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Discrete-Time Supervisory Control of Families of [l. PROBLEM FORMULATION

Two-Degrees-of-Freedom Linear Set-Point Controllers Throughout this paper, we assume that the system to be controlled
is a discrete-time SISO linear time-invariant syst€m with control
Donato Borrelli, A. Stephen Morse, and Edoardo Mosca iyt y and controlled outpuj. We further assume thatp’s transfer
function fromu to y is a member of a known class of admissible
transfer function<r of the formCp = {v,(d): p € P}, whereP
Abstract—This paper describes a discrete-time “high-level” controller, iS Cp’S parameter spacavhich may be either a finite set of indexes,

called a “supervisor,” capable of switching into feedback with a discrete- or a closed bounded subset of a real finite-dimensional linear space,

time single-input/single-outpu (SISO) system, a sequence of linear two- A : ; ; ;
degrees-of-freedom (2-DOF) set-point controllers. Each controller is se- andu(d) = (f,(d)/ap(d)) is a preselected strictly causabminal

lected among a family of candidates so as to cause the output of the {ransfer function It is assumed that for each € P, 4,(d) and
system to approach and track a constant reference input. It is shown that @, (d) are coprime polynomials in the unitackward-shiftoperator
the proposed supervisor can stabilize the loop and ensure a zero set-point 4. Moreover, prompted by the requirements of set-point control, it

tracking error even if constant load disturbances are present. is assumed that, () are transfer functions nonzero @t= 1. The
Index Terms—Amdaptive control, discrete-time systems, supervisory Specific model of the system to be controlled is given by the following
control, switching, uncertain linear systems. equation:
ap (d)y(t) = Bp=(d)u(t) +d(t) (2)
|. INTRODUCTION whered is a bounded disturbance, apd is a fixed but unknown

In this paper we describe and analyze the discrete-time version gflament of P. Let us consider the problem of makingtrack any
simply structured “high-level” controller called a “supervisor,” whichconstant reference input(¢) = r. Toward this end we introduce a
is capable of switching into feedback, with a discrete-time line&facking error
time-invariant single-input/single-output (SISO) system, a sequence nA L (t) 2
of two-degrees-of-freedom (2-DOF) linear controllers from a family ep(t) =r—y @
of candidate controllers so as to cause the output of the systgRy an integrating subsystem to generaté.e.,
to approach and track a constant reference input. The supervisor
orchestrates the selection of each controller according to a certainty u(t) = u(t — 1) + bu(t). (3)
equivalence-based decision strategy, in that the controller chosen to . .
be put in feedback is the one which has the best idea of what ?nge u is the one-step control increment

. . <A . D
system is and therefore should be able to do the best job of controllin Ve take now as given, an indexed famy: {5q(d): ¢ € P} of
the system. 2-DOF [6] causal controller transfer functions of the fomy(d) =

Earlier studies about similar problems are in [1]-[4], while ab12(d)/pq(d)) (&(d)/pq(d))] where for eacty € 7. [y(d) & (d)]

extensive work on the continuous-time version of supervisory contr%md pald) are pairs of coprime polynor_mals. Each of these pairs of
studied in this paper is in [5]. In fact, [5] can be considere ansfer functions is used for generating the control increnaent

1 H .
our starting point, the aim of this paper being the developme pm e rT'. as follows (see Fig. 1):
of a discrete-time formalization of a supervispry con.tro.I problem pa(d)bu(t) = vy(d)ep(t) + & (d)r.
similar to the one of [5]. However, here our interest is in dealing _ _
with 2-DOF controllers, whereas in [5] only 1-DOF controllers Furthermore, the following properties are assumed to hold.
are considered. The discrete-time setting allows one to get furtheero-Offset Property:¢, (1) = 0. € P. o
insight into the behavior of digitally implementable supervisors. Stability Margin Property: There is a positive numbevs € [0, 1)
The relevance of 2-DOF control has been known for a long tinfet. for eactp € P, the closed-loop poles (see Fig. 1)
to practitioners. Here, thanks to properties of discrete-time algo- 1—4d q p ) P
. . . . —d Doy (d) 4+ v, (d)3,(d) € Ra[d 4
rithms and to appropriate reconfiguration of the 2-DOF control ( Jep(d)ep(d) + (A5 (4) € B[] @
system, it is possible to prove asymptotic stability and trackingith R, . [d] the set of polynomials whose zeros lie{in € C: |z| >

for the supervisory controller in the presence of constant load;'}. O
disturbance. Assumption 1:Cp andK have the property that, = r, for each
The paper is organized as follows. After the problem formulation ipair p, ¢ € P at whichv, = v,. O

