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y a switched system, we mean a hybrid dynamical system 
consisting of afamily of continuous-time subsystems and a 

rule that orchestrates the switching between them. This article 
surveys recent developments in three basic problems regarding 
stability and design of switched systems. These problems are: 
stability for arbitrary switching sequcnces, stability for certain 
useful classes of switching sequences, and construction of sta- 
bilizing switching sequences. We also provide motivation for 
studying these problems by discussing how they arise in con- 
nection with various questions of interest in control theory and 
applications. 

Problem Statement and Motivation 
Many systems encountered in practice exhibit switching be- 

tween several subsystems that is dependent on various environ- 
mental factors. Some examples of such systems are discussed in 
[ 11-13]. Another source of motivation for studying switched sys- 
tems comes from the rapidly developing area of switching con- 
trol. Control techniques based on switching between different 
controllers have been applied extensively in recent years, partic- 
ularly in the adaptive context, where they have been shown to 
achieve stability and improve transient response (see, among 
many references, [4]-L6]). The importance of such control meth- 
ods also stems in part from the existence of systems that cannot 
be asymptotically stabilized by a single continuous feedback 
control law 171. 

Switched systems have numerous applications in control of 
mechanical systems, the automotive industry, aircraft and air 
traffic control, switching power converters, and many other 
fields. The book 18 I contains reports on various developments in 
some of these weas. In the last few years, every major control 
conference has had several regular and invited sessions on 
switching systems and control. Moreover, workshops and sym- 
posia devoted specifically to these topics are regularly taking 
place. Almost evcry major technical control journal has had or is 
planning to have a special issue on switched and hybrid systems. 
These sources can be consulted for further references. 

Mathematically, a swilched .systenz can be described by a dif- 
fcrenlial equation of the form 

B : [0, -) + P i s  a piecewise constant function of time, called a 
switching signal. In specific situations, the value o f o  at a given 
timet might just depend ont orx(t) ,  or both, or may be generated 
using more sophisticated techniques such as hybrid feedback 
with memory in the loop. We assnme that the state of (1) does not 
jump at the switchinginstants, i.e., the solutionx(,) is cvcrywhere 
continuous. Note that the case of infinitely fast switching (chat- 
tering), which calls for a concept of generalized solution, is not 
considered in this article. The sct P is typically a compact (often 
finite) subset of a finite-dimcnsional linear vector space. 

In the particular case where all the individual subsystems are 
linear, we obtain ii switched linear system 

X: = A,x. (2) 

This class of systems is the one most commonly treated in the lit- 
erature. In this article, whenever possible, problems will be for- 
mulated and discussed in the more general context of the 
switched system ( I ) .  

The first basic problem that we will consider can he formu- 
latcd as follows. 

Problem A. Find conditions that guarantee that the switched 
system ( I )  is asymptotically .stahlefor uny switching signal. 

One situation in which Problem A is of great importancc is 
when a given plant is being controlled by means of switching 
among a family of stabilizing controllers, each of which is de- 
signed for a specific task. The prototypical architecture for such 
a multicontroller switched system is shown in Fig. 1. A high- 
level decision maker (supervisor) determines which controller is 
to be connected in closed loop with the plant at each instant of 
time. Stability of the switched system can usually hc ensured by 
keeping each controller in the loop for a long enough time, to al- 
low the transient effects to dissipate. However, modern com- 
puter-controlled systems are capable of‘ very fast switching rates, 
which creates the need to be ablc to test stability of the switched 
system for arbitrarily last switching signals. 

We are assuming here that the individual subsystems have the 
origin as a common eq~iilibriuni point: f,](O) = 0, p t ‘P. Clearly, 
a necessary condition for (asymptotic) stability under arbitrary 

where {f;, : p E P) is a family of sufficiently regular functions 
from B” to R ”  that is parametrized by some index set P, and 
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Fig. 1. Multicontroller architecture. 

switching is that all of the individual subsystems are (asymptoti- 
cally) stable. Indeed, if the 11th system is unstable, the switched 
system will he unstableil we reto(t) = p.  To see that stability of 
all the individual subsystems is not sufficicnt, consider two scc- 
ond-order asymptotically stable systems whose trajectories are 
skctched in the top row of Fig. 2. Depending on a particular 
switching signal, the trajectories of thc switched system might 
look as shown in the bottom left corner (asymptotically stable) or 
as shown in the bottom right corner (unstable). 

The above example shows that Problem A is not trivial in the 
sense that it is possible to get instability by switching between as- 
ymptotically stable systems. (However, there are certain limita- 
tions a s  to what types of instability are possible i n  this case. For 
cxample, i t  is easy to see that the trajectorics of such a switched 
system cannot escape to infinity in finite time.) If this happens, 
one may ask whether the switched system will be asymptotically 
stable for certain useful classes of switching signals. This leads 
to the following problem. 

Problem B. IdenriJj, those cla.s.ses of .switching sijinals for 
which the switched system ( I )  is aymproticnlly stablc. 

Fig. 2. Possible trajectories ofa switched system. 
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Since it is often unreasonable to exclude constant switching 
signals of the formo(t) E p ,  Problem B will he considered under 
the assumption that all the individual subsystems arc asymptoti- 
cally stable. Basically, wc will find that stability is ensured if the 
switching is sufficiently slow. Wc will specify several useful 
classes of slowly switching signals and show how to analyze sta- 
bility of the resulting switched systems. 

One reason for the incrcasing popularity of switching control 
dcsign methods is that sometimes it is actually casier to find a 
switching controller performing a desired task than to find a con- 
tinuous one. In fact, there are situations where continuous stabi- 
lizing controllers do not exist, which makes switching control 
techniques espccially suitable (nonholonomic systems provide a 
good example [9]-[ I 11). In the coiitexl of the multicontroller sys- 
tem depicted in Fig. I ,  it might happen that none of the individual 
controllers stabilize the plant, yet it is possible to find a switching 
signal that results in an asymptotically stable switched system 
(one such situation will be discussed in detail later in the article). 
We thus formulate the following problem. 

