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Abstract 

Conditions are given which enable one to decide on 
the basis of images of point features observed by an 
imprecisely modeled two-camera stereo vision system, 
whether or not a prescribed robot positioning task has 
been accomplished with precision. It is shown that for a 
stereo vision system whose two-camera model is known 
only up to a projective transformation, one can decide 
with the available data whether or not such a position- 
ing task has been accomplished, just in case the func- 
tion which specifies the task is a projective invariant. 
It is then shown that, under suitable technical condi- 
tions, every task with this property can be constructed 
from primitive tasks by using only a small number of 
distinct operations. 

1 Introduction 

Feedback control systems employing video cameras as 
sensors have been studied in the robotics community 
for many years {c.f. recent t,utorial on visual servo- 
ing [l]}. An especially interesting feature of such sys- 
tems is that both the process state {e.g., the position 
and orientation of the robot in its workspace} and the 
reference set-point {e.g., the landmark determined tar- 
get} are typically observed through the same sensors 
{i.e., cameras}. Because of this unusual architectural 
feature, it is sometimes possible to achieve precise po- 
sitioning, despite sensor/actuator and process model 
imprecision [ 2 ,  3, 4, 51, just as it is in the case of a 
noise-free conventional set-point control system with a 
loop-integrator and fixed exogenous reference. 
The aim of this paper is to give conditions which en- 
able one to decide on the basis of images of point fea- 
tures observed by an imprecisely modeled two-camera 
stereo vision system, whether or not a prescribed po- 
sitioning task has been accomplished. To make pre- 

*This research was supported by the National Science Foun- 
dation, the Army Research Office, and the Air Force Office of 
Scientific Research 

Notation: Throughout this paper, prime de- 
notes matrix transpose, R m  is the real linear space of 
m-dimensional vectors, and P” is the real projective 
space of one-dimensional subspaces of EXmf1. Recall 
that the elements of JP are called points, lines in P” 
are two-dimensional subspaces of Wm+’, and for m > 2 
planes are three-dimensional subspaces of Etm+’. A 
point y E Pm is said to be on a line ! (respectively 
plane $) in P” if p is a linear subspace of! (respec- 
tively 4) in For each nonzero vector 2 E Et”, 
Rz denotes both the one-dimensional linear span of 2, 
and also the point in Pm which 2 represents. The spe- 
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cise what the issue is, we formalize the concept of a 
“positioning task” and then introduce the notion of a 
“decidable positioning task.” By a positzoning task is 
meant the objective of bringing the pose of a robot 
to a specified “target” in the robot’s workspace. The 
pose of the robot and the target are both determined 
by a list of point features simultaneously observed by 
an imprecisely modeled stereo vision system. Formally, 
a positioning task is then represented by an equation 
of the form T ( f )  = 0,  where T is a task function 
and f a list of observed robot and target point fea- 
tures [6, 7, 8, 9 ,  1, 10, 11, 121. A positioning task is 
then said to be decidable if it is possible to determine 
whether or not T ( f )  = 0 on the basis of an observed 
image of f .  We show that for a projective stereo vi- 
sion system with known epipolar geometry {i.e. weakly 
calibrated [13]} a positioning task is decidable just in 
case the task function T is a suitably defined projec- 
tive invariant. This result is inspired by [14] whose 
findings suggest that for a weakly calibrated stereo vi- 
sion system, there ought to be a close relationship be- 
tween the decidability of a given task T(f) = 0 and 
the invariant properties of T under projective trans- 
formations. This result also underscores the observa- 
tion made in [ lo ,  15, 16, 171 that accurate metric infor- 
mation is not needed for the accomplishment of many 
types of positioning tasks with a stereo vision system. 
This paper continues a line of research started in [18] 
and subsequently pursued in [19, 20, 211. 

mailto:joao.hespanha@yale.edu
mailto:zachary.dodds@yale.edu
mailto:gregory.hager@yale.edu
mailto:morse@sysc.eng.yale.edu


cia1 Euclidean group of rigid body transformations is 
denoted by SE(3). 

