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Abstract: Issues concerning task encoding in vision-based control systems have
recently been discussed in (Chang et al., 1997). It is shown that in the absence of
measurement noise precise positioning sometimes can possibly be achieved despite
camera model imprecision. The purpose of this paper is to extend the analysis to the

general six degree-of-freedom problems.
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1. INTRODUCTION

Feedback control systems employing video cam-
eras as sensors have been studied in the robotics
community for many years {c.f (Hutchinson et
al., 1996)}. An especially interesting feature of
such systems is that both the process state and the
reference set-point are typically observed through
the same sensors {i.e., cameras}. Because of this
unusual architectural feature, it is sometimes pos-
sible to achieve precise positioning {in the absence
of measurement noise}, despite sensor/actuator
and process model imprecision, just as it is in
the case of a conventional set-point control system
with a loop-integrator and fixed exogenous refer-
ence. But in contrast to a set-point control system
where what to choose for an error is usually clear,
in vision-based systems there are many choices
for errors, each with different attributes. The aim
of this paper is to discuss these issues in a fairly
general setting and to provide concrete examples
to illustrate the concepts involved in geometrical
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terms. The analysis presented in this paper is for
the general six degree-of-freedom problems which
is extended from the result for three degree-of-
freedom motion in (Chang et al., 1997).

2. THE SYSTEM

This paper considers the problem of positioning
a rigid robot in a prescribed workspace X C
SE3 1 using data observed by a two-camera vision
system. We denote by A C R? the set of possible
“positions” of the origin of the frame rigidly
attached to the robot which we henceforth call
the robot frame. Meanwhile, B C SO? T defines
the set of possible “orientations” of the robot
frame. The workspace X C SE® which defines all
possible positions and orientations that the robot

. . A
can attain can be written as X = A4 x B.

The observed data consists of various geometrical
features of the robot and the environment. These

+

¥ SE3 stands for Special Euclidean group of order 3.
T SO3 stands for Special Orthogonal group of order 3.



geometrical features of interest appear in the two-
camera field of view V C R3. Invariably A C V.
Let the viewable workspace VW define all possible
positions and orientations that the robot can

attain if 4 were equal to V, i.e., W 2V xB.

For each robot pose x € X, x can be written as
xz = {r,R} where r € A and R € B. The robot
is assumed to admit a simple kinematic model
(Spong and Vidyasagar, 1989) of the form

0 —W3 Wy
r=v,R=| wg 0 —-w | R
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where w is a control vector composed of the
translational and angular velocities of the robot
frame with respect to a fixed frame each being a
vector in R3.

The robot pose and the target pose {the desired
robot pose} in X' are determined by various geo-
metrical features of interest in ¥ which are seen in
an image space ) SR oR through a fixed but
unknown two-camera model G : V — Y which
describes a two-camera vision system. Thus, a
specific feature ¢ in V is seen in ) as?®

(=G(9). (1)
Note that because ( is a subset of ), it is also
an element of the power set*of )} which we
henceforth denote by ). Similarly ¢ is an element
of the power set of V, which we write as V.

Since the state x is not measurable whereas the
G-images of various geometrical features which
determine the robot pose and the target pose
are, in order for the robot/vision system to be
observable one would need G to be at least in-
jective. Thus, one could design a control law w
to accomplish a positioning task. On the other
hand, one would never expect to know precisely
what G is. Accordingly, we will assume that G is
a fixed but unknown element of a prescribed set
G of injective functions each mapping V into Y. It
will be useful to index G by a parameter p taking
values in some appropriate index set P. That is
G={Gp: peP}and G =G, where w is some
fixed but unknown element of P.

For each two-camera model G, € G, there is a
naturally induced injective function G, from V' to
Y defined by the rule & — Gp(Z). In the sequel

G2 G- In this notation (1) can also be written
as ( = G(¢), but (1) is preferred.

3 With A and Bsets,C C A, and f : A — B, we write f(C)
for the f-image of C which is defined by {f(a) : a € C}.
4 The power set of A is the set of all subsets of A.

