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Abstract

This paper is concerned with control of nonholonomic systems in the presence of parametric modeling uncertainty.
The speci�c problem considered is that of parking a wheeled mobile robot of unicycle type with unknown parameters,
whose kinematics can be described by Brockett’s nonholonomic integrator after an appropriate state and control coordinate
transformation. We employ the techniques of supervisory control to design a hybrid feedback control law that solves this
problem. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Control systems with nonholonomic motion con-
straints have been extensively studied in the recent
years, particularly in the context of robotics. Robotic
manipulators, especially mobile ones, are described
by complicated models about which there is likely to
be signi�cant uncertainty [3]. This is just one source
of motivation for studying the challenging problem
of controlling nonholonomic mechanical systems in
the presence of modeling uncertainty. The status of
this problem as of December 1995 is perhaps best ex-
pressed by the following quote from the survey article
by Kolmanovsky and McClamroch [14]: “There are
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many important research problems for nonholonomic
control systems that have been little studied. Here we
identify the problem of control of nonholonomic sys-
tems when there are model uncertainties, as arise from
parameter variations or from neglected dynamics. It
is not necessary to motivate the importance of this
problem, but it is curious that there is little published
literature that deals directly with these questions”. In
the last few years this problem has received consid-
erable attention in the literature, and several adaptive
control strategies for uncertain nonholonomic systems
have been proposed [3,4,12,13,20,21].
The goal of this paper is to demonstrate that a

promising alternative to conventional adaptive con-
trol for nonholonomic systems is provided by the
techniques of supervisory control (see [9] for the
most recent exposition and references). The basic
idea behind this approach is to employ logic-based
switching among a family of candidate control laws.
There is considerable 
exibility in the choice of these
control laws, which leads us to believe that various
control strategies which have been developed for
nonholonomic systems can be put to use in the case
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when modeling uncertainty is present. The results
reported in [10,18] on designing hybrid control laws
for nonholonomic systems (which provide one way
of dealing with the problem that these systems fail
to satisfy Brockett’s necessary condition for smooth
feedback stabilizability [2]) are of particular rele-
vance. This line of research �ts together nicely with
the framework proposed here because, as illustrated
below, in the supervisory control setting it is possi-
ble to switch in a hybrid fashion between candidate
control laws that are themselves hybrid.
In what follows, we consider a prototype example

of an uncertain nonholonomic control system, whose
kinematics can be described by Brockett’s nonholo-
nomic integrator after an appropriate state and control
coordinate transformation. We demonstrate how the
supervisory control approach can be used to design a
hybrid feedback control law that drives the state of the
system to zero. The control algorithm employs a ver-
sion of the so-called hysteresis switching logic, and in
this sense is reminiscent of the hybrid control law used
in [10] to stabilize the nonholonomic integrator with
no modeling uncertainty. It follows from the work of
Murray and Sastry [17] that any kinematic completely
nonholonomic system with three states and two
control inputs can be converted to the nonholonomic
integrator by means of a state and control transforma-
tion. This result suggests that a fairly general class of
nonholonomic systems can be treated by the method
proposed in this paper.
The problem to be addressed is formulated in

Section 2. In Section 3 we construct a hybrid control
law based on estimator-based supervision and give a
proof of convergence for the case when the unknown
parameters take values in a �nite set. In Section 4
we treat the somewhat simpler problem of practical
regulation. The corresponding problems for the case
of an in�nite parameter set are discussed in Section 5.
We make some concluding remarks in Section 6. The
paper is self-contained; no previous knowledge of
supervisory control methods is necessary for its un-
derstanding. In the appendix, to make the paper more
accessible, we consider a simple example of a (lin-
ear) supervisory control system to give an informal
overview of the ideas involved.

2. Problem formulation

The problem we consider is that of parking a
wheeled mobile robot of unicycle type (see, e.g.

Fig. 1. A wheeled mobile robot.

