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Abstract 

This paper describes a high-level “supervisor” capable 
of switching into feedback with a single-input/single- 
output (SISO). linear time-invariant (LTI) process a 
sequence of linear controllers, so as to suppress from the 
output of the process the effect of a persistent distur- 
bance input consisting of the sum of a finite number of 
sinusoids of unknown amplitude, phase, and frequency. 
Each of the controllers being supervised is designed so 
as to solve the disturbance rejection problem for a spe- 
cific set of disturbance frequencies. The stability results 
stated in this paper are valid when the frequencies of 
the disturbance sinusoids are known to  belong to a fi- 
nite set. 

1 Introduction 

It is not uncommon for the input to a process to be 
corrupted by a persistent signal which cannot be mea- 
sured. This paper deals with this situation. Our goal 
is to asymptotically suppress from the output y of a 
SISO, LTI process the effect of a noise signal or dis- 
turbance d which is added to its input U. We assume 
the disturbance is equal to the sum a finite number of 
sinusoids of unknown amplitude, phase. and frequency. 

Control algorithms to solve the above problem have a 
wide range of applications in active noise and vibration 
control in which the disturbance d is typically due to 
rotating machinery. Typical applications include noise 
cancellation in automobile engines [l]. turboproD air- 
craft engines [ 2 ] ,  and ventilation systems [3]. In such 
applications. the frequency and amplitude of the dis- 
turbance may vary due to changes in the operating con- 
ditions of the systems that generate it. \Ve are partic- 
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ularly interested in situations in which practical con- 
siderations prevents the addition of sensors capable of 
accurately measuring the disturbance. 

Were the frequencies of the sinusoids in d known, we 
could design a linear time invariant controller based on 
the int.erna1 model principle to  asymptotically reject 
the effect of the disturbance d from the output y of 
the process [4]. Since the frequencies are not presumed 
known, we propose a supervisory control system which 
orchestrates the switching among a family of candidate 
controllers, each designed for a specific set of distur- 
bance frequencies, so as to reject the effect of d from y. 
Following certainty equivalence. controller selection is 
based on the current estimate of what the frequencies 
of d. The algorithm proposed is inspired by [5, 6, 71. 

The problem of suppressing from the output of a pro- 
cess the effect of a disturbance equal to the sum a fi- 
nite number of sinusoids of unknown amplitude. phase. 
and frequency, is addressed in [8, 9, 10, 111. In [8] 
a model reference adaptive algorithm is proposed to 
solve this problem with an unknown process model. 
To this effect the family of model reference controllers 
is over-parameterized to allow for disturbance cancella- 
tion. Although in [SI the problem is solved only for one- 
dimensional processes, the approach seems to be gener- 
alizable to higher dimensional systems which are min- 
imum phase. In [9] an adaptive control law based on 
the koula parameterization [12] is proposed to solve the 
problem considered here. The resulting closed loop sys- 
tem is shown to be locally esponentially stable. In [lo] 
two adaptive algorithms based on exact cancellation of 
a disturbance consisting of a single sinusoid are consid- 
ered. These algorithms make use of online estimation 
of disturbance’s amplitude. phase, and frequency. The 
analysis given is approximate and only valid when the 
initial estimates are close to their true values. 

The remaining of this paper is organized as follows. 
The problem addressed here is formalized in Section 2 
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and Section 3 describes the supervisory control system 
proposed. The main result of the paper-namely, that 
the proposed control law is capable of asymptotically 
suppressing from the output of the process the effect of 
the disturbance-is stated and proved in Section 4. Fi- 
nally Section 5 contains some concluding remarks and 
direction for future research. 

2 Problem 

The problem of interest is to construct a control system 
capable of asymptotically suppressing from the output 
y of a process C p  the effect of a persistent disturbance 
input d consisting of the sum of a finite number of si- 
nusoids of unknown amplitude, phase, and frequency. 
The process is presumed to  admit a SISO, LTI model 
with strictly proper transfer function r p ( s )  and real- 
ization 

X P  = A P X P  + b p ( U  + d),  y = CPXP (1) 

where y denotes the measured output and U the con- 
trol signal. It is assumed that d consists of the sum 
of m sinusoids whose frequencies w ( ’ ) ,  w ( ~ ) ,  . . . , w ( ~ )  
all lie within a pre-specified closed, bounded subset 
Cl on the positive real line. Without loss of gener- 
ality, we assume that  the elements of the frequency 
list w = { ~ ( l ) ,  U(’),  . . . , L J ( ~ ) }  are ordered so that  
w ( l )  < - w( ’ )  < - -  . . . < ~ ( ~ 1 .  We write P for the set of all 
such lists. 