Problem C. Construct a switching signal that makes the 
.switched sysfent ( I )  asymptotically stahle. 

Of course, if at least one of' the individual subsystems is as- 
ymptotically stable, the above problem is trivial (just keep 
o(t) p where / I  is the index of this stable system). Therefore, in 
the context of Problem C, it will be understood that none of the 
individual subsystems are asymptotically stable. 

The last problem is more of a design problem than a stability 
problem, hut the previous discussion illustrates that all three 
problems are closely related. In what follows, we will give an ex- 
position of recent results that address these problems. Open 
questions are pointed out throughout. Wc present many ideas 
and results on the intuitivc level and refer the reader to the litera- 
ture for tcchnical dctails. As the above remarks demonstrate, a 
deepcr understanding ofthe bchavior of switched systems is cru- 
cial for obtaining cfficient solutions to many important real- 
world problems. We therefore hope that this article will help 
bridge the gap between theory and practice by providing a de- 
tailed overview, accessible to a broad control engincering audi- 
ence. of the theorctical advances. 

Stability for Arbitrary Switching 
It is easy to see that if the family of systems 

x = . f , > ( X ) ,  1' E P (3) 

has a common Lyapunov function (i.e., a positive definite radi- 
ally unbounded smooth function V such that VV(x)f , (n)  < Ofor 
all x # 0 and all p E 'P), then the switched system (1) is asymp- 
totically stable for any switching signal o. Hence, one possible 
approach to Problem A is to find conditions under which there 
exists a common Lyapunov function for the family (3). 

In the ncxt two subsections, we discuss various results on 
common Lyapunov functions and stability for arbitrary switch- 
ing. The third subsection is devoted to converse Lyapunov theo- 
rems. We refer the reader to 1121-1 141 for some related results not 
covercd here. Another line of research that appears to he relevant 
is the work 011 connective stability-see 11.51 and the references 
therein. Our discussion throughout the article is restricted to 
state-space methods. For somc frequency domain results, the 
reader may consult Hespanha [ 16, Chapter 31, where it is shown 

IEEB Control Sys tem 



that if a linear process and a family of linear controllers are given 
by their transfer matrices, there always exist realizations such 
that the family of feedback connections of the process with the 
controllers possesses a quadratic common Lyapunov function. 

Commutation Relations and Stability 
Let us start by considering thc family of linear systems 

X =A,,x, p E P, (4) 

such that the matrices A,, are stable (i.e., with eigenvalues in the 
open left half of the complex plane) and the set [Al, : p E P) is 
compact in R""". If all the systems in this family share a qua- 
dratic corninoil Lyapunov function, the switched linear system 
(2) is globally uniformly exponentially stable (the word "uni- 
form" is used here to describe uniformity with respect to switch- 
ing signals). This means that if there exist two symmetric 
positive definite matrices P and Q such that we have 

with Q, > 0, which makes the claim of Proposition 1 obvious. 
Recent work reported in [ 191 directly gcneralizes the result 

and the proor techniquc of [ 181 to thc switched nonlinear system 
(1) .  For each p E P, denote by cp l>(t, z )  the solution of the system 
X = ,f,,(x) starting at a point z when t = 0. Suppose that all these 
systems arc exponentially stable, and that the corresponding vec- 
tor fields commute pairwise (which can be cxpressed as 
~ f , , . . ~ l ] ( x ) : = ~ , f , , ( , ~ ) - - , f ; i ( x ) = O  for all p , q  E?). Take 
P = (I,. . .,m}. Then a common Lyapunov function for the family 
(3) locally in the neighborhood of the origin' can be constructed 
by the following iterative procedure (wherc T is a sufficiently 
largc positive constant). 

21 ( $ 1  a i  (i) 

Proposition 2 [ 191 Define theJuizctions 

A ; P + P A , , s - ~  V p E P ,  

then there exist positive constants c and p such that the solution 
of(2) forany initial statex(0) and any switching signalo satisfies 

!!x(f)ll < ce-P'!!x(0)l! Vt  2 0. ( 5 )  

One could also define the property of uniform (over thc set of 
all switching signals) asymptotic stability, local or global. For 
linear systems all of the above properties are equivalent; see, 
e.g., [I71 for more information on this. 

In this subsection we present sufficient conditions for uni- 
form exponential stability that involve the commutation rela- 
tions among the matrices A,,, p E P. The simplest case is when 
these matrices commute pairwise (is . ,  A,A, = ABAI, for dl 
p ,  q E P) a n d p i s  a finiteset, say, P = {I,. , , ,m) .  It is notdifficult 
to check that in this case the system (2) is asymptotically stable 
for any switching signalo. Taking for simplicity P= [I, 2}, i t  is 
e n o u g h  to  w r i t e  e , l~ 'he i i ?~ ie  e 4 2 z 2  . , , e ;~ " ' e "~ ' " x (0 )  = 

x(0)+ 0 a s  t , +  ...+ t , + 2 , +  ...+ 7 , -  e,ll,,,,, , , , L ) e A ? ( % , + . . + T i l  

because A, and A? are both stable, An explicit construction of a 
quadratic common Lyapunov function for a finite commuting 
family of linear systems is given in [ 181. 

Proposition 1 [18] Let PI, . .. , e,, he the unique .symmetric 
positive definite matrices that .sutisfv the Lyapunov equations 

ATP, + < A l  = -1, 

A ' Y + T A , = - e . , ,  i = 2  ,..., m. 

Then the,furzction V ( x ) : =  x' e,,x is n common LycipunovJunc- 

The matrix P,,, is given by the forinula 
tion for the systenis i = A,x, i = I,. . .,m. 