[14]). Let x1; x2 be the coordinates of the point in the
middle of the rear axle, and let � denote the angle that
the vehicle makes with the x1-axis (see Fig. 1). The
front wheel turns freely and balances the front end
of the robot above the ground. When the same angu-
lar velocity is applied to both rear wheels, the robot
moves straight forward. When the angular velocities
applied to the rear wheels are distinct, the robot turns.
The kinematics of the robot can be modeled by the
equations

ẋ1 = p∗
1w1 cos �;

ẋ2 = p∗
1w1 sin �;

�̇= p∗
2w2;

(1)

where p∗
1 and p∗

2 are positive parameters determined
by the radius of the rear wheels and the distance be-
tween them, and w1 and w2 are the control inputs. The
case we are interested in is when the actual values of
p∗
1 and p∗

2 are not precisely known. In the sequel we
assume that the pair p∗ := (p∗

1 ; p
∗
2) belongs to a set

P := P1×P2, whereP1 andP2 are �nite (or in�nite
but compact) subsets of (0;∞). We will denote the
state (x1; x2; �)T of the unicycle by xu and the input
vector (w1; w2)T by w. The problem of parking the ve-
hicle amounts to making x1; x2, and � tend to zero by
means of applying a state feedback (the whole state
xu being available for control).
Consider the state coordinate transformation

x = (x1 cos �+ x2 sin �);
y = �;
z = 2(x1 sin �− x2 cos �)− �(x1 cos �+ x2 sin �):

(2)

It is easy to verify that (2) de�nes a global di�eomor-
phism that preserves the origin. Consider also the fam-
ily of control transformations given, for each p∈P,
by

up = fp(xu ;w) := p1w1 − p2w2(x1 sin �− x2 cos �);

vp = gp(xu ;w) := p2w2: (3)
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For p = p∗ the transformed equations are those of
Brockett’s nonholonomic integrator [2]

ẋ = up∗ ;
ẏ = vp∗ ;
ż = xvp∗ − yup∗ :

(4)

We will denote (x; y; z)T by xi. Following [5] (see
also [18]), we further transform the state and control
variables according to

x = r cos  ;
y = r sin  ;

(
up
vp

)
=
(
cos  −sin  
sin  cos  

)(
�up

�vp

)
;

to obtain the following equations in the new cylindri-
cal coordinates:

ṙ = �up∗ ;
 ̇ = �vp∗ =r;
ż = r �vp∗

(5)

(of course, the above transformation is only de�ned
when x2 + y2 6= 0). If the values of p∗ were known,
one could apply the controls

�up∗ =−r2; �vp∗ =−z; (6)

which result in the system

ṙ =−r2;
ż =−zr;

 ̇ =− z
r
:

(7)

Thus if r(0) 6= 0, it is not hard to see that r(t); z(t)→
0. If r(0) = 0, we could apply some control law that
moves the state xi of (4) away from the z-axis (e.g.,
up∗ = vp∗ = 1) for a certain amount of time, and then
switch to the control de�ned by (6). This would re-
sult in a simple hybrid control law that drives xi, and
consequently xu, to zero. In fact, it is even possible
to achieve asymptotic stability in the Lyapunov sense.
Although the control law (6) is not the best one avail-
able (for example, it does not achieve exponential con-
vergence), it provides motivation for the subsequent
developments.
Since the actual parameter values p∗

1 and p∗
2 are

unknown, the above control strategy cannot be imple-
mented. Instead, we will develop a hybrid feedback
law of the form w=��, where {�p: p∈P} is a family
of candidate control laws, each designed for a speci�c
value of p∈P, and � : [0;∞) → P is a piecewise
constant switching signal that determines, at each in-
stant of time, which one of these control laws should
be used.

Fig. 2. Supervisory control system.

3. Estimator-based supervisory control

The purpose of this section is to develop a
“high-level” controller called a supervisor which,
without a priori knowledge of p∗, is capable of or-
chestrating the switching among a suitably de�ned
family of candidate control laws so as to cause the
state xu of the system (1) to tend to zero. In this
section and the next one we assume that the set P
is �nite. The reader who is not familiar with the ideas
of supervisory control is encouraged to consult the
appendix. The supervisor consists of four subsystems
(see Fig. 2):
• multi-estimator — a dynamical system whose in-
puts are w and xi and whose outputs are xp; p ∈ P,
where each xp is a suitably de�ned estimate of xi
which would be asymptotically correct if p were
equal to p∗.

• multi-controller — a dynamical system whose in-
puts are xp and the estimation errors ep := xp −
xi; p ∈ P, and whose outputs are control signals
wp; p ∈ P generated by the candidate control laws
�p; p ∈ P.

• performance signal generator— a dynamical sys-
tem whose inputs are the estimation errors ep and
whose outputs �p; p ∈ P are suitably “normed”
values of the estimation errors called performance
signals.