3. THE TASK

It is assumed that the robot pose x can be
uniquely determined by an ordered set of m ob-
served robot features {¢.,, ds,, ..., Pz, } Where
each ¢,, is a member of some specific class F,, of
like or similar objects on the robot. For example,
Fe, might be a family of sets of a line segment,
Fe, afamily of sets of a single point, etc. In the se-
quel Fp,, Fao,--. , Fz,, are m such feature classes
and F, is a given composite robot feature space
consisting of all possible lists {@z,, Qs+ P, }
of robot features, where each ¢,, € F,,. F, is a
prespecified subset of F, x Fy, X -+ x F,, which
is in turn a subset of V, EPXVx-x V. Thus,
m times

the robot pose can be determined by a known
function H, : F, — W, typically injective, i.e.,

Similarly, target pose is assumed to be determined
by an ordered set of n simultaneously observed
target features {dq,, Pds, - - - » Pa, } Where each ¢g,
is a member of some specific class Fy, of like or
similar objects. In the sequel Fg4,,Fa,,...,Fd,
are n such feature classes and F; is a given
composite target feature space consisting of all
lists {¢d,,Pdys---,Paq,} of interest, where each
¢a; € Fq,- Thus F4 is a prespecified subset of
Fa, X Fa, X -+ x Fq, which is in turn a subset

of Vi 2V x V- xV. Thus, the target pose
—_—

n times
rq € X can be determined by a known function

Hy:Fy—=W,ie,
Trq € Hd(fd).

Note that, Hy in general is not injective. Hence,
the task to be accomplished is

Hy(f2) C Ha(fa)- (2)

When one wishes to define the same task in
composite feature space, one has to look into the
two functions H, and Hy. That is, one needs to
consider a wnified composite feature space where
the task (2) can be easily defined by set-equality
{or set-inclusion in more general situations}. We
assume that the robot pose can also be computed
based on an ordered set of [ {may not be the
same as m} geometrical features of the robot
{b1,P2,...,¢1} which we call a unified list of
robot features and is in turn determined by a
list of “observed” robot features. Each ¢; in a
unified list of robot features is a member of a
specific class F; of similar geometrical features of
a frame. In the sequel, Fi,F>,...,F; are [ such
feature classes and F is a given unified composite
feature space consisting of lists {¢1,¢2,..., ¢}
of geometrical features of interest in ), where



each ¢; € F;. Thus F is a prespecified subset
of F1 x Fo x +++ x JF; which is in turn a subset
of VEV XV x--x V. Furthermore, we assume
[ times

that there exist two injective maps one from F,
to F and the other from F to W. Specifically, one
needs to define two injective functions H : F — W
referred to as pose map and T, : F, — F called a
unified robot feature map such that the following
equality holds.

H,=HoT,

As in the case of computing the robot pose,
the target pose can also be computed based on
an ordered set of [ geometrical features of the
target in V' which we call a unified list of target
features and is in turn determined by a list of
observed target features. Thus, one needs to define
a function Ty : Fy — F called a wunified target
feature map such that the following equality holds.

Hd:HOTd

Therefore, the relationship between observed lists
of robot features and unified lists of robot features
is characterized by a given unified robot feature
map T, : F, — F which maps f, in the com-
posite robot feature space to T, (f;) in the unified
composite feature space.

Let D C F denote the unified composite feature
set consisting of all lists of geometrical features
of interest in A, i.e., D is a prespecified subset of
(FinA) x (FaNA) x - - - x (F;NA) which is in turn
a subset of A = Ax Ax---x A. Each observed
! times

list of robot features f, specifies a unified list of
robot features T, (f,) € D which in turn uniquely
determines the robot pose via a fixed and known
injective pose map H : F — W, i.e.,

{z} = [H o T2] (f2)-

Meanwhile, the relationship between observed
lists of target features and unified lists of target
features is characterized by a given unified target
feature map Ty : F4 — F which maps f; in
the composite target feature space to Ty(fq) € D
in the unified composite feature space such that
[H oTy) (fs) C X. Thus the target pose z4 € X
can be defined by the formula

x4 € [H o Ty] (fa)-
Hence, the task (2) is equivalent to
[H o T;](fz) C [H o Ta] (fa)- (3)

Note that by virtue of the injectivity of H, the
task (3) thus can be restated as

4. ENCODING
4.1 Cartesian-Based Approach

The widely used Cartesian-based approach
(Wilson et al., 1996) is motivated by the heuristic
idea of “certainty equivalence”. In the present
context, certainty equivalence advocates that one
should use estimates of f, and f; to accomplish
task (4), with the understanding that these es-
timates are to be viewed as correct even though
they may not be. The construction of such esti-
mates starts with the selection {by some means}
of a two-camera model G, in G which, in the
context of certainty equivalence, is considered to
be an approximate model of G.

