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Abstract

This paper deals with the problem of switching between several linear time-invariant (LTI) controllers—all of them capable of stabilizing
a speci4c LTI process—in such a way that the stability of the closed-loop system is guaranteed for any switching sequence. We show
that it is possible to 4nd realizations for any given family of controller transfer matrices so that the closed-loop system remains stable,
no matter how we switch among the controller. The motivation for this problem is the control of complex systems where con8icting
requirements make a single LTI controller unsuitable.
? 2002 Published by Elsevier Science Ltd.
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1. Introduction

Given a 4nite set of matricesA := {Ap:p∈P}, consider
the linear time-varying system

ẋ = A�x; (1)

where � denotes a piecewise constant “switching signal”
taking values on P. The following question has often been
posed: “Under what conditions is the system (1) uniformly
asymptotically stable for every piecewise constant switching
signal �?” (Molchanov & Pyatnitskiy, 1989; Narendra &
Balakrishnan, 1994; Boyd, Ghaoui, Feron, & Balakrishnan,
1994; Morse, 1995; Gurvits, 1996; Tsitsiklis & Blondel,
1997; Shorten & Narendra, 1997; Yoshihiro Mori & Kuroe,
1997; Dayawansa & Martin, 1999; Liberzon, Hespanha, &
Morse, 1999; Liberzon, & Morse, 1999). In Gurvits (1996)
it is shown that uniform asymptotic stability of (1) for ev-
ery switching signal � is equivalent to the existence of an
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induced norm ‖ · ‖∗ and a positive constant � such that

‖eAt‖∗6 e−�t ∀t¿ 0; ∀A∈A:

In Dayawansa and Martin (1999) it is shown that uniform
asymptotic stability of (1) for every switching signal � is
also equivalent to the existence of a common Lyapunov
function (not necessarily quadratic) for the family of lin-
ear time-invariant systems {ż = Apz:p∈P}. However, the
proofs in Gurvits (1996), Dayawansa and Martin (1999)
are not constructive and not amenable to test the stabil-
ity of general switched system. By Narendra and Balakr-
ishnan (1994), Shorten and Narendra (1997), Liberzon et
al. (1999) provide simple algebraic conditions on the ele-
ments of A, which are suNcient for the existence of a com-
mon quadratic Lyapunov function for the family of linear
time-invariant systems {ż = Apz:p∈P}, and therefore for
the uniform asymptotic stability of (1) for every switching
signal �. However, it is known that none of these conditions
are necessary for the stability of the switched system. For
more on this topic see Boyd et al. (1994), Morse (1995),
Liberzon and Morse (1999) and references therein.
A simple and general test to check the uniform asymp-

totic stability of (1), for every switching signal �, has
eluded researchers for more than a decade. However, when
systems like (1) arise in control problems, in general, the
matrices in A have speci4c structures. In fact, these ma-
trices are often obtained from the feedback connection of
a 4xed process with one of several controllers, and the
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switching signal � determines which controller is in the
feedback loop at each instant of time. One can then pose
the question if, by appropriate choice of the realizations
for the controllers, it is possible to make the system (1)
uniformly asymptotically stable for every switching signal
�. This is precisely the question addressed in this paper.
The motivation for this problem is the control of com-
plex systems where con8icting requirements make a single
linear time-invariant controller unsuitable. The reader is re-
ferred to Boyd and Barratt (1991) for a detailed discussion
on the tradeoPs that arise when a single linear controller
is used to meet multiple performance speci4cations (e.g.,
involving bandwidth, time response, robustness with re-
spect to modeling errors, etc.). Controller switching to
improve the tradeoP in design objectives has been proposed
in a few papers. In Hespanha and Morse (1996), a logic
was devised to orchestrate the switching between several
controllers, some with high-performance=low-robustness
and others with low-performance=high-robustness. In Eker
and Malmborg (1999), switching among PID controllers
was used to achieve fast step response without overshoot. In
Section 5, we illustrate the use of switching in the control of
the roll angle of an aircraft. We design two controllers: the
4rst is slow but has good noise rejection properties, whereas
the second is fast but very sensitive to measurement noise.
By switching between the controllers, we are able to achieve
good noise rejection when the noise is large and yet obtain
a fast response when the noise is small (cf. Fig. 6). The
method used to implement the switching controller guaran-
tees stability regardless of the algorithm used to command
the switching between the controllers. This means that one
can use simpleminded algorithms to switch between the
two controllers, without fear of causing instability.
In this paper, we assume that the process P to be con-

trolled is modeled by a linear, time-invariant, stabilizable
and detectable system of the form

ẋP = AxP + Bu; y = CxP: (2)

We take as given a family of controller transfer matrices
K := {Kp:p∈P} with the property that, for each p∈P,
the feedback interconnection of (2) with any stabilizable
and detectable realization of Kp is asymptotically stable.
Let then ẋp = Apxp denote the system that results from the
pth such interconnection. The main result of this paper is to
prove that if the controller realizations are chosen properly,
then for any piecewise constant signal �: [0;∞) → P, the
switched system

ẋ = A�x (3)

will be uniformly exponentially stable. That the stability of
(3) should be controller realization dependent is not surpris-
ing, but the fact that there is actually a way to realize the
controllers that is guaranteed to achieve stability for every �
perhaps is. The approach we use to establish this result re-
lies on the fact that all the controller transfer matrices can be
expressed using the Youla parameterization with a distinct

value of the Youla parameter for each controller (Youla,
Jabr, & Bongiorno, 1976). Switching between controllers
can thus be reduced to switching between the corresponding
values of the parameter. The same idea has been indepen-
dently discovered by Packard (1995) but was not published.
The Youla parameters used to represent the controller