Since the matrices A, comrnutc, for each i E (I..  , .,nz} we can re- 
write this in the form 

Tlzcn V,,, is U local comnion L~~np i i i i~ )~~~~i zc t io in ,~Ur  thc s y sterns 
X = J ( x ) , i = l ,  ..., in. 

Let us return to the lincar case. A uscful object that reveals the 
nature of the commutation rclations among the matrices A,, 
p E P i s  the matrix Lic algebra fi:= (A, : p t PJIA generated by 
them (with respect to the standard Lie bracket[A,,,A,, I : =  
Al,A,, - A,]AI,). This is the linear space (over R )  spanned by iter- 
ated Lie brackets of these matrices. First, we recall some defini- 
tions (see, for example, 1201). Ifg I and g2 are linear subspaces of 
aLicalgebrag, onewrites[,q,,g, Iforthelinearspacespanned by 
all tlieproducts[a,h]witlia E fil andb t g,.GiveiiaLiealgebra 
g,  the sequence g'" is defined inductively as follows: g"':= g, 
,q"+'):= [ g ( k ) , g " J ]  c g'"'. Ifg"' = Ofork sufficientlylarge,g is 
called solvahle. Similarly, one derines the sequence g' by 
gl:= g, g ( + l : =  [ g , g ' ]  c gi and calls g nilpotent if gi = 0 fork 
sufficicntly large. For example, if g is a Lie algebra generated by 
two matrices A, and A,, i.c., g = (A,,A2),,l, we havc: 

g ' " =  I g = g = spanlA,,A,,[A,~A,l,~~,,~A,~A,Il, ... I, 
s'" = x 2 =  span~[A,,%l, IA, , IAl ,Azl l ,  ... J, 
g'" = span{ [I A,, A, I, [A,,  [ A , ,  A2111,. . . I  c g ' 

= span{ IA,,lA,, A211,1A2,1AI, A,ll,...}, 
and so on. Every nilpotent Lie algcbra is solvable, but the con- 
verse is not true. 

The connection between asymptotic stability of a switched 
linear system and the properties of thc corresponding Lie algebra 
was explicitly discussed for the first time by Gurvits in 12 11. That 
paper is concerned with the discrete-time counterpart of (2), 
which takes the form 

x ( k + l )  =A,,,,x(k), (7) 

whereo is a function from nonnegative intcgers to a finite index 
set P and Ai, = e"#' ,  p E P f o r  some matrices Ll>, Gurvits conjec- 
tured that if Lhe Lie algebra {L,, : p E PJ, is nilpotent, the system 

' I f  all the fu~ictions I,, arc globally Lipschit7, onc ohlaini a global cutninon 
Lyapunov function. 
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(7) is asymptotically stable for any switching signal 0. He was 
able to prove this conjecture for the particular case where 
P = (1,2] and the third-order Lie brackets vanish: [L,,[L,,L,l] = 

It was recently shown in 1221 that if the Lie algebra 
(A,, : p E P), is solvable, the fainily (4) possesses a quadratic 
common Lyapunov function. One can derive the corresponding 
statement for the discrete-time case in similar fashion, thereby 
confirming and directly generalizing the above conjecture. The 
proof of the result given in [22] relied on the€acts that matrices in 
a salvable Lie algebra can be sinnultaneously put in the upper- 
triangular form, and that a family of linear systems with stable 
upper-triangular matrices has a quadratic common Lyapunov 
function. This result incorporates the ones mentioned before (for 
a commuting family and a family generating a nilpotent Lie alge- 
bra) as special cases. 

Theorem 3 [22] Zf ( A ,  : p E P )  is a compact set of stable ma- 
trices and the Lie algebra [Af ,  : p B ?), is the switched 
linear system ( 2 )  is globally uniformly exponentially stable. 

Various conditions for simultaneous triangularizability are 
reviewed in [24], [25].  Note, however, that whilc it is a nontrivial 
matter to find a basis in which all matrices take the triangular 
form or even to decide whether such a basis exists, the Lie- 
algebraic condition given by Theorem 3 is formulated in terms of 
the original data and can always be checked in a finite number of 
steps if P is a finite set. 

We now briefly discuss an implication of this result for switched 
nonlinear systems of the form ( I ) .  Consider, together with the fam- 
ily (3), the corresponding family of linexized systems 

IL,,[L,,L,II = 0. 

X = Ff,x,  p El', 

where F,, = $((I), Assume that the matrices F ,  are stable, that P 
is a compact set, and that %(x) depends continuously on p.  A 
straightforward application of Theorem 3 and Lyapunov's first 
method (see, for example, [261) gives the following result. 

Corollary 4 [22] [fthe Lie algebra [F,> : p 6 P), is solvable, 
the system ( 1  ) is locally unlfurmly exponentially .stahk3 

Note that while the condition of Corollary 4 involves the 
linearizations, the commuting condition of Proposition 2 is €or- 
mulated in terms of the original nonlinear vector fields ,&,, p E P. 
An important problem for future research is to investigate how 
the structure of the Lie algebra generated by these nonlinear vec- 
tor fields is related to stability properties of the switched system 
( I ) .  Taking higher-order terms into account, one may hope to ob- 
tain conditions that guarantee global stability of general 
switched nonlinear systems, or conditions that guarantee at least 
local stability when the above linearization test fails. 

Finally, we commcnt on the issue of robustness. Both expo- 
nential stability and the existencc of a quadratic common Lya- 
punov function are robust properties in the sense that they are not 
destroyed by sufficiently small perturbations of the systems' pa- 
rameters. Regarding perturbations of upper-triangular matrices, 
one can obtain explicit bounds that have to be satisfied by the ele- 

'This coiiilitian has recently been impruved by Agrachev 1231. The ncw rrsult 
states, loosely speaking. that one still has uniform exponential stability if thc 
h o v e  Lic algzhra is a sum oltwo components, one solvableand thcotherconsiat- 
ing of matrices with purely iinaginary eigcnviilncs. 

