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Basic Problems in Stability and Design
of Switched Systems

Daniel Liberzon and A. Stephen Morse

y a switched system, we mean a hybrid dynamical system

consisting of a family of continuous-time subsystems and a
rule that orchestrates the switching between them, This article
surveys recent developments in threc basic problems regarding
stability and design of switched systems. These problems are:
stability for arbitrary switching sequences, stability for certain
useful classes of switching sequences, and construction of sta-
bilizing switching sequences. We also provide motivation for
studying these problems by discussing how they arise in con-
nection with various questions of interest in control theory and
applications.

Problem Statement and Motivation

Many systems encountered in practice exhibit switching be-
tween several subsystems that is dependent on various environ-
mental factors. Some examples of such systems are discussed in
[11-[3]. Another source of motivation for studying switched sys-
tems comes from the rapidly developing area of switching con-
trol. Control techniques based on switching between different
controllers have been applied extensively in recent years, partic-
ularly in the adaptive context, where they have been shown to
achieve stability and improve transient response (see, among
many references, [4]-[6]). The importance of such control meth-
ods also stems in part from the existence of systems that cannot
be asymptotically stabilized by a single continuous feedback
control law [7].

Switched systems have numerous applications in control of
mechanical systems, the automotive industry, aircraft and air
traffic control, switching power converters, and many other
fields. The book [8] contains reports on various developments in
some of these areas. In the last few years, every major control
conference has had several regular and invited sessions on
switching systems and control. Moreover, workshops and sym-
posia devoted specifically to these topics are regularly taking
place. Almost every major technical control journal has had or is
planning to have a special issue on switched and hybrid systems.
These sources can be consulted for further references.

Mathematically, a switched system can be described by a dif-
ferential equation of the form

£ = [0, (O
whete {f, : p € P} is a family of suofficiently regular functions

from R” to R” that is parametrized by some index set P, and
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G :[0,00) = ‘Pis a piecewise constant function of time, called a
switching signal. In specific situations, the value of ¢ at a given
time ¢ might just depend ont or x(¢), or both, or may be generated
using more sophisticated techniques such as hybrid feedback
with memory in the loop. We assume that the state of (1) does not
jump at the switching instants, i.e., the solution x(*) is cverywhere
continuous. Note that the case of infinitely fast switching (chat-
tering), which calls for a concept of generalized solution, is not
considered in this article, The sct 7 is typically a compact (often
finite) subset of a finite-dimensional linear vector space.

In the particular case where all the individual subsystems are
linear, we obtain a switched linear system

F=Ax 2)

This class of systems is the one most commonly treated in the lit-
erature. In this article, whenever possible, problems will be for-
mulated and discussed in the more general context of the
switched system (1).

The first basic problem that we will consider can be formu-
lated as follows.

Problem A. Find conditions that guarantee that the switched
system (1} is asymptotically stable for any switching signal.

One situation in which Problem A is of great importance is
when a given plant is being controlled by means of switching
among a family of stabilizing controllers, each of which is de-
signed for a specific task. The prototypical architecture for such
a multicontroller switched system is shown in Fig. 1. A high-
level decision maker (supervisor) determines which controller is
to be connected in closed loop with the plant at each instant of
time. Stability of the switched system can usually be ensured by
keeping each controller in the loop for a long enough time, to al-
low the transient effects to dissipate. However, modern com-
puter-controlled systems are capable of very fast switching rates,
which creates the need to be able to test stability of the switched
system for arbitrarily fast switching signals.

We are assuming here that the individual subsystems have the
origin as a common equilibrium point: £,(0) = 0, p € P. Clearly,
a necessary condition for (asymptotic) stability under arbitrary
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Fig. 1. Multicontroller architecture.

switching is that all of the individual subsystems are (asymptoti-
cally) stable. Indeed, if the pth system is unstable, the switched
system will be unstable if we seto(¢) = p. To see that stability of
all the individual subsystems is not sufficient, consider two sec-
ond-order asymptotically stable systems whose trajectories are
sketched in the top row of Fig. 2. Depending on a particular
switching signal, the trajectories of the switched system might
look as shown in the bottom left corner (asymptotically stable) or
as shown in the bottom right corner (unstable).

The above example shows that Problem A is not trivial in the
sense that it is possible to get instability by switching between as-
ymptotically stable systems. (However, there are certain limita-
tions as to what types of instability are possible in this case. For
cxample, it is easy to see that the trajectories of such a switched
systern cannot escape to infinity in finite time.) If this happens,
one may ask whether the switched system will be asymptotically
stable for certain useful classes of switching signals. This leads
to the following problem.

Problem B. Identify those classes of switching signals for
which the switched system (1) is asymptotically stablc.

b

Fig. 2. Possible trajectories of a switched system,
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Since it is often unreasonable to exclude constant switching
signals of the forma(f) = p, Problem B will be considered under
the assumption that all the individual subsystems are asymptoti-
cally stable. Basically, we will find that stability is ensured if the
switching is sufficiently slow. We will specify several useful
classes of slowly switching signals and show how to analyze sta-
bility of the resulting switched systems.

One reason for the increasing popularity of switching control
design methods is that sometimes it is actually casier to find a
switching controller performing a desired task than to find a con-
tinuous one. In fact, there are situations where continuous stabi-
lizing controllers do not exist, which makes switching control
techniques especially suitable (nonholonomic systems provide a
good example [9]-[ | 1]). In the context of the multicontroller sys-
tem depicted in Fig. |, itmight happen that none of the individual
controllers stabilize the plant, yet itis possible to find a switching
signal that results in an asymptotically stable switched system
(one such situation will be discussed in detail later in the article).
We thus formulate the following problem.

