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Abstract

A high-level supervisor, employing switching and logic, is
proposed to orchestrate the switching between a family
of candidate controllers into feedback with an imprecisely
modeled process so as to stabilize it. Each of the candi-
date controllers is required to integral-input-to-state stabi-
lize one particular admissible process model, with respect
to a suitably de�ned disturbance input. The controller
selection is made by (i) continuously comparing in real
time suitably de�ned \normed" output estimation errors
or \performance signals" and (ii) placing in the feedback-
loop, from time to time, that candidate controller whose
corresponding performance signal is the smallest. The use
of integral-input-to-state stability in the context of super-
visory control of nonlinear systems, allowed us to weaken
the requirements on the candidate controllers being used.
It also seems quite natural when the performance signals
are de�ned as \integral norms" of the output estimation
errors.

1 Introduction

This paper deals with the control of poorly modeled non-
linear systems. Our paradigm of choice to undertake this
problem consists of an architecture in which a high-level,
logic-based supervisor orchestrates the switching between
a family of candidate controllers so as to achieve some
desired behavior for the closed-loop system. The need
for switching arises from the fact that no single candi-
date controller would be capable, by itself, of guaranteeing
good performance when connected with the poorly mod-
eled process.

In [1] it was shown that any stabilizing, certainty equiv-
alence control used within an adaptive control system,
causes the familiar interconnection of a controlled process
and associated output estimator to be detectable through
the estimator's output error ep, for every frozen value of
the index or parameter vector p upon which both the es-
timator and controller dynamics depend. This was shown
to be so whenever each of the candidate controllers input-
to-state stabilizes the corresponding admissible process
model, with respect to a suitably de�ned disturbance in-
put.

Here it is shown that just requiring that each candidate
controller integral-input-to-state stabilize the correspond-
ing admissible process model su�ces for a suitably de�ned
\integral" detectability of the interconnection of the can-
didate controller with the corresponding output estimator
fthe so-called injected systemg through the estimator's
output error. In turn, this is used to design a supervisor,
employing switching and logic, to orchestrate the switch-
ing between the set of candidate controllers into feedback
with the imprecisely modeled process so as to stabilize
it. The integral version of detectability, introduced in this
paper, is dual to the concept of integral-input-to-state sta-
bility in [2].

By replacing the requirement of input-to-state stabil-
ity with that of integral-input-to-state stability, the con-
ditions under which the supervisory control algorithm is
proved to achieve stability are signi�cantly weakened. The
fact that input-to-state stability was, at times, too strong
a requirement was stressed by recent results in [3, 4]. For
a discussion on integral-input-to-state stability v.s. input-
to-state stability see [2, 5]. The latter reference addresses
the question of designing integral-input-to-state stabiliz-
ing controllers. In light of the results presented here, this
topic becomes quite relevant for the supervisory control of
nonlinear systems.

The use of integral-input-to-state stability and integral
detectability also seems quite natural when the perfor-



mance signals are de�ned as \integral norms" of out-
put estimation errors. In fact, with integral detectabil-
ity we were able to avoid many of the technical di�cul-
ties that arose in [1, 6]. Working with \time-domain"
de�nitions of integral-input-to-state stability and integral
detectability|instead of de�nitions based on dissipation-
like inequalities, as in [1, 6]|also helped simplifying the
analysis.

This paper is organized as follows. In Section 2 the no-
tion of integral-input-to-state stability is reviewed and a
dual de�nition of integral detectability is introduced. Sec-
tion 3 describes the overall control problem addressed in
this paper|namely the stabilization of poorly modeled
processes|and also the basic structure of an estimator-
base supervisor. In Section 4 it is shown that the intercon-
nection of the candidate controller with the corresponding
output estimator is integral detectable through the esti-
mator's output error. Section 5 outlines the analysis of
a supervisory control system in a fairly general setting.
Section 6 contains some concluding remarks.

