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Summary.

The aim of this paper is to provide a simple analysis of the dynamical
behavior of a set-point control system consisting of a poorly modelled pro-
cess, an integrator and a multi-controller supervised by an estimator-based
algorithm employing dwell-time switching. For a slowly switched multi-
controller implementation of a finite family of linear controllers, explicit
upper bounds are derived for the normed-value of the process’s allowable
unmodelled dynamics as well as for the system’s disturbance-to-tracking
error gain.

0.1 Introduction

Much has happened in adaptive control since Ioan Landau published his pio-
neering monograph in 1979 [1]. The solution to the classical model reference
problem is by now well understood. Provably correct algorithms exist which,
at least in theory, are capable of dealing with unmodelled dynamics, noise,
right-half-plane zeros, and even certain types of nonlinearities — and a num-
ber of excellent text and monographs have been written covering many of
these advances [2, 3,4, 5, 6, 7, 8].

However despite the impressive gains made since 1979, there remain many
important, unanswered questions: Why, for example, is it still so difficult to
explain to a novice why a particular algorithm is able to functions correctly in
the face of unmodelled process dynamics and £*° bounded noise? How much
unmodelled dynamics can a given algorithm tolerate before loop-stability is
lost? How do we choose an adaptive control algorithm’s many design param-
eters to achieve good disturbance rejection, transient response, etc.?

It is our view that eventually there will be satisfactory answers to all
of these questions, that adaptive control will become much more accessible
to non-specialists, that we will be able to much more clearly and concisely
quantify unmodelled dynamics norm bounds, disturbance-to-controlled out-
put gains, and so on and that because of this we will see the emergence of a
bona fide computer-aided adaptive control design methodology which relies
much more on design principals then on trial and error techniques. It is with
these ends in mind, that this paper has been written.

In the sequel we provide a relatively uncluttered analysis of the dynamical
behavior of a set-point control system consisting of a poorly modelled pro-
cess, an integrator and a multi-controller supervised by an estimator-based
algorithm employing dwell-time switching. The system has been considered
previously in [9]. It has been analyzed in one form or another in [10, 11, 12, 13]
and elsewhere under various assumptions. It has been shown in [12] that the
system’s supervisor can successfully orchestrate the switching of a sequence
of candidate set-point controllers into feedback with the system’s imprecisely
modeled siso process so as (i) to cause the output of the process to approach
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and track a constant reference input despite norm-bounded unmodelled dy-
namics, and constant process disturbances and (ii) to insure that none of
the signals within the overall system can grow without bound in response to
bounded disturbance, be they constant or not. The objective of this paper is
to re-derive these same results in a much more straight forward manner. This
will be done for a supervisory control system in which the number of candi-
date controllers is finite, and the switching between candidate controllers is
constrained to be “slow” in a sense to be made precise in the sequel. These
restrictions not only greatly simplify the analysis in comparison with that
given in [12], but also make it possible to derive reasonably explicit upper
bounds for the process’s allowable unmodelled dynamics as well as for the
system’s disturbance-to-tracking error gain.

The overall supervisory control system to be considered is described in
§2. The main theorem characterizing the system’s behavior is re-stated in §3.
A simple, informal proof of the theorem is carried out in §4. Explicit bounds
for the process’s allowable unmodelled dynamics as well as for the system’s
disturbance-to-tracking error gain appear (0.22) and (0.24) respectively.

0.2 The Overall System

The aim of this section is to describe the structure of the supervisory control
system to be considered in this paper. We begin with a description of the
process.

0.2.1 The Process

The overall problem of interest is to construct a control system capable of
driving to and holding at a prescribed set-point r, the output of a process
modeled by a dynamical system with large scale uncertainty. The process
is presumed to admit the model of a siso linear system Xp whose transfer
function from control input u to measured output y is a member of a known
class of admissible transfer functions of the form

cr=J{m+d:101<e}
peP

where P is a finite set of indices,

A Qp
v, = —
14 ﬁp
is a prespecified, strictly proper, nominal transfer function, ¢, is a real non-
negative number, § is a proper stable transfer function whose poles all have
real parts less than the negative of a prespecified stability margin A > 0, and
| - | is the shifted infinity norm



0] = sup |d(jw — A)]
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It is assumed for each p € P, that 3, is monic and that o, and 3, are
coprime. All transfer functions in Cp are thus proper, but not necessarily
stable rational functions. Prompted by the requirements of set-point control,
it 1s further assumed that the numerator of each transfer function in Cp is
nonzero at s = 0. The specific model of the process to be controlled is shown
in Figure 0.1.