Problem C. Construct a switching signal that makes the
switched system (1) asymptotically stable,

Of course, if at least one of the individual subsystems is as-
ymptotically stable, the above problem is trivial (just keep
o(t) = pwhere pis the index of this stable system). Therefore, in
the context of Problem C, it will be understood that none of the
individual subsystems are asymptotically stable.

The last problem is more of a design problem than a stability
problem, but the previous discussion illustrates that all three
problems are closely related. In what follows, we will give an ex-
position of recent results that address these problems. Open
questions are pointed out throughout. We present many ideas
and results on the intuitive level and refer the reader to the litera-
ture for technical details. As the above remarks demonstrate, a
deeper understanding of the behavior of switched systems is cru-
cial for obtaining efficient solutions to many important real-
world problems. We therefore hope that this article will help
bridge the gap between theory and practice by providing a de-
tailed overview, accessible to a broad control engineering andi-
ence, of the theorctical advances.

Stability for Arbitrary Switching
1t is easy to see that if the family of systems
i=fx), peP 3)
has a common Lyapunov function (i.e., a positive definite radi-
ally unbounded smooth function ¥ such that VV(x) f,(x) < 0for
all x # Qand all p € P), then the switched system (1) is asymp-
totically stable for any switching signal . Hence, one possible
approach to Problem A is to find conditions under which there
exists a common Lyapunov function for the family (3).

[n the next two subsections, we discuss various results on
common Lyapunov functions and stability for arbitrary swiich-
ing. The third subsection is devoted to converse Lyapunov theo-
rems, We refer the reader to [12]-[ 14] for some related results not
covered here. Another line of research that appears to be relevant
is the work on connective stability—see [15] and the references
therein. Our discussion throughout the article is restricted to
state-space methods. For some frequency domain results, the
reader may consult Hespanha [ 16, Chapter 3], where it is shown
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thatif a linear process and a family of linear controllers are given
by theit transfer matrices, there always exist realizations such
that the family of feedback connections of the process with the
controllers possesses a quadratic common Lyapunov function.

Commutation Relations and Stability
Let us start by considering the family of linear systems

i=Ax, peP, 4)
such that the matrices A, are stable (L., with eigenvalues in the
open left half of the complex plane) and the set {A, 1 p € P} is
compact in R"*_If all the systems in this family share a qua-
dratic common Lyapunov tunction, the switched linear system
(2) is globally uniformly exponentially stable (the word “uni-
form” is used here to describe uniformity with respect to switch-
ing signals). This means that if there exist two symmetric
positive definite matrices P and @ such that we have
ATP+PA = -Q VpeP,
then there exist positive constants ¢ and 1 such that the solution
of (2) for any initial state x(0) and any switching signal ¢ satisfies
“x(t)“ < ce"““x(())“ Ve = 0. )

One could also define the propetty of uniform {over the set of
all switching signals) asymptotic stability, local or global. For
linear systems all of the above properties are equivalent; see,
e.g., [17] for more information on this.

In this subsection we present sufficient conditions for uni-
form exponential stability that involve the commutation rela-
tions among the matrices A, p € 7. The simplest case is when
these matrices commute pairwise (i.e., AA =A A, for all
p,g € Pyand Pisafiniteset, say, P = {l,....m}. Itis notd\fﬂcuh
to check that in this case the system (2) is asymptotically stable
for any switching signal G. Takingj for simplicity P = {l, 2}, it is
enough to write eMieletighiiphata L glptTiy(D) =
R T (1) R R R A A
because A, and A, are both stable. An explicit construction of a
quadratic common Lyapunov function for a finite commuting
family of linear systems is given in [18].

Proposition 1 [18] Let P, ..., P, be the unique symmetric
positive definite matrices thar satisfy the Lyapunov equations

i=2,...,m

Then the function V(x):= x" P x is a common Lyapunov func-

tion for the systems X = Ax, i =1,...,1
The matrix P, is given by the formula

"

P, :j (,'A”T‘"".,,[J- e""’len‘l‘dz‘l) et
3

0

Since the matrices A, commute, for eachi < {l,...,m} we can re-

write this in the form
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oo

Pm=J.e"Qe"

o)

with @, > 0, which makes the claim of Proposition | obvious.

Recent work reported in [19] directly generalizes the result
and the proof technique of [18] to the switched nonlinear system
(1). For each p € P, denote by @ (¢, 2} the solution of the system
% = f,(x) starting at a point z when# = 0. Suppose that all these
systems arc exponentially stable, and that the corresponding vec-
tor fields commute pairwise (which can be expressed as
LF, 1= 2220 f oy = 222 ¢ (5) = 0 for all p;g & P). Take
P={,....mk Then a common Lyapunov function for the family
(3) locally in the neighborhood of the origin' can be constructed
by the following iterative procedure (where 7 is a sufficiently
large positive constant).