• switching logic—a dynamical systemwhose inputs
are the performance signals �p and whose output
is a switching signal � which is used to de�ne the
control law w= ��.
The underlying decision-making strategy used by

the supervisor basically consists in selecting for �,
from time to time, the candidate control index qwhose
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corresponding performance signal �q is currently the
smallest among the �p; p∈P. The motivation for
this heuristic idea is as follows: the process model
whose associated performance signal is the smallest
“best” approximates what the process is, and thus the
candidate control law designed on the basis of that
model can be expected to do the best job of controlling
the process.

3.1. Multi-estimator

In view of (4), we introduce the family of estimator
equations

ẋp =−(xp − x) + fp(xu ;w);
ẏp =−(yp − y) + gp(xu ;w);
żp =−(zp − z) + xgp(xu ;w)− yfp(xu ;w)

(8)

with x; y; z; fp and gp as in (2) and (3), together with
the estimation errors de�ned by

x̃p := xp − x; ỹp := yp − y; z̃p := zp − z: (9)

For each p ∈ P, let us denote (xp; yp; zp)T by xp and
(x̃p; ỹp; z̃p)

T by ep, to have ep=xp−xi. It follows from
(4) and (8) that ėp∗ =−ep∗ for any control w, thus

ep∗(t) = e−tep∗(0); t¿0: (10)

3.2. Multi-controller

For each p ∈ P, when x2p + y2p 6= 0, the equations
xp = rp cos  p; yp = rp sin  p; (11)

de�ne the signals rp and  p. There exists a function
hp :R9 → R2 such that for all xu ; xp and ep with
x2p + y2p 6= 0 we have
fp(xu ; hp(xu ; xp; ep))
=− xprp + zp sin  p + x̃p;

gp(xu ; hp(xu ; xp; ep))
=− yprp − zp cos  p + ỹp:

(12)

Similarly, there exists a function �hp : R3 → R2 such
that for all xu we have

fp(xu ; �hp(xu)) = 1; gp(xu ; �hp(xu)) = 1: (13)

These functions are given explicitly by the formulas

hp(xu ; xp; ep) =


 ((x1 sin �− x2 cos �)
 + x̃p

−xprp + zp sin  p)=p1

=p2


 ;

�hp(xu) =
(
(1 + x1 sin �− x2 cos �)=p1

1=p2

)
;

where 
= ỹp − yprp − zp cos  p. Note that xu can be
computed from xp and ep via (2) and (9), so that the

�rst argument of the function hp is actually super
u-
ous. This explains the fact that the only inputs to the
multi-controller in Fig. 2 are xp and ep.
Our hybrid control law will depend on two discrete

state variables generated by the switching logic to be
described below: � ∈ P (the current estimate of p∗)
and s ∈ {0; 1} (an auxiliary logic variable). We de�ne
the candidate control laws �p; p ∈ P by

�p(s; xu ; xp; ep)

:=
{

hp(xu ; xp; ep) if s= 1 and rp 6= 0;
�hp(xu) otherwise:

(14)

Loosely speaking, each candidate control law
�p(s; xu ; xp; ep) makes the corresponding estimator
state xp reproduce the desired behavior given by (7)
as closely as possible (see Eqs. (19) and (20) below).
In fact, we would get precisely the equations (7) if ep
were equal to zero. Now the motivation for consider-
ing the above candidate control laws can be seen more
clearly: we know that at least for p= p∗ the estima-
tion error ep converges to 0. Thus, if we had � → p∗,
then the control values would converge to those of the
control law that would have been implemented in the
case of known p∗. However, in supervisory control
the parameter estimates are not required to converge
to the actual parameter values, and typically will not
do so. We will see that this is not crucial in proving
stability of the closed-loop system.

3.3. Performance signals

De�ne a function F : R3 → R by

F(v) := v21 + v22 + v62 + v23:

Fix a positive number �¡ 2. Each performance signal
�p; p ∈ P will be generated by

�̇p =−��p + F(ep) (15)

with the initial values satisfying �p(0)¿ 0. Eq. (15)
implies that for each p ∈ P we have

�p(t) = e−�t�p(0) +
∫ t

0
e−�(t−�)F(ep(�)) d�; t¿0:

This formula shows that each performance signal �p

is the sum of an exponentially decaying term that de-
pends on initial conditions and a suitable exponentially
weighted “norm” of the corresponding estimation er-
rors. The reason for de�ning the performance signals
in this manner will become clear later.
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Fig. 3. Switching logic.