2 Integral-Input-to-State Stability

and Detectability

Let

_x = A(x; u); y = C(x; u) (1)

be a �nite dimensional dynamical system whose state, in-
put, and output take values in real, �nite dimensional
spaces X , U , and Y, respectively. Suppose that A and
C are at least locally Lipschitz continuous on X � U .
In the sequel we denote by K the set of all continuous
functions � : [0;1) ! [0;1) which are zero at zero,
strictly increasing, and continuous, and by K1 the sub-
set of K consisting of those functions that are unbounded.
We also denote by KL the set of continuous functions
� : [0;1) � [0;1) ! [0;1) which, for each �xed val-
ued of the second argument, are of class K when re-
garded as functions of the �rst argument, and that have
lim�!1 �(s; � ) = 0 for each �xed s � 0. The following
de�nition extends to nonzero equilibrium states, the con-
cept of \integral-input-to-state stability" in [2].

-stability: Given a function  2 K1, the system de�ned
by (1) is said to be -stable, if A(~x; 0) = 0 for some state
~x 2 X and there exists a function � 2 KL such that for
each initial state x(t0) 2 X and each piecewise continuous
input u,

kx(t)� ~xk � �(kx(t0)� ~xk; t� t0)

+

Z t

t0

(ku(� )k)d�; t � t0 � 0; (2)

along the corresponding solution to (1). If (1) is -stable
there can be only one state ~x 2 X at which A(~x; 0) = 0.

We call ~x the stable equilibrium state of (1). A system that
is -stable for some  2 K1 is simply called integral-input-
to-state stable. Integral-input-to-state stability is a weaker
notion than the more common input-to-state stability [7]
in that any input-to-state stable system is integral-input-
to-state stable, but the converse is not true.

It is possible to de�ne detectability in a number of dif-
ferent ways fsee [8] and references thereing. An especially
useful characterization in terms of an inequality like (2) is
as follows.

f�; g-detectability: Given two functions �;  2 K1,
the system de�ned by (1) is said to be f�; g-detectable
if A(~x; 0) = 0 and C(~x; 0) = 0 for some state ~x 2 X , and
there exists a function � 2 KL such that for each initial
state x(t0) 2 X and each piecewise continuous input u,

kx(t)� ~xk � �(kx(t0) � ~xk; t� t0) +

Z t

t0

�(ku(� )k)d�

+

Z t

t0

(ky(� )k)d�; t � t0 � 0; (3)

along the corresponding solution to (1). If (1) is f�; g-
detectable there is exactly one state ~x 2 X at which
A(~x; 0) = 0 and C(~x; 0) = 0. We call ~x the detectable equi-
librium state of (1). A system that is f�; g-detectable
for some �;  2 K1 is simply called integral detectable.
In case (3) holds without the term

R t

t0
�(kuk), (1) is said

to be strongly -detectable. Clearly strong -detectability
implies f�; g-detectability for any � 2 K1. It is straight-
forward to show that if the solution to (1) exists glob-
ally, strong -detectability implies that x! ~x as t!1,
whenever

R
1

0
(kyk) is bounded. The preceding de�nition

of f�; g-detectability reduces to the familiar one in the
event that (1) is a linear system.

3 Overall Problem

The problem formulation is similar to that in [1, 6]. For
ease of reference the basic setup is briey reproduced here.
Let Pdenote the model of a process of the form

_xP= AP(xP; w; u); y = CP(xP; w); (4)

with state xP, control input u, measured output y, and
piecewise-continuous disturbance/noise input w that can-
not be measured. The signals xP, u, y, and w take values
in real, �nite-dimensional vector spaces XP, U , Y, andW,
respectively. The functions APand CPare at least lo-
cally Lipschitz continuous on XP� W � U and XP� W,
respectively1. Assume that P for equivalently, the pair
(CP; AP)g is an unknown member of some suitably de-
�ned family of dynamical systems F that can be written
as F =

S
p2P

Fp, where P is a set of indices and each

1Here the exterior direct sum of two real linear spaces A and B,

is denoted by A� B.



Fp denotes a subfamily consisting of a given nominal pro-

cess model M p together with a collection of \perturbed
versions" of M p .