A 

Presumed given is an m-parameter family of “off-the- 
shelf” feedback controller transfer functions K { K ,  : 
p E P } ,  with at  least the following properties: 

Pole Content Property: For each element p ( i )  of 
each list p = {p( l ) ,p ( ’ ) ,  . . . ,p (“)}  E P ,  s = j p ( i )  is 
either a transmission zero of r p  ( s )  or a pole of K, (s) , 
but not both. 

Stability Margin Property: There is a positive con- 
stant X such that for  each p E P ,  -A is greater than the 
real parts of all of the closed-loop poles’ of the feedback 
interconnection 

~~~ 

Figure 1: Feedback Interconnection 

Also presumed given is an integer nc 2 0 and a fam- 
ily of nc-dimensional realizations {A,, b,, f, , g,}, one 

‘By the closed-loop poles are meant the zeros of the poly- 
nomial p p p  - p p a ,  where : and 2 are the reduced transfer 
functions ~p and np respectively. 

for each K, E K. These realizations are required to  
be chosen so that for each p E P ,  ( c p ,  XI + A,) is de- 
tectable and ( X I  + A,, b,) is stabilizable. As noted 
in [13], there are many different ways to  construct such 
realizations, once one has in hand an upper bound n, 
on the McMillan Degrees of the K ~ .  Given such a fam- 
ily of realizations, the sub-system to be supervised is 
thus of the form shown in Figure 2,  where Cc(a) is the 

d 
I 

Figure 2: Supervised Sub-system 

nc-dimensional “state-shared” dynamical system 

called a multi-controller and a is a piecewise constant 
switching signal taking values in P .  

As a consequence of the Pole Content Property, if we 
were to  set 

t > o  ( 3 )  a ( t )  = w ,  

then this would cause y converge to  zero a t  t + 00 

[4]. Since the list w is not presumed to  be known, 
implementation of ( 3 )  is not possible. What  we shall 
do instead is to  construct a provably correct “su- 
pervisor” which is capable of generating (T so as to  
achieve 1. global boundedness {of all system signals} 
and 2. asymptotic regulation {i.e., y + 0 ) .  

3 Estimator-Based Supervision 

The supervisor to  be considered can be explained in- 
formally in terms of the “multi-estimator’’ architecture 
shown in Figure 3. 

Here each yp is a suitably defined estimate of y which 
would be asymptotically correct if the disturbance d 
consisted of a sum of m sinusoids whose frequencies 
were exactly the components of the m-vector p .  For 
each p E P ,  e, = yp - y denotes the pth output es- 
timation error and T ,  is a “normed” value of e p  or a 
“performance signal” which is used by the supervisor 
to  assess the potential performance of controller p .  C N  
is a switching logic whose function is to determine a 
on the basis of the current values of the T,. 

The underlying decision making strategy used by an 
estimator-based supervisor is basically this: From time 
to time select for U ,  that candidate control index 

a 
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Figure 3: Estimator-Based Supervisor 

q whose corresponding performance signal 7rq is the 
smallest among the 7rp ,  p E P .  Motivation for this 
idea is straightforward: the set of disturbance frequen- 
cies whose associated performance signal is the small- 
est, “best” approximates what the true set of frequen- 
cies is, and thus the candidate controller designed on 
the basis of that set of disturbance frequencies ought 
to be able to do the best job of rejecting d. 

The specific supervisor of interest-shown in Fig- 
ure 4-, while input-output equivalent to the super- 
visor just described, admits a slightly different real- 
ization than that shown in Figure 3. Internally the 
supervisor we want to discuss consists of three subsys- 
tems: a multi-estimator dynamic C E ,  a performance- 
weight generator C W ,  and a scale-independent hystere- 
sis switching logic C H .  

Figure 4: Estimator-Based Supervisor 

CE is a nE-dimensional linear dynamical system of the 
form 

A where n~ = 2(n, + am) and ( A E ,  b ~ )  is a parameter- 
independent, (n, + 2m)-dimensional SISO, controllable 
pair with XI+AE asymptotically stable. Here n,  is the 
McMillan degree of the process transfer function r p ( s ) .  
In [5] it is explained how to construct a continuous 
function p ++ cp so that for each p E P ,  