2 Formulation 

This paper is concerned with the problem of control- 
ling the pose z of a robot which moves in a prescribed 
workspace W c SE(3) using two cameras functioning 
as a position measuring system. The data  available for 
this purpose consists of projections onto the cameras’ 
image planes of robot point features as well as point fea- 
tures in the environment’. All such features lie within 
the two cameras’ joint field of view V .  Typically V is 
taken to be either a nonempty subset of R 3  or of P3. 
Point features are mapped into the two cameras’ joint 
image space y through a fixed but imprecisely known 
two-camera model Cactual : V -+ y where, depending 
on the problem, y may be either R2 @ EX2 or P2 x 
P’. Typically many point features are observed all a t  
once. If fi is the ith such point feature in V ,  then fi’s 
observed position in y is given by the measured output 
vector y, = Cactual( fi). The two-camera model Cactual 
is a fixed but unknown element of a prescribed set of 
injective functions C which map V into Y. In the sequel 
C is called the set of admissible two-camera models. For 
the present, no constraints are placed on the elements 
of C other than they be injective functions mapping V 
into y .  

2.1 Tasks 
By a positioning task or simply a “task” is meant, 
roughly speaking, the objective of bringing the pose 
of a robot to  a “target” in W .  Both the pose of the 
robot under consideration and the target to  which it 
is to  be brought, are determined by a list of simulta- 
neously observed point features in V .  As in [1, 10, 61, 
tasks are represented mathematically as equations to  
be satisfied. By a “task function” is meant, loosely 
speaking, a function which maps ordered sets {i.e., 
lists} of n simultaneously appearing point features 
{fi, f2,. . . , fn} in V into the integer set ( 0 ,  l}. We use 
an un-subscripted symbol such as f to  denote each such 
list and we henceforth refer to  f as a feature. The set 
F = V” = V x V x . . . x V of all such lists of interest 

is called the admissible feature space. A task function 
is then a given function T from F to  (0, l}. The task 

A - 
n times 

‘Depending on the problem being considered, a “point fea- 
ture” may be represented by either a point in R3 or a point in P3 
{i.e. a one-dimensional subspace of R‘}. In the examples which 
follow, points in Bm are related to points in Pn by the injective 
function z 11’ in Rm+’. With 
this correspondence, geometrically significant points in R3 such 
as  a camera’s optical center can be unambiguously represented 
as  points in P3. 

IW? where ? is the vector [z’ 

specified by T is the equation 

T(f) = 0 (1) 

In case (1) holds we say that the task is accomplished 
at f. Examples of tasks defined in this manner can be 
be found in [6, 7, 8, 9, 1, 10, 11, 121. 
In order to  complete the problem formulation, it is 
helpful to  introduce the following. For each C in C, 
let C denote the function from F to  the set yn = 
y x y x . . . x y which is defined by the rule 
? n times 

{fl,fi,...,fn> {C(fl),C(fi),“.,C(f”)3 
We sometimes call C the extension of C to  F. The aim 
of this paper is then to  give conditions which enable 
one to  decide on the basis of the a priori information, 
namely C, T and the measured data  

whether or not task (1) has been accomplished. 

2.2 Decidability 
Since Cactual is not presumed to  be known with pre- 
cision, the exact locations of point features cannot be 
reconstructed from the observed data. Therefore it is 
not clear if, on the basis of this data ,  it is possible to  
decide whether or not a given task has been accom- 
plished. To make precise what the issue is, we need to 
formalize the notion of an “encoded task”. Toward this 
end, let us call a function ET : y n  + R an encoded task 
function if it can be constructed solely from knowledge 
of the available a priori information, namely the set of 
admissible two-camera models C and the task function 
T.  In particular, it must be possible to construct ET 
without knowledge of the actual camera model Cactual. 
With ET so constructed, the equation 

ET(y) 0 (3) 

is said to  be an encoding of task (1) or simply the en- 
coded task. In case (3)  holds we say that  the encoded 
task is accomplished a t  y. A task T ( f )  = 0 is said to  
be verifiable on C with an encoding ET(Y) = 0 if, 

In other words, T(f) = 0 is verifiable on C with a given 
encoding ET(Y) = 0, if for each feature f E F and 
each admissible camera model C in C, the task T ( f )  = 
0 is accomplished a t  f just in case the encoded task 
&(y) = 0 is accomplished at  y = C( f ) .  The reader 
is referred to  [20, 211 for a discussion on methods of 
building encodings. 
A given task is then said to be decidable on C ,  if it  is 
verifiable on C with some encoding. In other words, 
T ( f )  = 0 is decidable on C if there exists an encod- 
ing E T ( Y )  = 0 for which (4)  holds. The notion of 
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decidability thus singles out those task which are ver- 
ifiable, without regard to which particular encodings 
they might be verified with. In [21], necessary and 
sufficient conditions to check for task verifiability and 
decidability are given. 