Proposition 2 [19] Define the functions

.
Vi(x)= J"(p,(x, x)[lds,
0

;
Vo= [ Vi (s, s, i=2,m.
0 (6)
Then 'V, is a local common Lyapunov function for the systems
X=fi(x),i=1..,m

Let us return to the lincar case. A uscful object that reveals the
nature of the commutation relations among the matrices A,
p € P is the matrix Lic algebra g:= {A, : p € P}, generated by
them (with respect to the standard Lie bracket[A A |:=
A A, — A A). This is the linear space (over R) spanned by iter-
ated Lie brackets of these matrices. First, we recall some defini-
tions (see, for example, [20]). If g, and g, are linear subspaces of
aLicalgebra g, one writes[ g, g, |for the linear space spanned by
all the products|a, b|witha € g, and b € g,. Givena Lie algebra
g, the sequence g’ is defmed inductively as follows: g":= g,

2 h=[g™, 2" o g™ If g = Ofor k sufficiently large, g is

alled solvable. Similarly, one defines the sequence g* by
gh=g, 8" =g, g"1 c ¢* and calls g nilpotent if g* = 0 for k
sufficiently large. For example, if g is a Lie algebra generated by
two matrices 4, and A,, i.c.,, g = {A,, A,},,, we havc:

gV = gl =g =spanfA,, A4,,T A, A,LTA, 14, AL,

giij =g = span{[A, A LIALIAL AL}

g™ = span{[[ A, A, LIAL A, AT} € g

= span{[ A, [A, A, 1L LA, (A, A,]1,...),
and so on. Every nilpotent Lie algebra is solvable, but the con-
verse is not true.

The connection between asymptotic stability of a switched
linear system and the properties of the corresponding Lie algebra
was explicitly discussed for the first time by Gurvitsin [21]. That
paper is concerned with the discrete-time counterpart of (2),
which takes the form

x(k+1) = A x(k), (7
where G is a function from nonnegative intcgers to a finite index

setPand A, = ¢, p € Pfor some matrices L,. Gurvits conjec-
tured that if the Lie algebra {L, : p & P}, is nilpotent, the system

'If a1l the functions 1, we globally Lipschitz, onc obtains a global common
Lyapunov function.
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(7) is asymptotically stable for any switching signal 6. He was
able to prove this conjecture for the particular case where
P = {1,2} and the third-order Lie brackets vanish:{L,,[L,, L,]] =
(L [Ly, L, 1= 0

It was recently shown in [22] that if the Lie algebra
{A, : p € P}, is solvable, the family (4) possesses a quadratic
common Lyapunov function. One can derive the corresponding
statement for the discrete-time case in similar fashion, thereby
confirming and directly generalizing the above conjecture. The
proof of the result given in [22] relied on the facts that matrices in
a solvable Lie algebra can be simultaneocusly put in the upper-
triangular form, and that a family of linear systems with stable
upper-triangular matrices has a quadratic common Lyapunov
function. This result incorporates the ones mentioned before (for
acommuting family and a family generating a nilpotent Lie alge-
bra) as special cases.

Theorem 3 [22] If{A, : p € P} is a compact set of stable ma-
trices and the Lie algebra {A LipePlis solvable,® the switched
linear system (2) is globally uniformly exponentially stable.

Various conditions for simultaneous triangularizability are
reviewed in [24], [25]. Note, however, that while it is a nontrivial
matter to find a basis in which all matrices take the triangular
form or even to decide whether such a basis exists, the Lie-
algebraic condition given by Theorem 3 is formulated in terms of
the original data and can always be checked in a finite number of
steps if P is a finite set.

We now briefly discuss an implication of this result for switched
nonlinear systems of the form (1). Consider, together with the fam-
ily (3), the corresponding family of linearized systems

x=Fx, peP,

where F, = f L(0). Assume that the matrices F, are stable, that P
isa compdct set, and that - ’ = (x) depends contmuously on p. A
straightforward apphcatmn of Theorem 3 and Lyapunov’s first
method (see, for example, [26]) gives the following result.

Corollary 4 [22] If the Lie algebra (F,: p & P}, is solvable,
the system (1} is locally uniformly exponentzally stable.

Note that while the condition of Corollary 4 involves the
linearizations, the commuting condition of Proposition 2 is for-
mulated in terms of the original nonlinear vector fields f,. p € P.
An important problem for future research is to investigate how
the structure of the Lie algebra generated by these nonlinear vec-
tor fields is related to stability properties of the switched system
{1). Taking higher-order terms into account, one may hope to ob-
tain conditions that guarantee global stability of general
switched nonlinear systems, or conditions that guarantee at least
local stability when the above linearization test fails.

Finally, we comment on the issue of robustness. Both expo-
nential stability and the existence of a quadratic common Lya-
punov function are robust properties in the sense that they are not
destroyed by sufficiently small perturbations of the systems’ pa-
rameters. Regarding perturbations of upper-triangular matrices,
one can obtain explicit bounds that have to be satisfied by the ele-

*This condition has recently been improved by Agrachev [23]. The new result
states, loosely speaking, that one still has uniform exponential stability if the
above Lie algebra is a sum of two components, one solvable and the other consist-
ing of matrices with purely imaginary eigenvalucs.

*This is to say that the estimate (5} holds for all trajectories starting in a certain
neighborhood of the erigin.
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ments below the diagonal so that the quadratic common Lya-
punov function for the unperturbed systems remains a common
Lyapunov function for the perturbed ones [27]. Unfortunately,
Lie-algebraic conditions, such as the one given by Theorem 3, do
not have this robustness property.