To develop an estimate of f,, we need
first to get a compact expression relating f,
to what can be observed, namely the list

{G(¢z,), G(Pss)s- -, G(@s,.)}. Thus, for each p €

P, define the map ézp Fo — Ve =

Y xYx---x) by the rule
-

m times

{¢$17¢x27 .- -:¢xm}
= {GP(¢11)7GP(¢I2)7 .. -7GP(¢)Im)}

and write éz for C?mw. The preceding notation
enables us to write compactly

y=Galfs) ()
where y is the measured list of observed robot

features y 2 {G(¢2,),G(¢zs),--.,G(Ps,,)}. For
purposes of certainty equivalence G, is our current
estimate of G, therefore it makes sense to get an
estimate of f, using a left inverse of G/, . Such left

inverses exist because the ézp are injective. This,
in turn, is a direct consequence of the assumed
injectivity of the G),. In view of (5), it is natural
to define

A~
fe = qul ()
as the estimate of f, to be considered.
Similarly, to develop a corresponding estimate of
fa, define, for each p € P, the map Ggy, : Fq —
deéyxyx---xfbytherule
—_—
n times
{¢d17¢d25 .- -7¢dn}
= {GP(¢d1)7 GP((bdz)a v 7GP(¢)dn)}

and write Gy for G’dw. We thus can write

2 =Ga(fa)
W}iere z is the measured list of observed features
2 = {G(¢a, ), G(Pdy), - - -, G(ba,)}. Therefore, one
can get an estimate of f; using a left inverse of
qu, i.e.,



Since @;ql(y) and C:*(;ql(z) are estimates of f,
and fy respectively, in accordance with certainty
equivalence, to achieve the task (4) one should
seek a control u to achieve the encoded task

el cmedi] @ | ©

When does achieving the encoded task (6) imply
that the original task (4) has been achieved as
well? The following lemma gives a partial answer.

Lemma 4.1. Let ¢ € P be given and suppose

that G;!' : V' — F is a fixed left inverse of

C~;q :f—)féjixjix---xjiwhichis defined
| A ——

! times

by the rule

{¢1v¢2a .- '7¢l} = {Gq(¢1)an(¢2)a .. -qu(¢l)}

and write G for C~¥w. For each f, € F, and each
fa € Fa such that both T,.(f,) and Ty(f4) are in
D, (6) implies (4) provided

G lo@G

a
is injective on D and

(Gt o GoTu|(fe) = [Teo Gzl o Gul(fe) (7
(Gt oG oTu(fa) = [Tuo Gyl 0 Gal(f)- (8)

In the sequel, we say that any pair {é’p,éljl},
with p € P and é;l a left inverse of C~¥p, is an
admissible bi-model if ®

{6’; Lo é] ‘D
is an injective function. Note that because
[éfl o @] ‘D is the identity on D and therefore

injective, {G, G~} is an admissible bi-model. As
regards robustness, this means that under suitable
technical conditions, if G is a sufficiently small
open neighborhood about G, then each G, € G
would have a left inverse of G, which makes
{G,, é;l} an admissible bi-model.

In most applications of interest, one would like
to be able to achieve (4) no matter what list of
robot features f, € F, and list of target features
fa € F4 might be. One way to insure that this is
possible, is to require that (7) hold for all f, € F,
and (8) hold for all f; € Fy; i.e.,

G;lo(N}oTx:Tmo(N};qloéx (9)
C~¥q_1 OC:’OTd:TdOé;ql 0C~¥d. (10)

When (9) holds we say that éq_l oG and T,
commute. Meanwhile, when (10) holds we say that

5 With A and B sets, C C A, and f : A — B, we write f|C
for the restricted map C — f(C) : ¢ — f(c).

C~¥q’1 o G and T4 commute. There is of course no
reason to expect that these commuting properties
will hold; typically they do not unless, in the case

of pure translation {i.e.,X’ 2 A}. One way to deal
with this problem is discussed next.

4.2 Modified Cartesian-Based Approach

The modified Cartesian-based approach, which
seems to be new, is motivated by a desire to avoid
the stringent commuting requirements (9) and
(10). The starting point for the approach is the
requirements that both the unified robot feature
map T, and the unified target feature map Ty be
“invariant” on G. Invariance is defined as follows.

A unified robot feature map T, is said to be
invariant on G if there exists a function T}, : YV, —
Y such that

GpoTy,=T,0G,,, peTP. (11)
Similarly, a unified target feature map T, is said

to be invariant on G if there exists a function
Ty :Y; — Y such that

GpoTy=Tg0Gy, pEeETP. (12)
fz and Td can be seen as functions that map the
two-camera image of a list of features into the two-
camera image of the corresponding unified feature
sets. As we will see, for example for perspective
projection camera models, demanding that the in-
variance properties hold turns out to be much less

severe than requiring the commuting properties
(9) and (10) to hold {c.f. Section 5}.