The overall problem of interest is to devise a feedback
control that regulates y about the value 0. To this ef-
fect, assume that one has chosen a family of o�-the-shelf,
candidate loop-controllers C

4

= fC p : p 2 Pg, in such a
way that for each p 2 P, C p would \solve" the regulation
problem, were Pto be any element of Fp. The idea then is
to generate a switching signal � taking values in P, which
causes the output y of the process model P in closed-loop
with C �|as shown in Figure 1|to be regulated about
zero. We call C � a multi-controller and we require it to

u

w

P
y

C �

Figure 1: Process and Multi-Controller Feedback Loop

be a dynamical system with a real, �nite dimensional state
space XC and de�ning equations of the form

_xC = F�(xC; y); u = G�(xC; y); (5)

where, for each �xed p 2 P, the equations _�xC = Fp(�xC; y)
and up = Gp(�xC; y) model C p , with Fp and Gp locally
Lipschitz continuous on XC �Y.

Estimator-Based Supervisor

The algorithm used to generate � is going to be an
\estimator-based supervisor". An estimator-based super-

visor consists of three subsystems: a multi-estimator E, a
performance signal generator PS, and a switching logic S
fcf. Figure 2g.
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Figure 2: Estimator-Based Supervisor

By a multi-estimator E for a given family of nominal
process models M = fMp : p 2 Pg is meant an integral-
input-to-state stable system with �nite dimensional state-
space XE, of the form

_xE= AE(xE; u; y); yp = Cp(xE); p 2 P; (6)

where, for each �xed p 2 P, the equations _xE =
AE(xE; u; y) and yp = Cp(xE) model an \estimator" Ep

for Mp , with AE and each Cp locally Lipschitz continuous
on XE� U � Y and XE, respectively. By an estimator for
a given nominal process model Mp , is meant any �nite-
dimensional, integral-input-to-state stable dynamical sys-
tem whose input is the pair fu; yg and whose output
is a signal yp which would be an asymptotically correct
estimate of y, if Mp were the actual process model and
there were no measurement noise or disturbances. For
Ep to have this property, it would have to exhibit funder
the feedback interconnection y

4

= yp and an appropriate
initializationg the same input-output behavior between u

and yp as M p does between its input and output. For lin-
ear systems such estimators would typically be observers
or identi�ers [9]. Estimators can also be de�ned quite eas-
ily for certain types of nonlinear systems including those
which are linearizable by output injection; in this category
is any system whose state and measured output is one and
the same [1, 6].

A performance signal generator PSis a dynamical sys-
tem whose inputs are output estimation errors

ep
4

= yp � y; p 2 P; (7)

and whose outputs are performance signals �p, p 2 P.
For each p 2 P, �p is intended to be a suitably de�ned
measure of the size of the ep.

The third subsystem of an estimator-based supervisor
is a switching logic S. The role of Sis to generate �. Al-
though there are many di�erent ways to de�ne S, in each
case the underlying strategy for generating � is more or
less that same: From time to time set � equal to that value
of p 2 P for which �p is the smallest. The motivation for
this idea is obvious: the nominal process model whose
associated performance signal is the smallest, \best" ap-
proximates what the process is and thus the candidate
controller designed on the basis of that model ought to
be able to do the best job of controlling the process. The
origin of this idea is the concept of certainty equivalence.
Precise de�nitions for the performance signal generator
and switching logic are deferred to Section 5.

4 Certainty Equivalence

To understand what certainty equivalence actually im-
plies, let us assume that there is a family of functions
fp : p 2 Pg � K1 such that for each p 2 P, C p was cho-
sen so that the system shown in Figure 3 is p-stable with
respect to the input v. Suppose in addition, that �yp = 0
at the stable equilibrium state of this system. By this we
mean that for each p 2 P, the interconnected system

_�xE= AE(�xE; �up; �yp � v) �yp = Cp(�xE)

_�xC = Fp(�xC; �yp � v) �up = Gp(�xC; �yp � v)

)
(8)

with input v, is p-stable and that �yp = 0 at its stable
equilibrium state.
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Figure 3: Feedback Interconnection

The intuition behind placing these requirements on C p
stems from the fact that, when v is equal to zero, the
subsystem enclosed within the dashed box in Figure 3
is input-output equivalent to the nominal process model
Mp . If one then regards the signal v as a disturbance
entering Mp , the requirements above can be restated as
demanding C p to p-stabilize the nominal process model
Mp , with respect to the disturbance2 v. In view of the
control objective|which is to regulate y about zero|the
output of M p is also required to be zero at the stable equi-
librium state of the closed-loop system.

