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Abstract
In this paper, a systematic way of maintaining rigidity : A [ ) _ﬁ?—
in case of vehicle removals in formations for coordi- | yoa N |
nating mobile autonomous vehicles with limited com- ‘%/\L\ / \ % / /
munication/sensing links is presented. The main con- e — ﬁi‘ e @qﬁ_,_,_&i
cern is the minimal rearrangement of links in such a - - )
way that the links that have not been removed are pre-
served as they are, and the minimum number of new (a) (b}

links are created in the formation to maintain rigidity.
The problem is solved by the tools used in the Hen-
neberg method. This method gives us provably rigid
formations with the minimum number of links. The
proposed framework meets this challenge for removed
vehicles with any number of links in both 2 and 3-space.
The same problem is also considered for the minimal
Delaunay edge formations, which is a special class of
the formations created by the Henneberg method with
some geometrical properties.

" 1 Introduction

This paper addresses the "closing ranks" problem in
formations for coordinating large number of mobile au-

tonomous vehicles with limited communication/sensing

requirements. By a formation is meant a group of ve-
hicles moving in 2 or 3-space in such a way that the

distance between every pair of vehicles does not change

over time under ideal conditions. A framework to cre-
ate formations with the minimum number of commu-
nication/sensing links was presented in [3]. By closing
ranks, in an analogy to the army where each unit acts
in a coordinated way especially to meet a challenge,
is meant the minimal rearrangement of links between
vehicles in case of vehicle removals (e.g. a vehicle is
destroyed or has a failure) such that the remaining ve-
hicles will maintain the formation. In a formation with
the minimum number of communication/sensing links
such as the one shown in Figure la, for example, the
vehicle pointed by an arrow is removed as shown in
Figure 1b. One way to solve the problem would be to
create a link between every pair of vehicles that had a
link with the removed vehicle as shown in Figure 2a.
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Figure 1: (a)The initial formation with minimum number
of communication /sensing links. The vehicle to
be removed is pointed by an arrow. (b} The
remaining non-rigid formation after the vehicle
is removed.

(a)

{b)

Figure 2: (a)One way of maintaining rigidity is to connect
every pair of vehicles (dotted links) that were
connected to the removed vehicle. (b) The four
links chosen as depicted {dotted links) will suf-
fice to maintain the rigidity of the formation.

However, as it will be shown in the sequel, just four new
links created in the way as depicted in Figure 2b would
be sufficient to maintain the formation. The main goal
of this paper is to give a systematic way for creating
the minimum number of new links to maintain a forma-
tion while preserving the existing ones when a vehicle
is removed.

The paper is organized as follows. In §2, an intro-
duction to the terminology and notation that will be
used in the paper will be presented. In §3, methods to
maintain rigidity in the closing ranks problem in the
formations created by the Henneberg method in both
2 and 3-space are proposed. In §4, a special class of
the formations created by the Henneberg method is
introduced, namely the minimal Delaunay edge forma-
tions. In §3, the closing ranks problem for the minimal



Delaunay edge formations is addressed in both 2 and
3-space.

2 Point Formations and Rigidity

A point formation Fp, = ({p1,pa, ..., Pn}, L) provides a
way of modelling a set of n-vehicles moving in forma-
tion in 2 or 3-space, where p £ column {p1,p3,...,Pn}
is a set of n points in IR? together with a set £ of
m maintenance links, labelled {i,7), where i and j
are distinct integers in {1,2,...,n}. The length of
link (7, ) is the Euclidean distance between points p;
and p;. The points represent the positions of vehi-
cles and the links represent the specific distances to
be maintained between vehicles. By a trajectory of Fp
is meant a continuously parameterized, one-parameter
family of points {g(£) : t > 0} in IR™ which contains
p. In practice, vehicles can not be expected to main-
tain the specified distances exactly, because of sens-
ing errors, vehicle modelling errors, etc. The ideal
benchmark point formation against which the perfor-
mance of an actual vehicle formation is to be mea-
sured is called a reference formation. Such a forma-
tion is said to undergo rigid motion along a trajectory
q([0,00)) & {column {q;(t), ¢2(t),- .-, ¢ (1)} : t = 0}
if the Euclidean distance between each pair of points
gi(t) and g;(t) remains constant all along the trajec-
tory. A formation F is said to be rigid if rigid motion
is the only kind of motion it can undergo along any
trajectory on which the lengths of all links in £ remain
constant. The ideas of a point formation and a rigid
point formation are essentially the same as the concepts
of a “framework” and a “rigid framework” studied in
mathematics as well as within the theory of structures
in mechanical and civil engineering (see for example