3.4. Switching logic

The switching logic we consider here is a modi�ed
version of the scale-independent hysteresis switching
logic proposed in [7,8]. Let us pick a number h¿ 0
called the hysteresis constant. The functioning of the
switching logic is as follows (see Fig. 3). First, we
set �(0)= argminp∈P{�p(0)}. Suppose that at a cer-
tain time ti the value of � has just switched to some
q∈P. If rq(ti) 6= 0, we set s = 1. The value of
� is then held �xed until a time ti+1¿ti such that
(1 + h)minp∈P{�p(ti+1)}6�q(ti+1), at which point
we set �(ti+1) = argminp∈P{�p(ti + 1)}. (When the
indicated minimum is not unique, a particular value
among those that minimize �p can be chosen arbitrar-
ily.) On the other hand, if rq(ti) = 0, we set s=0 and
keep the value of � �xed for t ∈ [ti; ti + �), where �
is a positive constant. After that we set s = 1 and go
back to the �rst case. Repeating this procedure, we
generate a piecewise constant signal � that is contin-
uous from the right everywhere. As we will see, by
setting �p(0)¿ 0 for all p ∈ P we avoid chattering.
Finally, using the candidate control laws (14) and

the above switching logic, we de�ne the hybrid feed-
back control law by

w := ��: (16)

3.5. Main result

Our main result is as follows.

Theorem 1. All the signals in the supervisory con-
trol system de�ned by (1); (8); (14); (15); (16) and the
switching logic of Section 3:4 remain bounded for

any initial conditions such that �p(0)¿ 0 ∀p ∈ P.
Moreover; there exists a time T ∗ such that �(t)=q∗ ∈
P for all t¿T ∗; i.e.; the switching stops in �nite time;
and we have x1(t); x2(t); �(t)→ 0 as t → ∞.

To prove this theorem, we will need the following
well-known and easily derived facts.

Fact 2. The state of an exponentially stable linear
system with bounded inputs and=or Lk inputs (k¿1)
remains bounded.

Fact 3 (see, e.g. [1, p. 58]). Any L2 function with
bounded derivative converges to zero.

Lemma 4. Consider the system

ẋ = a(t)x + b(t): (17)

If T ¿ 0 is such that
∫ T
0 a(t) dt ¡∞ and

∫ T
0 |b(t)|dt

¡∞; then x(t) is bounded for t ∈ [0; T ).Moreover; if
limT→∞

∫ T
0 a(t) dt=−∞ and limT→∞

∫ T
0 |b(t)| dt=

N ¡∞; then x(t)→ 0 as t → ∞.

Proof of Theorem 1. Let us de�ne (for analysis pur-
poses only) the scaled performance signals ��p(t) :=
e�t�p(t); p ∈ P. In view of (15) we have

�̇�p = e�tF(ep): (18)

The scale independence property of the switching
logic implies that replacing �p by ��p would have
no e�ect on �. From (18) we see that each ��p is
monotonically nondecreasing. This, the �niteness of
P, and the fact that ��p(0)¿ 0 for each p ∈ P guar-
antee the existence of a positive number � such that
��p(t)¿� ∀t¿0; ∀p ∈ P. It is not hard to conclude
now from the way the switching logic was de�ned
that chattering cannot occur [7,8].
Observe that ��p∗ is bounded by virtue of (10). It

follows that the signals ��p satisfy the assumptions
of the Hysteresis Switching Lemma [7,8,16] which
enables us to conclude that the switching stops in �nite
time. 1 More precisely, if [0; T ) is the largest interval
on which the solution to the system is de�ned, there
exists a time T ∗ ¡T such that �(t) = q∗ ∈ P for all
t¿T ∗. In addition, ��q∗ is bounded on [0; T ).
If s(T ∗) = 0, the composite state of the system re-

mains bounded for all t ∈ [T ∗; T ∗ + �] because the

1 Although the presence of the variable s makes the switching
logic described here more complicated than the ones analyzed
in the cited references, this does not introduce any di�culties in
establishing the desired �nite number of switchings property.
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closed-loop system is globally Lipschitz. We will then
have s(T ∗ + �) = 1. From (8), (12), (14) and (16),
using straightforward calculations, we conclude that
for t¿T ∗ + � we have

ṙq∗ =−r2q∗ ; (19)

żq∗ =−zq∗(rq∗ − x̃q∗ cos  q∗ − ỹ q∗ sin  q∗)

+ (xq∗ ỹ q∗ − x̃q∗yq∗)(1− rq∗)− z̃q∗ (20)