'This is to say thal lhe estimate ( 5 )  holds for all trajectories starting in a certain 
neighborhood of thc origin. 

ments below the diagonal so that the quadratic common Lya- 
punov function For the unperturbed systems remains a common 
Lyapunov function for the perturbed ones [27]. Unfortunately, 
Lie-algebraic conditions, snch as the one given by Theorem 3 ,  do 
not have this robustness property. 

Matrix Pencil Conditions 
We now turn to some recently obtained sufficient, as well as 

necessary and sufficient, conditions for the existence of a qua- 
dratic common Lyapunov function for a pair of second-ordcr as- 
ymptotically stable linear systems 

X =Ajx,  A, E 1W2"*, i = 1,2. (8) 

These conditions, presented in 1241, [28], are given in tcrrns of 
eigenvalue locations of convex linear combinations of the matri- 
ces A, and A2. 

Given two matrices A and 5, the matrixpenci/y,(A, B) is de- 
fined as the one-parameter family of matrices CLA +(I  -u)B, 
a E [0,11. One obtains the following result. 

Proposition 5 (281 I f  A, and A, have real distinct eigenvalues 
and all the matrices in y, ( A , ,  A,) have negative real eigenvalues, 
the pair of linear systems (8)  ha.s a quadratic coni.mon Lyupunov 
function. 

Shorten and Narendra 124) considered, together with the ma- 
trix pencil ye (A , ,A2) ,  the matrix pencil ye (A , ,A ; ' ) .  They ob- 
tained the following necessary and suflicienr condition [or the 
existence of a quadratic common Lyapunov function. 

Theorem 6 [24] The pair of linear .systems (8) has a qua- 
dratic common Lyupunov function fund on/y ( fal l  the matrices 
i n y , ( A , , ~ ) a n d y , ( A , , A I ' )  are stable. 

The above results are limited to a pair of second-order linear 
systems. Observe that the conditions of Proposition 5 and Theo- 
rem 6 are in gencral robust in the sense specified at the end ofthc 
previous subsection. Indeed, the property that all eigenvalues of 
a matrix have negative real parts is preserved under sufficiently 
small perturbations. Moreover, if thesc eigenvalues are real, they 
will remain real under small perturbations, provided that they are 
distinct (bccause eigenvalues of a real matrix come in conjugate 
pairs). 

Converse Lyapunov Theorems 
In the preceding subsections we have relied on the Tact that 

thc existence of a common Lyapunov function implies asymp- 
totic stability of the switched system, uniform over the set of all 
switching signals. The question arises whether the converse 
holds. A converse Lyapunov theorem for differential inclusions 
proved by Molchanov and Pyatnitskiy 171 gives a positive an- 
swer to this question. Their result can be adapted to the present 
setting as follows. 

Theorem 7 [ 17 ] Zfthe switched lineur sysrem (2) is uiziforinly 
exponentially stable, the family of linear systenzs (4)  has U 

strictly convex, homogeneous (uf second order) common Lyn- 
punov ,function of U quasi-quudratic form 

V ( x )  = x i  L(x )x ,  

where L(x) = L'(x) = L(zx) for all rzonzero x t R "  and z F R. 
The construction of such a Lyapunov function given in 11 71 

(see also [I])  proceeds in the same spirit as the classical one that 
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is used to prove standard converse Lyapunov theorems (cf. 126, 
Theorem 4.5]), except that one mnst take the supremum of the 
usual expression, of the form (6) ,  over all indices p E P. It is also 
shown in [ I71 that one can find a common Lyapunov function 
that takes the piecewise quadratic form 

V ( x )  = max(l,,x)2, 
l d l d i  

where I ; ,  i = I,.  , ., k arc constant vectors. A typical level set of 
such a function is shown in Fig. 3. 

Interestingly, a quadratic connnon Lyapunov function does 
not always exist. Dayawansa and Martin 111 give an example of 
two sccond-order linear systems that do not share any quadratic 
common Lyapunov function, yet the switched system is uni- 
formly exponentially stable. This result clearly shows that condi- 
tions leading to the existence of a quadratic common Lyapunov 
function ( S L I C ~  as the condition of Theorem 3) cannot he ncccs- 
sary conditions for asymptotic stability. It is idso shown in [ I ]  
that Theorem 7 can be generalized to a class of switched nonlin- 
ear systems as follows. 

Theorem 8 [ I ]  r f  the switched systenz (/) i . ~  globtrlly uni- 
,fornzly asyniptotically stable and in addition locally un(form1y 
exponentially stable, the farizil)~ (3 )  has n common Lycipunov 
function. 

The converse Lyapunov theorem of Lin et al., is also relevant 
in this regard [29]. 

Stability for Slow Switching 
We have seen above that a switched system might become 

unstable for certain switching signals, even if all the individual 
subsystems are asymptotically stable. Thus, if the goal is to 
achieve stability of the switched system, one often needs to re- 
strict the class of admissible switching signals. This leads us to 
Problem B. As already mentioned. one way to address this prob- 
lem is to make sure that the intervals betwecn consecutive 
switching tiincs are large enough. Such slow switching assump- 
tions greatly simplify the stability analysis and are, in one form 
or another, ubiquitous in the switching control literature (see, for 
example, [301-[32]). 

Below we discuss multiple Lyapunov [unction tools that are 
useful in analyzing stability of slowly switched systems (and 
will also play a role later in the article). We then present stabilily 
results for such systems. Some oithese results parallel the more 
familiar ones on stability of slowly time-varying systems (cf. 
1331 and references therein). 