[5].[6])-

One approach to determine whether a given formation
is rigid or not starts by examining what happens to
a given formation Fp = ({p1,p2,...,pn}, L), along the
trajectory {qi(t),a2(t), ...,g.(#)} : t > O} on which
the Buclidean distances di; 2 ||p; — p;|| between pairs
of points {g;, g;) for which {7, j} is a link, are constant.
Thus along such a trajectory

(Lekl, t=0 (1)

(¢ — @)@ — g;) = dij,

Solving the system of equations in (1) is very difficult in
general. One approach is to look for the first derivatives
of trajectories instead of looking them directly.

(—9)(6:—4¢)=0, (i,j)eL, t=0 (2)
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These equaticns can be evaluated at p and rewritten in
matrix form as

R(g)g=0 ()
where ¢ = column {§,42,...,¢n}, and R is a specially
structured m x dn array called a rigidity matriz. If the
formation contains at least d+1 points which are not
contained in any proper hyperplane within IR?, then
there are always ﬂ%)- solutions of (2) corresponding
the derivatives of trajectories of rigid motion [5]. If the
system of equations in (2} has no other solutions, i.e.

n—6
n—3

if d=3,

rank R(p) = { if d=2.

then the rigidity of formation would be implied.
Clearly analyzing the rigidity requires one to study not
only the incidences of the links but also the positions
of points.

It is possible to associate with any point formation F, a
graph Gy 2 {V, £} whose vertex set is the set of labels
of the points in F,, and whose edge set is £. The defini-
tion of rigid formation implies that every formation I,
whose graph Gg is complete is automatically rigid. The
converse however is not generally true. Combinatorial
rigidity is concerned with what extent the rigidity of
formations can be judged by knowing the vertices and
their incidences, in other words, by knowing the under-
Iying graph. A formation Fy is said to be generically
rigid if it is rigid and if there is an open neighborhood
of points about p in R®* at which F. » is also rigid. The
concept of generic rigidity does not depend on the dis-
tances between the points of I, and for this reason, it is
a desirable specialization of the definition of a rigid for-
mation for our purposes. The generic rigidity question
can be posed solely in terms of the graph G, without
any reference to Fp’s actual points. In order for a graph
to be generically rigid in the plane, there must be a sub-
set L' C L satisfying the following two conditions: (1)
L] = 2n—3,(2) Forall L C L. L #B,|L£"] < 2k-3,
where k is the number of vertices which are endpoints
of edges in £”. These two conditions check whether
there are at least 2n-3 independent edges and whether
the edges are distributed in such a way that there are
no redundancies. This combinatorial characterization
of generic rigidity was proved by Laman in 1970 [4]. Al-
though the extension of this characterization to 3-space
is a necessary condition, it fails to be sufficient.

Given this difficulty of characterization of rigidity in 3-
space, We turn our attention to the problem of creating
provably rigid formations in both 2 and 3-space instead
of checking whether a given formation is rigid or not.



We begin by reviewing an inductive method that ap-
plies to isostatic graphs. By isostatic graph is meant
a generically rigid graph such that removing any edge
gives a non-rigid graph. Generically d-isostatic means
isostatic condition in d-space. The degree of a vertex ¢
of a graph is the number of incident vertices to 7. Given
a generically isostatic graph G, an edge (z, j) which is
not in £ is called an implicit edge for G, i.e. an implicit
edge is redundant for the rigidity of G. Incident edges
share a common vertex. We denote the set of adjacent
vertices to vertex 7 by V;. The following theorems (see
[6]) give an inductive approach that creates generically
d-isostatic graphs both in 2 and 3-space while main-
taining rigidity. :

Theorem 1. (Vertex Addition Theorem) Let G 2
{V, L} be a graph with a vertez i of degree d; let G* &
{V*, £*} denote the subgraph obtained by deleting © and
the edges incident with it. Then G is generically d-
isostatic if and only if G* s generically d-isostatic.