transfer matrices in K are stable transfer matrices. An im-
portant step in the overall controller realization procedure is
to select realizations for the individual Youla parameters so
that switching between them results in a stable time-varying
system S(�). There are two ways to accomplish this: The
4rst is to develop realizations for the Youla parameters for
which there is a common Lyapunov function. In the second,
the state of S(�) is reset at switching times resulting in what
is often called a “system with impulse ePects”. We show
that both approaches are possible. The idea of reseting part
of the controller state dates as far back as the 1950s with the
Clegg Integrator (Clegg, 1958) and later with Horowitz and
Rosenbaum’s 4rst-order reset elements (FORE) (Horowitz
& Rosenbaum, 1975). The reader is referred to (Hollot,
Beker, & Chait, 2001) for more recent references on this
form of “reset control”, whose goal is to improve transient
performance.
The problem addressed in this paper is precisely formu-

lated in Section 2. In Section 3, we derive some basic re-
sults to study the stability of systems with impulse ePects.
These results are used in Section 4 to construct the desired
realizations for the controller transfer functions: in 4.1, we
motivate the construction by considering the simpler case
of a single-input=single-output stable process and in 4.2, we
address the general case. A simple illustrative example is
presented in Section 5. Section 6 contains some concluding
remarks and directions for future research. A preliminary
version of the results in this paper was presented at the 12th
International Symposium on the Mathematical Theory of
Networks and Systematics, St. Louis, MO, June 1996. These
were subsequently improved in the Ph.D. thesis (Hespanha,
1998).

2. Stable controller switching

The feedback con4guration used in this paper is shown
in Fig. 1. In this 4gure, u denotes the control input, y the
process output, r a bounded reference signal, d an unknown
but bounded input disturbance, and n unknown but bounded
measurement noise. The process will be denoted by P and is

Fig. 1. Feedback con4guration.
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assumed to be a multivariable linear time-invariant system
with strictly proper transfer matrix HP. We say that a given
controller transfer matrix K stabilizes HP if, for any stabiliz-
able and detectable realizations {A; B; C} and {F;G;H; J}
of HP and K , respectively, the feedback connection shown
in Fig. 1 is asymptotically stable, i.e., all the poles of the
matrix[

A− BJC BH

−GC F

]
(4)

have negative real part. We recall that a quadruple of ma-
trices {A; B; C; D} is called a realization for a transfer ma-
trix H if H (s) = C(sI − A)−1B+D for every s∈C. When
the matrix D is equal to zero one often writes simply that
{A; B; C} is a realization for H .
Consider now a 4nite set of controller transfer matrices

K={Kp:p∈P} each stabilizing the process transfer matrix
HP. The general problem under consideration is to build a
“multi-controller” that ePectively switches among the trans-
fer functions in K. In this context, a multi-controller is a
dynamical system C(�) with two inputs �, eT and one out-
put uC. The input �: [0;∞) → P is piecewise constant and
is called a switching signal. While � remains constant and
equal to some p∈P, C(�) is required to behave as a linear
time-invariant system with transfer function Kp from its in-
put eT to its output uC. The multi-controller design problem
is nontrivial because we also require that all the closed-loop
signals remain bounded for every possible switching signal
in the setS of all piecewise constant switching signals. The
times at which a signal �∈S is discontinuous are called
the switching times of �. For simplicity of notation we take
all signals in S to be continuous from above at switching
times, i.e., if t1 and t2 are two consecutive switching times
of �∈S then � is constant on [t1; t2).

To build a multi-controller we start by selecting
nC-dimensional stabilizable and detectable realizations
{Fp; Gp; Hp; Jp} for each Kp in K. Over any open in-
terval on which a switching signal �∈S is constant, the
multi-controller C(�) is then de4ned by the following
dynamical system

ẋC = F�xC + G�eT; uC = H�xC + J�eT (5)

which possesses the desired transfer function from eT to uC.
By itself, (5) does not determine what happens to xC at the
switching times of �. A rule must therefore be speci4ed
to determine the value of xC immediately after a switching
time. Such a rule takes the general form 3

xC(t) = r(xC(t−); �(t); �(t−));

3 Here and in the sequel, given a signal z we denote by z(t−) the limit
of z(�) as � → t from below, i.e., z(t−) := lim�↑t z(�). Without loss of
generality we take xC to be continuous from above at every point, i.e.,
xC(t) = lim�↓t xC(�).

Fig. 2. Feedback connection between P and C(�).

where r:RnC ×P×P → RnC is called a reset map. In this
paper, we restrict reset maps to be linear functions of xC, i.e.,

xC(t) = RC(�(t); �(t−))xC(t−); (6)

where the RC(p; q)∈RnC×nC , p; q∈P, are called reset ma-
trices. Systems like the one de4ned by (5)–(6) are often
called systems with impulse e9ects (cf. Bainov & Simeonov,
1989; Ye, Michel, & Hou, 1998 and references therein).
Consider now the feedback connection between C(�) and

P in Fig. 2 and let {A; B; C} denote an nP-dimensional sta-
bilizable and detectable realization for the process transfer
function HP. Over any open interval on which �∈S is con-
stant, the feedback connection in Fig. 2 corresponds to the
dynamical system

ẋ = A�x + B�w; y = Cx (7)

with x := [x′P x′C]
′, w := [d′ r′ − n′]′, C := [C 0], and

Ap:=

[
A−B Jp C BHp

−Gp C Fp

]
; Bp:=

[
B 0

0 Gp;

]
; p∈P;

(8)

whereas, at a switching time t,

x(t) = R(�(t); �(t−))x(t−) (9)

with

R(p; q) :=

[
InP 0

0 RC(p; q)

]
; p; q∈P: (10)

Since each transfer matrix inK stabilizes HP, (7) is asymp-
totically stable for any constant �(t) = p∈P, t¿ 0. But,
in general, this is not enough to guarantee that the state of
(7)–(9) remains bounded for every �∈S. Examples of un-
stable behavior resulting from the switching amount stable
systems are well known and can be found, e.g., in Branicky
(1998) or the recent survey (Liberzon & Morse, 1999).
The problem under consideration can then be summarized

as follows: Given the family K of controller transfer func-
tions, compute reset matrices and realizations for the transfer
functions inK so that the state x of the closed-loop switched
system (7)–(9) remains bounded for every switching signal
�∈S and every bounded piecewise continuous exogenous
inputs r, n, and d. We shall also require x to decay to zero,
when r= d = n = 0.
In this paper, we assume that the set of controllers is 4-

nite just for simplicity. The 4niteness assumption could be
replaced by appropriate uniformity assumptions. For exam-
ple, one could require compactness of P and continuity of
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the coeNcients of the controller transfer matrices with re-
spect to the parameter p.