Matrix Pencil Conditions

‘We now turn to some recently obtained sufficient, as well as
necessary and sufficient, conditions for the existence of a qua-
dratic common Lyapunov function for a pair of second-order as-
ymptotically stable linear systems

x =Ax, eR¥™, =12, (8)
These conditions, presented in [24], [28], are given in terms of
eigenvalue locations of convex linear combinations of the matri-
ces A, and A,.

Given two matrices A and B, the matrix pencil y (A, B) is de-
fined as the one-parameter family of matrices oA +(l— )8,
o €[0,1]. One obtains the following result.

Proposition 5 [28] If A, and A, have real distinct eigenvalues
and all the matrices iny (A, A,) have negative real eigenvalues,
the pair of linear systems (8) has a quadratic common Lyapunoy
Sunction.

Shorten and Narendra [24] considered, together with the ma-
trix pencil v, (4,, 4,), the matrix pencil v, (4,, A;"). They ob-
tained the following necessary and sufficient condition for the
existence of a quadratic common Lyapunov function.

Theorem 6 [24] The pair of lineur systems (8) has a qgua-
dratic common Lyapunov function if and only if all the matrices
iny (A, A) andy (A, A;') are stable.

The above results are limited to a pair of second-order linear
systems. Observe that the conditions of Proposition 5 and Theo-
rem 6 are in gencral robust in the sense specified at the end of the
previous subsection. Indeed, the property that all eigenvalues of
a matrix have negative real parts is preserved under sufficiently
small perturbations. Moreover, if these eigenvalues are real, they
will temain real under small perturbations, provided that they are
distinct (because eigenvalues of a real matrix come in conjugate

pairs).

Converse Lyapunov Theorems

In the preceding subsections we have relied on the fact that
the existence of a common Lyapunov function implies asymp-
totic stability of the switched system, uniform over the set of all
switching signals. The question arises whether the converse
holds. A converse Lyapunov theorem for differential inclusions
proved by Molchanov and Pyatnitskiy [ 7] gives a positive an-
swer to this question. Their result can be adapted to the present
setting as follows,

Theorem 7 |17 If the switched linear system (2} is uniformly
exponentially stable, the family of linear systems (4) has a
strictly convex, homogeneous (of second order) common Lya-
punov function of u quasi-quadratic form

V(x)=x"Lix)x,
where L(x) = L' (x) = L(tx) for all nonzero x e R" and t e R.

The construction of such a Lyapunov function given in [17]
(see also [1]) proceeds in the same spirit as the classical one that
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is used to prove standard converse Lyapunov theorems (cf. [26,
Theorem 4.5]), except that one must take the supremum of the
usual expression, of the form (6), over all indices p € P. It is also
shown in [17] that one can find a common Lyapunov function
that takes the piecewise quadratic form
2

Ve = maxllx)

where [, i =1,...,k are constant vectors. A typical level set of
such a function is shown in Fig. 3.

Interestingly, a quadratic common Lyapunov function does
not always exist. Dayawansa and Martin [ 1] give an example of
two second-order linear systems that do not share any quadratic
common Lyapunov function, yet the switched system is uni-
formly exponentially stable. This result clearly shows that condi-
tions leading to the existence of a quadratic common Lyapunov
function (such as the condition of Theorem 3) cannot be neces-
sary conditions for asymptotic stability. It is also shown in [1]
that Theorem 7 can be generalized to a ¢lass of switched nonlin-
ear systems as follows.

Theorem 8 [1] If the switched system (1) is globally uni-
formly asymptotically stable and in addition locally uniformly
exponentially stable, the family (3) has a common Lyapunov
function.

The converse Lyapunov theorem of Lin et al., is also relevant
in this regard [29].

Stability for Slow Switching

We have seen above that a switched system might become
unstable for certain switching signals, even if all the individual
subsystems are asymptotically stable. Thus, if the goal is to
achieve stability of the switched system, one often needs to re-
strict the class of admissible switching signals. This leads us to
Problem B. As already mentioned, one way to address this prob-
lem is to make sure that the intervals between consccutive
switching times are large enough. Such slow switching assump-
tions greatly simplify the stability analysis and are, in one form
or another, ubiquitous in the switching control literature (see, for
example, [30]-[32]).

RBelow we discuss multiple Eyapunov function tools that are
useful in analyzing stability of slowly switched systems (and
will also play arole later in the article). We then present stability
results for such systems. Some of these results parallel the more
tamiliar ones on stability of slowly time-varying systems (cf,
[33] and references therein).

Multiple Lyapunov Functions

We discussed various situations in which asymptotic stability
of a switched system for arbitrary switching signals can be estab-
lished by means of showing that the family of individual subsys-
tems possesses a common Lyapunov function, We also saw that
the existence of a common Lyapunov function is necessary for
asymptotic stability under arbitrary switching. However, if the
class of switching signals is restricted, this converse result might
not hold. In other words, the properties of admissible switching
signals can sometimes be used to prove asymptotic stability of
the switched system, even in the absence of a common Lyapunov
function.

October 1999

Fig. 3. A level set of a common Lyapunov function.

One tool for proving stability in such cases employs multiple
Lyapunov functions. Take 7 to be a finite set. Fix 4 switching
signal ¢ with switching times ¢, <1, <... and assume for con-
creteness that it is continuous from the right everywhere: o(¢,) =
]imr_m, o(#) for each . Since the individual systems in the family
(3) are assumed to be asymptotically stable, there is a family of
Lyapunov functions {V, : p € P} such that the value of V, de-
creases on each interval where the p-th subsystem is active, If for
every p the value of V, at the end of each such interval exceeds
the value at the end of the next interval on which the p-th subsys-
tem is active (see Fig. 4), the switched system can be shown (o be
asymptotically stable. The precise statement is as follows.