Theorem 2. (Edge Split Theorem) Let G 2 {V, [}
be a graph with a vertez 1 of degree d + 1, let V; be the
set of vertices incident to i, and let G* £ {V*, £*} be
the subgroph obtained by deleting © and its d+1 incident
edges. Then G is generically d-isostatic if and only if
there is a pair j,k of vertices of V; such that the edge
(j., k) is not in L* and the graph G' = (V*, £* (4, k))
s generically d-isostatic.

This method starts from Gy in d-space at the first step
{Gq is a single edge in 2-space and a triangle in 3-space)
and then it either adds a new vertex with d edges to
the existing graph, or it removes an existing edge by
adding a new vertex connecting it to the end points
of the removed edge and to other d — 1 vertices in the
existing graph. The resulting graphs that we have after
each step are generically isostatic. A sample graph in
3-space created by this method is depicted in Figure 3.

3 The Closing Ranks Problem

One way to solve the closing ranks problem would be
determining links for the remaining vehicles from the
very beginning. However generating a whole new for-
mation with the remaining vehicles is not practical if
° a minimal rearrangement of links between vehicles suf-
fices to keep the formation rigid. By the minimal re-
arrangement, we mean the following in graph thecretic
terms. Assume that a generically isostatic graph G
with a vertex i is given. Let {1,2,...,n} denote the
set of vertices in G. Given that the vertex ¢ is re-
moved from the graph, we want to maintain rigidity
with the set of vertices {1,2,...,r} \ {i}. Minimal
rearrangement is preserving all the edges except the
incident edges to 7 and creating new edges such that
the new graph G* is isostatic. To maintain rigidity,
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V.A,
—p

Figure 3: The Henneberg method in 3-space. V.A. stands
for the vertex addition, E.S. stands for the edge
split. Double-lined edges indicate the edges cre-
ated for the new vertex. Dashed edges indicate
the removed edges in the edge splitting.

one might connect each pair of vertices in V;. However
this strategy would not give us a generically isostatic
graph. In fact, for the removal of a vertex of degree £k,
we need to create k(k — 1)/2 new edges with this strat-
egy. The number of new edges required for isostasy
would be £ —2 and k — 3 in 2 and 3-space respectively.
Maintaining generic isostasy in case of vertex removals
in generically isostatic frameworks was considered in
rigidity literature in {6]. One of the aims of this paper
is to draw attention to their results for applications in
vehicle formations.

3.1 Formations in 2-space

Removing a Vehicle with Two and Three Links: A
generically isostatic graph G is shown in Figure 4a.
The vertex 8 is removed with the two edges (8,5) and
(8,7) in G {Figure 4b). For maintaining rigidity, no
change is made with the remaining vertices and edges.
The vertex 1 is removed with the three edges (1,2),
(1,3) and (1,5) in G. Then one of the edges, which is
non-implicit, (2,3), (2,5} or (3,5) is created as shown
in Figure 5a. The existence of a non-implicit link was
proved in [6]. The resulting graph is generically iso-
static. The proofs are based on the vertex addition and
edge split theorems. The existence of a non-implicit
link in the subsequent analogous proofs is based on the
proofs in [6].

Removing a Vehicle with Four and Higher Number of
Links:

Lemma 3. Let G = (V,£) be a generically isostatic
graph with a verter i of degree four, which has a set
of neighboring vertices, V;. Let G* denote the resulting



(a) (b}

Figure 4: (a)The initial graph representing a point forma-
tion. (b) The vertex 8 of degree two is removed.

non-rigid graph after the vertex is removed. Then for
some choice of two non-implicit edges among the ver-
tices in Vi, the graph G** formed from G* by creating
these edges is genericelly isostatic.

Proof: We choose an isostatic graph G with the
vertex ¢ and the vertices in V;. We remove one of the
edges of i, and call it G’. To maintain isostasy we
create an edge between two points in V; which is not
implicitly present. If we add this edge, we create G”
which is isostatic and has a vertex i with degree three.
We can replace i with 2 non-implicit edge between two
vertices in V;. Hence a vertex with degree 4 can be
replaced by two edges between the verticesin V;: 0O

Figure b shows an example where the vertex 4 of de-
gree four is removed and the edges are created to main-
tain rigidity. Now, we remove a vertex with five or
higher number of edges in a rigid graph. We maintain
rigidity using the following theorem.

Theorem 4. (replacing a vertex of degree k, & > 5)
Let G = (V,£) be a generically isostatic graph with
a verter i of degree k and with a set of neighboring
vertices V;. Then, for some choice of k—2 non-implicit
edges among the vertices in V;, the graph formed by
removing © and the edges whose one end point is i, and
adding these k — 2 edges is generically isostatic.