where W E  is the characteristic polynomial of A E ;  
@E = (SI - A E ) - ’ ~ E ;  cy and /3 are coprime polyno- 
mials with /3 monic such that rp  = a / P ;  and, for each 

A 

p E P ,  -yp(s) = IIzn=, ( s2  + ( p ( ’ ) ) ? ) ,  where ~ ( ~ 1  is the 
ith component of p .  The  cp are used in the definition 
of Cw which will be given in a moment. The cp also 
enable us to define output estimates 

(6) 
A 

Yp = C p X E >  P E P  

and the corresponding output estimation errors 

A 
e P  = Yp - y ,  P € P  (7)  

Since d is the sum of m sinusoids whose frequencies are 
the components of w ,  one has2 

From this and (5), one can deduce that  e, must go 
to zero as fast as e-xt {cf. Appendix}. While the error 
signals defined by (7) are not actually generated by the 
supervisor, they play an important role in explaining 
how the supervisor functions. 

The supervisor’s second subsystem, C W ,  is a causal dy- 
namical system whose inputs are X E  and y and whose 
state and output W is a “weighting matrix” which 
takes values in a linear space W .  W together with a 
suitably defined performance function II : P x W + R 
determine a family of scalar-valued performance signals 
of the form 

(9) 

Each 7rp is viewed by the supervisor as a measure of the 
expected performance of controller C c ( p ) .  CW and n 
are defined by 

and 

respectively. The definitions of Cw and II are 
prompted by the observation that if 7rp are given by 
(9),  then 

ir, = -2X7rp +e: ,  7 r P ( o )  > 0, p E P (12) 

because of (7), (10 )  and (11) .  

The supervisor’s third subsystem, called a scale- 
independent hysteresis switching logic EH, is a hybrid 
dynamical system whose input is W and whose state 
and output is (T. To specify C H  it is necessary to first 
pick a positive number h > 0 called a hysteresis con- 
stant. EH’S internal logic is then defined by the com- 
puter diagram shown in Figure 5 where the 7rp are de- 
fined by (9)  and, a t  each time t ,  q denotes the element 
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Figure 5: Computer Diagram of C H  

of P that  minimizes n(q, W ) .  In interpreting this di- 
agram it is to be understood that u’s value a t  each of 
its switching times f is equal to its limit from above 
as t J f. Thus if and & + I  are any two successive 
switching times, then U is constant on [ i i , f i+l) .  The 
functioning of C H  is roughly as follows. Suppose that 
at some time to ,  C H  has just changed the value of U 

to p. U is then held fixed a t  this value unless and until 
there is a time t l  > t o  a t  which (1 +h)n, 5 np for some 
q E P .  If this occurs, U is set equal to q and so on. 

4 Main Result 

The overall system just described, admits the block 
diagram in Figure 6. The following theorem is the main 

I d  

Figure 6: Supervisory Control System 

result of this paper. 

Theorem 1 Assum.e that the set R of admissible fre- 
quencies is finite. For any initialization of the closed- 
loop system with W ( 0 )  > 0 and any disturbance signal 
d consisting of the sum of any m sinusoids whose fre- 
quencies are the components of some m-vector in  PI 
the signals X C ,  XE, and W are bounded. Moreover, y 
converges to 0 faster than e-x t .  

Proof of Theorem 1. It is shown in the Appendix 
that for any piecewise-constant signal s : [O,co) -+ P 

2For any signal $ and polynomial E we use the notation 
((s)?L to  denote the action of the differential operator polyno- 
mial < ( S ) \ s = d / d t  on ZL. 

and any initialization of the system consisting of (l),  
(a) ,  (4),  and (10) with U = s, e, converges to zero 
faster than e - x t .  From this and 

~ , ( t )  = e2“e;dr + T,,,(o) e2Xt  1’ 
{cf. equation (12) )  we further conclude that  eZXt7r, is 
bounded on [0, cm). It follows that if we define the 
scaled performance signals 

then (i) ir, will be bounded on [O,cm). Moreover, be- 
cause of ( l a ) ,  

irP(0) > 0 P E P  6, = e2Xt  2 
e P  1 

thus we also conclude that (ii) each ir, is positive and 
has a limit as t -+ cm. This is because each irP is a 
nondecreasing functions of t that  starts positive. In 
the sequel we make use of the above properties (i) and 
(ii) . 

The interconnected system defined by (l),  (a ) ,  (4), and 