3 Projective Camera Models 

In this section we specialize the decidability question 
to the geometrically meaningful case when the two- 
camera models of interest are pairs of projective cam- 
era models which map subsets of P3 containing U ,  into 
P2 x P2. Projective models of this type are widely 
used in the computer vision field, mainly because they 
include as special cases many popular camera models 
such as those appropriate to perspective, affine and or- 
thographic cameras. By restricting our attention to 
projective models, we are able to provide a complete 
and concise characterization of decidable tasks in terms 
of projective invariance [Z]. 

3.1 Camera Models 
In the sequel we are concerned with camera models 
whose fields of view are all the same subset V c P3. 
We take V to be of the form 

where B is a suitably defined subset of Et3. To avoid 
degenerate situations we assume that t? has a nonempty 
interior. 
For each real 3 x 4 full-rank matrix M ,  let PM denote 
the set of all points in P3 except for the kernel of M I  
and write M for the function from Pk to P2 defined 
by the rule Rz +-+ RMz. We call M the global camera 
model induced by M .  In the event that K e r M  c+% V ,  
the restricted function V -+ P2, U +-+ M(v) is well- 
defined. We denote this function by MIV and refer to 
it as the camera model determined by M on V .  We call 
Ker M the optical center of M. In the event that  A4 is 
of the form 

M = [R  -Rc] 

where R is a 3 x 3 rotation matrix and c a vector in Et3, 
M models a perspective camera with unit focal length, 
optical center at  c ,  and orientation defined by R. In 
this case the kernel of M is IR [ ;] which justifies calling 
it the optical center of M. 

3.2 Two-Camera Models 
The aim of this section is to define what we mean 
by an uncalibrated two-camera projective model. We 
take each such model’s joint image space and field of 
view to be y = P2 x P2 and V respectively, where 
V is a subset of the form described in the last sec- 
tion. For each pair of real 3 x 4 full-rank matrices 

A 

{ M, N} with distinct kernels, let PTM,Nl denote the set 
of all points in P3 except for Ker M and Ker N .  Let 
{M, N} denote the function from PfM,Nl to P2 defined 
by the rule Rz I--+ {RMz,RNa:}. We call {M,N}  
the global two-camera model induced by { M ,  N } .  For 
each model {M, N} for which neither Ker A4 nor Ker N 
are in V ,  it is possible to define the restricted function 
V -+ P2, v e {M,N}(v). We denote this function 
by {M,N}(V and refer to it as the two-camera model 
determined by {M, N} on V .  
The line in P3 on which the optical centers of M and N 
lie is called the baseline of{M, N}. One can show that  
the mapping by {M, N} into Y ,  of points in P f M , N l  
which do not lie on this baseline, is one to  one [all.  In 
the sequel, for each line l in P3, we write P3[[e] for the 
set of points in P3 which are not on [e and we say that  
the baseline of { M , N }  lies outside of V if there is no 
point on the model’s baseline which is also in V .  
Let us note that V is automatically contained in the do- 
main of any global two-camera model whose baseline 
lies outside of V .  Each such global model G thus deter- 
mines a two-camera model C = GIV. By the set of all 
uncalibrated two-camera models on V ,  written Cuncal[V] , 
is meant the set of all two-camera models which are de- 
termined by global two-camera models whose baselines 
lie outside of V .  A stereo vision system whose two cam- 
eras admit a model that  is known to be in this class but 
is otherwise unknown, is said to be uncalibrated. 

3.3 Weakly Calibrated Stereo Vision Systems 
It is well-known that ,  with a “weakly calibrated” stereo 
vision system, it is possible to reconstruct the position 
of point features in the two cameras’ field of view from 
image measurements. However, this reconstruction is 
only unique up to  a projective transformation [14]. 