Lemma 9 [34] Suppose that there exists a constantp > Qwith
the properly that for any two switching timest, andt, such that
i< jando(t) =o(r)) we have

Vo X1 D= Vi (1, ) < —pltr,, )

Then the switched system (1) is globally asymptotically stable.

Vcr( ) (t)

A

et

o=1 g=2'0=1'06=2 o=1 g=2

Fig. 4. Two Lyapunov functions (solid graphs correspond to 'V,
dashed graphs corresponds fo V).
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To see why this is true, observe that due to the finiteness of P
there exists an index p € P that has associated with it an infinite
sequence of switching times LT A such that G(r,.J) = p. The
sequence Vy, (x(t, ,))), Vg, (x(7, ), ... 18 decreasing and

positive, and therefore has a limit Z 2 0. We have

0=L-L= ‘L“}}”ch, W x| -\-1))_}")vaa(r, NEIRND)
:J_Erg[Vm,rN 3l ))—Vﬂ,‘/ Nele )

2

1=0,

< lim [—p\x(; N
Jytee 4

which implies that x(¢) converges fo zero. As pointed out in [35],
Lyapunov stability should and can be checked via a separate ar-
gument.

Some variations and generalizations of this result are dis-
cussed in [35]-[39]. See also the work reported in [3] for an appli-
cation of similar ideas to the problem of controlling a mobile
robot. A closely related problem of computing multiple Lya-
punov functions numerically using linear matrix inequalities is
addressed in [39] and [40].

Dwell Time

The simplest way to specify slow switching is to introduce a
number T > 0 and restrict the class of admissible switching sig-
nals to signals with the property that the interval between any
two consecutive switching times is no smaller than 7. This num-
ber Tis sometimes called the dwell time (because ¢ “dwells™ on
each of its values for at least T units of time). It is a fairly well-
known fact that when all the linear systems in the family (4) are
asymptotically stable, the switched linear system (2) is globaily
exponentially stable if the dwell time 1 is large enough. In fact,
the required lower bound on 7T can be explicitly calculated from
the parameters of the individual subsystems. For details, see [4,
Lemma 2].

What is perhaps less well known is that under suitable as-
sumptions a sufficiently large dwell time also guarantees asymp-
totic stability of the switched system in the nonlinear case.
Arguably the best way to prove most general results of this kind
is by using multiple Lyapunov functions. We will not discuss the
precise assumptions that are needed here (in fact, there is consid-
erable work still to be donc in that regard), but will present the
general idea instead. Assume for simplicity that all the systems
in the family (3) are globally exponentially stable. Then for each
p € Pthere exists a Lyapunov function V, that for some positive
constants a ,, b, and ¢, satisfies

»

af v, bl @

and

VV () f(x) < —cp|x

‘ 2

(10)

(see, for example, {26, Theorem 4.5]). Combining (9) and (10),
we obtain
VV(x)f(x)S -1V (x), peP,

where A , = ¢,/ b,,. This implies that
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V,(x(ty + 1) < 7V (00,

provided that 6(f) = p for almost all ¢ €[1,,1, + T]. To simplify
the next calculation, let us consider the case where P = {[,2} and
o takes on the value | on[r,,r)and 2onz,,2,), wherer, , —f, 2 1,
i = 0,1. From the above inequalities one has

b, b, .
Vz(fl)gjvl([l)gig A Vi(t,)

1 a

and furthermore

i b
Vi(t,) < %\G(fg) < fﬂﬂvz(t,) < A% gkt ()

2 2 145

We see that V,(1,) < V,(#,) if T1s large enough. In fact, it is not
hard to compute an explicit lower bound on tthat ensures that the
hypotheses of Lemma 9 are satisfied, which means that the
switched system is globally asymptotically stable.

We do not discuss possible extensions and refinements here
because a more general result will be stated in the next subsec-
tion. Note, however, that the exponential stability assumption is
not necessary; for example, the above reasoning would still be
valid if the quadratic estimates in (9) and (10} were replaced by,
say, quartic ones. In essence, all we used was the fact that

[V (x) ]
Wi=sup x€eR", pgeP L <o
B [

an
If this inequality does not hold globally in the state space, only
local asymptotic stability can be established.

Average Dwell Time

Foreach T > O, let N (T) denote the number of discontinu-
ities of a given switching signal 6 on the interval [0, T). Follow-
ing Hespanha [41], we will say thats has the average dwell time
property if there exist two nonnegative numbers a and b such that
for all T >0 we have N (T) < a+5T. This terminology is
prompted by the observation that, if we discard the first «
switchings, the average time between consecutive switchings is
atleast1/ b. Dwell-time switching signals considered in the pre-
vious subsection satisfy this definition withe =0 and b=1/1.
Loosely speaking, while the counterpart of a dwell-time switching
signal for continuously time-varying systems is a tuning signal
with hounded derivative, the counterpart of an average dwell-time
switching signal is a nrondestabilizing tuning signal in the sense
of [42].