3. Stability of systems with impulse e�ects

Consider the n-dimensional homogeneous linear system
with impulse ePects de4ned by

ż = A�z; (11)

on intervals where the switching signal �∈S remains con-
stant, and by

z(t) = R(�(t); �(t−))z(t−) (12)

at each switching time t of �. The solution to (11)–(12) can
be written as

z(t) = �(t; t0; �)z(t0); t; t0 ∈R; (13)

where �(t; t0; �) denotes the state-transition matrix of
(11)–(12) and is de4ned by

�(t; t0; �) := e(t−tm)A�(tm)

m−1∏
k=1

R(�(tk+1); �(tk))e(tk+1−tk )A�(tk ) :

Here {t1; t2; : : : ; tm} denote the switching times of � in the
interval (t0; t]. The system (11)–(12) is called exponentially
stable, uniformly over S, if there exist positive constants
c; ! such that, 4 for every �∈S,

‖�(t; t0; �)‖6 ce−!(t−t0) ∀t; t0¿ 0: (14)

State-transition matrices of systems with impulse ePects
share many of the properties of the usual state transition
matrices for linear systems. 5 In particular, for any �∈S
and �∈R, (i) �(�; �; �) = In, (ii)

d
dt

�(t; �; �) = A�(t)�(t; �; �)

for t in the interior of an interval on which �∈S is constant,
and (iii)

�(t; �; �) = R(�(t); �(t−))�(t−; �; �)

for each switching time t. From the previous properties
it is also straightforward to conclude that the variation
of constants formula holds for non-homogeneous systems
with impulse ePects. In fact, the solution to the system
de4ned by

ẋ = A�x + B�w (15)

on intervals where �∈S remains constant and by

x(t) = R(�(t); �(t−))x(t−) (16)

4 Given a vector v and a matrix A we denote by ‖v‖ and ‖A‖ the
Euclidean norm of v and the largest singular value of A, respectively.

5 However, one should keep in mind that � does not share all properties
of the usual state transition matrices, e.g., it may become singular.

at each switching time t of �, can be written as

x(t) = �(t; t0; �)x(t0) +
∫ t

t0
�(t; �)B�(�)w(�) d�;

t; t0 ∈R:
(17)

It is then straightforward to show that x will remain bounded
for every �∈S and bounded piecewise continuous w,
as long as (11)–(12) is exponentially stable, uniformly
over S.
Suppose now that there exist symmetric, positive de4nite

matrices {Qp ∈Rn×n:p∈P}, such that

QpAp + A′
pQp ¡ 0; p∈P (18)

and

R(p; q)′QpR(p; q)6Qq; p; q∈P: (19)

Eq. (18) guarantees that, on any interval where � re-
mains constant and equal to p∈P, the positive de4nite
Lyapunov-like function Vp(z) := z′Qpz, decreases expo-
nentially along solutions to (11). Indeed, on such an interval

d
dt

Vp(z(t)) = z(t)′(QpAp + A′
pQp)z(t)

6−2!Vp(z(t)) (20)

for suNciently small !¿ 0. Moreover, because of (19),
when � switches from q := �(t−) to p := �(t), we have

Vp(z(t)) := z(t)′Qpz(t) = z(t−)′R(p; q)′QpR(p; q)z(t−)

6 z(t−)′Qqz(t−)=:Vq(z(t−)): (21)

From (20)–(21) we then conclude that

V�(t)(z(t))6 e−2!(t−t0)V�(t0)(z(t0));∈ t¿ t0; (22)

along solutions to (11)–(12). Note that V�(t)(z(t)) may be
discontinuous at switching times but its value will always
decrease at these times because of (21). Since V�(t)(z(t))
is quadratic and the Qp are positive de4nite, from (22) we
actually conclude that

‖z(t)‖6 ce−!(t−t0)‖z(t0)‖;
with c :=maxp;q∈P ‖Qp‖ ‖Q−1

q ‖. This and (13) prove that
(14) holds true for every �∈S and therefore (11)–(12)
is exponentially stable, uniformly over S. Similar analysis
using multiple Lyapunov functions can be found, e.g., in
Ye et al. (1998), Branicky (1998), in the context of hybrid
systems. The following can then be stated:

Lemma 1. Assume that there exist symmetric matrices
{Qp ∈Rn×n:p∈P}; for which (18)–(19) hold. Then the
homogeneous system (11)–(12) is exponentially stable;
uniformly over S. Moreover; for every switching signal
�∈S and every bounded piecewise continuous signal w;
the state x of the non-homogeneous system (15)–(16) is
bounded.
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It is interesting to consider two special cases of the pre-
vious result. The 4rst corresponds to a complete state reset,
i.e., R(p; q) = 0, for all p; q∈P. In this case, (19) is triv-
ially true and the only requirement for the stability of the
switched system is that each Ap be asymptotically stable.
Note that this is enough for the existence of the positive
de4nite matrices {Qp:p∈P} for which (18) holds.
Another important case is the absence of state reset, i.e.,

when all the R(p; q), p; q∈P, are equal to the identity ma-
trix. In this case, (19) actually requires all the Qp to be the
same because it demands both Qp6Qq and Qq6Qp, for
all p; q∈P. Inequalities (18)–(19) then demand the exis-
tence of a common Lyapunov function for the family of
linear time-invariant systems {ż = Apz:p∈P}. This is a
well-known suNcient condition for the exponential stabil-
ity of the switched system (7). Later, we will see that it is
actually possible to always choose realizations for the con-
trollers so that a common Lyapunov function exists for the
closed-loop systems. This avoids the need to reset the state
of the controllers.
In the remainder of this paper we address the question

of computing reset matrices and realizations for the transfer
functions in K so that (18)–(19) hold for the closed-loop
matrices Ap in (8). Because of Lemma 1, this will guarantee
that, for every switching signal �∈S and every bounded
piecewise continuous exogenous signals r, n, and d, the state
x of (7)–(9) is bounded. Moreover, when r= d = n = 0, x
decays to zero exponentially fast with a rate of decay that
is independent of �. Before proceeding two remarks should
be made about Lemma 1:

