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Abstract 
We describe a new switching logic, called “hierarchical hys- 
teresis switching”, and establish a bound on the number of 
switchings produced by this logic on a given interval. The 
motivating application is the problem of controlling a linear 
system with large modeling uncertainty. We consider a con- 
trol algorithm consisting of a finite family of linear controllers 
supervised by the hierarchical hysteresis switching logic. In 
this context, the bound on the number of switchings enables 
us to prove stability of the closed-loop system in the presence 
of noise, disturbances, and unmodeled dynamics. 

1 Introduction 
Suppose that a given process admits a model contain- 
ing unknown parameters, and the goal is to design a 
feedback controller that achieves some desired behavior 
in the face of noise, disturbances, and unmodeled dy- 
namics. The kind of control algorithm that we have in 
mind is the one that relies on switching among a family 
of candidate controllers, and bases controller selection 
on certainty equivalence. In this framework, one asso- 
ciates to each possible value of the unknown parame- 
ters a monitoring signal, designed in such a way that 
a small value of this signal indicates a high likelihood 
that the corresponding parameters are close to the ac- 
tual unknown values. The switching algorithm selects, 
from time to time, a controller that has been designed 
for the parameter values associated with the smallest 
monitoring signal. 

Questions that suggest themselves are: How to pick 
the individual controllers? How to design the monitor- 
ing signals? Which controller to switch to? When to 
switch? In addressing the first question, the methods 
considered here allow one to rely on conventional tech- 
niques from linear robust control theory. An answer to 
the second question emerges from the supervisory con- 
trol architecture, described in [7, 5, 10, 111 and reviewed 
later in this paper. The certainty equivalence principle 
provides one way to settle the third question. To deal 
with the last question, one needs to specify a switching 
logic. It is this last question that is of primary concern 
here. 

A simple switching logic, called hysteresis switching, 
was described in [6, 91. According to this logic, a switch 
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occurs when the monitoring signal that corresponds to  
the controller currently in the feedback loop exceeds 
the smallest monitoring signal by a prespecified posi- 
tive number, called the hysteresis constant. For a finite 
family of monitoring signals satisfying suitable assump- 
tions, this logic guarantees that the switching stops in 
finite time. Hysteresis switching allows one to design su- 
pervisory control algorithms which are effective in those 
cases when the unknown parameters take values in a 
finite set and there are no noise, disturbances, or un- 
modeled dynamics. 

An altogether different way to orchestrate the switch- 
ing is provided by the dwell-time switching logic. In 
this logic, consecutive switching instants are separated 
by (at least) a prespecified time interval, called the dwell 
time, which is large enough so that the switching does 
not destabilize the system; this idea is ubiquitous in 
the switching control literature. Dwell-time switching 
was used in [7,8] to design set-point supervisory control 
algorithms for linear systems with a continuum of para- 
metric uncertainty, noise, disturbances, and unmodeled 
dynamics. These results go far beyond what can be es- 
tablished using the hysteresis switching logic. 

However, dwell-time switching has its own disadvan- 
tages. First, the analysis that is needed to verify the cor- 
rectness of the algorithms given in [7,8] is quite tedious. 
More importantly, if the uncertain process is nonlinear, 
the existence of a prescribed dwell time may lead to tra- 
jectories escaping to  infinity in finite time. These con- 
siderations motivate further study of hysteresis-based 
switching algorithms, which are easier to analyze and 
more suitable for control of nonlinear systems. 

The results obtained in [7,8] relied in part on the fact 
that the dwell-time switching logic is scale-independent, 
in the sense that its output does not change if all the 
monitoring signals are multiplied by a positive func- 
tion of time. The hysteresis switching logic discussed 
in [6,9] does not have this desirable property. However, 
it is not difficult to modify the logic by introducing a 
multiplicative hysteresis constant instead of an additive 
one. The resulting scale-independent hysteresis switch- 
ing logic was studied and applied to control of uncertain 
nonlinear systems in [l] and elsewhere. These results 
still relied on the termination of switching in finite time, 
and were thus limited to situations where the parametric 
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uncertainty range is described by a finite set and there 
are no noise, disturbances, or unmodeled dynamics. 