These findings suggests that  there is a connection be- 
tween decidability of a task T ( f )  = 0 on a weakly 
calibrated stereo vision system and the properties of 
T ( f )  = 0 which are invariant under projective trans- 
formations. In this section, we demonstrate that  this is 
the case. As a result we are able to characterize the set 
of all those tasks which are decidable using a weakly 
calibrated stereo vision systems. 
Our immediate goal is to make precise what we mean 
by a weakly calibrated stereo vision system. Toward 
this end, let us write GL(4) for the general linear group 
of real, nonsingular, 4 x 4 matrices. For each such ma- 
trix A, A denotes the corresponding projective trans- 
formation P3 -+ P3, IRa: ++ R A z .  
For each global two-camera model GO = {Mo,No} 
whose baseline [e lies outside of V ,  let C[Go] denote the 
set of two-camera models 

A 

C[Go] {(GoA)(V : A E GL(4), and A(V) C P3[l]} 

where GOA is the global two-camera model induced 
by {MoA,NoA} .  A stereo vision system whose two 
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cameras admit a model which is known be in C[G'o] 
but is otherwise unknown, is said to  be weakly cali- 
brated [14, 131. 

3.4 Main Result 
We now define what is meant by a "projectively in- 
variant task". For each A E GL(4), let A denote the 
extended function from (P3)" to (P3)" defined by the 
rule 

{Pl, P 2 ,  . . ' 1 P n }  k-+ {Ab1 ) ,  Nm), . ' ' f A(Pn)) 

where (P3)" fi P3 x P3 x . . .  x P3 Call two points f 

and g in F projectzuely equzualent if there exists an A 
in GL(4) such that f = A(g). Projective equivalence 
is an equivalence relation on F. A task T ( f )  = 0 is 
said to  be projectzuely znuarzant on F if for each pair 
of projectively equivalent points f ,  g E F, 

-. 
n times 

= T ( g )  (5) 

In other words, T (  f) = 0 is projectively invariant on 3, 
just in case T is constant on each equivalence class of 
projectively equivalent features within 3. Projectively 
invariant tasks are further studied in Section 4 below. 
On this topic see also [all. 

The main result of this section is as follows. 

Theorem 1 (Weak Calibration [21]) Let GO be a 
fixed global two-camera model whose baseltne lies out- 
szde of V. A task T (  f) = 0 zs deczdable on C[Go] zf and 
only zf zt zs projectzuely znvarzant. 

In short, with a weakly calibrated stereo vision sys- 
tem, any projectively invariant task is verifiable with 
at  least one encoding. Moreover, any task which is not 
projectively invariant is not verifiable with any type of 
encoding. 

3.5 Uncalibrated Stereo Vision Systems 
As it stands, Theorem 1 applies only to  stereo vision 
systems which are weakly calibrated. But C[Go] is a 
subset of Cuncal[V]. Thus any task that is decidable 
on Cuncal[V] must also be decidable on C[Go]. There- 
fore since being projectively invariant is a necessary 
condition for the task T(f) = 0 to be decidable on 
C[G,] it must also be a necessary condition for the task 
T ( f )  = 0 to  be decidable 011 Cuncal[V]. We can thus 
state the following. 

Proposition 1 Zf T ( f )  = 0 is decidable on Cuncal[V], 

then T (  f )  = 0 is projectively inuariant. 

The reverse implication, namely that task invariance 
implies decidability on Cuncal, is false. For example, 
suppose that the positioning objective is to  make 3 
point features collinear. This objective can be de- 
scribed mathematically by the task Tc,l(f) = 0,  where 

A Tcol is the task function from Fcol = V3 to  {0,1} de- 
fined by the rule 

0 f 1 ,  f 2 ,  f3 on the same line in P3 I--i 1 otherwise 

The task Tcol(f) = 0 is projectively invariant because 
projective transformations preserve collinearity. On 
the other hand this task is not decidable on Cuncal. 
Indeed, there are camera models C1, CZ E C,,,,I- and 
a pair of features f , g  E 3 at which C,(f) and C,(g) 
are equal and yet the task is accomplished at  f but 
not a t  g. This can happen when all point features in 
the list f and the optical centers of the global camera 
models that determine C1 are contained in a single 3- 
dimensional subspace of R4 and also when all point fea- 
tures in the list g and the optical centers of the global 
camera models that determine C2 are contained in a 
single 3-dimensional subspace of R4. 