Remark 2. The exponential stability of (11)–(12) guaran-
tees that system (7)–(9) remains stable under small pertur-
bations to the dynamics of the system. A detailed discussion
of this issue for systems without impulsive ePects can be
found; e.g.; in Khalil (1992); Section 4.5. It is straightfor-
ward to extend these results to the systems considered here.

Remark 3. In case the Lyapunov inequalities (18) were re-
placed by the Riccati inequalities

QpAp + A′
pQp + C′

pCp + '−2QpBpB′
pQp6 0; p∈P;

then we would actually be able to conclude that the L2

induced norm from w to

y :=C�x

is no larger than '; along trajectories of the switched system
(18)–(19). This could be proved by showing that

V�(t)(z(t)) := z(t)′Q�(t)z(t) +
∫ t

0
(‖y‖2 − '2‖w‖2) d�

is nonincreasing; and therefore that∫ t

0
(‖y‖2 − '2‖w‖2) d�6− z(t)′Q�(t)z(t)6 0;

Fig. 3. Block diagram corresponding to Eq. (25). The transfer function
from eT to uC is given by (24), which expresses Kp in terms of Sp
(stable process case).

for zero initial conditions. Analogous results could be de-
rived to establish the dissipativeness of (18)–(19); as well
as more general integral quadratic constrains (Megretski &
Rantzer; 1997) that can be expressed in terms of linear and
bilinear matrix inequalities (Boyd et al.; 1994).

4. Realizations for controller transfer matrices

We now return to the problem formulated in Section 2.
To motivate the approach we start by considering the case of
a single-input=single-output asymptotically stable process.

4.1. Single-input=single-output stable process

Suppose we connect the process to a controller with trans-
fer function Kp, p∈P, as in Fig. 1. The transfer function
from r to uC is then given by

Sp :=
Kp

1 + KpHP
: (23)

Since Kp stabilizes HP, Sp must be asymptotically stable.
From (23) we also conclude that

Kp =
Sp

1− HPSp
; (24)

and therefore the transfer function Kp from eT to uC can be
de4ned implicitly by the following system of equations 6

(cf. Fig. 3):

uC = Sp ◦ e; e :=HP ◦ uC + eT: (25)

Since only Sp in (25) changes from controller to controller,
this suggests a mechanism for switching among the con-
troller transfer functions in K:

(1) Pick stabilizable and detectable nS -dimensional realiza-
tions { VAp; VBp; VCp; VDp} for each Sp, p∈P, de4ned by
(23).

6 Given a transfer matrix H :C → Cm×n and a piecewise constant
signal u: [0;∞) → Rn, H ◦u denotes the signal de4ned by the convolution
of the impulse response of H with u.
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Fig. 4. Multicontroller C(�) inspired by the implicit de4nition of Kp

given by (25) and the corresponding block diagram in Fig. 3 (stable
process case).

Fig. 5. Feedback connection between P and C(�).

(2) De4ne S(�) to be the system with impulse ePects
de4ned by

ẋ = VA�x + VB�e; uC = VC�x + VD�e;

on intervals where � is constant and by

x(t) = VR(�(t); �(t−))x(t−);

at each switching time t of �. For the time being we do
not commit to a particular choice for the reset matrices
{ VR(p; q):p; q∈P}.

(3) Inspired by the implicit de4nition of Kp given by (25)
(and the corresponding block diagram in Fig. 3), we
realize the switching controller as in Fig. 4. This corre-
sponds to the multi-controller in (5)–(6) with

Fp :=

[
A B VCp

VBpC VAp

]
; Gp :=

[
B VDp

VBp

]
;

Hp := [ VDpC VCp ]; Jp := VDp

and

RC(p; q) :=

[
I 0

0 VR(p; q)

]
;

where {A; B; C} is a stabilizable and detectable realiza-
tion for HP.

Suppose now that we connect this multi-controller to the
process as in Fig. 5. Because the process is stable, no matter
what uC turns out to be, we have

e = eT + HP ◦ uC + *1; (26)

where *1(t) is a signal that converges to zero exponentially
fast and is due to nonzero initial conditions in the “copy”

of the process inside the multi-controller. Also, for any uC,

eT = r− n − HP ◦ (uC + d) + *2; (27)

where *2(t) also converges to zero exponentially fast and is
due to nonzero initial conditions in the “real” process. From
(26)–(27) we then conclude that

e = r− n − HP ◦ d + *1 + *2: (28)

This shows that e is independent of � and will remain
bounded, provided that r, n, and d are bounded.
Suppose now that we choose the reset matrices

{ VR(p; q):p; q∈P} so that there exist symmetric, positive
de4nite matrices { VQp ∈Rn×n:p∈P} for which

VQp
VAp + VA

′
p
VQp ¡ 0; VR(p; q)′ VQp

VR(p; q)6 VQq;

p; q∈P:
(29)

Then, because of Lemma 1, S(�) is exponentially stable, uni-
formly overS and its state x and output uC remain bounded
for every �∈S. Because of (27), eT is then also bounded,
as well as all other signals. Moreover, if r= d= n= 0 then
e converges to zero exponentially fast, because of (28), and
so does uC and all the remaining signals.