The scaleindependent hysteresis switching logic was 
further studied in the recent paper [2], where a bound 
on the number of switches on a finite interval was estab- 
lished. Combining this with the results of [4], it is possi- 
ble to analyze the correctness of the supervisory control 
algorithm without relying on the termination of switch- 
ing, which allows a successful treatment of noise, distur- 
bances, and unmodeled dynamics (but the unknown pa- 
rameters are still restricted to belong to a finite set); see 
[2, 31. In [3] a new switching logic was also introduced, 
called local priority hysteresis switching. It was designed 
primarily for the case when the unknown parameters be- 
long to a continuum. As shown in [3], if this logic is used 
instead of scale-independent hysteresis, then in the ab- 
sence of noise, disturbances, and unmodeled dynamics 
the switching stops in finite time, thus enabling one to 
generalize some of the previously available results. 

The main contribution of the present paper is a new 
switching logic, which we call hierarchical hysteresis 
switching. It relies on a partition of the parametric un- 
certainty set (typically a continuum) into a finite num- 
ber of subsets. The name of the logic comes from the 
fact that the minimization of the monitoring signals is 
carried out on two levels: first, the smallest one is taken 
in each of the subsets that form the partition, and then 
these signals are compared with each other. In the su- 
pervisory control context, the subsets in the partition 
are chosen to be sufficiently small in a suitable sense. 
We show that this switching logic leads to a supervisory 
control algorithm whose stability can be analyzed in the 
presence of noise, disturbances, and unmodeled dynam- 
ics. Thus we are able to handle the same class of systems 
as that treated in [7, 81, without sacrificing the valuable 
advantages of hysteresis-based switching algorithms. 

The hierarchical hysteresis switching logic is presented 
in the next section. The supervisory control system is 
described in Section 3. Its analysis is given in Section 4. 

2 Hierarchical hysteresis switching 

We now describe the hierarchical hysteresis switching 
logic. Its inputs are some given continuous signals p p ,  
p E P ,  where P is a compact index set. For m a positive 
integer, we will let m denote the set { 1 , 2 , .  . . , m}. We 
assume that we are given a positive integer m and a 
family of closed subsets Di, i E m of P,  whose union is 
the entire P. The output of the switching logic will be 
a switching signal U taking values in m. Pick a number 
h > 0, called the hysteresis constant. First, we select 
some j o  E m such that Djo contains argminpEp{pp(0)}, 
and set u(0) = j o .  Suppose that at a certain time ti the 
value of U has just switched to some ji E m. We then 
keep U fixed until a time ti+l > ti such that the following 

inequality is satisfied: 

At this point, we select some j i+ l  E m such that Dj+l 
contains argminpEp{pp(ti+l)}, and set u( t i+ l )  = &+I. 

When the indicated argmin is not unique, a particu- 
lar index among those that achieve the minimum can 
be chosen arbitrarily. We refer the reader to [7] for a 
discussion of tractability issues regarding minimization 
over P. The understanding here is that minimization 
over Di’s is computationally tractable if these sets are 
sufficiently small. 

The above procedure yields a piecewise constant sig- 
nal U which is continuous from the right everywhere. By 
the same argument as in 111, one can show that chatter- 
ing is avoided if all p p ,  p E P are bounded below by some 
positive number. In fact, there exists a maximal interval 
[0, T,,,) on which U is defined, and there can only be a 
finite number of switches on each proper subinterval of 
[0, T”). In the supervisory control application treated 
below, we will always have Tmax = 00. 

Remark 1. The signal U produced by this logic co- 
incides with the signal that would be produced by the 
scale-independent hysteresis switching logic of [l] with 

U 
The above switching logic is scale-independent, i.e., its 

output would not be affected if we replaced the signals 
p p ,  p E P by their scaled versions 

inputs minpEo,{pp(t)}, i E m. 

p,( t )  := @(t)PP(t) ,  P E P (1) 

where 0 is some positive function of time. In the sequel, 
we assume that it is possible to choose 0 in such a way 
that the scaled signals pp, p E P are strictly positive 
and monotone increasing. Scaled signals pP, p E P with 
these properties will be useful for analysis purposes. For 
0 5 to  < t < T,,,, we denote by N,(t , to)  the number 
of discontinuities of U on the interval ( to ,  t ) .  
DEFINITION. We will say that a piecewise constant sig- 
nal C taking values in P is {D;}-consistent with U on an 
interval [ to , t ]  if: 

1. For all s E [to,  t] we have C(s) E Du(s).  

2. The set of discontinuities of 6 on [ t o , t ]  is a subset 
of the set of discontinuities of U. 

Crucial properties of the switching signal produced by 
the hierarchical hysteresis switching logic are expressed 
by the following result. 