(here and below we are using the notation rp =√
x2p + y2p; p ∈ P). Eq. (19) and the de�nition of

the switching logic imply that rq∗(t) 6= 0 and s(t)= 1
for all t¿T ∗ + �. Thus we may assume, without loss
of generality, that s(T ∗) = 1 and that (19) and (20)
hold for t¿T ∗. For each p ∈ P \ q∗ and all t¿T ∗

from (8), (12), (14) and (16) we obtain the equations

ṙp =−rp + �pq∗(xq∗ ; eq∗);

żp =−zp + �pq∗(xq∗ ; eq∗):
(21)

Here �pq∗ and �pq∗ are appropriately de�ned functions
which satisfy the bounds

�pq∗(xq∗ ; eq∗)6 P1(rq∗ ; xq∗)P2(x̃q∗) + P3(rq∗ ; xq∗)

×P4(ỹ q∗) + P5(rq∗ ; xq∗)P6(z̃q∗);

�pq∗(xq∗ ; eq∗)6 P7(rq∗ ; xq∗)P8(x̃q∗) + P9(rq∗ ; xq∗)

×P10(ỹ q∗) + P11(rq∗ ; xq∗)P12(z̃q∗);

(22)

where Pi’s are suitably de�ned polynomials. In partic-
ular, degP2=degP6=degP8=degP12=2; degP4=4,
and degP10 = 6.
It follows from (19) that

rq∗(t) =
rq∗(0)

rq∗(0)t + 1
; t ∈ [0; T ): (23)

Since ��q∗ is bounded, we have e�tF(eq∗) ∈ L1([0; T )).
This implies, in particular, that x̃q∗ ; z̃q∗ ∈ L2([0; T ))
and ỹ q∗ ∈L2([0; T )) ∩ L6([0; T )). Also, ỹ q∗ ∈
L4([0; T )) by virtue of the bound ỹ4q∗6(ỹ

2
q∗+ỹ6q∗)=2.

Moreover, from the bound |x̃q∗ |6(e−�t + e�t x̃2q∗)=2
we see that x̃q∗ ∈ L1([0; T )). Similarly, ỹ q∗ ; z̃q∗ ∈
L1([0; T )). One can easily check now that Eq. (20)
satis�es the assumptions of Lemma 4. Combined with
the polynomial bounds (22) and (23) this implies that
xp is bounded on [0; T ) for all p ∈ P (here we are
using (21) and Fact 2). In view of (9) and (10) we
conclude that xi remains bounded as well. Therefore,
ep is bounded for each p ∈ P. The boundedness of

all the performance signals now follows from Fact 2
applied to (15). Thus we see that T = ∞, i.e., the
solution to the system is globally de�ned.
Now (19) and (20) and Lemma 4 imply that xq∗ →

0. Furthermore, since xi and xp; p ∈ P are bounded,
˙̃xq∗ = ẋq∗ − ẋ is bounded as well. We also know that
x̃q∗ ∈ L2. Using Fact 3, we conclude that x̃q∗ → 0.
Similarly, ỹ q∗ ; z̃q∗ → 0. Therefore, we have xi → 0,
and consequently xu → 0 as needed.

Remark. The main result of [9] states, loosely
speaking, that if for each p ∈ P the pth controller
input-to-state stabilizes the multi-estimator, with the
estimation error ep viewed as the input, then the
closed-loop system is detectable through ep when
the value of � is frozen at p. That paper shows how
this result leads to a systematic supervisory control
design technique with the help of suitable supply
functions (for example, in the linear case one can
always choose these functions to be quadratic, hence
the performance signals can be driven by the squared
estimation errors — cf. appendix). However, even
when the input-to-state stabilization hypothesis is not
satis�ed, it is sometimes possible to establish the
desired properties of the closed-loop system directly
along the lines of the above proof. Integral variants
of input-to-state stability recently introduced in [19]
are also relevant in this regard, as discussed in [11].