It turns out that the overall closed-loop switched system
(7)–(9), with the multi-controller built as above, is expo-
nentially stable, uniformly overS. This means that the prop-
erties derived above (namely, the boundedness of its state
and convergence to zero in the absence of exogenous in-
puts) are robust with respect to small perturbations to the
dynamics of the system (cf. Remark 2). In particular, these
properties hold even if the “copy” of the process inside the
multi-controller does not match exactly the real process. The
fact that (7)–(9) is exponentially stable will be proved be-
low for the general case.

Remark 4. The choice of reset maps for which (29) holds
is always possible. Either by enforcing complete reset; i.e.;
VR(p; q) = 0; for all p; q∈P; or by avoiding reset altogether
through the choice of realizations for the {Sp:p∈P}; for
which there is a common quadratic Lyapunov function. The
latter is always possible as seen in Lemma 7 in the appendix.

4.2. General linear time-invariant process

The reader familiar with the Youla parameterization
(Youla et al., 1976) probably recognized (24) as the
general form of any controller that stabilizes the stable
process HP. It is well known that this formula can be
generalized to multiple-input=multiple-output unstable lin-
ear time-invariant processes. We shall see shortly that the
general formula is still amenable to the construction of
multi-controllers adequate for stable switching.
Consider a multiple-input=multiple-output, possibly un-

stable, process transfer function HP. To proceed we pick
some controller transfer matrix K that stabilizes HP. For
example, one can take K to be one of the elements of K.
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Because K stabilizes HP, it is known 7 that there exist ma-
trices AE , BE , CE , DE , FE , and GE (with appropriate di-
mensions) such that AE is a stability matrix, and {AE +
DECE; BE; CE} and {AE − BEFE; DE − BEGE; FE; GE} are
stabilizable and detectable realizations of HP and K , respec-
tively.
Suppose that, for each p∈P, we de4ne

Sp := (−YC + XCKp)(XP + YPKp)−1; (30)

where the four transfer matrices XC, YC, YP, and XP are
de4ned by[

XC −YC

YP XP

]
:=

[
FE

CE

]
(sI − AE)−1[ BE −DE ]

+

[
I −GE

0 I

]
: (31)

Using the fact that Kp stabilizes HP it is possible to es-
tablish that the poles of Sp must have negative real part.
A straightforward derivation of this, using state-space
methods, can be found in the appendix. This can also be
proved using transfer function methods (cf. Remark 10 in
Appendix A).
Solving (30) for Kp, we obtain

Kp = (XC − SpYP)−1(YC + SpXP): (32)

Therefore the transfer function Kp from eT to uC can be
de4ned implicitly by the following system of equations:[

u

e

]
=

[
XC − I −YC

YP XP

]
◦
[
uC

eT

]
; v= Sp ◦ e;

uC = v− u: (33)

This is because we conclude from (33) that

uC = v− u= Sp ◦ (YP ◦ uC + XP ◦ eT)
− (XC ◦ uC − uC − YC ◦ eT)

=−(XC − I − SpYP) ◦ uC + (YC + SpXP) ◦ eT
and therefore

(XC − SpYP) ◦ uC = (YC + SpXP) ◦ eT:
The transfer function in (32) follows directly. Pick now a
realization { VAp; VBp; VCp; VDp} for Sp. Because of (31), the
system of equations (33) can be realized as

ẋ = VApx + VBpe; v= VCp Vx + VDpe; (34)

ẋE = AExE + BEuC − DEeT; e = CExE + eT; (35)

uC =−FExE + GEeT + v (36)

7 Cf. Lemma 8 in Appendix A, which is a reformulation of results that
can be found in Youla et al. (1976), Francis (1985), Tay, Moore, and
Horowitz (1989).

which must then realize Kp. It is important to note that
only (34) changes from controller to controller. We
shall use (33)—or more precisely, its state space version
(34)–(36)—to guide us in constructing the multi-controller.
Indeed, (33) will replace Eq. (25) used in Section 4.1 for
the same ePect. The following steps are required:

(1) Pick stabilizable and detectable nS -dimensional
realizations { VAp; VBp; VCp; VDp} for each Sp, p∈P,
de4ned by (30).

(2) De4ne S(�) to be the system with impulse ePects
de4ned by

ẋ = VA�x + VB�e; v= VC�x + VD�e;

on intervals where � is constant and by

x(t) = VR(�(t); �(t−)) x(t−);

at each switching time t of �. The reset matri-
ces { VR(p; q):p; q∈P} should be chosen so that
there exist symmetric, positive de4nite matrices
{ VQp ∈Rn×n:p∈P}, such that

VQp
VAp + VA

′
p
VQp ¡ 0; VR(p; q)′ VQp

VR(p; q)6 VQq;

p; q∈P: (37)

Because of Lemma 1, S(�) is exponentially stable, uni-
formly over S. Also here, the choice of reset maps for
which (37) holds is always possible (cf. Remark 4).

(3) Realize the switching controller as

ẋE = AExE + BEuC − DEeT; e = CExE + eT;

uC =−FExE + GEeT + v;

where e and v are the input and output of S(�), respec-
tively. This corresponds to the multi-controller in (5)–
(6) with

Fp :=

[
AE − BEFE + BE VDpCE BE VCp

VBpCE VAp

]
;

Gp :=

[−DE + BE( VDp + GE)

VBp

]
;

(38)

Hp := [− FE + VDpCE VCp]; Jp := VDp + GE (39)

and

RC(p; q) :=

[
I 0

0 VR(p; q)

]
: (40)

As in the case of single-input=single-output stable processes,
it is possible to show that the signal e is independent of
� and remains bounded. However, instead of proceeding
along this line of reasoning, we shall show directly that
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the overall closed-loop switched system (7)–(9), with the
multi-controller built as above, is exponentially stable, uni-
formly over S.

