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Abstract for frozen values of the first. The points of discontinu- 

In this paper we analyze the Scale-Independent Hysteresis 
Switching Logic introduced in recent work. We show that, 
under suitable “open-loop” assumptions, one can establish 
an upper bound on the number of switchings produced by the 
logic on any given interval. This bound comes as a function 
of the variation of the inputs to the logic on that interval. 
In this paper it is also shown that, in a supervisory control 
context, this leads to switching that is slow-on-the-average, 
allowing us to study the stability of hysteresis-based adaptive 
control systems in the presence of measurement noise. 

1 Introduction 

Adaptive control algorithms that employ a logic-based 
supervisor to orchestrate the switching between a family 
of candidate controllers have been quite successful in 
numerous applications [l, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 
121. The need for switching usually arises from the fact 
that no single candidate controller would be capable, by 
itself, of guaranteeing stability and good performance 
when connected with a poorly modeled process. This 
type of supervisory control results in a switched closed- 
loop system of the form 

x = f u (x , t ) ,  z(0) = 2 0 ,  x E x, t 2 0, . (1) 

where X is a finite dimensional space, { f p  : p E P }  an 
indexed family of locally Lipschitz functions, and U a 
piecewise constant switching signal taking values on P ,  
generated by a hybrid switching logic combining contin- 
uous dynamics with discrete logic. Typically, the switch- 
ing logic is designed to make the monitoring signals 

P P ( t )  := w 4 x , t ) ,  t 2 0, P E p ,  E (2) 

have certain desired properties. Here, ll is a monitor- 
ing function from P x X x [ O , o o )  to  R that is contin- 
uous with respect to the second and third arguments, 

lThis research was supported by ONR, DARPA, AFOSR, 
ARO, and NSF. 

ity of U are called switching times. For a given U and 
0 5 T < t ,  it is convenient to  denote by N,(~,T) the 
number of switching times-i.e., discontinuities of u- 
on the interval (T, t ) .  
For some switching logics the supervisor guarantees, by 
construction, that there is a minimum time TD between 
switchings[l, 2, 3 ,4 ,  5, 61. Any switching signal generat- 
ed by such logics thus satisfy NU(7, t )  = 0, V t - T 5 To. 
The dwell-time TD is then a design parameter chosen 
so that (1) remains stable. Unfortunately, with nonlin- 
ear systems this may lead to  finite escape of the closed- 
loop. Adaptive switching algorithms for nonlinear sys- 
tems have therefore avoided a fixed dwell-time, and have 
been mostly based on hysteresis switching [13, 141, or on 
its more recent scale-independent version [8, 151. 

To date, the analysis of algorithms based on hysteresis 
switching relied heavily on showing that switching stops 
in finite time [7, 8, 9, 10, 11, 121. However, in the p- 
resence of noise and disturbance inputs, this is hardly 
the case. In fact, the only known algorithms for which 
switching can be proved to  stop in finite time, even in 
the presence of noise/disturbances, are those for which 
an upper bound on these signals is known a priori, or ef- 
fectively estimated online [l, 161. Unfortunately, even in 
the noiseless case, these algorithms usually lead to bad 
transient responses. The objective of this paper is to  an- 
alyze the behavior of the Scale-Independent Hysteresis 
Switching Logic introduced in [8, 151, under assump- 
tions compatible with the existence of noise. We show 
that, although switching may not stop, it is possible to  
derive an upper bound on the number of switchings on 
any given interval. This bound comes as a function of 
the variation of the inputs to the logic on that interval. 