4. Practical regulation

As we remarked earlier, the solutions of (7) do not
converge to zero exponentially. We therefore expect
that the control strategy developed in the previous sec-
tion will cause slow convergence. In some applica-
tions it might be su�cient to make the state xu of the
system (1) approach a small region around the origin
and stay there for all future time (cf. [6]). In view of
the developments of Section 2, this task will be ac-
complished if we drive the state of the nonholonomic
integrator (4) to a su�ciently small neighborhood of
the origin. In this section we describe how this prob-
lem can be solved.
Consider the problem of controlling the state of

system (5) so as to have r → r∗, z → 0, where r∗

is a (small) �xed positive real number. The control
law

�up∗ =−r + r∗; �vp∗ =− z
r∗

;
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proposed in [5] yields the exponentially stable system

�̇r =− �r;
ż =− zr

r∗
;

(24)

where �r := r − r∗.
Since we are dealing with the case when the ac-

tual parameter values are unknown, the above control
law can not be implemented. Let us consider again
the estimator equations given by (8) together with the
estimation errors given by (9). We will design the can-
didate control laws in such a way as to make the esti-
mators reproduce the desired behavior given by (24)
as closely as possible (see Eqs. (28) below). The mo-
tivation for considering such candidate control laws is
the same as before.
For each p∈P there exists a function kp : R9 →

R2 such that for all xu, xp and ep with x2p + y2p 6= 0
we have

fp(xu ; kp(xu ; xp; ep)) = −xp + r∗ cos  p

+
zp sin  p

r∗
+ x̃p;

gp(xu ; kp(xu ; xp; ep)) = −yp + r∗ sin  p

− zp cos  p
r∗

+ ỹp;

(25)

where  p is de�ned by (11). This function is given
explicitly by the formula

kp(xu ; xp; ep)

=



((x1 sin �− x2 cos �)� − xp

+r∗ cos  p +
zp sin  p

r∗
+ x̃p)=p1

�=p2


 ;

where

� =−yp + r∗ sin  p − zp cos  p
r∗

+ ỹp:

As before, the �rst argument of kp is actually super-

uous.
Our hybrid control law will depend on two discrete

state variables generated by the switching logic de-
scribed in Section 3.4, � ∈ P and s ∈ {0; 1}. We
de�ne the candidate control laws ��p, p ∈ P by

��p(s; xu ; xp; ep)

:=
{

kp(xu ; xp; ep) if s= 1 and rp 6= 0;
�hp(xu) otherwise;

(26)

the function �hp having been de�ned by (13). Using
these candidate control laws and the switching logic

described in Section 3.4, we de�ne the hybrid feedback
control law by

w := ���: (27)

This leads us to the following result.

Theorem 5. All the signals in the supervisory control
system de�ned by (1); (8); (15); (26); (27) and the
switching logic of Section 3:4 remain bounded for
any initial conditions such that �p(0)¿ 0 ∀p ∈ P.
Moreover; there exists a time T ∗ such that �(t)=q∗ ∈
P for all t¿T ∗; i.e.; the switching stops in �nite time;
and we have r(t)→ r∗ and z(t)→ 0 as t → ∞.

Proof. As before, we can apply an appropriate version
of the Hysteresis Switching Lemma to show that if
(0; T ) is the largest interval on which the solution
to the system is de�ned, there exists a time T ∗ ¡T
such that �(t) = q∗ ∈ P for all t¿T ∗. We can also
assume, without loss of generality, that s(T ∗) = 1.
From (8), (25), (26) and (27), using straightforward
calculations, we obtain the equations

ṙq∗ =−rq∗ + r∗;

żq∗ =− zq∗
r∗
(rq∗ − x̃q∗ cos  q∗ − ỹ q∗ sin  q∗)

+ r∗(ỹ q∗ cos  q∗ − x̃q∗ sin  q∗)− z̃q∗ (28)

and, for each p ∈ P \ q∗,

ṙp =−rp + ��pq∗(xq∗ ; eq∗);

żp =−zp + ��pq∗(xq∗ ; eq∗):
(29)

Here ��pq∗ and ��pq∗ are appropriately de�ned func-
tions which have exactly the same properties as the
functions �pq∗ and �pq∗ introduced in the proof of
Theorem 1. The rest of the proof carries over from
Theorem 1 with obvious slight modi�cations and will
not be given.

5. State-sharing

In the previous section we have relied on the fact
that the set P was �nite, so that the systems of esti-
mator equations (8) and performance signal equations
(15) were �nite-dimensional. If the set P is in�nite,
a di�erent approach is required. One alternative is to
replace the individual estimator equations by a sin-
gle system and use it to generate the estimation er-
rors, in other words, make the estimators “share” the
same state. The performance signals can be obtained
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Fig. 4. Exact and practical regulation.

in a similar way. This idea in fact leads to a more
e�cient way of designing a supervisory control sys-
tem even for the case when P has a �nite but large
number of elements. What makes such state sharing
possible in our case is the fact that the control func-
tions fp(xu ;w) and gp(xu ;w) are separable, i.e., take
the form aT(p)b(xu ;w).
Consider the equations