(10) is a dynamical system of the form 

i = fo (z ) ,  =p = g p ( z ) ,  P E P  (14) 
A where z = {x~,zc,xE,W} and, for each p E P, f p  

and g p  are locally Lipschitz. Because of the hysteresis 
constant h ,  for each initial state ( ~ ( 0 ) ;  ~(0)) for with 
W ( 0 )  > 0,  there must be an interval [O,T) of maximal 
length on which there is a unique pair { z ;  U }  with z con- 
tinuous and U piecewise constant, which satisfies (14) 
assuming u is generated by the scale-independent hys- 
teresis switching logic [14]. Moreover, on each proper 
subinterval [0, T )  c [0, T ) ,  U can switch at most a finite 
number of times. Suppose that T was finite. Since d 
is bounded and the system defined by (l),  (2), and (4) 
is linear for every piecewise constant U ,  one would con- 
clude that  z p ,  ZC, 23, U ,  and y were bounded on [0, T ) .  
Moreover, W would also be bounded, because of (10). 
In this case, the solution to  ( l) ,  (a) ,  (4), and (10) could 
be continued onto a t  least an open half interval of the 
form [TI T I )  thereby contradicting the hypothesis that  
[0, T )  is the system’s interval of maximal existence. By 
contradiction we can therefore conclude that T = 00. 

The term “scale-independence” is prompted by the fact 
that  if x is any piecewise continuous signal which is 
positive on [ O , c o ) ,  the state U of the switching logic 
remains unchanged if each performance signal rP, p E 
P is replaced x7rp. Thus, because of (13), and as far as 
the signal U is concerned, we can think of the switching 
logic as being driven by the scaled performance signals 
rP = xrP with X ( t )  = e Z X t ,  t >_ 0 .  The facts that  P is a 
finite set and that the f p  possess properties (i) and (ii) 
noted above, enable us to exploit the Scale-independent 
Hysteresis Switching Lemma [14, 151 and consequently 
to draw the following conclusion. 

- A  A 
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Lemma 1 For any initialization of the close-loop sys- 
t e m  with W ( 0 )  > 0 ,  let { z p ,  zc, X E ,  W, U }  denote the 
unique solution to (l), (a) ,  (4) and (10) with U gener- 
ated by C H .  There is a t ime T* < CO beyond which U 

is constant and e2Xt7r,(T.)(t) is bounded on [O,CO). 

Let zp, zc, z ~ ,  W, U ,  and T' be as in Lemma 1 and set 
q = a(T').  For t 2 T ' ,  ~ ( t )  = q and therefore C C ( U )  
is a linear time-invariant system with the transfer func- 
tion K ~ .  Because of the stability margin property and 
the boundedness of d, the signals z p ,  zc, y ,  and U are 
bounded on [T', CO). Boundedness of Z E  and W on 
[0, a) follows because of (4), ( l o ) ,  and the asymptotic 
stability of A E .  Therefore, z is bounded on [0, CO). Be- 
cause of (12) and the observation that e2Xt7r,(T.)(t)  is 
bounded on [0, CO), we further conclude that  

A 

lrn e i d r  5 l r n ( e " e q ) 2 d r  < e 2 X T ~ q  < CO 

Thus, eq E C2. Moreover eq is bounded on [ O , a ) ,  
because of (7),  (14) and boundedness of z .  Therefore, 
eq converges to 0 as t tends to CO [16, Lemma 1, p. 581. 

Because of equations (4), (5), and (6),  we conclude that 

W E Y q  = ( W E  - YqP)Y + Y q a U  (15) 

Since the transfer function of the process is g,  
Py = cr(u + d) (16) 

because of (1). Using (16) to eliminate au from (15) 
yields 

W E ( Y q  - Y )  = -ayqd 

This and equation (7) further imply that 

wEeq = -ayqd (17) 

Since d is a sum of m sinusoids, ayqd is also a sum of 
m sinusoids. Hence one can write ayqd as 

m 
aYqd = (A(i)ej"J( ') t  + B ( '  ' ) e  - j " J ( ' ) t )  (18) 

i=l 

where each A(i)  and B(2) is a fixed complex number. 
From equation (17) and (18) , we get 

m 

W E e q  = - (A(i)ej"J( ') t  + B(i)e- j"J("t)  (19) 
i=l 

Since (19) is a stable differential equation forced by a 
sinusoidal term and its solution eq converges to zero, 
we must have 

Because all the w ( ~ )  are distinct, the exponentials in 
the above equation are linearly independent functions 
of time and therefore we must have 

which means that 

For U = q the reduced transfer function of the multi- 
controller is 5, thus 

pqu = PqY 

From this and (16) we conclude that  

But, because of pole content property, any root of ayq 
is also a root of apq and therefore, in view of (20), 
apqd = 0. Thus (21) implies that  