The algorithm used to  generate cs considered in this pa- 
per is called a Scale-Independesit Hysteresis Switching 
Logic and can be regarded as a hybrid dynamical sys- 
tem BW whose input is x and whose state and output 
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are both U. To specify 6~ it is necessary to first pick a 
positive number h > 0 called a hysteresis constant. BW’S 
internal logic is then defined by the computer diagram 
shown in Figure 1, where the p p  are defined by (2) and, 
at each time t ,  q := arg min,Ep IIb, x, t ) .  In interpret- 

Initialize w- 

Figure 1: Computer Diagram of SW. 

ing this diagram it is to be understood that rs’s value at  
each of its switching times f i s  equal to its limit from the 
right as t J. E. Thus if fi and fi+l are two consecutive 
switching times, then rs is constant on [&,&+I). The 
functioning of BW is roughly as follows. Suppose that at 
some time t o ,  BW has just changed the value of U to p .  c 
is then held fixed at this value unless and until there is 
a time tl > to  at which (1 + h)pq 5 p p  for some q E P.  
If this occurs, rs is set equal to q and so on. 

The main result of this paper is the Scale-Independent 
Hysteresis Switching Theorem. This theorem states that 
under appropriate “open-loop” assumptions, the num- 
ber of switchings N,(t, T )  on any given interval (T, t )  can 
be bounded in terms of the variation of the monitoring 
signals on that interval. Using the Scale-Independent 
Hysteresis Switching Theorem, we will show that, al- 
though scale-independent hysteresis does not guarantee 
the existence of a fixed dwell-time between switchings, it 
can produce switching that is slow-on-the-average [17]. 
This will allow us to analyze hysteresis-based supervi- 
sory control algorithms in the presence of noise. Scale 
Independent Hysteresis and Dwell-time Switching are 
apparently the only two Certainty Equivalence based 
switching logics proposed thus far for which an analy- 
sis has proved possible under circumstances for which 
switching may not stop. 

The switching logic described above is “scale- 
independent” in that its output rs remains unchanged 
if its monitoring function/input signal pair {IT, x} is re- 
placed by another pair {n, %} satisfying 

q p ,  %, t )  = d(t)l-I(p, 2, t ) ,  v p  E P ,  t 2 0 

where 29 is a positive time function. This is be- 
cause, for any fixed time t ,  (i) the value of p that 
minimizes H(p,  2, t )  also minimizes n ( p ,  2,  t )  and (i- 
i) (1 + h)II(q, x, t )  5 II(p, x, t )  is exactly equivalen- 
t to (1 + h ) n ( q , % , t )  5 n ( p , Z , t )  for every p , q  E P. 
Scale-independence simplifies considerably the analy- 

sis of estimator-based supervisory control algorithm- 
s [2, 3, 7, 9, 10, 11, 121. 

This paper is organized as follows. Section 2 con- 
tains the Scale-Independent Hysteresis Switching The- 
orem. The reader is referred to [18] for the proof of 
this theorem. In Section 3 it is illustrated how the 
scale-independence property can be used to effective- 
ly relax the “open-loop” assumptions required by this 
theorem. In Section 4 we use the previous results to 
analyze a supervisory control algorithm based on the 
Scale-Independent Hysteresis Switching Logic. Finally, 
Section 5 contains some concluding remarks and direc- 
tions for future research. 

2 Scale-Independent Hysteresis Switching 
Theorem 

Let XO denote a given subset of X, and S the class of 
all piecewise-constant functions s : [O ,oo )  + P. In what 
follows, for each pair { X O ,  s} E XO x S, T{zo,s} denotes 
the length of the maximal interval of existence of solu- 
tion to the equations 

and x{,o ,s) the corresponding solution. The following 
“open-loop” assumptions are made: 

Assumption 1 (Open-Loop) For each pair (20, s }  E 
X, x S,  the monitoring signals p p ( t )  := n ( p ,  x{,o,s}, t ) ,  
t E [O,T{zo,s}), p E P, are such that: 

1. There exists a positive constant E such that 
p p ( 0 )  2 e ,  for each p E P .  

2. Each monitoring signal p,, p E P ,  is monotone 
nondecreasing on [O, T{zo,s}). 

Using standard arguments (see [8, 15]), one can show 
that there must be an interval [O,T) of maximal length 
on which there is a unique pair { x , ~ }  with x continu- 
ous and U piecewise constant, which satisfies (1) with 
rs generated by SW. Moreover, on each strictly proper 
subinterval [0, T )  C [0, T ) ,  U can switch at  most a finite 
number of times. 