Multiple Lyapunov Functions 
Wediscussed various situations in which asymptotic stability 

of a switched system for arbitrary switching signals can be estab- 
lished by means of showing that the family o€individual subsys- 
tems possesses a common Lyapunov function. We also saw that 
the existence of a common Lyapunov function is necessary Tor 
asymptotic stability under arbitrary switching. However, if the 
class of switching signals is restricted, this converse result might 
not hold. In other words, the properties of admissible switching 
signals can sometimes be used to prove asymptotic stability of 
the switched system, even in the absence o€a common Lyaponov 
function. 

t 

Fig. 3. A level .set ofci common Lyaprinov,rLincfiun. 

One tool for proving stability in such cases employs multiple 
Lyapunov functions. Take P to be a finite set. Fix a switching 
signal o with switching times t ,  < 1 ,  <. , , and assume for con- 
creteness that it is continuous from the right everywhere:o(t,) = 
Iiin(+,, o ( t )  €or eachi. Since the individual systems in the family 
(3) ark assumed to be asymptotically stablc, there is a family of 
Lyapunov functions (VI, : p E P) such that the value of VI, de- 
creases on each interval where the p t h  subsystem is active. lffor 
every p the value of V,, at the eud of each such interval exceeds 
the value at the end ofthe next interval on which the p-th subsys- 
tem is active (sce Fig. 4), the switched system can be shown to be 
asymptotically stable. The precise statement is as follows. 

Lemma 9 [34 I Suppose that there exisrs a constuntp > 0 with 
the property thatfor uny two switching tirnes ti and t ,  such thnt 
i < j a n d o ( t , )  = ( ~ ( t , )  M J ~  have 

v,,,, , ( X ( f j ,  I ) ) -  v,,,, ,(.x(t, I 1 ) )  5 -PIX(f,+, ) I 2 .  
Then the switched s,y.stem (1)  is filohully usymptotically stable. 

Fig. 4. Two I,ycipunov funcfions ( s o l i d  graphs correspond fo VI, 
dashed graphs  correspond.^ to b). 
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To see why this is true, obscrve that due to the finiteness of P 
there exists an index p E P that has associated with it an infinite 
sequence of switching times t,, , r j , , ,  , . such that o(t ,)  = p .  The 
sequcnce V,,,, l(x(fj,+l)), V G ( , r ~ l ( i ( !  ,,,. ... is decreasing and 
positive, and therefore has a limit L 2 0. We have 

which implies that ~ ( t )  convergcs to zero. As pointed out in 135 I ,  
Lyapunov stability should and can be checked via a separate ar- 
gument. 

Some variations and gencralizations of this result are dis- 
cussedin 135]-[39].Seealsotheworkreportedin[3]foran appli- 
cation of similar ideas to the problem of controlliiig a mobile 
robot. A closely related problem of computing multiple Lya- 
punov functions numerically using linear matrix inequalities is 
addressed in 1391 and 1401. 

Dwell Time 
The simplest way to specify slow switching is to introduce a 

number T > 0 and restrict the class of admissible switching sig- 
nals to signals with the property that the interval between any 
two consecutive switching times is no smaller than 7, This num- 
ber Tis sometimes called the dwell time (because IS "dwells" on 
each of its values for at least z units of time). It is a fairly well- 
known fact that when all the linear systems iu the family (4) are 
asymptotically stable, the switched linear system (2) is globally 
exponentially stable if the dwell time T is large enough. In fact, 
the required lower bound on T can be explicitly calculated from 
the parameters of the individual subsystems. For details, see 14, 
Lemma 21. 

What is perhaps Icss well known is that under suitable as- 
sumptions a sufficiently large dwcll time also guarantees asymp- 
totic stability of the switched system in  the nonlinear case. 
Arguably the best way to provc most general results of this kind 
is by using multiple Lyapunov functions. We will not discuss the 
precise assumptions that are needed here (in fact, there is consid- 
erable work still to be donc in that regard), but will present the 
general idea instead. Assume for simplicity that all the systems 
in the family (3) are globally exponentially stable. Then for each 
p E P there exists a Lyapunov function VI, that for some positivc 
constants a,, b,, and c,, satisfies 

and 

(see, for example, 126, Theorem 4.51). Combining (9) and ( IO) ,  
we obtain 

where hi, = c,, / b;,. This implies that 

provided that o(t) = p for almost all f E [to,f, + TI. To simplify 
the ncxt calculation, let us colisider the case where P = (l,2] and 
otakesonthevalne I on[t,,,t,)antl2on[tI,t,), wheret,,, - t i  2 T, 
i = 0,l. From thc above inequalities one has 

and iurthermorc 

WeseethatV,(t,) < V,(r,,)ifzislargeenough.Infact, itisnot 
hard to compute an explicit lower bound on z that ensures that the 
hypotheses of Lemma 9 are satisfied, which means that the 
switched systcin is globally asymptotically stable. 

We do not discuss possible extensions and refincments here 
because a more general result will be stated i n  the next subsec- 
tion. Note, howevcr, that the exponcnlial stability assumption is 
not necessary; for example, the above reasoning would still be 
valid if thc quadratic estimatcs in (9) and ( I O )  were replaced by, 
say, quarlic ones. In essence, all we used was the fact that 

If this inequality does not hold globally in the state space, only 
local asymptotic stability cau be established. 