Consider the family of nonlinear systems (3), and assume that
all the systems in this family are globally asymptotically stable.
Then for cach p e’P there exist positive definite, radially un-
bounded smooth functions V, and D, such that VV (x) £ s
=D (x) forall x. As explained in [43], there is no loss of generality
intaking D (x) = A )V (x}forsome A , > O(changingV if neces-
sary). Since P is a compact set, we can also assume that the num-
bers A , are the same for all p € P, so that we have
A>0.

VV, (), (x) £ AV, (x), 12y
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The following result was recently proved by Hespanha [41]
with the help of Lyapunov function techniques similar to those
we alluded to in the previous subsection.

Theorem 10 [4 1] [f(11)-(12) hold, the switched system (1) is
globally asymptotically ,vtable‘lfm' any switching signal thar has
the average dwell time property with b < A / logLL.

The study of average dwell-time switching signals is moti-
vated by the following considerations, Stability problems for
switched systems arise naturally in the context of switching con-
trol. Switching control techniques cmploying a dwell time have
been successtully applied to linear systems with imprecise mea-
surements or modeling uncertainty (cf. [4], [30], [31], [44]). In
the nonlinear setting, however, such methods are often unsuit-
able because of the possibility of tinite escape time. Namely, if a
“wrong” controller has to remain in the loop with an imprecisely
modeled system for a specified amount of time, the solution to
the system might escape to infinity before we switch to a differ-
ent controller (of course, this will not happen if all the controllers
are stabilizing, but when the system is not completely known,
such an assumption is not realistic).

An alternative to dwell-time switching control of nonlinear
systems is provided by the so-called hysteresis switching pro-
posed in [45] and its scale-independent versions, which were re-
cently introduced and analyzed in [16] and [46] and applied to
control of uncertain nonlinear systems in [11] and [47]. When
the uncertainty is purely parametric and there is no measurement
noise, switching signals generated by scale-independent hyster-
esis have the property that the switching stops in finite time,
whereas in the presence of noise under suitable assumptions they
can be shown to have the average dwell time property (see [417]).
Thus Theorem 10 opens the door to provably correct stabiliza-
tion algorithms for uncertain nonlinear systems corrupted by
noise, which is the subject of ongoing research.

Stabilizing Switching Signals

Since some switching signals lead to instability, it is natural to
ask, given a family of systems, whether it is possible to find a
switching signal that renders the switched system asymptotically
stable. Such stabilizing switching signals may exist even in the
extreme situation when all the individual subsystems are unsta-
ble. For example, consider two second-order systems whose tra-
jectories are sketched in Fig. 5, left, and Fig. 5, center. If we
switch in such a way that the first system is active in the second
and fourth quadrants while the second one is active in the first
and third quadrants, the switched system will be asymptotically
stable (see Fig. 5, right). Note that this switching control strategy
(as well as the ones to be discussed below) is closed-loop, i.¢., the
switching signal takcs the feedback formo(x). A less commonly
considered alternative is to employ open-loop switching signals
(for example, periodic ones [48]-[50]). All switching control
strategies discussed here are deterministic; for available results
concerning stochastic switching, the reader may consult [S1,
Chapter 9], [52] and the references therein,

In this section we present various methods for constructing
stabilizing switching signals in the case where none of the tndi-
vidual subsystems are asymptotically stable (Problem C). We
also discuss how these ideas apply to the problem of stabilizing a

*If exponential stability of the switched systent is desired, certain specific growth
bounds on the functions ¥, must be imposed.
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linear system with finite-state hybrid output feedback. Although
we only address stabilizability here, there are other intercsting
questions, such as attainability and optimal control via switching
[53], [54], exact output tracking [55], [56], and switched ob-
server design [57], [58].

Stable Convex Combinations
Assume that P = {1,2} and that we are switching between two
linear systems

L=Ax (13)
and
¥ =Ax (14)

of arbitrary dimension n. As demonstrated by Wicks, Peleties,
and DeCarlo in [2], [59], one assumption that leads to an cle-
gant construction of a stabilizing switching signal is the follow-
ing one.

Assumption 1. The matrix pencil 1, (A,, A,) contains a stable
matrix.

According to the definition of a matrix pencil given earlier,
this means that for some o € (0,1), the convex combination
A= oA, +(1 - A, is stable (the endpoints 0 and 1 are excluded
because A, and A, are not stable). Thus there exist symmetric
positive definite matrices £ and Q such that we have

A'P+ PA=-Q.
This can be rewritten as
(A P+ PA)+(1—0)(A] P+ PA)=-0
or

o (Al P+ PA X +{(1 —0)x " (A] P+ PA ) =—x"Qx < 0
Vx e R"\ {0}.

Since 0 < o <1, it follows that for cach nonzero x e R", at
least one of the quantitics x" (AP + PA)x and x" (A] P + PA))x
is negative. In other words, R" \ {0} is covered by the union of two
open conic regions Q= {x:x" (A P+ PA)x <0} andQ,:=
{x:x"(A] P+ PA)x < 0}. The function V(x):= x” Px decrcases
along solutions of the system (13) in the region Q, and decrcases
along solutions of the system (14) in the region €2,. Using this
property, it is possiblc to construct a switching signal such that V
decreases along solutions of the switched system, which implies
asymptotic stability. The precise result is this.

Fig. 5. A stabilizing switching signal.
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Theorem 11 [2], [59] If Assumption [ is satisfied, there exists

q piecewise constant switching signal which makes the switched
system quadratically stuble. (“Quadratic stablhty means that
there exists a positive & such that V < —ex"x.)