To establish existence of solution to (1) with U generated 
by Bw, only the first Open-Loop Assumption is needed. 
The other assumption enable us to draw conclusions re- 
garding the behavior of rs and the p p  on [O,T). The 
following is the main result of this paper. 

Theorem 1 (Scale-Independent Hysteresis Swit- 
ching) Let P be a finite set with m elements and as- 
sume that the Open-Loop Assumptions hold. For a fixed 
initial state {xo,co} E XO x P ,  let {z,rs} denote the 
unique solution to (1) with U generated by  SW and let 
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[O,T) denote the largest interval on which this solution 
as defined. For any f2 E P ,  

0 5 to  < t < T ,  and, when the monitoring signals are 
differentiable, we also have that 

(4) 

0 5 to  < t < T ,  where ,Gu(r) is defined to be equal 
to %(r)  on intervals where U is constant and equal to 
p E P ,  and zero at  points of discontinuity of U .  

When there is some pe, e E P ,  bounded on [0, T ) ,  U can 
only have a finite number of discontinuities on [O,T) 
because of (3). This means that there must be a time 
T* < T beyond which U is constant. Moreover, since 
U = o(T*) on [T*,T),  

t E [T*,T). Thus p , ( p )  must be bounded on [O,T) 
because of (4). Theorem 1 thus generalizes previous 
results in [8, 151. The proof of this theorem can be 
found in [HI. 

Remark 1 Equation (4) can be generalized for the case 
when the monitoring signals are not piecewise differen- 
tiable. I n  this case the left-hand-side of (4) must be re- 
interpreted as a summation of the variation of the corre- 
sponding monitoring signals over the intervals on which 
U is constant. Equation (4) must then be replaced b y  

(5) 

0 5 to  < t < T ,  where tl < t 2  < ... < tNe( t , to )  denote 
the discontinuities of cr on ( t o ,  t )  and tN,(t,t,)+l := t .  
Since (5) is a generalization of (4), we shall prove (5) 
instead of (4). 

It is useful to consider monitoring functions of the form 

n ( p ,  x ,  t )  := min f i ( q ,  x ,  t ) ,  (6 )  
PE&, 

where { Q p  : p E P} is a parameterized family of com- 
pact sets and fI a continuous function from Q x X x 
[0, m) to  R, & := U p E p Q p .  In this case the monitoring 
signals can-be written as ,up(t) := minqEep &(t) ,  p E P ,  

where &(t) := II(q, x ,  t ) ,  q E &. In supervisory control, 
typically, each p E P corresponds to  a particular candi- 
date controller and each q E QP to a particular process 
model that can be stabilized by that controller. Because 
of this the & are called process monitoring signals and 
the p p  are called control monitoring signals. A similar 
convention is used for the monitoring functions. 

We say that a piecewise constant signal p taking values 
in & is { QP : p E P}-consistent with a switching signal 
U on an interval (7, t )  when 

1. p(s )  E e,(,) for all s E (r , t ) ,  
2. the set of discontinuities of p on (r, t )  is a subset 

of the set of discontinuities of U. 

Although, in general, the control monitoring signals are 
not differentiable, the process monitoring signals are. 
The following result is a direct corollary of Theorem 1. 

Corollary 1 Let P be a finite set with m elements and 
assume that the Open-Loop Assumptions hold for the 
process monitoring function. For a fixed initial state 
{ x o , ~ ~ }  E XO x P ,  let { x , ~ }  denote ihe unique solution 
to (1) with U generated b y  SW and let [O,T) denote the 
largest interval on which this solution is defined. For 
any e E &, 

(7) 

0 5 t o  < t < T ,  and, when the proces,s' monitoring 
signals are differentiable, we also have that there exists 
a signal p, which is { QP : p E P}-consistent with U on 
( t o ,  t ) ,  such that 

0 5 t o  < t < T ,  where bp(r)  is defined to be equal 
to %(r)  on intervals where p is constant and equal to 
q E Q ,  and zero at points of discontinuity of p. 

