (1), (2) together
with (5) - (11) define a parameter varying linear system Σ1(p̂) with input r, state {yref , xref , z, H1, w1,
ê1, e1} and output e1. The consequence of the assumption that every system in M is minimum
phase is that Σ1(p̂) is detectable through e1 for every fixed value of p̂ [5]. Meanwhile the form of
(10) enables one to show by direct calculation, that the rate of change of the partial Lyapunov
function V

∆= e2
1 + ||p̂− p∗||2 along a solution to (12) and the equations defining Σ1(p̂), satisfies

V̇ = −2λe2
1 ≤ 0 (13)

From this it is evident that V is a bounded monotone nonincreasing function and consequently that
e1 and p̂ are bounded wherever they exist. Using and the fact that Σ1(p̂) is a linear parameter-
varying system, it can be concluded that solutions exist globally and that e1 and p̂ are bounded on

1Monopoli called e1 an augmented error.
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[0,∞). By integrating (13) it can also be concluded that e1 has a finite L2[0,∞)-norm and that
||e1||2 + ||p̂−p∗||2 tends to a finite limit as t →∞. Were it possible to deduce from these properties
that p̂ tended to a limit p̄ , then it would possible to establish correctness of the overall adaptive
controller using the detectability of Σ1(p̄).

There are two very special cases for which correctness has been established. The first is when
the process models in M all have relative degree 1; that is when n̄ = 1. See the references cited
in [3] for more on this special case. The second special case is when p∗ is taken to be of the form
q∗k where k is a known vector and q∗ is a scalar; in this case p̂

∆= q̂k where q̂ is a scalar parameter
tuned by the equation ˙̂q = −k′φ1e1 [6].

2.2 Version 2

In the sequel we describe the multi-estimator and tuner which together with reference model (1)
and control law (6), comprise the second version of them adaptive controller relevant to the problem
at hand.

2.2.1 Multi-Estimator 2

The second multi-estimator E2(p̂) which is relevant to the problem under consideration, is similar
to E1(p̂) but has the slight advantage of leading to a tuner which is somewhat easier to analyze.
To describe E2(p̂), we need first to define matrices

Ā2
∆=

[
Ā 0
c̄ −λ

]
and b̄2

∆=
[

b̄
d̄

]
The form of E2(p̂) is motivated by the readily verifiable fact that if H2 and w2 are (n̄+1)× 2n and
(n̄ + 1)× 1 signal matrices generated by the equations

Ḣ2 = Ā2H2 + b̄2z
′ and ẇ2 = Ā2w2 + b̄2(u− r) (14)

then w2 −H2p
∗ is a solution to (3) - (4). In other words, [x′ eT ]′ = w2 −H2p

∗ + ε where ε is an
initial condition dependent time function decaying to zero as fast as eĀ2t. Again for simplicity we
shall ignore ε. This means that

eT = c̄2w2 − c̄2H2p
∗

where c̄2 = [ 0 · · · 0 1 ]. Thus in this case a natural way to generate an estimate ê2 of eT is by
means of the equation

ê2 = c̄2w2 − c̄2H2p̂ (15)

It is clear that the multi-estimator E2(p̂) defined by (2), (14) and (15) has the required property
of delivering an asymptotically correct estimate ê2 of eT if p̂ is fixed at p∗.

2.2.2 Tuner 2

Note that in this case the estimation error

e2
∆= ê2 − eT (16)

satisfies the error equation
e2 = φ′

2(p̂2 − p∗) (17)
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where
φ′

2 = −c̄2H2 (18)

Equation (17) suggests that one consider a pseudo-gradient tuner of the form

˙̂p = −φ2e2 (19)

2.2.3 What’s Known About Version 2?

The overall model reference adaptive controller in this case, thus consists of the reference model
(1), the control law (6), the multi-estimator (2), (14), (15), the output estimation error (16) and
the tuner (18), (19). The open problem is here to prove that this version of the controller either
solves the model reference adaptive control problem or that it does not.

Much is known about the problem. In the first place, (1), (2) together with (5), (6) (14) - (18)
define a parameter varying linear system Σ2(p̂) with input r, state {yref , xref , z, H2, w2} and output
e2. The consequence of the assumption that every system in M is minimum phase is that this Σ2(p̂)
is detectable through e2 for every fixed value of p̂ [5]. Meanwhile the form of (17) enables one to
show by direct calculation, that the rate of change of the partial Lyapunov function V

∆= ||p̂− p∗||2
along a solution to (19) and the equations defining Σ2(p̂), satisfies

V̇ = −2λe2
2 ≤ 0 (20)

It is evident that V is a bounded monotone nonincreasing function and consequently that p̂ is
bounded wherever they exist. From this and the fact that Σ2(p̂) is a linear parameter-varying
system, it can be concluded that solutions exist globally and that p̂ is bounded on [0,∞). By
integrating (20) it can also be concluded that e2 has a finite L2[0,∞)-norm and that ||p̂ − p∗||2
tends to a finite limit as t →∞. Were it possible to deduce from these properties that p̂ tended to
a limit p̄ , then it would to establish correctness using the detectability of Σ2(p̄).

There is one very special cases for which correctness has been established [6]. This is when p∗ is
taken to be of the form q∗k where k is a known vector and q∗ is a scalar; in this case p̂

∆= q̂k where
q̂ is a scalar parameter tuned by the equation ˙̂q = −k′φ2e2. The underlying reason why things go
through is because in this special case, the fact that ||p̂− p∗||2 and consequently ||q̂ − q∗|| tend to
a finite limits, means that q̂ tends to a finite limit as well.

3 The Essence of the Problem

In this section we write down a stripped down version of the problem which retains all the essential
feature which need to be overcome in order to decide whether or not Monopoli’s controller is correct.
We do this only for version 2 of the problem and only for the case when r = 0 and n̄ = 1. Thus
in this case we can take Ā2 = −λ and b̄2 = 1. Assuming the reference model is initialized at 0,
dropping the subscript 2 throughout, and writing φ′ for −H, the system to be analyzed reduces to

ż =
[

A 0
0 A

]
z +

[
b
0

]
(w + φ′p∗) +

[
0
b

]
p̂′z (21)

φ̇ = −λφ− z (22)
ẇ = −λw + p̂′z (23)
e = φ′(p̂− p∗) (24)
˙̂p = −φe (25)
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To recap, p∗ is unknown and constant but is such that the linear parameter-varying system Σ(p̂)
defined by (21) to (24) is detectable through e for each fixed value of p̂. Solutions to the system (21)
- (25) exist globally. The parameter vector p̂ and integral square of e are bounded on [0,∞) and
||p̂− p∗|| tends to a finite limit as t →∞. The open problem here is to show for every initialization
of (21)-(25), that the state of Σ(p̂) tends to 0 or that it does not.
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