Proof: The case for & = 4 has been shown in Lemma
3. Now we are going to show for k > 5. Assume that
the theorem holds for k = n — 1. For & = n, we choose
an isostatic graph G with vertex ¢ and the set of neigh-
boring vertices V;. We remove one of the edges of ¢, and
call it G'. To maintain isostasy we create an edge be-
tween two vertices in ¥; which is not implicitly present.
If we add this edge, we create G” which is isostatic and
has a vertex ¢ with degree n 1. From our assumption,
we can remove the vertex i by creating n— 3 new edges.
Hence, we can maintain isostasy by creating a total of
n — 2 edges in case of removing a vertex with degree
n. : 3

Vil

(a) (b)

Figure 5: {a) The vertex 1 of degree three is removed and
the edge (2,5} is created to maintain rigidity.
{b) The vertex 4 of degree four is removed and
the edges (2,6),(5,7) are created to maintain
rigidity.

3.2 Formations in 3-space

Removing a Vehicle with Three and Four Links: Given
a generically isostatic graph & as shown in Figure 8a,
consider the case when the vertex 3 with the three
edges (3,1), (3,2) and (3,5) is removed as shown in
Figure 6b. For maintaining rigidity, no changes with
the remaining vertices and edges need to be done.
Consider the case when the vertex 8 with the four
edges (8,2), (8,5), (8,7} and (8,11} is removed in
G (Pigure 7a). Rigidity is maintained as follows.
One of the edges, which is non-implicit in the set
{(2,5),(2, 7),(2, 11),(5, 7),(5,11),(7, 11)} (Figure 7b) is
created. The proofs are analogous to 2-space cases.

Removing a Vehicle with Five and Higher Number of
Links: The vertex 7 with five edges is removed as shown
in Figure 8a. To maintain rigidity with the remaining
vertices, the following theorem is used. The proof is
analogous to Lemma 3.

Lemma 5. Let G = (V,&) be a generically isostatic
graph with a vertez i of degree five and with a set of
neighboring vertices V;. Then, one of the following
is true: (i) for some choice of two non-incident edges
amang the vertices in V;, the graph Gt formed from G
by creating these edges is generically isostatic; or (ii}
Jor two choices of incident pairs of edges among the
vertices in Vi, (not all incident with a single vertex),
the two graphs G* end G® formed from G by creating
these pairs of edges are both generically isostatic.

In Figure 8b, the edges (5,10),(6,8) are created to main-
tain rigidity. Now, a vehicle with six or higher number
of links is removed in a rigid formation. . The follow-
ing theorem is used to maintain rigidity, which has an
analogous proof of Theorem 4.

Theorem 6. (replacing @ vertet of degree k, k > 6) Let
G = (V, &) be a generically isostatic graph with o vertex
i of degree k and with a set of neighboring vertices,
V;. Then, for some choice of k — 3 non-implicit edges
among the vertices in Vs, the graph formed by removing
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Figure 6: (a) A generically isostatic graph in 3-space. (b)
The vertex 3 of degree three is removed, and
the resuiting formation is still rigid.

Figure 7: (a) The vertex 8 of degree four is removed. (b)
The link (7,11) is created to maintain rigidity.

i and the edges whose end point is 1, and adding these
k — 3 edges is generically isostatic.

4 The Delaunay Formations

Here, some geometric flavor is added to the formations
created by the Henneberg method. While adding new
vertices by the vertex addition or the edge split, the
new edges will be picked in such a way that the mini-
mum angle between two incident edges in a formation
is as large as possible. The large angle property plays
a role in avoiding obstructions between vehicles. By
the Delaunay formations, three types of formations are
meant, namely the Delaunay triangulation, the mini-
mal Delaunay triengulation and the minimal Delaunay
edge formation {see Figure 9). The Delaunay triangu-
lation, well known in computer graphics and in com-
putational geometry literature, was proposed in [3] for
creating rigid point formations. A friangulation in the
plane is a partition of a point set into triangles that
meet only at shared edges. The Delaunay triangula-
tion, although rigid but not necessarily isostatic, has a
number of properties that makes it attractive [1], [2].
It maximizes the minimum angle of all triangulations
of a given vertex set. It is composed of the Delau-
nay triangles. A triangle is Delaunay if and only if
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Figure 8: (a) The vertex 7 of degree five is removed. (b)
The links (5,10), (6,8) are created to maintain
rigidity.

the circumcircle of the triangle does not enclose any
other vertex. By circumcircle is meant the circle pass-
ing through the vertices of a triangle. Secondly the
distance between any two vertices in the Delaunay tri-
angulation is at most a constant times the Euclidean
distance. Finally, empirical results suggest that in any
dimension the edge skeleton of the Delaunay triangu-
lation usually has small vertex degree and small total
length [2].