Section II, in Section 11l the main features of the supervisory control Assumption 2: There exist integers, andn. so that for every
system are described. Closed-loop system behavior is analyzedjnp € P, the McMillan degrees of, and x, are at most:, and
Section IV for a system subject to constant load disturbances, anéh it respectively. |
is shown that the proposed supervisor guarantees globally bounde®he problem of interest is to develop a supervisory logic for
states as well as zero-offset tracking. Some concluding remarks swétching into the feedback loop betwegs ]’ andéu a sequence
made in Section V. of 2-DOF controllers with transfer functions in the st so as
to achieve satisfactory closed-loop “performance.” By satisfactory
performance we mean the following. #f and d are, respectively,
Manuscript received May 20, 1996. a constant and bounded reference and load disturbance, then for
Un'?\}e*?giréegii ?:ri‘rde EZ-";"%Socl""sgrii‘pgt:zg‘e”g:pa”ime”to di Sistemi e Informaticgy|| possible initializations, it follows that: 1lobal Boundedness
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We assume to be in closed loop whenever the feedback connection
dug = bu is effective. It is quite clear from the definition &,

that in this casd(vqwe/pqwn) (Eqwi/paws) Will be the reducible
transfer function of,,; from [eg r]’ to 6u. In view of the definitions

of w,., the property 2) above is satisfied. It is proven in [7] that
property 1) is satisfied as well. Moreover, it can be easily checked
that the parameter-dependent system (6)—(8) satisfies the requirement
thatx, = k4, wheneverp andq are points inP for which v, = v,.
Prompted by property 2) okE,,, we now defineXc to be the
dynamical system (6)—(8) wher¢ = o is a piecewise-constant
“switching signal” taking values ir?, and o(¢) is the output of

the “supervisor.”

Supervisor: The supervisor is a specially structured hybrid dy-
are taken into consideration: the supervisory controller is requiredtiamical system whose output is a switching signabking values
ensure satisfactory performance without the aid of a probing signad; . The supervisor specifies at each time which controller in the
the selection of the controllers does not follow any prerouted searsét X' has to be connected in the feedback loop betwiegn r]’

2-DOF

controller
o8|

r o € y + 1 H 7
; h L p,

Fig. 1. 2-DOF feedback—feedforward interconnection.

through the admissible controller det. and éu. The supervisor considered here consists gfeaformance
weight generatorXyy and adwell time switching logiccp. Xw is
lIl. STATE-SPACE SYSTEMS AND SUPERVISOR a dynamical system which, on the basis of the output prediction of

each state-shared estimatgrand the real time datac: andy, via
) produces a performance signgl associated with each nominal
odelv,p € P, as follows:

State-Space Systemn the following it is shown how to con-
struct a convenient realization of one component of the over
control system, consisting atate-shared estimatoend of a family
of parameterized lineastate-shared controllersThis realization is p(t+1) = \2 (1) + ei(t)v pEP,AE0,1].
particularly useful in the sequel for stability analysis. To this end,
what we want to do is to specify a doubly indexed systgpy, The dwell time switching logicX,, [5] is an event-driven system
p,q € P whose inputs arep,y, éu, andr and outputs are, and that continuously performs the minimization of thg on 7 and
the gth “candidate control signald«,. ¥,, is to have the following accordingly selects the best indexc P for the controller to switch
properties. in the loop. Thedwell timeis the minimum number of time samples

1) If the transfer function of the systeB werev;, andi = p, thatmust elapse between two successive switching times. This integer

and ifd were a zero signal, then no matter what the definitioi? Must satisfy the condition, > 7c, whererc represents the
of éu, e, would tend to zero as fast as;. computation time for the minimization procedure of the The dwell

2) The transfer function fronfeq 7]’ to 6u under the feedback time logic operates as follows. Conside_r a time= £ at which 7 is

connectionéu, = &u should be[(v4/ps) (£4/pq)]. after resettozero and increased uprie according tor(t+1) = 7(t)+1.