Average Dwell Time 
For each T > 0, let N,( T )  dcnote the number of discontinu- 

ities of a giveu switching signalo on the interval 10, T). Follow- 
ing Hespanha 14 I], we will say thato has the average dwell time 
property if there exist two nonnegative numbers a and b such that 
for all T > 0 we have N J T )  5 i t  + BT. This terminology is 
prompted by the observation that, if we discard the first a 
switchings, the average tiinc between consecutive switchings is 
at least 1 / h. Dwell-time switching signals considered in the pre- 
vious subsectioii satisfy this definition with n = 0 and 6 = 1 / T. 
Loosely speaking, while the counterpart o fa  dwell-lime switching 
signal for continuously timc-varying systems is ii tuning signal 
with bounded derivative, the counterpart of  an averagc dwell-time 
switching signal is a nonrIestnDilizing tuning signal in the sense 
of 1421. 

Consider the family of nonlinear systems (3), and assume that 
all the systems in this family are globally asymptotically stable. 
Then for cach p E P there exist positivc definite, radially un- 
bounded smooth €unctions V, and D ,  such thatVV,,(x)f,(s) < 
-D, , (x)  for all x. As explainedin [43], thcrcis no loss ofgenerality 
in takingD,,(x) = h ,>V,,(x) for someh ,, O(changingV,, if neces- 
sary). Since Pis a compact sct, we can also assumc that the num- 
bers h ,~ are (he same for all p E P, so that we have 

vy,(x). f , , (X) < -kV,,(x), h > 0. (12) 
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The following result was reccntly proved by Hespanlia 14 I ]  
with the help of Lyapunov function techniques similar to those 
we alluded to in the previous subsection. 

Theorem 10 14 I I ~ ( 1 1 ) - ( / 2 )  hold, the sivitchetE.sy.stem ( I )  i.s 
globally nsymptoticnlly .strzhle4,ti,r m y  switchirzg signal tlicit /ins 
the average dwell tinzeproperty with b < li. I logp. 

The study of average dwell-time switching signals is inoti- 
vated by the following considerations. Stability problems for 
switched system arise naturally in the context of switching con- 
trol. Switching control techniques cmploying a dwell tiinc have 
been successfully applied to linear systems with imprecise mca- 
surernents or modeling unccrtainty (cf. 141, 1301, I3 1 I, 1441). In 
the nonlinear setting, howevcr, such methods are often unsuit- 
able because of the possibility of finite escapc time. Namely, i f a  
"wrong" controller has to rcmain in the loop with an imprecisely 
inodeled system for a specified amount of time, the solution to 
the system might escape to infinity before we switch to a differ- 
ent controller (of course, this will not happen ifall the controllers 
are stabilizing, but when the system is not completely known, 
such an assumption is not realistic). 

An alternativc to dwell-time switching control of nonlinear 
systems is providcd by the so-called hysteresis switching pro- 
posed in 1451 and its scale-independent versions, which werc re- 
cently introduced and analyzed in [I61 and 1461 and applied to 
control of uncertain nonlinear systems iii [ I  I ]  and 147 I. Whcn 
the uncertainty is purely paramctric and there is no mcasuremcnt 
noise, switching signals generated by scale-independent liyster- 
csis have the propcrty that the switching stops in finite timc, 
whereas in the presence of noise undcr suitable assumptions they 
can be shown to havc the average dwell time property (see 14 I]). 
Thus Theorem 10 opens the door to provably correct stabiliza- 
tion algorithms for uncertain nonlincar systems corruptcd by 
noise, which is the subject of ongoing research. 

I 
I 

Stabilizing Switching Signals 
Since somc switching signals lead to instability, it is natural to 

ask, given a family of systems, whether it is possible to find a 
switching signal that renders the switched system asymptotically 
stable. Such stabilizing switching signals may exist even in the 
extreme situation when all the iiidividnal subsystems are unsta- 
ble. For example, considcr two second-order systems whose Lra- 
jectories are sketched in Fig. 5 ,  left, and Fig. 5 ,  center. If we 
switch in such n way that the first system is active in the second 
and fourth quadrants whilc the second one is active in the first 
and third quadrants, the switched systcm will be asymptotically 
stable (see Fig. 5 ,  right). Note that this switching control strategy 
(as well as thc ones to bc discussed below) is closed-loop, i.e., thc 
switching signal tdkcs the fecdback formo(x). A less coininonly 
considered alternative is to employ open-loop switching signals 
(for example, periodic ones [48]-[50]). All switching control 
strategies discussed here arc deterministic; for available results 
concerning stochastic switching, the reader inay consult 151, 
Chapter 91, [52] and the relerences thercin. 

In this section we present various methods for constructing 
stabilizing switching signals in the case whcre none of the indi- 
vidual subsystems are asymplotically stable (Problem C). We 
also discuss how thcse ideas apply to the problem of stabilizing a 

'if eqmientiul stability ofthe switched systcni is desired, ccrtain specific growth 
bounds on tlic functions V,, niiisl be imposed. 

linear system with finitc-state hybrid output fcedback. Although 
we only address stabilizability hcrc, there are other intercsting 
questions, such as attainability and optimal control via switching 
1531, 1541, cxact output tracking [ 5 5 ] ,  [561, and switched ob- 
server design [57],  [%]. 

Stable Convex Combinations 
Assume that P = [1,2) and that we are switching bctween two 

linear systcins 

,i = A , x  (13) 

i = A2b (14) 

and 

of arbitrary tiiincnsion 1 2 .  As demonstrated by Wicks, Pcleties, 
and DeCarlo in 121, 1.591, one assumption that leads to an cle- 
gantconstruction o fa  stabilizing switching signal is the follow- 
ing one. 

Assumption 1. The matrix pencil y , ( A , ,  A,) contains a stable 
matrix. 

According to the definition of a matrix pencil given earlier, 
this means that for some a E ((),I), the convex combination 
A:= OlA, +(I - a)A, is stable (the endpoints 0 and I are excluded 
because A, and A, are not stable). Thus there exist symmetric 
positive definite matrices P and Q such that we have 

A " P t P A = - Q .  