For an application of these ideas, see [19]. 

3 Relaxing the Open-Loop Assumptions 

The scale-independence property mentioned in Section 1 
can be used to somewhat relax the Open-Loop Assump- 
tions 1. Suppose that the following assumptions hold. 

Assumption 2 (Relaxed Open-Loop) There exist- 
s a positive time-function 8 such that for  each pair 
( 2 0 ,  s} E XO x S, the scaled monitoring signals jip(t) := 
w n ( P , x { , , , s } , t ) ,  t E [O,T{,,,9])> P E p ,  are such that: 

1. There exists a positive constant e such that 
&(O) 2 E ,  for each p E P.  
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2. Each scaled monitoring signal p p ,  p E P ,  is mono- 
tone nondecreasing on [0, T{zo,s}) .  

In light of the scale independence property, SW’S output 
D remains unchanged if its monitoring function/input 
signal pair {II, x} is replaced by another pair {I?, x} sat- 
isfying 

Since the Relaxed Open-Loop Assumptions guarantee 
that the original Open-Loop Assumptions hold for the 
pair {n, x } ,  we obtain the following corollary of Theo- 
rem 1. 

Corollary 2 Let P be a finite set with m elements and 
assume that the Relaxed Open-Loop Assumptions hold. 
For a fixed initial state (ZO,(TO} E XO x P ,  let { z , a }  
denote the unique solution to (1) with cr generated b y  
SW and let [O,T) denote the largest interval on which 
this solution is defined. For any e E P ,  

0 5 to < t < T ,  and, when the scaled monitoring signals 
are differentiable, we also have that 

(9) 

0 5 t o  < t < T ,  where /iu(r) is defined to be equal 
to %(T)  on intervals where D is constant and equal to 
p E P ,  and zero at points of discontinuity of cr. 

It turns out that in supervisory control the original 
Open-Loop Assumptions may often be violated, where- 
as the relaxed ones can be shown to hold (cf. Section 4 
and [2, 3, 7, 9, 10, 11, 121). 

4 Supervisory Control 

In this section we show how the previous results can be 
used in the context of supervisory control. We follow 
closely the formulation in [2, 31. 

The problem addressed here is the set-point control of an 
imprecisely modeled process P. In particular, we want to 
generate the control input U to the process so as to drive 
its output y to a constant reference r .  The process has 
two other exogenous inputs that cannot be measured: 
a bounded measurement noise signal n and a bounded 
disturbance d. For simplicity the signals U ,  y, n, and d 
are scalar. P is assumed linear, time-invariant, with a 
stabilizable (through U )  and detectable realization 

k p  = 4pz + Bpu + Dpd, y = Cpx + n, (10) 

but precise values for Ap, B p ,  Cp, Dp are not known. It 
is known, however, that P’s transfer function T ,  from 

U to y, belongs to a family of transfer functions of 
the form N := U P E p  N,, where p is an unknown pa- 
rameter taking values in some parameter set P and 
each Np denotes a family of transfer functions centered 
around a known, nominal transfer function up, e.g., 
Np := ((1 + 6)vp : llSlloO 5 E } .  Here, E denotes some 
small positive constant and 6 a stable transfer function 
with ‘?&-norm smaller than E. For simplicity, in the 
sequel we assume that E = 0 and the set P is finite 
and equal t o  { 1 ,2 , .  . . , m}. In a future paper we shall 
consider the general case of E > 0 and infinite P. 