cancellation of possible common factorsiy  [d]. Suppose also that ats(7) has switched to a valug;. Then
The const_ruction ofZ,, is as follows. Pick monic polynomials : A [o=arg minpm,(f+7p — 70), if 60>
w, and w, in Rag[d] of degrees less than or equal to + 1 o(t+mn) = o, otherwise.
and n, respectively. Then, first pick SISO reachable pairs 9)

(A,,0,), (A,x.bus), (A.,D,) in such a way thatv,, the least
common multiple betweew,, andw,., andw, are the characteristic If o, > o, 7 is reset to zero and the process is repeated to compute
polynomials of4, , A, .. and A, respectively. The three pairs abovethe next values(f + 27p); otherwise, ifoy < o, o does not

are of orderse, + 1,n, + n. + 1, andn., respectively. switch att = ¢ + 7p, 7 is reset torp — 7, @ new minimizer
7,Second, dEfinelci,I block diagonal {f};ﬁ/ Avry Ax, Ax ks dg = o(t+ 1o+ 7¢) = arg minp 7, (f + 7) iS computed, and so on.
[0, 000]".b¢ =[0b,, 00, h¢ =[00D, 0]',ic =[000D,]. Fora more detailed discussion of the supervisor the reader is referred
Third, definec,, f,, g, and h, to be the unique solutiofgo the to [5] or [8]. |
equation
{C”}(I — dAe)"dlde bo he io] + |:02><2 0 0 } | | IV. ExAcT MATCI-.IIN.G | |
fa qq By Since extensions to the case of an infirftecan be derived with
w, = (1=d)ay, J_p 0 0 little effort, in the following we restrict the analysis to the caserof
Wy W ’ . (5) being afinite set Our aim now is to analyze the closed-loop behavior
0 We=Ps Do S of the supervisory control system described above for the case when
W We oo We nominal transfer function,- (d) matches or equals that of system

Finally, defineX,, to be the following parameter-dependent systenmodel ¥ for a fixed but unknown value gf* € P. Moreover, in
(1) we assume that is a constant. These assumptions enable us to
vo(t+1) =Acwo(t) + doy(t) + bobu(t) develop certain basic results which shall be used in sequels to this
+ hoep(t) +ior (6) paper to analyze the control system under more realistic assumptions.
Sug(t) = foxc(t) + geeq(t) + hyr (7) In order to exploit the same analy_sis tools described in previous
ey (t) = ey (t) — y(b). ®) papers (§ee [5] fpr the continuous-time 1_-DOF case gnd [7] and [8]
’ for the discrete-time 1-DOF case), our aim at this point shall be to
1By a prerouted searchwe mean an algorithm which sequentially stepgewrite (6)—(8) describing the systeBr: in alternative form. Fix the
through the admissible controller set along a predetermined path or routeset-point valuer and solve
2Uniqueness is a consequence dix, [do be he ic]) being a reachable
pair. Tc = AcTo +dey + bobdu + hceT(t) + 07
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wherey = r,ep = 0, and éu = 0. This givesTe = (I — The proof of this theorem can be found in [7] but is not given here

Ac) Hde +ic]r. In this way, we are selecting an equilibrium stateas it closely follows the similar one given in [5] for the continuous-

T which is bounded and corresponding to which set-point trackirigne case. Before explaining how ttssvitching theoremapplies to

with zero-offset error is achieved. For each triple of poimtg,! in  the problem under consideration, another result, calle&theshing

P, define now matrices lemma will be illustrated. In contrast with the theorem, the proof of

. o e the latter lemma exhibits some significant differences with respect

dq =gqbe +heo = de; o= o= gact (10) to the continuous-time case. The Squashing lemma is proved in the
Cpl =Cp — €13 Aq[ = Ao+ (dc — h(})cl + b(}fql (ll) Appendix.

and accordingly @hifted stater(t) = z¢(#) — 7. Using (2) and ~ Sduashing Lemmatet (Cyoxm. Anxn) be a fixed constant ob-