This can he rewritten as 

IY,(A: P+ P A , ) + ( I  - a ) ( A : P +  P A 2 )  = -& 

or 

w'(A:  P + PA,)x  +(I -a)x7 (A: P + PA2)x = -XI &x < 0 

v x  ER" \ (0) 

Since 0 < a < I, it follows that lor cach nonzero x E R " ,  at 
least one olthe quantiticsx'(A;P + PAl)x andx ' (AlP  + PA,)x 
is negative. In other words, R" \ (0) is covered by the union of two 
open conic regions n ,:= (x : x ' ~ ( A /  P + PA, )x  < 0) andn,:= 
{x : x' (A;/' + PA,)x < 0). The function Vi*):= x'  Px decrcases 
along solutions ofthe systcm (13) in the region L2 , and decrcases 
along solutions ol'the system (14) in the region Q,, Using this 
property, it is possible to construct a switching signal such that V 
decreases along solutions of the switched system, which implies 
asymptotic stability. The precise result is this. 

Fig. 5. A stahilizinfi switching .signa/. 

October 1999 



Theorem 11 121, [59] IfAssumption I is satisfied, there exists 
a piecewise constant switching .sigrzaZ which makes the switched 
system quadratically stuble. (“Quadratic stability” means that 
there exists a positive E such that V < -wI’x.) 

This stabilizing switching signal takes the slate feedback 
form; i.e., the value of B at any given timet 2 0 depends on x(t). 
An interesting observation due to Feron [601 is that Assumption 
I is not only sufficient but also necessary for quadratic stabiliza- 
hility via switching. 

Proposition 12 1601 Ifthere exists a quatlraticully .stabilizing 
switching signal in the state feedback,form, the matrices A, and 
A, .satisfi Assumption 1. 

One can gain insight into the issue of quadratic stabilizability 
with the help of the following example. Take 

and 

0.1 -2 
A.:=( , o,,). 

The trajectories of the systems (13) and ( I  4) will then look, at 
least qualitatively, as depicted in Fig. 5 ,  left and center, rcspec- 
tively. We explained earlier how to construct a stabilizing 
switching signal that yields the switched system with trajcctories 
as shown in Fig. 5 ,  right. This system is asymptotically stable; in 
Fact, we see that the function V(x,,x,):= x: + x i  decreascs along 
solutions. However, it is easy to check that no convex combina- 
tion of A, and A, is stable, and Proposition 12 tells us that the 
switched system cannot be quadratically stable. Indeed, on the 

coordinate axes (which form the set where the switching occurs) 
we have V = 0. 

When the number of individual subsystems is greater than 2, 
one can try to single out from the corresponding set of matrices a 
pair that has a stable convex combination (an algorithm for doing 
thisisdiscussedin 1.591). ITthatfails,itinightbepossible tofinda 
stable convex combination of thrcc or more matrices from the 
given set, and then the above method Cor constructing a stabiliz- 
ing switching signal can still be implcmented with minor modifi- 
cations. Observe that the converse result of Proposition 12 is 
only known to hold for the case of two systems. We note that the 
problem of identifying stable coiivcx combinations (of matrices 
with rational coefficients) is NP-hard [6 I 1. A discussion of com- 
putalional issues associated with some problems related to the 
one addrcssed in this section, as wcll as relevant bibliography, 
can be found in Chapters I1 and 14 of [62]. 

Unstable Convex Combinations 
The previous examplc suggcsts that even when there exists no 

stable convex combination of A, and A,, and thus quadratic stabi- 
lization is impossible, asymptotic stabilization may be quite easy 
to achieve (by using techniques that can actually be applied to 
general systems, not necessarily linear oncs). An interesting 
source of motivation for pursuing this idca comes from the fol- 
lowing problem. Suppose that we are given a lincar time-in- 
variant control system 

. i = A x + l i u  
y = c x  (15) 

that is stnbilizable anddetecruble (i.e., there exist matrices Fand 
K such that the eigenvalucs of A + BF and A + KC have negative 
real parts). Then, as is well known, there cxists a continuous lin- 
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ear dyn'imic output feedback law that asymptotically stabilize\ 
the system (\ee, toi example, 163, Section 6 41) In practice, how- 
ever, such ii continuous dynamic feedback might not be iniple- 
inentable, and a suitable discrete version of the controller i s  often 
devred Recent refeiences 1441, [64]-167] discuss some issues 
related to contiol ot continuous plant\ by vaiious type\ of dis- 
continuous feedback 

In paiticuldi, in [ 651 i t  IS shown that the system ( I  5 )  adinita a 
st<ibiIizing hybrid output feedback that uses a countable nuinbei 
ot d i w e t e  states A logical question to ask next is whethei i t  i s  

po\\ible to stabilize (15) by using a hybrid output leedbdLk with 
only ~.Jinitc~ number ol discrete state\. Artstcin 1681 explicitly 
raised this question and di\cu\sed it in the context of a simple ex- 
ample (that paper can d s o  be conwlted toi a foiinal dcfinition of 
hybrid feedbxk). Thi\ problem seeins to iequire a solution that 
I \  significantly ditferent From the ones mentioned above, be- 
caute a finite-utate stabilinng hybrid feedback i s  unlikely to be 
obtained trom a continuous one by mcam ot any discreti7'itioii 

Fig 6 Srnbilizaq the lrnrrnonic uwll&jf .  

sketch one P'Jsslble stablllzlng ttrdtegY Let tW U = - Y  We ob- 
tain lhe \Y\tcin 

(16) 
process. 

One approach to the problem of stabilizing the linear system 
(15) via finite-state hvbrid outout feedback is oromoled bv the 

whose trajectories look as shown i n  Fig. 6, left, while letting 
U = + y  we obtain tlic system 

, ,  I L  

following observation. Suppose that we are given acollectinn of 
gain matrices K , , . , .  , K,,, of suitable dimensions. Settingu = K,y  
for some i E [ I , .  . .,m], we obtain the system 

X = ( A  + RKiC)x. 