The solution proposed in [2, 31 to  solve this problem is 
based on Certainty Equivalence and starts with the s- 
election of a family of linear, time-invariant candidate 
controllers C := { K ~  : p E P } .  Each K, would make the 
feedback closed-loop system in Figure 2 asymptotically 
stable if the process transfer function T was known to 
belong to Np. To avoid pole-zero cancellations it is as- 
sumed that P does not have transmission zeros at the 
origin. 

Figure 2: Feedback configuration. 

In case we knew to which set Np the actual process 
transfer function r belonged, stability of the closed loop 
could be achieved with a nonadaptive, linear, time- 
invariant controller with transfer function equal to inp. 
Since the process transfer function is not known in ad- 
vance we build a “multi-controller” Cc that effectively 
allows switching between all the controller transfer func- 
tions in C. If { (Ap, B,, C,, D,) : p E P} is a family of 
n-dimensional, stabilizable and detectable realizations 
for the transfer functions in C, the multi-controller Cc 
can be defined by 

x, = A U X ,  + BueT, v = cuxc + DueT, U = U, 
(11) 

where eT := T - y and cr : [O ,oo )  + 00 denotes a 
“switching signal” that, at each instant of time, deter- 
mines which candidate controller is put into the feed- 
back loop. The system that generates the switching 
signal a is called a supervisor. Here we are interested 
in estimator-based supervisors like the one in Figure 3. 
An estimator-based supervisor consists of three blocks: 
a multi-estimator, a monitoring signal generator, and a 
switching logic. 

The multi-estimator E is a linear, time-invariant system 
whose inputs are the outputs of the process and multi- 
controller and whose outputs are the output estimation 
errors ep ,  p E P. Each ep  is a signal that would converge 
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Figure 3: Supervisory control architecture. 

to zero if the process transfer function r was equal to 
the nominal transfer function v,. The reader is referred 
to [2, 31 for the precise structure of E. Denoting by 
x the combined state of the multi-estimator and multi- 
controller (excluding the integrator), the evolution of x 
is determined by 

x = A,x + d u e u ,  (12) 
eT =cp.x+ep., (13) 

where A p , d p , c p ,  p E P are appropriately defined ma- 
trices, and p* is the element of P for which r E N,.. 
Equation (12) is obtained from equation (23) in [2] with 
2 = u and (13) is obtained from equation (26) in [2] 
with 1 = p * .  It is also known that there exists a positive 
constant XO for which each A 0 1  + A, is asymptotically 
stable (cf. Remark 4 in [2]). Moreover, from equation 
(28) in [2], one concludes that e,* is bounded and 

I" e2xTep* ( ~ ) ~ d r  5 c,e2Xt + CO, t 2 0, (14) 

Ile,+-(t)II I d, + doe-xt,  t 2 0, (15) 

where X is any constant in (O,Xo), CO,&, are positive 
constants that depends only on initial conditions, and 
c,, dn are positive constants that depends only on upper 
bounds on the norms of n and d. 

The monitoring signal generator G takes as inputs the 
output estimation errors e p ,  p E P ,  and produces the 
monitoring signals p,, p E P defined by 

b, = -2XP, +e;, p, = F ,  + e,, p E P ,  (16) 

with X E (0,Xo) and e, > 0 constant. G is initialized so 
that P,(O) 2 0, p E P. 
The switching logic B generates the switching signal u 
based on the values of the monitoring signals p,, p E P. 
The logic used here is the Scale-Independent Hysteresis 
Switching Logic defined in Section 1. 
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Suppose now that we define scaled monatoring signals 
p p  := gp,, with 8(t) := e2Xt,  t 2 0. From (16) one 
concludes that, for each t 2 t o  2 0, 

t 

t o  
p , ( t )  = F,(to) + e2Atep + 1 e2Xrep(T)2dT, (17) 

and therefore each p p  is always monotone increasing 
and never smaller than e p .  By the Scale-Independent 
Hysteresis Switching Theorem (or more precisely Corol- 
lary 2), we can then conclude that, for any e E P and 
Osto 5 t < T ,  