Theorem 5. There exist symmetric matrices {Qp:p∈P}
for which (18)–(19) hold with {Ap; R(p; q):p; q∈P} as
in (8) and (10); where the process realization {A; B; C} is
given by

A :=AE + DECE; B :=BE; C :=CE; (41)

the controller realizations {Fp; Gp; Hp; Jp:p∈P} are
given by (38)–(39); and the controller reset matrices
{RC(p; q):p; q∈P} are given by (40). The closed-loop
system with impulse e9ects (7)–(9) is therefore exponen-
tially stable; uniformly over S.

Before proving Theorem 5, it should be noted that, in gen-
eral, the realizations given by (38)–(39) are not minimal.
However, denoting by nK the McMillan degree of K , by nH

the McMillan degree ofHP, and by nK the McMillan degree
of the transfer matrix in K with largest McMillan degree,
the size of AE need not be larger than nH + nK (cf. Lemma
8) and therefore the dimension of the state of the realiza-
tions (38)–(39) need not be larger than 2(nH +nK)+nK no
matter what the number of controllers inK is. When K is
chosen to have the structure of an observer with state feed-
back, i.e., when HP and K have realizations {A; B; C} and
{A + HC − BF;H; F}, respectively, the size of the matrix
AE need not be larger than nH (cf. Remark 9) and therefore
the dimension of the state of the realizations (38)–(39) can
be reduced to 2nH + nK.

Proof. Replacing (38)–(39) and (41) in (8); one obtains
for the closed-loop system:

Ap =




AE+DECE−BE( VDp+GE)CE −BEFE+BE VDpCE BE VCp

DECE−BE( VDp+GE)CE AE−BEFE+BE VDpCE BE VCp

− VBpCE VBpCE VAp


 ;

p∈P:

De4ning T :=
[

I 0 0
0 0 I
−I I 0

]
; one further concludes that

TApT−1 =




AE+DECE−BEFE−BEGECE BE VCp −BEFE+BE VDpCE

0 VAp VBpCE

0 0 AE


 :

(42)

Here; we used the fact that T−1 =
[

I 0 0
I 0 I
0 I 0

]
. Since K

stabilizes HP and {AE + DECE; BE; CE} and {AE − BEFE;

DE −BEGE; FE; GE} are stabilizable and detectable realiza-
tions of HP and K; respectively; the matrix

VAE :=

[
AE + DECE − BEGECE BEFE

−(DE − BEGE)CE AE − BEFE

]
(43)

is asymptotically stable (cf. right-hand side of (43) against
(4)). Therefore;

TE VAET−1
E =

[
AE + DECE − BEFE − BEGECE BEFE

0 AE

]
;

with TE :=
[

I 0
I I

]
; T−1

E =
[

I 0
−I I

]
is also asymptotically

stable. The matrices AE + DECE − BEFE − BEGECE and
AE must then be asymptotically stable and so there exist
positive de4nite symmetric matrices Q1; Q2 such that

Q1(AE + DECE − BEFE − BEGECE)

+ (AE + DECE − BEFE − BEGECE)′Q1 =−I; (44)

Q2AE + A′
EQ2 =−I: (45)

Moreover; because of (37); each

Pp := − VQp
VAp − VA

′
p
VQp; p∈P;

is positive de4nite. Therefore; there must exist a positive
constant *; suNciently small; such that

Pp − * VQp
VBpCEC′

E
VB
′
p
VQp ¿ 0; ∀p∈P;

which guarantees that each

Rp := *

[
Pp − VQp

VBpCE

−C′
E
VB
′
p
VQp *−1I

]
; p∈P; (46)

is also positive de4nite (cf. Boyd et al.; 1994; Section 2.1).
Let now

Qp :=T ′



*1Q1 0 0

0 * VQp 0

0 0 Q2;


T (47)

with

*1 :=
1
2

(
max
p∈P

‖Q1SpR−1
p S ′

pQ1‖
)−1

; (48)

where; for each p∈P;

Sp := [ BE VCp −BEFE + BE VDpCE: ] (49)

From (42); (44)–(45); (46); (47); and (49) one concludes
that

QpAp + A′
pQp =−*1T ′

[
I −Q1Sp

−S ′
pQ1 *−1

1 Rp

]
T; p∈P:

(50)
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But; because of (48); I − *1Q1SpR−1
p Q1Sp ¿ 0 for each

p∈P; thus[
I −Q1Sp

−S ′
pQ1 *−1

1 Rp

]
¿ 0; p∈P

(cf. Boyd et al.; 1994; Section 2.1). From this and (50) one
concludes that (18) holds.
Inequality (19) is a straightforward consequence of the

de4nitions of the Qp in (47) and the R(p; q) in (10), (40).
Indeed, from these de4nitions one concludes that

R(p; q)′QpR(p; q)− Qq

=



0 0 0

0 0 0

0 0 *( VR(p; q)′ VQp
VR(p; q)− VQq)


 ; p; q∈P:

The matrix on the right-hand side is negative semi-de4nite
because of (37).

Remark 6. In Theorem 5; we proved the existence of
the matrices {Qp:p∈P} needed to apply Lemma 1 for
a speci4c realization (41) of the process transfer matrix
HP. This may not be the “actual” realization of the pro-
cess and not even similar to it (as (41) may not be mini-
mal). However; this is irrelevant as far as the exponential
stability of the switched system is concerned because
(i) asymptotically stable modes of the process that are
not observable do not aPect the switched controller and
(ii) only the controllable modes of the process can be
excited by the multi-controller.