(6)—(8) together with (10) and (11), it is straightforward to verify that€rvable matrix pair, and let be a positive number s, > n. For
for all p,! € P and switching signals € P each positive number there exists a positive numbgre [0, 1), and

a constant output-injection matrii for which

2(t+1) =Aqz(t) + doeg(t) (12) ’ L (tro)
Sus(t) = farz(t) + goei(t) (13) [(A+ KC)'| < 6A R te Z;. (18)
ep(t) = cpa(t) + e(t) (14) The lemma states that in the discrete-time case in order to fulfill
ep(t) = ei(t) — cr(t) (15) inequality (18), which in turn is used to derive (17), it is sufficient to

choose any greater than or equal to, rather than just greater than
initialized from somex(0) = x¢(0)—=¢. In deriving these equations zero, as suffices for continuous-time. In other words, in discrete-time
in addition tof,(I — Ac)~' +h, = 0,¢ € P (zero-offset property), it is not possible to switch arbitrarily fast, but only with dwell time
the following identities have been useg{/—Ac)"'dc = 1,¢,(I-  not smaller tham. with » being the order of a state-space realization
Ac)Tlic = 0, p € Pifo(I = Ac)"'de = 0,9 € P. These are of the closed-loop supervisory control system.
direct consequences of the derivation of (6)—(8) for the parameter-unfortunately, for the applicability of the Squashing lemma, the
dependent systei,,. Hereafter follows a concise description of thephservability of the matrix paitC, 4,,+) is required, while for the
stability analysis of the overall supervisory control system considergfpervisory control problem at hand, only detectability is ensured.

in this paper (for all the details see [7]). Nevertheless, in the Switching theorem’s proof it is possible to exploit
the particular algebraic structure of the problem so as to be able
A. Convergence of applying the Squashing lemma. The application of the Switching
Fix the initial values of the integrator state controller stater, theorem is as follows. Takel,,,,i = A+ BF,, since ac_cqrdln_g to
and supervisor’s state variables andy virtue of the exact matching (11), 4pp= = [Ac + (do = ho)ep] + be fpp-. Then identify > with

assumption and the fact thigttis a finite set, there can be shown to ex? - €achCy. p € P with C. 7 with 7p, and pickAo € [As.1).
ist a nonempty finite s&P*, with P* A {p: =2, e?)(t) <Cr "> The swntchl_ng th_eorem s two main hypothe_se_s_,, regarding detectability
of the matrix pairs(C, A,,~) and left invertibility of (C., A,,~, B),
are fulfilled. In fact, the first is a direct consequence of the stability
margin property, while the second depends on the particular definition
of P*. The theorem states that there exists a bounded output injection
z(t+1) = (Aopr + KoC)a(t) — Ko8(t) + doep+(t)  (16) matrix, namelyk,, which exponentially stabilizest,,« + K,C.
A Consider now (16). Since the Switching theorem ensures the validity

_A ) e o ! ‘
phere cor and e - O are signals with finier f’” “‘;rmff (, of condition (17), it follows thatu(1) would have a finitef*(2..)
(C 45p+), thanks to the stability margin property (4) (see [5], [7] %horm. Thereforerc(t) and du(t) [by virtue of (13)], tend to finite

details), are detectable pairs for eack P*; I, is any appropriately limits (more precisely tore and to zero respectively), and as a

sized, bpunded _matnx:(t) is the switching S|gnal. ) ._consequence(t) tends tor and u(t) tends to a finite limit. The
'Our aim now is to prove that, for some suitably defined functiop e \yoyid be true because of the converginglof(t) and su(t)

Ko, Fhe linear tlme-varyl_ng syste_m (16) is expor]entlally_ sFébleto constant values and because'’s transfer function is nonzero at

that s, the Sfi‘e, transition matrig of A,p- + KoC' salisfies ;) ‘\oyy et s denote the closed-loop supervisory control system

1Dt )] < A7 for ¢ > o> 0, A € [0,1) anda > 0. o . . , !

’ - 0 = =" ’ = consisting of¥p, tracking erroreq(t) defined by (2), integrating
Here an_d from now on all thg matrices nonms*, are assumed to b_e subsystem (3), syste®: defined by (6)(8), withu(t) = su. (¢),
submultiplicative. The following result provides a way of showingye || time switchingsupervisor as after (9), where the weighting
that an |nequaI|ty_of t_h's type holds also in this case. parametét X is chosen in such a way thate [As, 1). The following