To proceed, assume that two functions Tw and fd
have been found for which the invariance proper-
ties hold. As in the Cartesian-based approach, to
encode one also needs to select a G, in G which in
the context of certainty equivalence, is considered
to be an estimate of G. We assume that such a G,
has been chosen and that é;l is a fixed left inverse

of G ¢- In contrast to the Cartesian-based approach
which seeks to accomplish the task defined by (6),
the modified Cartesian approach seeks to achieve

[éq—l o cf] (y) C [éq—l o Td] (2) (13)

instead. The following lemma provides justifica-
tion for this approach.

Lemma 4.2. T_ Let ¢ € P be given and suppose
that G;!' : V' — F is a fixed left inverse of

t Tt should be emphasized that lemma, 4.2 does not require
Gy to be “close” to GG in any particular sense.



(N}’q:}'—>J~7é)7x37x---x)7whichisdeﬁned
-

[ times

by the rule

{¢17¢27 . '7¢l} — {Gq(¢1)7Gq(¢2)a . '7Gq(¢l)}

and write G for (N}’w. Suppose in addition that
T, and Ty are two fixed functions for which the
invariance properties (11) and (12) hold. For each
fr € F, and each f; € Fy such that both T, (f.)
and Tq(fq) are in D, (13) implies (4) provided
{G,, @;1} is an admissible bi-model.

4.3 Image-Based Approach

As with the modified Cartesian-based approach,
the image-based approach (Hager et al., 1995) also
requires that both unified robot feature map T,
and unified target feature map T be invariant on
G. To proceed, assume that the invariance proper-
ties are satisfied by some computable functions T}
and Ty. In contrast to the modified Cartesian ap-
proach, the image-based approach seeks to achieve

T, (y) C Ta(2). (14)

The approach is justified by the following lemma.

Lemma 4.3. Suppose that ﬁ and fd are fixed
functions for which the invariance properties (11)
and (12) hold respectively. For each f, € F, and
each fq € Fq4, (14) implies (4).

Achieving the task defined by (14) clearly causes
the task defined by (13) to be achieved. But,
as opposed to both Cartesian-based approaches,
the image-based approach does not require the
selection of a candidate two-camera model G,
in G to serve as an estimate of G. However, in
practice, designing a controller that achieves (14)
may require some estimate of G.

5. EXAMPLES

We assume that a family of admissible two-
camera models G is given such that each G, in
G is of the form of perspective projection model
(Horn, 1986). In the sequel, L(pi,p2) defines the
line passing through the two points p; and ps.
Ty (z1, 2,23, 24) 2 x1 + ay(xz3 — 1), where
Ti(i1,2,3.4) € R® and oy € R such that

T1+aq (v3—11) = To+as(rs—x2) for some as € R.

A .
FQ(y17y27y37y4) =Y + dlag{ﬂ17ﬁ17ﬂ37ﬁ3}(y3 -
y1), where

Yi(i:1,2,3,4) € R* and B1, B3 € R such that
y1 + diag{B1, 61,03, B3} (yz —y1) = ¥2
+diag{ 32, B2, B4, Ba}(ys—y2) for some 35, 34 € R.

Ezample 5.1. (6-DOF Point-to-Point Positioning).
The task is to drive the robot pose x determined
by three observed feature points {z1,x2,z3}
to a set-point s in the workspace X which is
determined by three observed feature points
{s1, 52,53} as shown in Fig. 1. Note that it is
assumed that the geometric relation between the
three observed feature points of the robot is the
same as the geometric relation between the three
observed feature points of the target, i.e., there
exists a function w such that w(z1,z2,23) = 0

and w(sy,s2,s3) = 0. The three feature points
Robot  T1,._.
oy

1
Target

Fig. 1. 6-DOF Point-to-Point Positioning

of the robot z1, 2,23 € A and the three feature
points of the target si,ss,s3 € A are sensed
by the cameras. In this example, m, n, and [
are all equal to 3. The composite robot feature
space is the same as the composite target
feature space and is the family of 3 ordered sets
each with a single element in A4 and these 3
elements satisfy the geometric relation defined
by @, ie., Fo = Fa = {{{s1} {s:}, {ss}} |si €
A, w(s1,82,83) = 0}. Thus, the unified composite
feature space is defined to be the same space.
Hence, the unified robot feature map 7T, and
the unified target feature map are both identity
maps. Obviously, these maps are invariant on
G since one can take both T, and Ty to be the
identity on Y (c.f. (11) and (12)). Moreover, for
any admissible bi-model {ép, é;l}, it is also true
that T, and G, o G commute (c.f. (9)) and Ty
and G5! o G commute (c.f. (10)). Therefore, all
three approaches assure precise positioning.