5. Example

In this section, we brie8y illustrate how to utilize the
results presented above in a design problem. We consider
here the control of the roll angle of an aircraft. The following
process model was taken from Vegte (1994, p. 381):

HP(s) =
−1000

s(s+ 0:875)(s+ 50)
:

Ideally, one would like to design a controller that is both
fast and has good measurement noise rejection properties.
Clearly this is not possible, as increasing the bandwidth
of the closed-loop system will also make the system more
sensitive to measurement noise. We opt then to design two
distinct controllers: Controller K1 has low closed-loop
bandwidth and is therefore not very sensitive to noise but
exhibits a slow response. Controller K2 has high band-
width and is therefore fast but very sensitive to noise. Both

controllers were designed using LQG=LQR. We computed
the regulator gains by minimizing the cost

Jreg :=
∫ ∞

0
y2(�) + ẏ 2(�) + 0u2(�) d�;

where 0 was chosen equal to 100 and 0.1 for K1 and K2,
respectively. These choices of 0 resulted in K2 exhibiting
a much fast response than K1. The design of the optimal
LQG gain was done assuming that the input disturbance d
and the measurement noise n were uncorrelated white noise
processes with

E[d(t)d(�)] = 1(t − �); E[n(t)n(�)] = 21(t − �);

where 2 was chosen equal to 10−1 and 10−10 for K1 and
K2, respectively. These choices of 2 resulted in K1 exhibit-
ing much better noise rejection properties than K2. The con-
troller transfer functions obtained were:

K1 ≈ −6:694(s+ 0:9446)(s+ 50:01)
(s2 + 13:23s+ 9:4532)(s+ 50:05)

;

K2 ≈ −21872(s+ 0:9977)(s+ 66:28)
(s2 + 467:2s+ 486:22)(s+ 507)

:

The two left plots in Fig. 6 show the closed-loop response of
controllers K1 and K2 to a square reference. Large measure-
ment noise was injected into the system for t ∈ [18; 40]. By
design, controller K1 exhibits a faster response but is more
sensitive to measurement noise.
To design the multi-controller for K := {K1; K2} we

followed the procedure given in Section 4.2: We started
by selecting matrices AE , BE , CE , DE , FE , and GE such
that AE is a stability matrix, and {AE + DECE; BE; CE} and
{AE − BEFE; DE − BEGE; FE; GE} are stabilizable and de-
tectable realizations of HP and K :=K1, respectively. Since
K has the structure of an observer with state feedback, we
used the formulas in Remark 9 for these matrices. The cor-
responding transfer matrices {S1; S2} were then computed
using (30):

S1 = 0;

S2 =
21872(s+ 0:9995)(s2 + 13:26s+ 9:3192)(s+ 50:05)(s+ 66:24)
(s+ 1)(s2 + 93:94s+ 56:232)(s2 + 465:1s+ 463:72)(s+ 465:1)

:

The fact that S1=0 is a consequence of having used K :=K1

(cf. Remark 10). We then picked a minimal realization
{ VA2; B2; C2} for S2 and the trivial realization { VA2; 0; VC2} for
S1. Since both realization share the same stable VA2 matrix,
(37) holds with VQ1 = VQ2 and VR(1; 2) = VR(2; 1) = I . As
mentioned before, it would have been possible to choose
realization for S1 and S2 with this property even if S1 was
nontrivial. The desired controller realizations are then given
by (38)–(39), and the controller reset matrices are sim-
ply the identity (i.e., no reset is used). These guarantee
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Fig. 6. Closed-loop response of controllers K1, K2, and the switched multi-controller to a square reference r. Large measurement noise n was injected
into the system in the interval t ∈ [18; 40]. The top plots show the output y and the bottom plots the tracking error eT := r − y − n. For the switched
controller, K1 was used in the interval t ∈ [22; 42] and K2 in the remaining time.

that the switched closed-loop system is exponentially stable,
uniformly over S.
The rightmost plot in Fig. 6 shows the closed-loop re-

sponse of the switched controller. In this 4gure, controller
K2 was used until time t=22 (shortly after the measurement
noise increased). At that point there was a switch to con-
troller K1, resulting in signi4cant noise rejection. Controller
K1 was used until time t=42 (shortly after the measurement
noise decreased back to the original level). The construction
of a logic that actually commands the switching between
controllers is beyond the scope of this paper. The contri-
bution here is the implementation of the multi-controller so
that we have stability regardless of the switching signal �.
Once stability is guaranteed, one can use very simpleminded
algorithms to decide how to switch between the controllers.
For example, one could use controller K2 only when there
is low high-frequency content in the tracking error eT.

6. Conclusions

In the control of complex systems, con8icting require-
ments often make a single linear time-invariant controller
unsuitable. One can then be tempted to design several con-
trollers, each suitable for a speci4c operating condition, and
switch among them to achieve the best possible perfor-
mance. Unfortunately, it is well known that the transients
caused by switching may cause instability. We showed here
that instability can be avoided by suitable choice of the re-
alizations for the controllers.
An important question for future research is the design

of logics that orchestrate the switching among controllers to
improve performance. The results in this paper greatly sim-

plify the design of such logics since stability of the switched
system is no longer an issue. Another question that needs
to be investigated is the simultaneous switching of process
and controller. In particular, suppose that the process to be
controlled switches in an unpredictable fashion and that we
would like to switch controllers to keep the closed-loop sys-
tem stable. Can we choose realizations for the controllers
so that the process=controller switched system is stable? An
aNrmative answer to this question would have a profound
impact both in gain-scheduling and in multiple-model su-
pervisory control (cf. Morse, 1996; Morse, 1997; Hespanha
et al., 2001).
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Appendix A.