Lemma 1 (Hierarchical Hysteresis Switching Lemma) 
Take an arbitrary index 1 E P and arbitrary numbers to 
and t satisfying 0 5 to < t < Tmax. We have 
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In addition, there exists a signal C, which is {Di}- 
consistent with 0 on [O,t], such that 

(3) 

where tl < t2 < - . . < tNc(t,to) are the discontinuities of 
C on (t0,t)  and tN,(t,t,)+l := t -  

PROOF. The inequality (2) follows at once from the 
Scale-Independent Hysteresis Switching Theorem (The- 
orem 1) of [2] and Remark 1. A signal C that satisfies the 
second statement of the lemma can be defined as follows: 
for each s E [ to , t ] ,  let C(s) := argminpEoo,,,{P~(~)}, 
where T is the largest number in the interval [ to , t ]  for 
which (T(T) = (~ (s ) .  Then C is {Di}-consistent with 0 

on [ to ,  t] by construction. Grouping all the terms in the 
summation on the left-hand side of (3) for which (T is 
the same, and reasoning exactly as in the proof of The- 

n 
Remark 2. The signal C depends on the choice of the 
time t .  If the signals p ip ,  p E P are differentiable, then 
the left-hand side of the inequality (3) equals the integral 
J:, f i c ( T ) ( ~ ) d ~ ,  which is to be interpreted as the sum of 
integrals over intervals on which C is constant. 0 

3 Supervisory control system 
We assume that the uncertain process P to be controlled 
admits the model of a SISO finite-dimensional stabiliz- 
able and observable linear system with control input U 

and measured output y ,  perturbed by a bounded distur- 
bance input d and a bounded output noise signal n.  It 
is assumed known that the transfer function of P from 
U to y belongs to a family of admissible process model 
transfer functions U p E P T ( p ) ,  where p is a parameter 
taking values in some index set P. Here each 303) de- 
notes a family of transfer functions “centered” around 
some known nominal process model transfer function 
vp. Throughout the paper, we will take P to be a com- 
pact subset of a finite-dimensional normed linear vector 
space. 

The problem of interest is to design a feedback con- 
troller that achieves output regulation, i.e., drives the 
output y of P to zero, whenever the noise and distur- 
bance signals are zero. Moreover, all system signals must 
remain bounded in response to arbitrary bounded noise 
and disturbance inputs. Everything that follows can be 
readily extended to the more general problem of set- 
point control with the help of adding an integrator in 
the feedback loop, as in [7, 81. 

The set P represents the range of parametric uncer- 
tainty, while for each fixed p E P the subfamily 303) 
accounts for unmodeled dynamics. There are several 
ways to  specify allowable unmodeled dynamics around 

orem 1 in [2], we arrive at (3). 

the nominal process model transfer functions vp (see [3]). 
For example, take two arbitrary numbers 6 > 0 and 
Xu 2 0. Then for each p E P we can define 

where 11 Ilm,xu denotes the exut-weighted X, norm of a 
transfer function: IIvllm,x, = supuEw Iv(jw - Xu)(. This 
yields the class of admissible process models treated in 
[7,8]. In the sequel, we assume for concreteness that un- 
modeled dynamics are specified in this way; we will refer 
to the parameter 6 as the unmodeled dynamics bound. 

Modeling uncertainty of the kind described above may 
be associated with unpredictable changes in operating 
environment, component failure, or various external in- 
fluences. Typically, no single controller is capable of 
solving the regulation problem for the entire family of 
admissible process models. Therefore, one needs to de- 
velop a controller whose dynamics can change on the 
basis of available real-time data. Within the frame- 
work of supervisory control discussed here, this task 
is carried out by a “high-level” controller, called a su- 
pervisor, whose purpose is to orchestrate the switching 
among a parameterized family of candidate controllers 
{@p : q E &}, where & is an index set. We require 
this controller family to be sufficiently rich so that ev- 
ery admissible process model can be stabilized by plac- 
ing in the feedback loop the controller Cq for some index 
q E &. In this paper, we focus on the case when & = m 
for some positive integer m. 