Ezample 5.2. (6-DOF Point-to-Point Positioning
with Multiple Features). The task is to drive the
robot pose x which is determined by four observed
coplanar feature points {z;(;.12,3.4)} to the tar-
get pose x4 € X which is determined by eight
observed coplanar feature points {s;(;.1,2,... 5} as
shown in Fig. 2. The robot pose can be determined
by two observed feature points of the robot and
one intersecting point defined by the four observed
feature points of the robot. Meanwhile, the tar-
get pose can be determined by three intersect-
ing points defined by the eight observed feature
points of the target. Note that it is assumed that
these two ordered sets of three points defined
by observed feature points of the robot and the
target respectively are well defined such that they
have the same geometric relation described by a
function w. The four feature points of the robot
Ti(i:1,2,3,4) € A and the eight feature points of the
target s;(;.1,2,...,8) € V are sensed by the cameras.
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Fig. 2. 6-DOF Point-to-Point Positioning with
Multiple Features

Thus, m is equal to 4 and n is equal to 8. The
composite robot feature space F, is defined by

Fo = {{{m} (w2} {ms} {2a}} 7101 2, )
e A and L($1,$3) n L(ZEQ,ZIZ4) = {565}
such that @w(z1, 2, x5) = 0}.

Meanwhile, the composite target feature space Fy
is defined by

Fq = {{{Si}(i:1,27~~~78)}| Si(i1,2,.- 8) € V,
Si(i=0,10,11) € A, L(81,56) N L(s3,58) = {50},
L(s2,55) N L(s4,87) = {s10}, L(s1,56) N L(s4, s7)
= {SH}, and such that w(Sg, 510, S11) = 0}

In this example, | is equal to 3. The unified
composite feature space F is defined by

F = {{{wi}, {wa}, {ws}}wr, we,wg € A

and such that w(wy,ws,ws) = 0}.

The unified robot feature map T, : F, — F is
defined by the rule

{{z1} {2}, {23}, {24} }
= {{z1}, {z2}, {T1 (@1, 22, w3, 24) } T}

Meanwhile, the unified target feature map Ty :
Fq — F is defined by the rule

{{si}i1,2, 8} — {{T1(s1,53,56,58)} T,
{Ty(s2,84,85,87)} T, {T1(s1,84,86,57)} T }.

Defining TI : sz — 37 by the rule

{{g1}, {92}, {93} {94} }
= {{g1}, {92}, {T2(91, 92,93, 94)} },
which maps the four points ¢;,92,93,94 € Y to
three points in ). The first two points are g; and
go- And, the third point is the intersection of two
lines defined by {g1, g3} and {g2, g4}. Meanwhile,
defining Ti: Vg — Y by the rule

{{hi}(is12, 8y} = {{T2(h1, h3, he, hs)},
{F2(h27 h47 h57 h7)}7 {F2(h17 h47 h67 h7)}}7
which maps the eight points hj(.12,... 8) € V to
three points in ). The first point is the intersec-
tion of two lines defined by {h;, hs} and {hs, hs}.

T It is an over-determined system equations; i.e., 3 equa-
tions and 2 unknowns. But the assumptions on F; {or F;}
guarantee that the solution (a1, as) always exists.

The other two points are similarly defined. One
can show that both T, and Ty are invariant on
G. This is due to the fact that lines are invariant
under perspective projection, therefore the image
of the intersection of two lines is the intersection
of the images of the two lines. However, picking an
arbitrary bi-model {G}, G}, in general, Ty and
é;l o @ do not commute, and T and C:’;l oG do
not commute. Hence, Cartesian-based approach
can not guarantee precise positioning whereas
both modified Cartesian-based and image-based
approaches can assure precise positioning.

6. CONCLUSION

Three different approaches to six degree-of-
freedom task encoding in vision-based control sys-
tems have been defined. These results give a par-
tial answer to an exciting research question—how
should one encode a task using sensor information
to guarantee accomplishment of the original task.

Although the Cartesian-based approach does not
require the invariance property, it often fails to
guarantee precise positioning. Both the modified
Cartesian-based and the image-based approaches
are capable of guaranteeing accurate positioning
provided the invariance property holds. Modified
Cartesian-based approach seems to be a new idea.
Its advantage and disadvantages over image-base
approach is a question that needs further research.
Another question that is being studied is the
closed-loop performance.
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