Take any two elements p; p� in the parameter set P.
In analyzing adaptive and supervisory control systems, it
is convenient to focus our attention on subsystems of the
form

_xE= AE(xE; u; y) el = Cl(xE)� y; l 2 fp; p�g

_xC = Fp(xC; y) u = Gp(xC; y)

)
(9)

These equations describe the dynamics of the multi-
controller/multi-estimator subsystem, while � is held con-
stant and equal to p. Typically, p� is chosen to be the
index of the subfamily Fp� within which P resides and
therefore the estimation error ep� is expected to be small
in a suitably de�ned sense [10]. The results which follow
do not depend on this fact.

By the fp; p�g-injected system is meant the system
which results when the equation y = Cp�(xE) � ep�

from (9) is used to eliminate y from AE(�); Fp(�) and Gp(�)
in (9). Once this is done, the fp; p�g-injected system can
be written as

_x = App� (x; ep�); ep = Cpp� (x) + ep� ; (10)

where x
4

=
�
x0
E

x0
C

�0
and

A�p�q(�x; e)
4

=

"
AE

�
�xE; G�p

�
�xC; C�q(�xE)� e

�
; C�q(�xE)� e

�
F�p(�xC; C�q(�xE) � e)

#
;

C�p�q(�x)
4

= C�p(�xE) �C�q(�xE);

for each �p; �q 2 P, �x
4

=
�
�x0
E

�x0
C

�0
2 XE� XC, and e 2 Y.

Now, for any �xed �p; �q 2 P.

A�p�q(�x; e) = A�p�p(�x;C�p�q(�x) + e); 8�x 2 XE� XC; e 2 Y;

thus (10) can also be written as

_x = App(x; ep); (11)

2The particular manner in which this disturbance is chosen to

enter the nominal model will become clear shortly.

with

ep = Cpp� (x) + ep� : (12)

But the system de�ned by (11) is the same as the system
de�ned by (8) when when v, �xE, and �xC are identi�ed
with ep, xE, and xC, respectively. By assumption, the
latter is p-stable and �yp = 0 at its stable equilibrium
state ~xp. From this and (12), one concludes that there
exists a function �p 2 KL such that for each initial state
x(t0) and each piecewise continuous signal ep� ,

kx(t)� ~xpk � �p(kx(t0)� ~xpk; t� t0)

+

Z t

t0

p(kCpp� (x) + ep�k)d�; t � t0 � 0; (13)

along the corresponding solution to (11)-(12). Moreover,
yp = 0 at x = ~xp. The following Lemma is a direct conse-
quence of (13) and the fact that (10) is equivalent to (11)-
(12).

Lemma 1. For each p; p� 2 P, the fp; p�g-injected sys-

tem (10), with input ep� and output ep, is strongly p-

detectable and yp = 0 at its detectable equilibrium state.

The implication of Lemma 1 is clear. For each p 2 P, the
p-stabilization of the system in Figure 3 by C p causes the
fp; p�g-injected system to be strongly p-detectable. In [1]
this is summarized by the phrase certainty equivalence im-
plies detectability. With the preceding in mind, recall the
underlying decision making strategy of an estimator-based
supervisor: From time to time select for �, that value
q 2 P such that the performance signal �q is the smallest
among the �p, p 2 P. Justi�cation for this strategy is now
clear: By choosing � to maintain smallness of �� and con-
sequently e� , the supervisor is also maintaining smallness
of the composite state of the interconnection of C � and E,
because of detectability through e� for each �xed value of
�. Moreover, since the input and output of the process
can be written in terms of the state of the f�; p�g-injected
system and ep� as

y = Cp�(xE) � ep� ; u = G�(xC; Cp�(xE)� ep� );

these variable should also be small. The above equations
were taken from (9).