˙̂x1 =−x̂1 + x; ˙̂x2 =−x̂2 + w1;

˙̂x3 =−x̂3 − w2
xy + z
2

;

˙̂y 1 =−ŷ 1 + y; ˙̂y 2 =−ŷ 2 + w2;
˙̂z1 =−ẑ1 + z; ˙̂z2 =−ẑ2 − yw1;

˙̂z3 =−ẑ3 + xw2 + yw2
xy + z
2

(30)

with x, y and z given by (2). If we now de�ne

xp := x̂1 + p1x̂2 + p2x̂3; yp := ŷ 1 + p2ŷ 2;

zp := ẑ1 + p1ẑ2 + p2ẑ3;
(31)

then it is easy to check that xp, yp and zp satisfy the
original estimator equations (8). We thus de�ne the
pth estimation error ep = (x̃p; ỹp; z̃p)

T by

x̃p := x̂1 + p1x̂2 + p2x̂3 − x; ỹp := ŷ 1 + p2ŷ 2 − y;

z̃p := ẑ1 + p1ẑ2 + p2ẑ3 − z

and use (30) and (31) in place of (8).
The performance signals can be obtained similarly.

As for the candidate control laws and the switching
logic, they can be de�ned exactly as before. One can
check that the minimization procedure used in the

switching algorithm reduces to that of �nding roots of
polynomials in one variable of degree at most 5, so its
computational tractability is not an issue.
The above discussion explains how to implement

the supervisory control algorithms in the case when the
parameter setP is in�nite. Once this is done, the ques-
tion that arises is how to prove that these algorithms
indeed perform the required tasks. Unfortunately, the
switching can not be guaranteed to stop in this case,
and the problem of proving the state convergence re-
mains open.
However, simulation results indicate that the

closed-loop system still has the desired conver-
gence property, as is illustrated by the �gures below.
We took the set P to be [0:1; 2] × [0:1; 3] and the
actual parameter pair to be p∗ = (1; 1). Fig. 4 shows
the behavior of the state xu when one applies the con-
trol law of Section 3 and the control law of Section
4 (with r∗ = 0:1), respectively. On the basis of this
and other simulation studies we have concluded that
the state of the system is indeed driven to zero in the
�rst case and to an appropriate neighborhood of zero
in the second case. These simulations also suggest
that, loosely speaking, the second control law tends to
bring the state of the system into a “reasonably small”
neighborhood of zero faster than the �rst one, which
is not surprising in view of our earlier discussion. 2

2 A parking movie generated with MATLAB Simulink
which illustrates the performance of the supervisory con-
trol system designed in Section 3 is available at http:==
pantheon.yale.edu= d̃ml33=parkingmovie.mpg
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6. Conclusions

In this paper we used the supervisory control
approach to solve a prototype control problem for a
nonholonomic system with parametric modeling un-
certainty. The results of [17] lead us to believe that a
fairly general class of nonholonomic systems can be
treated by the method proposed in this paper. It would
be interesting to compare our approach with existing
adaptive control algorithms, e.g., the one presented
by Jiang and Pomet in [12].
The main open problem that remains the subject of

ongoing research e�orts is to prove that the algorithms
described here still perform the required tasks, or to
develop other provably correct algorithms, when the
switching can not be guaranteed to stop. This issue
arises when the parameter set is in�nite or, perhaps
more importantly, when disturbances, noise, and=or
unmodeled dynamics are present.

Appendix

In this appendix we discuss, in the context of a sim-
ple example, some aspects of the supervisory control
machinery developed in [15] that are relevant to the
work described in this paper. Consider the problem of
stabilizing, by means of output feedback, an unknown
member of a family of stabilizable and detectable lin-
ear systems

ẋ = Ap x + Bpu; y = Cp x; (32)

where x∈Rn, u∈Rm, y∈Rk , and the parameter p
takes values in a �nite index set P. We will write
p∗ for the actual value of the parameter that corre-
sponds to the system to be stabilized. If the value of p∗

were known, one could apply, for example, the stan-
dard dynamic observer-based linear feedback control
law to stabilize the system. Since the actual parame-
ter value is not available, we would like to design a
family of candidate control laws and orchestrate the
switching between them based on some parameter es-
timation procedure. To this end, consider a family of
observer-based output estimators parameterized by P
which take the form