Theorem 1 (Switching Theorem}et A € [0.1) and g > n result holds
be fixed. Let(cqoxn,x4,Lx,L?B,Lx,,L) be a left invertible system.  toorem 2 Let 7, be any number such thap > n 2 dim(Ac),
Suppose thaf(C, I,): p € P} is a closed bounded subset of mamxandAc as before (5). Suppose thap's transfer function equals the

pairs in R"*" b R™" with t_he pro??r‘y that for eachp € _P’ nominal system model transfer functiep(d) for somep = p* € P.
(C,A + BF,) is detectable with stab'“ty margqmg._T_her_e exist & Then for each constant set-point valueeach constant disturbance
constant: > 0 and a bounded matrix-valued output injection functiory and each initial statdu(0), zc(0),(0)}, y(t) — r, andzc (1)

p — K, on P which, for any switching signar: 2. — P with ahd «(t) tend to finite limits agt — oc. ’

dwell time not smaller tham,, causes the state transition matrix of

A+ BF, + K,C to satisfy

)| < ATET, > > 0. . . . . _

(8 )] < Ao ' tzpz0 (17) The discrete-time version of the “high level” supervisory controller
3In this note a signaf(t) has a finitet?(Z.) norm iff 52, f%(t)<oo. introduced in [5] has been devised and analyzed. Switching is
“Note thatd,,~ + K,C' is a time-varying matrix, since(#) is the output performed by a logic which selects controllers among a family of

of the supervisor.
5A matrix pair (C, A) is detectable with stability margih € [0,1), if 6 plays an important role in the supervisor; any reader interested in the

(C,u—1A) is a detectable pair for every< u < 1. meaning ofA should refer to [7] or [8].

0,p € P}, such that beyond a certain finite timg, o takes values
only in P* [7]. This allows one to rewrite (12) in the following
output-injectionform holding for everyt > ¢* (takel = p*):

V. CONCLUDING REMARKS
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fixed gaincandidate controllers by means of comparing in real timeot difficult to realize that the highest negative degrelof will
normed output estimation errors. In contrast with [5] and [8] whichppear in the last column. This highest negative degree is given by
deal with 1-DOF controllers, however, here we have considered the

situation of switching amongst 2-DOF controllers. As is well known, _(n— 1).(” -2) + deg[det T]

2-DOF controllers have potentially superior tracking performance. It 2

has been shown that in the absence of unmodeled system dynamics, _(d=-mn=-2) + n(n—1) _ n—1. (26)
the proposed discrete-time supervisor can successfully perform its 2 2

function, provided that th@well time 7, is larger than a quantity
related to an upper bound of the McMillan degree of the system.
This is true even if constant load disturbances are present. Iss &gsequently
of future investigation are the analysis in the presence of bounded
and possibly time-varying load disturbances as well as unmodeled
dynamics.

ence|T~'| will be dominated by a term of the typa~("~").

T~ ANT] < 1T AumaxA) [T 27)

Where Aoy 2 max;{\;}. Now asA — 0, the upper bound in
(27) approaches - AX' "T\L.., wherec is a positive constant.
The latter can be made smaller thah'=™), with § an arbitrary
Proof of the Squashing LemmaGiven the matrix pair(C, A) number s.ts € (0,1), by choosing a sufficiently small nonzedg
observable(A’,C") is reachable. Then, without loss of generalityorovided thatr, > n. So (24) and (25) together with the fact that
we can assume that such a pair is insamlimensional canonical |(A' 4+ C'F)!| = |(A 4+ F'C)"|, and with the choicek = F', imply

APPENDIX

reachability form, i.e., that
0 ) iy y (t—70)
. (A4+ KO)'|<6A ., t>0.
A= Ina : (19)
0 Therefore (18) is true. O
—Adn -1 Remark: The proof of the Squashing lemma can be simplified

According to the standard synthesis procedure, let us suppose thataking the gain matrixs” above so thatd’ + C'K” is nilpotent
we want to get via state-feedback, the closed-loop characterigg¢ipervisor subsystems with dead-beat dynamics) and chodsasg
polynomial x(d), ¥(d) = T/~ (1 — d\);), where) is a number follows:

in [0,1) andX; # \; € [0,1),é # j = 1,---,n. Thus, we can

1/(ro—1)
determine a feedback vectdt = [f.(\) --- fi(A)] with f;()\) \ < min 1761/70,< 6 ] ) ! .
real polynomials of degree less than or equaktdNe can write the A\ |4+ C'KY
corresponding feedback injection matrix 5 1/(rg—n+1)
0 ’ <|(AI+CI["’I)n71|> }
A=A+CF= : Iy S
+ 0 This implies that (18) holds. O
fn()\)_a/n fl()\)—(l‘l
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