This stabilizing switching signal takes the state feedback
form; i.e., the value of g at any given timet = O depends on x(¢).
An interesting observation due to Feron [60] is that Assumption
1 is not only sufficient but also necessary for quadratic stabiliza-
bility via switching.

Proposition 12 [60] If there exists a quadratically stabilizing
switching signal in the state feedback form, the matrices A, and
A, satisfy Assumption 1.

One can gain insight into the issue of quadratic stabilizability
with the help of the following example. Take

01 ~1
A=
2 0t
01 -2
A= R
- 1 0l

The trajectories of the systems (13) and (14) will then look, at
least qualitatively, as depicted in Fig. 5, left and center, respec-
tively. We explained earlier how to construct a stabilizing
switching signal that yields the switched system with trajectories
as shown in Fig. 5, right. This system is asymptotically stable; in
fact, we see that the function V(x,,x,):= x? + x2 decteases along
solutions. However, it is easy to check that no convex combina-
tion of A, and A, is stable, and Proposition 12 tells us that the
switched system cannot be quadratically stable. Indeed, on the

and

coordinate axes (which form the set where the switching occurs)
we have V = 0.

When the number of individual subsystems is greater than 2,
one can try to single out from the corresponding set of matrices a
pair that has a stable convex combination (an algorithm for doing
thisis discussed in [59]). If that fails, it might be possible to find a
stable convex combination of three or more matrices from the
given set, and then the above method for constructing a stabiliz-
ing switching signal can still be implemented with minor modifi-
cations. Observe that the converse result of Proposition 12 is
only known to hold for the case of two systems. We note that the
problem of identifying stable convex combinations (of matrices
with rational coefficients) is NP-hard [61]. A discussion of com-
putational issues associated with some problems related to the
one addressed in this section, as well as relevant bibliography,
can be found in Chapters 11 and 14 of [62].

Unstable Convex Combinations

The previous example suggests that even when there exists no
stable convex combination of A, and A,, and thus quadratic stabi-
lization is impossible, asymptotic stabilization may be quite easy
to achieve (by using techniques that can actually be applied to
general systems, not necessarily linear ones). An interesting
source of motivation for pursuing this idea comes from the fol-
lowing problem. Suppose that we are given a linear time-in-
variant control system

X =Ax+ Bu
y= Cx ( 15)
thatis stabilizable and defectable (i.e., there exist matrices F and
K such that the eigenvalues of A + BF and A + KC have negative
real parts). Then, as is well known, there exists a continuous lin-
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ear dynamic output feedback law that asymptotically stabilizes
the system (see, for example, [63, Section 6.4]). In practice, how-
ever, such a continuous dynamic feedback might not be imple-
mentable, and a suitable discrete version of the controller is often
desired. Recent references [44], [64]-[67] discuss some issues
related to control of continucus plants by various types of dis-
continuous feedback.

In particular, in [63] it is shown that the system (15) admits a
stabilizing hybrid output feedback that uses a countable number
of discrete states. A logical question to ask next is whether it is
possible to stabilize (15) by using a hybrid output feedback with
only a finite number of discrete states. Artstein [68] explicitly
raised this question and discussed it in the context of a simple ex-
ample (that paper can also be consulted for a formal definition of
hybrid feedback). This problem seems to require a solution that
is significantly different from the ones mentioned above, be-
cause a finite-state stabilizing hybrid feedback is unlikely to be
obtained from a continuous one by means of any discretization
process,

One approach to the problem of stabilizing the linear system
(15) via finite-state hybrid output feedback is prompted by the
following observation. Suppose that we are given a collection of
gain matrices K,..., K, of suitable dimensions. Settingu = K,y
for some i € {l,...,m}, we obtain the system

X =(A+BK,C)x.

Thus the stabilization problem for the original system (15)
will be solved if we can orchestrate the switching between the
systems in the above form in such a way as to achieve asymptotic
stability. Denoting A+ BK,C by A, foreachie{l,...,m}, wc are
led to the following question: Using the measurements of the
output y = Cx, can we find a switching signal ¢ such that the
switched system X = A_x is asymptotically stable? The value of
G at a given time ¢ might just depend on ¢ and/or y(¢), or a more
general hybrid feedback may be used. We are assuming, of
course, that none of the matrices A, are stable, as the existence of
a matrix K such that the eigenvalues of A + BKC have negative
real parts would render the problem frivial.

First of all, observe that the existence of a stable convex com-
bination A:= oA, +(1 — o) A; forsomel, j € {l,.. Smyando € (0,1)
would imply that the system (15) can be stabilized by the lincar
static output feedbacku = Ky with K= oK, +(1—-0)K , contrary
to the assumption that we just made. In view of Proposition 12,
this implies that a quadraticaliy stabilizing switching signal does
not exist. However, it might still be possible to construct an as-
ymptotically stabilizing switching signal and even base a stabil-
ity proof on a single Lyapunov function,

To illustrate this point, we discuss a modified version of the
stabilizing switching strategy for the harmonic oscillator with
position measurements described in [68]. Consider the system

dx, 0 Ifx, 0

— = +| |u

di\x, -1 Ox, L
y=1x,.

Although this system is both controllable and observable, it can-

not be stabilized by (even discontinuous) static output feedback.