The supervisor consists of three subsystems (Fig. 1): 

multi-estimator E - a dynamical system whose inputs 
are the output y and the input U of the process 
P and whose outputs are the signals y p ,  p E P .  
Each y p  would converge to y asymptotically if the 
transfer function of P were equal to the nominal 
process model transfer function vp and there were 
no noise or disturbances. 

monitoring signal generator M - a dynamical system 
whose inputs are the estimation errors 

e , : = y , - y ,  P E P  
and whose outputs p p ,  p E P are suitably defined 
integral norms of the estimation errors, called mon- 
itoring signals. 

switching logic B - a switched system whose inputs are 
the monitoring signals p p ,  p. E P and whose output 
is a switching signal 6, taking values in m, which 
is used to define the control law U. 

We now briefly recall from [7] the key state-space 
equations for the different subsystems appearing in Fig. 
1. As i ranges over m, let 

X@ = A ~ X C  + biy 
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Figure 1: Supervisory control architecture 

be realizations of the transfer functions of the candidate 
controllers, all sharing the same state XC. See [7] for 
more details on constructing such realizations. We then 
define the multi-controller C to be the system 

i~ = &XC + buy 
U = E,XC +dug 

We assume that the multi-estimator is also realized in a 
state-shared fashion, as given by 

- 

&E = AEXE + b ~ y  4- &U 

Yp =cpxE, P E P  

with AE a stable matrix. This type of structure is quite 
common in adaptive control. Denote by x the compos- 
ite state (xk, x&)‘ of the multi-estimator and the multi- 
controller, and let p* be an (unknown) element of P such 
that the transfer function of P belongs to F(P*), i.e., a 
“true” parameter value. For every 1 E P, the evolution 
of x can be described by a system of the form 

x = Aulx + doel 
y = (cp* 0) x - ep* 
U = f,x + Quep+ 

(4) 
(5) 
(6) 

We assume that a partition P = UiEm Di is given, such 
that the matrices Aip, i E m, p E P have the following 
property: for every i E m and every p E Di the matrix 
Aip + A 0 1  is stable, where XO is a fixed positive number. 
This property is a direct consequence of the construction 
described in [7], provided that the sets Di, i E m are 
chosen to be sufficiently small. 

Fix a number A E (O,min{X,, A,}). As shown in [7,8], 
there exist positive constants 6,,& that only depend on 
the unmodeled dynamics bound 6 and go to zero as 6 
goes to zero, positive constants B1, B2 that only depend 
on the noise and disturbance bounds and go to zero as 

these bounds go to zero, and positive constants Cl, C2 
that only depend on the system’s parameters and on 
initial conditions, such that along all solutions of the 
closed-loop system we have 

and 

The above inequalities represent the basic requirements 
being placed on the multi-controller and the multi- 
estimator, upon which the subsequent analysis depends. 

The constant X will play the role of a “weighting” de- 
sign parameter in the definition of the monitoring sig- 
nals. Fix an arbitrary constant ep 2 0 (its role will 
become clear later). We generate the monitoring signals 
p p ,  p E P by the equations 

(9) 
w = -2xw + (7) (7)‘. W(0) 2 0 

p p  := (.p -1) w (cp - l ) ’ + e p ,  P E P  

where W ( t )  is a symmetric nonnegative-definite k x k 
matrix, k := dim(xE) + 1. Since q,xe - y = ep V p  E P, 
this yields 

p p ( t )  1 e-”X“jjp(o) + e-2x(t-T) ep ( r )dr  2 +e,,,  p E P I’ 
where k ( 0 )  := (cp -1) W(0)  (q, -1)’. 

Finally, we define the switching signal using the hier- 
archical hysteresis switching logic described in Section 2, 
where the sets Di, i E m are chosen as explained earlier. 
Setting @(t)  := e2At in (l), we see that the signals pP, 
p E P are monotone increasing, because they satisfy 

p p ( t )  = jjp(0) + Lte2*‘e:(r)dr + ePe2”, p E P. (10) 

Moreover, it is easy to ensure that pp(0)  > 0 V p  E P, 
either by setting E,, > 0 or by requiring W(0)  to be posi- 
tive definite. Therefore, we can apply Lemma 1 and con- 
clude that the inequalities (2) and (3) are d i d .  Since in 
this case the signals p p ,  p E P are differentiable, the left- 
hand side of the inequality (3)  equals st”, ,kc(T)(7)dr (see 
Remark 2 ) .  From (10) we have the following formula: 