Because of the equivalence between (10) and (11)-(12),
the strong p-detectability of the fp; p�g-injected system
can be traced directly to the p-stability of (8), with v, �xE,
and �xC identi�ed with ep, xE, and xC, respectively. Now,
since both ep and xE are available for measurement, the
corresponding signals v and �xE could be used for control
in (8). In practice, this means that the multi-controller
C � can be of the form

_xC = ~F�(xC; xE; e�); u = ~G�(xC; xE; e�); (14)

where, for each �xed p 2 P, the ~Fp and ~Gp are locally
Lipschitz continuous functions on XC � XE� Y. In this



case, Lemma 1 holds for the appropriate de�nition of the
fp; p�g-injected system, when the interconnected system

_�xE= AE(�xE; �up; �yp � v) �yp = Cp(�xE)

_�xC = ~Fp(�xC; �xE; v) �up = ~Gp(�xC; �xE; v)

with input v, is p-stable and �yp = 0 at its stable equilib-
rium state. Since both the disturbance v and the state �xE
of the system to be p-stabilizable are available for con-
trol, the design of the candidate controllers is considerably
simpler. Further note that the original multi-controller (5)
is a special case of (14) when

~Fp(�xC; �xE; e)
4

= Fp
�
�xC; Cp(�xE) + e

�
;

~Gp(�xC; �xE; e)
4

= Gp

�
�xC; Cp(�xE) + e

�
;

for each p 2 P, �xC 2 XC, �xE 2 XE, and e 2 Y. Al-
though all the results in this paper hold for the general
multi-controller (14), we will continue to use the some-
what simpler multi-controller given by (5).

5 Analysis of Supervised System

The intent of this section is to demonstrate how the pre-
ceding results can be used to deduce global boundedness
and asymptotic convergence in a supervisory control sys-
tem when P is a �nite set|say P

4

= f1; 2; : : : ;mg. This is
done for the special case when the disturbance/noise input
w is identically zero and one of the yp is an asymptotically
correct estimate of y.

For the performance signal generator PSwe consider
the dynamical system

_�p = ���p + p(kepk); p 2 P; (15)

whose state and outputs are the performance signals
f�1; �2; : : : ; �mg, � is a prespeci�ed positive number, and
the p are as in Section 4. It is assumed that (15) is ini-
tialized so that �p(0) > 0, p 2 P.

For S we consider the \scale-independent hysteresis
switching logic" [11, 6]. By a scale-independent hystere-

sis switching logic is meant a hybrid dynamical system SH

whose inputs are the �p and whose state and output are
both �. To specifySHit is necessary to �rst pick a positive
number h > 0 called a hysteresis constant. SH's internal
logic is then de�ned by the computer diagram shown in
Figure 4 where, at each time t, q

4

= argminp2P �(p; x; t).
The functioning of SHis roughly as follows. Suppose that
at some time t0, SHhas just changed the value of � to q.
� is then held �xed at this value unless and until there is
a time t1 > t0 at which (1 + h)�p < �q for some p 2 P. If
this occurs, � is set equal to p and so on.

Three assumptions are made.

Assumption 2. Each process model in F has the prop-

erty that if its inputs and outputs are bounded then so is

its state fi.e., each process model in F is detectable [8]g.

(1 + h)�q � ��

Initialize �

� = q

n y

Figure 4: Computer Diagram of SH.

Assumption 3. Each p, p 2 P, is locally Lipschitz.

Assumption 4. There exists an index p� 2 P such that,

for each piecewise-continuous, open-loop control signal u,

and each initial state fxP(0); xE(0)g 2 XP�XE, kep�k andR t
0
e��kep�(� )kd� are bounded on the interval of maximal

length on which a solution to (4), (6) exists.

E can typically be constructed so that Assumption 4 is
satis�ed in the noise/disturbance free case, provided P is
input-output equivalent to a nominal model fsay M p� g
which is linearizable by output injection [6].

Assumptions 3 and 4 enable us to exploit the Hysteresis
Switching Lemma [11, 6] and consequently to draw the
following conclusion [12].

Lemma 5. For �xed initial states xP(0) 2 XP, xE(0) 2
XE, xC(0) 2 XC, �p(0) > 0, p 2 P, �(0) 2 P, the system

de�ned by (4), (5), (6), (7), and (15), with � the output

ofSH, has a unique solution fxP; xE; xC; �1; �2; : : : ; �m; �g
on a nonempty time interval starting at zero. Denoting by

[0; T ) the largest interval on which this solution is de�ned,

there is a time T � < T beyond which � is constant and

no more switching occurs. In addition, the scaled perfor-

mance signal ���(T�)
4

= e�t��(T�) is bounded on [0; T ).