On the other hand, it can be stabilized by hybrid output feedback;
several ways to do this were presented in [68]. We will now
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Lig. 6. Stabilizing the harmonic oscillator.

sketch one possible stabilizing strategy. Letting u = —y we ob-

tain the system
d (x, 0 LY
drix, -2 0l\x, )

whose frajectories look as shown in Fig. 6, left, while letting
i = 3y we obtain the systemn

[][)CIJ* 0 1 (’tl
di\x,) \-+ o0fx,)’

whose trajectories look as shown in Fig. 6, center.

Define V(x):= x? +x2. This function decreases along the so-
lutions of (16) when x,x, > 0 and decreases along the solutions
of (17) when x x, < 0. Therefore, if the system (16) is active in
the first and third quadrants, while the system (17) is active in the
second and fourth quadrants, we will have V < 0 whenever
x,x, # (; hence the switched system is asymptotically stable by
LaSalle’s principle. A possible trajectory of the switched system
is sketched in Fig. 6, right. (This situation is similar to the one
shown in Fig. 5, except that here the individual subsystems are
critically stable.) It is important to notice that, since both systems
being switched are linear time-invariant, the time between a
crossing of the x -axis and the next crossing of the x,-axis can be
explicitly calculated and is independent of the trajectory. This
means that the above switching strategy can be implemented via
hybrid feedback based just on the measurements of the output;
see [68] and [69] for details. The problem of stabilizing second-
order switched linear systems was also studied in [70] and | 71].

If one cannot carry out the stability analysis with the help of a
single Lyapunov function that decreases along the trajectories of
the switched system, in view of the results presented earlier it
might still be possible to find a stabilizing switching signal and
prove stability by using muitiple Lyapunov-like functions, Al-
though this line of thinking does not scemto lead to such asimple
and constructive procedure as the one described in [2] and [59],
some preliminary ideas have been explored in the literature.
These are discussed next.

The method proposed in [34] is to associate with the system
(13) afunction V,(x) = x* P x that decreases along solutions in an
appropriate region £2,. This is always possible unless A, is a
nonnegative multiple of the identity matrix. Similarly, associate
with the system (14) a function V,(x) = x” Px that decreases
along solutions in an appropriate region £2,. If the union of the re-
gions 2, and Q, covers R" \ {0}, then onc can try to orchestrate
the switching in such a way that the conditions of Lemma 9 are

(16)

(17
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satisfied, The paper[34] contains an example thatillustrates how
this stabilizing switching strategy works.

In a more recent paper [72], this investgation is continued with
the goal of putting the above idea on more solid ground by means
of formulating algebraic sufficient conditions tor a switching
strategy based on multiple Lyapunov functions to exist. Consider
the situation when the following condition holds:

Condition 1. x"(PA, + Al P)x < 0 whenever x' (P, - P)x
2 Qandx # 0,andx' (PA, + A] P)x < Owheneverx' (P, — P)x
=0andx = 0.

If this condition is satisfied, a stabilizing switching signal can
be defined by 6(1):= arg max{V,(x(£)):i = 1,2} Indecd, the func-
tion ¥V, will then be continuous and will decrease along solutions
of the switched system, which guarantees asymptotic stability.
Similar techniques were used independently in [73] in a more
generul, nonlinear context. That paper shows an application to
the interesting problem of stabilizing an inverted pendulum via a
switching control strategy.

Condition | holds if the following condition is satistied (by
virtue of the S-procedure [74], the two conditions are equivalent,
provided that there exist x ,x, € R" such that x| (P, — P)x, > 0
and x; (P, — P)x, > ).

Condition 2. There exist B,,B, 2 0 such that—P, A, — AP, +
B(P,—P)>0and —PA, — A P, +B,(P - P) >0

Alternatively, if B,,[, < 0, a stabilizing switching signal can
be defined by ¢(£):= arg min{V,(x(r)):i = 1,2}. In [72] Condition
2 is further reformulated in terms of eigenvalue locations of cer-
tain matrix operators. In [69] it is shown how the above inequali-
ties can be adapted to the context of the finite-state hybrid output
feedback stabilization problem discussed earlier. [t would be in-
teresting to compare these results with the characterization of
stabilizability via switched state feedback obtained in [75], and
also with the dynamic programming approach presented in [76]
and [77].

Concluding Remarks

We have surveyed recent developments in three basic prob-
lems regarding switched dynamical systems: stability for arbi-
trary switching signals, stability for slow switching signals, and
construction of stabilizing switching signals. We have aimeel at
providing an overview of gencral resuits and ideas involved. For
technical details, the reader may consult the references listed be-
low. These references also address many issues that are relevant
to switched systems but fell outside the scope of this survey. De-
spite a number of interesting results presented here, it is safe to
say that the subject is still largely unexplored. Various open
questions, some of which we have mentioned in the article, re-
main to be investigated.

The three problems studied here arc very general and address
fundamental issues concerning stability and design of switched
systems. As we have noted throughout the article, special cases
of these problems arise frequently in various contexts associated
with control design. In such situations, the specific structurc of a
problem at hand can sometimes be used to obtain satisfactory re-
sults, even in the absence of a general theory. Examples of results
that use such additional structure include the so-called Switching
Theorem, which plays a role in the supervisory control of uncer-
tain linear systems [4] and conditions for existence of a common
Lyapunov function that exploit positive realness [78, Chapter
33],[79], [80]. We believe that to make signiticant further prog-
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ress, one must stay in close contact with particular applications
that motivate the study of switched systems.
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