Thus the stabilization problem for the original system (15) 
will be solved if we can orchestrate the switching bctween the 
systeins in the above form in such a way as to achieve asymptotic 
stability. Denoting A + BK,C by A, for each i E [I,. . .,m), we are 
led to the following question: Using the measurements of the 
oulput y = Cx, can we find a switching signal CJ such that the 
switched system X = A,x is asymptotically stable? The value of 
CJ at a given t h e  t might just depend on t and/or y(t), or a more 
general hybrid feedback may he used. We are assuming, of 
course, that none of the matrices Ai are stable, as the existence of 
ii matrix K such that the eigenvalucs of A + BKC have negative 
real parts would render the problem trivial. 

First of all, observe that the existence of a stable convex com- 
binatioiiA:=uAi+(l-u)AjForsomei, j E { l  ,..., m ) a n d u  ~ ( 0 , l )  
would imply that the system (15) can be stabilized by the linear 
static outputfeedbacku = Ky with K:= wKi + ( I  - u ) K j ,  contrary 
to the assumption that we just made. In view of Proposition 12, 
this implies that a quadratically stabilizing switching signal does 
not exist. However, it might still be possible to construct an as- 
ymptotically stabilizing switching signal and even base a stabil- 
ity proof on a single Lyapunov function. 

To illustrate this point, we discuss a modified version of the 
stabilizing switching strategy for the harmonic oscillator with 
poqition measurements described in [68]. Consider the system 

y=x,. 

Although this systein is both controllable and observable, it can- 
not he stabilized by (even discontinuous) static output feedback. 
On the other hand, it can be stabilized by hybrid output feedback; 
several ways to do this were presented i n  1681. We will now 

whose trajectories look as shown in Fig. 6, center. 
Dcfine V ( x ) : =  x'; +x i .  This function decreases along the so- 

lutions of (  16) when xlx2 > 0 and decreases along the solutions 
of (17) when xlx2 < 0. Therefore, if the system (16) is active in 
the first and third quadrants, while the system ( 1  7) is active in thc 
second and fourth quadrants, we will have V < 0 whenever 
,x,x, # 0; hence the switched system is asymptotically stable by 
LaSalle's principle. Apossible trajectory of the switched system 
is sketched in Fig. 6, right. (This situation is similar to the one 
shown in Fig. 5, except that here the individual subsystem are 
critically stable.) It is important to notice that, since both systems 
being switched are linear time-invariant. the tiinc between a 
crossing ofthex,-axis and the next crossing ofthexz-axis can be 
explicitly calculated and is independent of the trajectory. This 
means that the above switching strategy can he iinplemented via 
hybrid fectlback based just on thc measurements of the output; 
see 1681 and 1691 for details. The problem oC stabilizing second- 
orderswitchcdlinearsystems wasalsostudiedin 1701 and 171 ]. 

If one cannot carry out the stability analysis with the help of a 
single Lyapunov function that tlccreases along the trajectories of 
the switched system, in view of the results presented earlier it 
might still be possible to find a stabilizing switching signal and 
prove stability by using multiplc Lyapunov-like functions. Al- 
though this line of thinking does not scem to lead to such a simple 
and constructive procedure as the onc described i n  121 and [SC,], 
some preliminary ideas have been explored in the literature. 
These are discussed next. 

The method proposed in 1341 is to associate with the system 
( I  3) a function VI (x) = x i  P,a that decreascs along solutions in an 
appropriate region 6 2 , .  This is always possible unless A, is a 
nonnegative multiple of the identity matrix. Similarly, associate 
with thc system (14) a function V,(,x) = x'P2x that decreases 
alongsoltitionsinanapproprialeregioii62,. Ifthc unionofthere- 
gions , and R, covers R" \ (0), then oiic can try to orchestrate 
the switching in such a way that the conditions of Lemma 9 arc 
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satisfied. The paper [ 341 contains an example that illustrates how 
this stabilizing switching strategy works. 

In a inore rccent papcr [72], this invcstgation is continued with 
the goal of putting the above idea on more solid ground by means 
o l  formulating algebraic sufficient conditions for a switching 
strategy based on multiple Lyapunov functions to exist. Consider 
thc situation when the Collowing condition holds: 

Condition 1. x’(P,A, +A[ P,)x < 0 whenevcr ,r‘(P, - /’Jn 
2 Oandx # 0,andx’(P2A,+A:P2)x < owhencverx‘(/’~-P,)r  
2 0 and x # 0. 

If this condition is satisfied, a stabilizing switching signal can 
he defined by o(t):= argmax[l/(x(t)):i = l,2], Indecd, the func- 
tion V, will then be continuous and will decrease along solutions 
of the switched system, which guarantces asyinptotic stability. 
Similar techniques were used independeiitly i n  [73] in a morc 
general, nonlinear context. That paper shows an application to 
the interesting problem of stabilizing an inverted pendulum via a 
switching control strategy. 

Condition I holds if the following condition is satisfied (by 
virtue of the S-procetlurc [74], thc two conditions are equivalent, 
provided that there exist x I , x 2  E R ’  such that ,((PI - P2)xl > 0 
and xI(P, - P,)x, > 0). 

Condition 2. There cxist p, ,p2 2 0 such tIyat-P,A, - A;P, + 
P,(P,-P,)  >Oand-P2A,-AlP,+P,(Pl - P J  > 0. 

Alternativcly, i fp , , p ,  5 0, a stabilizing switching signal can 
bc defined by a@):= arg min[y.(x(t)):i = l,2]. In 1721 Condition 
2 is further reformulated in terms of eigcnvalue locations of cer- 

rcss, one must stay in close contact with particular applications 
that motivate the study or switched systems. 
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