Pp( t )  = ezxte:(t) + 2xe,,e2”, p E P. (11) 

4 Analysis 
We now proceed to the analysis of the supervisory con- 
trol system defined by (4), (5), (6), (9), and the hierar- 
chical switching logic. We will sometimes appeal to the 
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state of the uncertain process B, which we denote by xp. 
Following [4], we will say that a switching signal o has 
an average dwell time TAD > 0 if there exists a nonnega- 
tive number NO such that the number of discontinuities 
of u on an arbitrary interval (to,  t )  satisfies 

t - t o  
N , ( t , t o )  5 No + -. 

TAD 

We will need the following result, which in view of the 
present assumptions is a straightforward corollary of the 
main result of [4]. It states that if u has a sufficiently 
large average dwell time, then the switched system 

X = A,,x (13) 

is exponentially stable with stability margin A, uni- 
formly over all signals C that are {Di}-consistent with U.  

Lemma 2 There exist positive constants T* and c such 
that for every switching signal u with an average dwell 
time TAD 2 T* and every signal C which is (0;)- 
consistent with u on a given interval [ t o , t ] ,  solutions 
of (13) satisfy Ix(t)l 5 ce-x(t-to) I4to 1 I . 

Let T* be the number specified by this lemma; it can 
be calculated explicitly from the proof of the main re- 
sult in [4]. Consider the system obtained from (4) by 
substituting C for 1:  

X = A,cx + due<. (14) 

An immediate corollary of Lemma 2 is that this sys- 
tem has a finite ext-weighted &-to-L, induced norm, 
uniform over (T and 5. 

Corollary 3 There exist positive constants g and go 
such that for every t > 0 ,  every switching signal U with 
an average dwell time TAD 2 T * ,  and every signal C 
which is {Di}-consistent with U on [ O , t ] ,  solutions of 
(14) satisfy 

F t  

With these results in place, the analysis is similar to 
that given in [3]; some details will be omitted. 

No noise, disturbances, or unmodeled dynamics 
We first consider the simple situation where there are no 
unmodeled dynamics (6 = 0 ) ,  i.e., the process B exactly 
matches one of the nominal process models, and where 
the noise and disturbance signals are zero (n = d 0). 
In this case, the constants B1, B2,61,62 in (7) and (8) 
are all zero. Let us take cp in the definition of the 
monitoring signals to be zero as well (W(0) must then 
be taken positive definite). The inequality (7) gives 
Jot e2"e;.(r)dT 5 C1, which together with (10) implies 
iiP* 5 fip*(0) + C1. It follows from (2), applied with 

1 = p * ,  that N,( t , to )  is bounded by a fixed constant 
for arbitrary t > to 3 0.  This means that the switch- 
ing stops in finite time, i.e., there exist a time T* and 
an index i* E m such that u ( t )  = i* for t 2 T*.  In 
this case (12) holds for every TAD if NO is large enough. 
Fix an arbitrary t > 0. In view of Lemma 1, Re- 
mark 2, and the formula (ll), there exists a signal C 
which is {Di}-consistent with u on [O,t] and satisfies 
Jie2xre:(,)(~)d~ 5 m ( l +  h)(fiP*(0) + Cl). Using (15), 
we have ezXtJx(t)I2 5 gm(l+h)(fipi,.(0)+Cl)+golx(O)12, 
thus x + 0. Since ep* + 0 by virtue of (8), we conclude 
from (5) that y + 0. Therefore, the output regulation 
problem is solved. In light of (6),  (9), and detectability 
of B, all the other signals remain bounded for all t 2 0. 
We summarize this as follows. 