Let xP, xE, xC, �1, �2; : : : ; �m, �, T and T � be as in
Lemma 5 and set q�

4

= �(T �). In view of (15) and the
observation that e�t�q� must be bounded on [0; T ),

Z T

0

q� (keq� (� )k)d� <1: (16)

Since � is frozen at q� for t 2 [T �; T ) and the fq�; p�g-
injected system _x = Aq�p�(x; ep� ), eq� = Cq�p� (x) + ep� ,
determined by (6), (7), and (5), with � frozen q� and

x
4

=
�
x0
E

x0
C

�
0

; (17)

is strongly q� -detectable, (16) allows one to conclude that
x and consequently xE and xC must be bounded on [0; T ).

In view of (6) and (7), y = ep� + Cp�(xE). By As-
sumption 4, ep� is bounded on [0; T ), so y must also be.
Boundedness of u on [0; T ) then follows from the formula
u = G�(xC; y). Therefore xPis bounded on [0; T ) because
of Assumption 2. So is each ep, p 2 P, because of the
de�ning formula ep = Cp(xE)� y. Therefore each �p will
be bounded on [0; T ) since the di�erential equations (15)



de�ning the �p can be viewed as asymptotically linear sys-
tems with bounded inputs p(kepk). In other words xP,
xE, xC, and the �p are all bounded on [0; T ).

Now if T were �nite, the solution to (4), (5), (6), (7),
and (15) could be continued onto at least an open half
interval of the form [T; T1) thereby contradicting the hy-
pothesis that [0; T ) is the system's interval of maximal ex-
istence. By contradiction one can therefore conclude that
T =1 and that xP, xE, xC, and all the �p are bounded on
[0;1). With global existence of solution established, (16)
and the strong q� -detectability of the fq�; p�g-injected
system, allow one to conclude that x converges to the
detectable equilibrium state ~x of the fq�; p�g-injected sys-

tem. With ~x partitioned as
�
~x0
E

~x0
C

�0
it can therefore be

concluded that xE converges to ~xE and xC converges to ~xC
as t!1 because of (17).

Lemma 1 guarantees that yq� = 0 at ~x or equiv-
alently that Cq�(~xE) = 0. In view of (6) and (7),
y = eq� + Cq�(xE). Therefore limt!1 y = limt!1 eq� .
Now limt!1 q� (keq�k) = 0 because eq� , _eq� , andR
1

0
q� (keq�k) are bounded fcf. [13, Lemma 1, p. 58]g.

From this it follows that limt!1 y = limt!1 eq� = 0 since
q� is positive de�nite and radially unbounded. The fol-
lowing was proved.

Theorem 6. Let Assumptions 2 to 4 hold. For each ini-

tial state xP(0) 2 XP, xE(0) 2 XE, xC(0) 2 XC, �p(0) > 0,
p 2 P, �(0) 2 P, the solution fxP; xE; xC; �1; �2; : : : ; �mg
to (4), (5), (6), (7), and (15) fwith � the output of SHg
exists and is bounded on [0;1). Moreover, y converges to

zero as t!1.

6 Concluding Remarks

In this paper we weaken the conditions under which the
supervisory control algorithm proposed in [1] stabilizes a
poorly modeled process. This was done by making use of
the notion of integral-input-to-state stability [2] and a dual
notion of integral detectability introduced here. The use
of integral-input-to-state stability and integral detectabil-
ity seems quite natural when the performance signals are
de�ned as \integral norms" of output estimation errors.
In fact, with integral detectability we were able to avoid
many of the technical di�culties that arose in [1, 6]. The
results in this paper stress the importance of searching for
systematic methods to design integral-input-to-stabilizing
controllers for large classes of nonlinear processes. On
this topic see [5]. The main shortcoming of the present
results is that the stability analysis in Section 5 is only
valid in the absence of unmodeled dynamics and distur-
bance/noise. However, simulation results indicate that the
overall closed loop system might, in fact, be robust with
respect to unmodeled dynamics, disturbance, and noise.
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