The stability margin property then guarantees that the 
roots of pqP - pqa have real part smaller then -A and 
therefore y converges to 0 faster than e - x t .  

5 Conclusions 

In this paper we proposed a supervisory control ap- 
proach to suppress from the output of a SISO, LTI 
process the effect of a persistent disturbance input con- 
sisting of the sum of a finite number of sinusoids of un- 
known amplitude, phase, and frequency. The approach 
proposed in inspired by the literature on supervisory 
control. 

The main shortcoming of the present paper is that the 
stability analysis in Section 4 is only valid when the 
set of frequencies R is finite and when there is no mea- 
surement noise and unmodeled dynamics in the process 
model. However, simulation results suggest that the 
overall closed loop system may, in fact, be stable even 
when R has infinitely many elements (e.g. is an inter- 
val) and may also be robust with respect to unmodeled 
dynamics and measurement noise. 
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Appendix 

In the sequel we show that for any piecewise-constant 
signal s : [0, CO) + P and any initialization of the sys- 
tem consisting of ( l) ,  (a),  (4), and (10) with U = s,  e ,  
converges to  zero faster than e - x t .  Since the transfer 
function of the process is $, 

,f?y = o ( u  + d) (22) 

because of (1). From equations (8) and (22), we con- 
clude that 

7 w P Y  = 7bJffu (23) 

Equations (4), (5), and (6) imply that 

W E Y w  = ( W E  - ')'UP)!/ -k ?',ffU (24) 

Subtracting (23) from (24) and using the fact that e ,  = 
y, - y ,  yields 

WEew = 0 

Since W E  is the characteristic polynomial of AE and 
X I  + AE is asymptotically stable, e ,  converges to  zero 
faster than e - x t .  rn 

References 

[l] R.  Shoureshi and P. Knurek. Automotive appli- 
cations of a hybrid active noise and vibration control. 
IEEE Control Syst. Mag., 16(6):72-78, Dec. 1996. 
[a] U. Emborg and C.  F. Ross. Active control in 
the saab 340. In Proc. 2nd Conf. Recent Adv. Active 
Control Sound Vibrations, Blacksburg, VA,  pp. S67- 
S73, 1993. 
[3] L. J. Eriksson. A pratical system for active at- 
tenuation in ducts. Sound and Vibration, 22(2):30-34, 
1988. 

[4] E. J. Davison. The robust control of a servomech- 
anism problem for linear time-invariant multivariable 
systems. IEEE Trans. Automat. Contr., AC-21(1):25- 
34, Feb. 1976. 

[5] A. S. Morse. Supervisory control of familiesof lin- 
ear set-point controllers-part 1: exact matching. ZEEE 
Trans. Automat. Contr., 41(10):1413-1431, Oct. 1996. 

[6] A. S. Morse. Supervisory control of families of 
linear set-point controllers-part 2: robustness. ZEEE 
Trans. Automat. Contr., 42( 11):1500-1515, Nov. 1997. 

[7] J .  Hespanha and A. S. Morse. Certainty equiv- 
alence implies detectability. To appear in Systems & 
Control Letters. 
[8] K. S. Narendra and A. M .  Annaswamy. Stable 
Adaptive Control. Prentice Hall information and sys- 
tem sciences series. Prentice-Hall, 1989. 

[9] F. Ben-Amara, P. T .  Kabamba, and A. G. U1- 
soy. Robust adaptive sinusoidal disturbance rejection 
in linear continuous-time systems. In Proc. of the 36th 
CDC, vol. 2, pp. 1878-1883, Dec. 1997. 

[lo] M. Bodson and S. C.  Douglas. Adaptive algo- 
rithms for the rejection of sinusoidal disturbances with 
unknown frequency. Automatica, 33( l a ) ,  Dec. 1997. 

[ll] G. Feng. Robust adaptive control with internal 
model principle. Int. J .  Syst. Science, 25:1333-1336, 
1994. 

[la] D. C. Youla, J .  J .  Bongiorno, and H. A. Jabr. 
Modern wiener-hopf design of optimal controllers- 
part I. the single input-output case. IEEE Trans. Au- 
tomat. Contr., 21(3):3-13, Mar. 1976. 

[13] A .  S. Morse. Control using logic-based switching. 
In A. Isidori, editor, Trends in  Control: A European 
Perspective, pp. 69-1 13. Springer-Verlag, 1995. 

[14] J .  P. Hespanha and A. S. Morse. Scale- 
independent hysteresis switching. Technical report, 
Lab. for Control Science & Eng., Yale University, May 
1998. 
[15] J. P. Hespanha. Logic-Bused Switching Algo- 
rithms in Control. PhD thesis, Yale University, New 
Haven, CT,  1998. 

[16] M. A. Aizerman and F. R. Gantmacher. Absolute 
Stability of Regulator Systems. Holden-Day, 1964. 

1646 