4 Projectively Invariant Tasks 

It was seen in the previous section that projectively 
invariant tasks are of special importance when dealing 
with sets of projective camera models. In fact, projec- 
tive invariance is a necessary condition for decidability 
on the set of uncalibrated two-camera models, and a 
necessary and sufficient condition for decidability on 
any set, of weakly calibrated two-camera models. The 
objective of this section is to show that every projec- 
tively invariant task can be constructed from primitive 
tasks by using only a small number of distinct opera- 
tions. We proceed by defining these operations. 
Given a task T ( f )  = 0,  we call the task - T ( f )  = 0 
specified by 

-T : 3 -+ (0,  l}, f - 1 - W), 
the complement of T(f) = 0. Given a permutation 
7r = { ~ ( l ) ,  .(a), . . . , ~ ( n ) }  of the set { 1 , 2 , .  . . ,  n } ,  we 
call the task r T ( f )  = 0 specified by 

A 

7rT : 3 + (0, l}, f 4 T(.f) 
A with rf = {f i r ( l ) ,  f T ( 2 ) ,  . . . , f T ( n ) } ,  the n-permutation 

of T ( f )  = 0. Also, given two tasks Tl(f) = 0 and 
T2( f) = 0,  we call the task (TI A T2)( f) = 0 specified 
by 

Ti AT2 : F -+ (0 ,  I}, f e Ti(f)T2(f) 
the conjunction of Tl(f) = 0 and T z ( f )  = 0. 
following proposition is straightforward to  verify. 

The 

Proposition 2 Given any set of admissable camera 
models C ,  the following statments are true: 

1. The  complement of a task decidable on C is de- 
cadable on C .  
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2. For any permutlation K of {1 ,2 , .  . . , n } ,  the T -  

permutation of a task decidable on C is decidable 
on C .  

3. The conjunction of two tasks that are decidable 
on C is decidable on C .  

Given a set of tasks 7 we say that a task T (  f )  = 0 can 
be generated by 7 if it can be obtained by applying 
any number of the three operations defined above to 
the tasks in 7.  Because of Proposition 2,  if all the 
tasks in 7 are decidable on a given set of admissible 
camera models C, then every task generated by 7 is 
decidable on C. It is also straightforward to show that 
if all tasks in 7 are projectively invariant then every 
task generated by 7 is also projectively invariant. 
The following is the main result of this section. 

Theorem 2 Given the feature space F = V " ,  the fol- 
lowzng statments are true: 

1. For n = 2 any projectively invariant task can be 
generated by a set consisting of exactly one task, 
namely the one specified by the task function 

0 fl = f 2  

1 f l  # f 2  

2. For n = 3 any projectively anvariant task can be 
generated by the set of tasks specified by the two 
task functions 

0 f l  = f 2  

1 fl # f 2  
and 

3. f o r  n = 4 any projectively invariant task can be 
generated by the set of tasks specified by the three 
task functions 

0 f l  = f? 
I - {  1 f l  # f? 

0 
1 otherwise 

f i ,  f ? ,  f 3  on the same line in P3 

0 
1 otherwise 

f l ,  f2, f 3 ,  f4 on the same plane in  P3 

together with the family of tasks specified by 

0 f i ,  f 2 ,  f 3 ,  f4 on the same line 
in P3 with cross ratio [22] p f4 1 otherwise 

where p takes d u e s  in R .  

This theorem is a simple consequence of results in [all. 

5 Concluding Remarks 

The main results of this paper can be summarized as 
follows: 

0 It is possible to verify that a robot positioning 
task has been accomplished with absolute accu- 
racy using a weakly al ibrated,  noise-free, stereo 
vision system, if and only if the the task is invari- 
ant under projective transformations on P3. 

0 If it is possible to verify that such robot position- 
ing task has been precisely accomplished using 
an uncalibrated stereo vision system, then the t,he 
task must be invariant under projective transfor- 
mations on p3. 

Every projectively invariant task can be con- 
structed from primitive tasks by using only a 
small number of distinct operations. 

The issues addressed in this paper suggest a whole new 
line of inquiry within the area of visual servoing. The 
overriding question would seem to be something like 
this: Given a set of one or more imprecisely modeled 
cameras and a task which might be positioning, track- 
ing or something else, under what conditions can it 
be decided that the task has been accomplished with 
precision using available images of features observed at  
one or more times? This question is more concerned 
with the architecture of a vision-based control system, 
than with the specific image processing and control al- 
gorithms which might be used to accomplish the task. 
Findings contributing to the answering of this question 
should serve to strengthen our understanding of basic 
issues within the emerging field of computational vision 
and control. 

Acknowledgment: The authors thank Radu 
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