A.1. Realizations for stable transfer matrices

This section addresses a simpler problem than the one
formulated before. Consider a 4nite family of asymp-
totically stable transfer matrices A = {Sp:p∈P}. It is
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shown below how to compute stabilizable and detectable
n-dimensional realizations { VAp; VBp; VCp; VDp} for each
Sp ∈A such that

Q VAp + VA
′
pQ¡ 0; p∈P; (A.1)

for some symmetric positive de4nite matrix Q∈Rn×n. With
such a matrix it is then possible to construct a common
Lyapunov function V (z) = z′Qz for the family of linear
time-invariant systems {ż = VApz:p∈P}.
Let n be the McMillan degree of the transfer matrix in

A with largest McMillan degree and, for each p∈P, let
{Ãp; B̃p; C̃p; D̃p} be any n-dimensional realization of Sp,
with Ãp asymptotically stable. Because of the asymptotic
stability of each Ãp,p∈P the family of Lyapunov equations

QpÃp + Ã
′
pQp =−I; p∈P (A.2)

must have symmetric positive de4nite solutions Qp, which
can be written asQp=S ′

pSp with Sp nonsingular. For a given
positive de4nite matrix Q=S ′S ∈Rn×n with S nonsingular,
let

VAp := S−1SpÃpS−1
p S; VBp:=S−1SpB̃p; VCp:=C̃pS−1

p S;

VDp := D̃p: (A.3)

Since { VAp; VBp; VCp; VDp} is obtained from {Ãp; B̃p; C̃p; D̃p}
by a similarity transformation, { VAp; VBp; VCp; VDp} is also a
realization of Sp. Moreover, from (A.2) and (A.3) we con-
clude that

(S−1Sp)′(Q VAp + VA
′
pQ)S−1Sp =−I:

Left and right multiplication of the above equality by
(S−1

p S)′ and S−1
p S, respectively, yields

Q VAp + VA
′
pQ =−(S−1

p S)′S−1
p S ¡ 0

and therefore one concludes that (A.1) holds. The following
was proved:

Lemma 7. Given any =nite family of asymptotically sta-
ble transfer matrices A = {Sp:p∈P} with McMillan
degree no larger than n and any symmetric positive
de=nite n × n matrix Q, there exist stabilizable and
detectable n-dimensional realizations { VAp; VBp; VCp; VDp} for
each Sp ∈A such that (A.1) holds.

A.2. Technical lemmas

Lemma 8. Given two transfer matrices N and K, with
N strictly proper, such that K stabilizes N, there exist
matrices AE , BE , CE , DE , FE , and GE (with appropri-
ate dimensions) such that AE is a stability matrix, and
{AE+DECE; BE; CE} and {AE−BEFE; DE−BEGE; FE; GE}
are stabilizable and detectable realizations of HP and K,
respectively.

Proof. Let {A; B; C} and {F;G;H; J} be minimal real-
izations of HP and K , respectively, and X , Y matrices
such that A + XC and F + YH are asymptotically stable.
De4ning

AE :=

[
A+ XC 0

0 F + YH

]
; BE :=

[
B

−Y

]
;

DE :=

[ −X

−G − YJ

]
; CE := [C 0];

FE := [0 − H ]; GE := J;

the matrix AE is asymptotically stable and

CE(sI − AE − DECE)−1BE

=[C 0]

(
sI −

[
A 0

−GC − YJC F + YH

])−1 [
B

−Y

]

=HP(s);

FE(sI − AE + BEFE)−1(DE − BEGE) + GE

=[0 − H ]

(
sI−

[
A+XC BH

0 F

])−1 [−X−BJ

−G

]
+ J

=K(s):

Detectability of {CE; AE +DECE} and {FE; AE − BEFE} is
guaranteed by the fact that both AE +DECE and AE −BEFE

are an output injection away from AE which is a sta-
bility matrix. Stabilizability of {AE + DECE; BE} and
{AE − BEFE; DE − BEGE} is guaranteed by the fact that
both AE +DECE and AE − BEFE are a state feedback away
from[
A− BJC BH

−GC F

]
;

which is a stability matrix since K stabilizes HP.

Remark 9. When K is chosen to have the structure of an
observer with state feedback, i.e., when HP and K have
realizations {A; B; C} and {A+HC−BF;H; F}, respectively,
one can simply pick AE=A+HC, BE=B, CE=C,DE=−H ,
FE = F , and GE = 0.

Veri=cation of the stability of the Sp, p∈P: Straight-
forward algebra shows that the transfer function on the
right-hand side of (30) is equal to the transfer function from
e to v de4ned by the system of equations[

v

Vy

]
=

[
XC −YC

YP XP − I

]
◦
[

u

e − Vy

]
;

u= Kp ◦ (e − Vy): (A.4)
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Now, because of (31),{
AE; [BE − DE] ;

[
FE

CE

]
;

[
I −GE

0 0

]}

is a realization for [ XC −YC
YP XP−I ]. Thus, picking any minimal

realization {Âp; B̂p; Ĉp; D̂p} of Kp, the system (A.4) can be
realized as

ẋE = AExE + BEu− DE(e − Vy); Vy = CExE;

˙̂x = Âpx̂ + B̂p(e − Vy); u= Ĉpx̂ + D̂p(e − Vy);

v= FExE + u− GE(e − Vy):

Therefore, the transfer function from e to v in (A.4)
(and therefore Sp) can be realized by { VAp; VBp; VCp; VDp},
with

VAp :=

[
AE + DECE − BED̂pCE BEĈp

−B̂pCE Âp

]
; (A.5)

and VBp, VCp, VDp appropriately de4ned. Since Kp stabilizes
HP and {AE+DECE; BE; CE} is a stabilizable and detectable
realization of HP, VAp must be asymptotically stable (cf. VAp

in (A.5) against (4)). Thus, for each p∈P, the poles of Sp

must also have negative real part.

Remark 10. Denoting by RH∞ the ring of transfer matri-
ces whose entries are proper; stable rational functions with
real coeNcients; the transfer matrices XP; YP; YC; XC de4ned
in (31) form a simultaneous right-coprime factorization of
HP and K in the sense that XP and XC have causal inverse;
[XC −YC

YP XP
] is a unit in RH∞; andHP=X−1

P YP and K=X−1
C YC.

Thus; the existence of the family of stable transfer matrices
{Sp:p∈P} ⊂ RH∞ such that (32) holds is not surprising
in light of the parameterization of all controllers that stabi-
lize HP; given by Youla et al. (1976). Note also that since
K = X−1

C YC; if one chooses K = Kp0 for some p0 ∈P;
then the corresponding transfer matrix Sp0 given by (30)
with p= p0 is equal to 0.
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