There are often implicit edges in the Delaunay triangu-
lation and this is undesirable for formations with min-
imum communications/sensing links. Here two meth-
ods of avoiding implicit edges are proposed while still
using the nice property of large angles between the De-
launay edges. These methods can be extended to 3-
space. These two types of formations are called the
minimal Delaunay triangulation and the minimal De-
launay edge formation. While the minimal Delaunay
triangulation is composed of triangles, the minimal De-
launay edge formation is not necessarily. Let ¢ and j
be two vertices in V. An edge (¢,7) is called a De-
launay edge if and only if there exists a circle passing
through ¢ and 7 that does not enclose any other vertex
in V. An isostatic point formation with the Delaunay
edges is called the minimal Delaunay edge formation.
Note that the minimal Delaunay triangulations and the
minimal Delaunay edge formations are created by the
Henneberg method by using the Delaunay triangle and
the Delaunay edge properties. In the sequel we give a
way of creating these two types of formations.

Creating the Minimal Delaunay Triangulations:
We add two edges for each vertex addition to the end
points of an existing edge in the point formation such
that the resulting triangle has the smallest circumcircle.
To meet our goals in measure of angles, we apply edge
flipping in the resulting point formation.

Creating the Minimal Delaunay Edge Forma-
tions: We add two non-implicit edges with minimum
lengths for each vertex addition. To meet our goals in



(a) (b} ()

Figure 9: (a) The Delaunay triangulation of a given vertex
set. (b) The minimal Delaunay triangulation of
the satne vertex set. (¢} The minimal Delaunay
edge formation of the same vertex set.

measure of angles, we apply edge flipping in the result-
ing point formation.

5 Closing Ranks in the Delaunay Formations

The Delauncy Triangulotions: We state the follow-
ing theorem for maintaining rigidity and the Delaunay
property in case of vertex removals in a formation cre-
ated by the Delaunay triangulation.

Theorem 7. Let Fy, = (V, L) be o generically rigid
point formation created by the Delaunay triangulation.
When a point p; is removed from Fy, the polygonal re-
gton consisting of all the triangles that are incident to
p; s retriangulated satisfying the Delaunay property.
Let ¥}, denote the resulting point formation. Then F,
is a generically rigid point formation.

The Minimal Delaunay Trianguletions: For closing
ranks, we use Theorem 7 as in the case of the Delau-
nay triangulations with the condition of one triangle
per vertex as explained in creating the minimal Delau-
nay triangulations.

The Minimol Delaunay Edge Formations: For closing
ranks, we need to create a set of K — 2 and k — 3 non-
implicit links for a vertex of degree & in 2 and 3-space
respectively as in the case of isostatic graphs, where
each edge satisfies the Delaunay property. An example
is shown in Figure 10. A minimal Delaunay edge forma-
tion showing the vertex and its edges (dotted lines) to
be removed is depicted in Figure 10a. The new edges
(double lines) are created to maintain rigidity where
each edge is a Delaunay edge (Figure 10b}.

Remark 8. Proposed methods can be extended to 3-
space.
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Figure 10: (a) A minimal Delaunay edge formation show-
ing the vertex and edges (with dotted lines)
to be removed, (b) New edges (depicted by
double lines) are created to maintain rigidity
where each edge is a Delaunay edge.

6 Conclusions

A systematic way of maintaining rigidity in case of ve-
hicle removals in formations for coordinating mobile
autonomous vehicles with the minimum communica-
tion/sensing links is presented. The method creates
the minimum number of new links while preserving the
ones that have not been removed. Hence, creating a
new formation from the very beginning is not needed.
The method can be applied to removed vehicles with
any number of links in both 2 and 3-space. The min-
imal Delaunay edge formations, which are formations
created by the Henneberg method with some geometric
properties, are also introduced. Splitting-merging and
reconfiguration of rigid formations will be presented in
a separate paper.
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