(18) 
and 

In (19) we used the fact that & (p,(T) ( r ) )  = 2Xe2Are, + 
and (17) we obtain p p * ( t )  5 e2Xt(ep + c,) + CO, t 2 0, 
where EO := q, + fip.(0). Now (18)-(19) with e := p* 
and the fact that p,(tO) 2 e2XtOe,,, p E P give 

e2Xr  e,, 2 wherever the derivative exists. From (14) 

m log (e2x(t-to) (I + ?) + ?) 
log( 1 + h)  N,(t, t o )  I 1 + m + , 

for every t 2 t o  2 0. Since for a, b > 0, log(a + b) 5 
log(2a) + log(2b), we also conclude that 

m 
lo&+ h) log + 

No := 1 + m + 
Now, because of Lemma 1 and Theorem 2 in [17], there 
is a finite constant 76 such that (12) has input-testate 
ext-weighted L2-to-C, norm uniformly bounded over 
the set S,,,[T&, NO] of switching signals for which 



The signals in Sav,[~1;, NO] are said to have average 
dwell-time no larger than TA [17]. If we then choose 
X and h so that 5 y := &, we get TD 2 7-6 og l + h  
and the output U of the switching logic is guaranteed 
to be in Save[r&, No]. From this and (21) one concludes 
that 2 is bounded and, because of (11) and (13), eT and 
v are also bounded. The boundedness of U and the in- 
ternal state of the process follows from the detectability 
of the cascade formed by the integrator in (11) and the 
process (10). The following can then be stated. 

Theorem 2 There exists a positive constant 7 such 
that, whenever i*J 5 y, all signals remain bounded, 
for any bounded n and d, and any initialization of P, E, 
C, G, 8 ,  with pP(O)  2 0 ,  p E P. 

The previous analysis assumed that the family of N{vp : 
p E P} of admissible transfer functions for the process 
was finite. This type of analysis can be extended to the 
case when N has infinitely many elements [19]. 

5 Conclusions 

We showed that, under suitable “open-loop” assump- 
tions, one can establish an upper bound on the number 
of switchings produced by the Scale-Independent Hys- 
teresis Switching Logic on a given interval. This bound 
comes as a function of the variation of the inputs to  
the logic on that interval. Computing upper bounds on 
the number of switchings produced by hysteresis-based 
logics has been the main difficulty in applying them to 
adaptive control when noise and exogenous disturbances 
are present. With the properties derived here we were 
able to  show that, although this logic does not guarantee 
the existence of a fixed dwell-time between switchings, it 
can produce switching that is slow-on-the-average. This 
allowed us to  analyze hysteresis-based supervisory con- 
trol algorithms in the presence of noise. To the best of 
our knowledge, this is the first time that an algorithm of 
this type is analyzed without relying on switching stop- 
ping. The results presented here are confined to  the case 
of a finite parameter set P and the absence of unmod- 
eled dynamics. See [19] for more general results which 
do not require these assumptions. 

References 

[l] M. Chang and E. J. Davison, “Switching control of a 
family of plants,” in Proc. of the 14th Amer. Contr. Conf., 
vol. 1, pp. 1015-1020, June 1995. 
[2] A. S. Morse, “Supervisory control of families of linear 
set-point controllers-part 1: exact matching,’’ IEEE Tbans. 
Automat. Contr., vol. 41, pp. 1413-1431, Oct. 1996. 
[3] A. S. Morse, “Supervisory control of families of lin- 
ear set-point controllers-part 2: robustness,” IEEE Tbans. 
Automat. Contr., vol. 42, pp. 1500-1515, Nov. 1997. 
[4] K. S. Narendra and J. Balakrishnan, “Adaptive con- 