ẋp = (Ap + KpCp)xp + Bpu− Kpy; yp = Cpxp
(33)

and the corresponding candidate control laws

up = Fp xp: (34)

Here the matrices Kp and Fp are such that the eigen-
values of Ap + KpCp and Ap + BpFp have negative
real parts for each p ∈ P (such matrices exist be-
cause each system in the family (32) is stabilizable
and detectable by assumption).
We also consider the estimation, or output predic-

tion, errors de�ned for each p ∈ P by

ep := yp − y (35)

and the corresponding performance signals de�ned
for each p ∈ P by

�p(t) :=
∫ t

0
‖ep(�)‖2 d�: (36)

Each �p(t) can be thought of as the L2 norm of ep
on the interval [0; t]. It contains information about
the past behavior of the estimation error ep and can
be regarded as a measure of the likelihood of p being
the actual parameter value p∗. Note that each per-
formance signal can be generated by the di�erential
equation

�̇p = ‖ep‖2

with �p(0) = 0.
We will design a hybrid feedback control policy of

the form u = u�, where � : [0;∞) → P is a piece-
wise constant switching signal. In our case this means
u(t) = F�(t)x�(t). Loosely speaking, the value of � at
each given time will correspond to the parameter p
whose associated performance index �p is currently
the smallest. The origin of this idea is the concept
known as certainty equivalence in the adaptive con-
text or as separation principle in the stochastic con-
text. The justi�cation of this approach comes from the
fact that, as we will show below, the closed-loop sys-
tem is detectable through the estimation error.
One way to generate the switching signal � is by

means of the so-called hysteresis switching logic [16].
Fix a positive number h called the hysteresis con-
stant. Set �(0) = argminp∈P{�p(0)}. Now, suppose
that at a certain time � has just switched to some
q ∈ P. The value of � is then held �xed until we
have minp∈P {�p(t)} + h6�q(t). If and when that
happens, we set � equal to argminp∈P{�p(t)}. Re-
peating this procedure, we obtain a piecewise constant
switching signal which is continuous from the right
everywhere.
Eqs. (32), (33) and (35) imply that for any control

law u we have ėp∗ =−ep∗ , so that ep∗(t)=e−tep∗(0).
It follows at once from (36) that �p∗(t) is bounded for
all t¿0. In addition, all performance signals �p are
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nondecreasing by construction. Using these two facts
and the de�nition of the hysteresis switching logic, it
is not hard to show that the switching must stop in
�nite time (this is the Hysteresis Switching Lemma
proved in [16]). More precisely, there exists a time
T ∗ such that �(t) = q∗ ∈ P ∀t¿T ∗. Moreover, �q∗

is bounded because �p∗ is, hence

eq∗ ∈ L2; (37)

by virtue of (36).
After the switching stops, the closed-loop system

can be written as(
ẋ
ẋq∗

)
= �A

(
x
xq∗

)
; eq∗ = �C

(
x
xq∗

)
; (38)

where

�A :=
(

Ap∗ Bp∗Fq∗

−Kq∗Cp∗ Aq∗ + Kq∗Cq∗ + Bq∗Fq∗

)

and

�C :=
(−Cp∗ Cq∗

)
:

If we let

�K :=
(

Kp∗

Kq∗

)
;

then it is straightforward to check that the matrix

�A− �K �C =
(

Ap∗ + Kp∗Cp∗ Bp∗Fq∗ − Kp∗Cq∗

0 Aq∗ + Bq∗Fq∗

)

is strictly stable, which shows that system (38) is de-
tectable through eq∗ . To prove that x converges to
zero, it su�ces to apply a standard output injection
argument. Namely, write(

ẋ
ẋq∗

)
= ( �A− �K �C)

(
x
xq∗

)
+ �Keq∗

and observe that x → 0 in view of (37) and stability
of �A− �K �C.
We emphasize that the particular choice of candi-

date control laws given by (34) is by no means crucial.
Assume, for example, that every system in the fam-
ily (32) is stabilizable by a static linear output feed-
back. In other words, assume that for each p ∈ P
there exists a matrix Gp such that the eigenvalues of
Ap + BpGpCp have negative real parts. The reader
will have no di�culty proving that if we keep the es-
timators (33) but replace (34) by up = Gpy, we still
have x → 0.
The above problem is rather special, and the solu-

tion and the method of proof have several drawbacks
that we do not discuss here. Nonetheless, the essential

features of this example are present in the supervisory
control strategies developed in Sections 3 and 4.
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