Proposition 4 Suppose that the noise and disturbance 
signals are zero and there are no unmodeled dynamics, 
and set cp = 0 .  Then all the signals in the supervisory 
control system remain bounded for every set of initial 
conditions such that W(0) > 0 .  Moreover, the switching 
stops in finite time, and we have y ( t )  + 0 as t + ca. 
Remark 3. Since the evolution of xp and x for t 2 
T* is described by a linear time-invariant system, the 
rate of convergence in the above statement is actually 
exponential. U 

Noise and disturbances, no unmodeled dynamics 
We now assume that bounded noise n and disturbance 
d are present, but there are no unmodeled dynamics. In 
this case the switching typically will not stop in finite 
time. The inequalities (7) and (8) hold with some un- 
known but finite constants B1, B2. The parameters 61 
and 152 are still zero, and C1 and C2 are positive con- 
stants as before. We take cp to be a positive number. 
From (7) and (10) we have 

pP. ( t )  5 f i p *  (0) + Ble2xt + ~1 + cpe2Xt (16) 

The formula (2), applied with 1 = p * ,  yields 

where 
log( 1 + h)  

T A D =  2Xm 

and 

> *  

f i p *  (0) + B1 + c1 + cp 

log( % 
N o = l + m +  

log( 1 + h) 

We can guarantee that TAD 2 T* by increasing the hys- 
teresis constant h and/or decreasing the weighting con- 
stant X if necessary. In the sequel, we assume that h 
and X have been chosen in this way. 
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Using (3), (ll), and (16), we obtain 

Le2"e;(,)(T)dT <_ m((1 + h)(&=(O) + 
+ C I +  Epe2Xt) - Epe2Xto) 

where t > 0 is arbitrary and C is the signal provided by 
Lemma 1. Together with (15) this implies that 

l X ( t ) l 2  I (9mP + h ) ( P p * ( O )  + Cl) + go1x(0)12)e-2xt 
+ g m ( l +  h)(& +E,,)  

Two conclusions can be drawn from the last formula. 
First, x is bounded, and as in the previous subsection 
we can easily deduce from (6), (8), (9), and detectabil- 
ity of P that all system signals remain bounded. Note 
that the choice of the design parameters A, h and E,, did 
not depend on the noise or disturbance bounds, in other 
words, explicit knowledge of these bounds is not neces- 
sary (we are merely requiring that such bounds exist). 
Secondly, if n and d equal or converge to  zero, then x 
will approach a neighborhood of the origin whose size 
is proportional to Sep. A close examination of the last 
quantity reveals that it decreases to 0 as E,, goes to 0, 
which means that we can make this neighborhood as 
small as desired by choosing E,, sufficiently small. More- 
over, ep. will converge to zero because of (8), hence y 
will also become arbitrarily small in view of (5). We 
arrive at the following result. 

Proposition 5 Suppose that the noise and disturbance 
signals are bounded and there are no unmodeled dynam- 
ics. Then for an arbitrary ep > 0 all the signals an the 
superviso ry control system remain bounded for every set 
of initial conditions. Moreover, for every number ey > 0 
there is a value of e,, leading to the property that if the 
noise and disturbance sagnals converge to zero, then for 
each solution there as a time T such that Iy(t)l 5 cy for 

Remark 4. We cannot simply let ep = 0, as this would 
invalidate the above analysis even if W(0)  > 0. How- 
ever, by decreasing E,, on-line (e.g., in a piecewise con- 
stant fashion), it is possible to recover asymptotic con- 
vergence of y to zero when the noise and disturbance 
signals converge to zero. a 
Noise, disturbances, and unmodeled dynamics 
If unmodeled dynamics are present, i.e., if the parame- 
ter 6 is positive, then 61 and 62 in (7) and (8) are also 
positive. In this case, the analysis becomes more com- 
plicated, because we can no longer deduce from (7) that 
the switched system must possess an average dwell time. 
However, it is possible to prove that the above control 
algorithm, without any modification, is robust with re- 
spect to unmodeled dynamics in the following, "semi- 
global", sense. The proof uses a small-gain argument, 
and is almost identical to the proof of Theorem 4 in [3]. 

all t 2 T.  

Theorem 6 For arbitrary bounds on the noise and dis- 
turbance signals, the supervisory control system has the 
following properties: 

1. For every positive value of E,, -and every number 
E > 0 there exists a number 6 > 0 such that i f  
the unmodeled dynamics bound 6 is  smaller than 
6 ,  then all signals remain bounded for every set of 
initial conditions such that Ixp(O)I, 1z(O)( 5 E. 

2. For arbitrary positive numbers E and ey there exist 
a value of ep and a number 6 > 0 such that if the 
noise and disturbance signals converge to zero and 
the unmodeled dynamics bound 6 is smaller than 8, 
then for each solution with Isp(O)(, lx(0)) 5 E there 
is a time T such that Iy(t)l 5 cy for all t 2 5?. 

' 
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