trol using multiple models,’’ IEEE Trans. Automat. Contr., 
vol. 42, pp. 171-187, Feb. 1997. 
[5] F. M. Pait and F. Kassab, Jr., “Parallel algorithms for 
adaptive control: Robust stability,” in Control Using Logic- 
Based Switching (A. S. Morse, ed.), no. 222 in Lecture Notes 
in Control and Information Sciences, pp. 262-276, London: 
Springer-Verlag, 1997. 
[6] J. Hockerman-Rommer, S. R. Kulkami, and P. J. Ra- 
madge, “Controller switching based on output prediction er- 
rors,” IEEE Trans. Automat. Contr., vol. 43, pp. 596-607, 
May 1998. 
[7] G. Chang, J. P. Hespanha, A. S. Morse, M. Netto, and 
R. Ortega, “Supervisory field-oriented control of induction 
motors with uncertain rotor resistance,” in Proc. of the 1998 
IFAC Workshop on Adaptive Control and Signal Processing, 
Glasgow, Scotland, Aug. 1998. 
[8] J. P. Hespanha, Logic-Based Switching Algorithms in  
Control. PhD thesis, Yale University, New Haven, CT, 1998. 
[9] S. Fujii, J. P. Hespanha, and A. S. Morse, “Supervi- 
sory control of families of noise suppressing controllers,’’ in 
Proc. of the 37th Conf. on Decision and Contr., pp. 1641- 
1646, Dec. 1998. 
[lo] J. P. Hespanha and A. S. Morse, “Certainty equiv- 
alence implies detectability,” Syst. €9’ Contr. Lett., vol. 36, 

[ll] J. P. Hespanha and A; S. Morse, “Supervisory control 
of integral-input-to-state stabilizing controllers,” in Pruc. of 
the 1999 European Contr. Conf., Aug. 1999. 
[12] J. P. Hespanha, D. Liberzon, and A. S. Morse, “Logic- 
based switching control of a nonholonomic system with para- 
metric modeling uncertainty,” Syst. €4 Contr. Lett. Special 
Issue on Hybrid Systems, vol. 38, pp. 167-177, Nov. 1999. 
[13] R. H. Middleton, G. C. Goodwin, D. J. Hill, andD. Q. 
Mayne, “Design issues in adaptive control,” IEEE Dans. 
Automat. Contr., vol. 33, pp. 50-58, Jan. 1988. 
[14] A. S. Morse, D. Q. Mayne, and G. C. Goodwin, lLAp- 
plications of hysteresis switching in parameter adaptive con- 
trol,” IEEE Trans. Automat. Contr., vol. 37, pp. 1343-1354, 
Sept. 1992. 
[15] J. P. Hespanha and A. S. Morse, “Scale-independent 
hysteresis switching,” in Hybrid Systems: Computation and 
Control (F. W. Vaandrager and J. H. van Schuppen, eds.), 
vol. 1569 of Lecture Notes in  Computer Science, pp. 117-122, 
Berlin: Springer-Verlag, Mar. 1999. 
[16] S. R. Kulkarni and P. J. Ramadge, “Model and con- 
troller selection policies based on output prediction errors,” 
IEEE Dans. Automat. Contr., vol. 41, pp. 1594-1604, Nov. 
1996. 
[17] J. P. Hespanha and A. S. Morse, “Stability of switched 
systems with average dwell-time,” in Proc. of the 38th Conf. 
on Decision and Contr., pp. 2655-2660, Dec. 1999. 
[18] J. P. Hespanha, D. Liberzon, and A. S. Morse, 
“Bounds on the number of switchings with scale-independent 
hysteresis: Applications to supervisory control,” tech. rep., 
EE-Systems Dept., University of Southern California, Los 
Angeles, CA, Feb. 2000. 
[19] D. Liberzon, J. P. Hespanha, and A. S. Morse, “Hier- 
archical hysteresis switching.” To be presented at the 39th 
Conf. on Decision and Contr., Dec. 2000. 

pp. 1-13, Jan. 1999. 

3627 