Fig. 0.1. Process Model

Here y is the process’s measured output and d is a disturbance.

0.2.2 The System to Be Supervised

Presumed given is an indexed family of “off-the-shelf” loop controller transfer

functions K 2 {kp : p € P} with at least the following property:

Stability Margin Property: For each p € P, —X is greater than the real
parts of all of the closed-loop poles' of the feedback interconnection

4R )

Fig. 0.2. Feedback Interconnection

Also presumed given is an integer nc > 0 and a family of ne-dimensional
realizations {A4,,b,, fp,gp}, one for each &, € K. These realizations are re-
quired to be chosen so that for each p € P, (¢p, Al + A,) is detectable and
(AT + A,, bp) is stabilizable. As noted in [9], there are a great many different
ways to construct such realizations, once one has in hand an upper bound n,
on the McMillan Degrees of the &,. Given such a family of realizations, the
sub-system to be supervised is thus of the form shown in Figure 0.3 where

! By the closed-loop poles are meant the zeros of the polynomial spp8y + Ypap,

o . .
where 22 and 22 are the reduced transfer functions v, and &, respectively.

Bp Pp
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Fig. 0.3. Supervised Sub-System

Y (o) is the ne-dimensional “state-shared” dynamical system
Po = Aoxc + byet v = foxc + goer, (0.1)
called a multi-controller, v is the input to the integrator
U=w, (0.2)
et is the tracking error

er 21—y, (0.3)

and o is a piecewise constant switching signal taking values in P.

0.2.3 The Supervisor

The problem of interest is to construct a provably correct “supervisor” which is
capable of generating o so as to achieve 1. global boundedness {of all system signals}
in the face of an arbitrary but bounded disturbance input and 2. set-point regulation
{i.e., er — 0} in the event that the disturbance signal is constant. The functioning
of the supervisor to be considered can be explained informally in terms of the “multi-
estimator” architecture shown in Figure 0.4. Here each y, is a suitably defined

y
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y estimator| 2 - P H H Tp,
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. ¥ € T
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Fig. 0.4. Estimator-Based Supervisor

estimate of y which would be asymptotically correct if v, were the process model’s
transfer function and there were no noise or disturbances. For each p € P, e, =
yp — y denotes the pth output estimation error and n, is a “normed” value of
ep or a “performance signal” which is used by the supervisor assess the potential
performance of controller p. X's is a switching logic whose function is to determine o



on the basis of the current values of the 7. The underlying decision making strategy
used by such a supervisor is basically this: From time to time select for o, that
candidate control index g whose corresponding performance signal 74 1s the smallest
among the 7, p € P. Motivation for this idea is obvious: the nominal process model
whose associated performance signal is the smallest, “best” approximates what the
process is and thus the candidate controller designed on the basis of that model
ought to be able to do the best job of controlling the process.

The specific supervisor considered below admits a slightly different realization
than that shown in Figure 0.4, even though the two supervisors are input-output
equivalent. Internally the supervisor we want to discuss consists of three subsystems:
a multi-estimator dynamic X' g, a performance-weight generator Xvw, and a dwell-
time switching logic Xp.

L

% I LS S

V ——

Fig. 0.5. Estimator-Based Supervisor

XY'g 18 a ng-dimensional linear dynamical system of the form
. A 0 b 0

where ng 2 2(ny,+1) and (Ag,bg) is a parameter-independent, n, + 1-dimensional
siso, controllable pair with Al + Ag stable. Here n, is an upper bound on the
McMillan Degrees of the v, p € P. In [9] it is explained how to construct a
function p — ¢, so that for each p € P,

A R e PR

is a stabilizable realization of %Vp whose uncontrollable eigenvalues have real parts
less than —A. The ¢, are used in the definition of Xw which will be given in a
moment. The ¢, also enable us to define output estimation errors

epécpxg—y, peEP (0.5)

While these error signals are not actually generated by the supervisor, they play
an important role in explaining how the supervisor functions.

The supervisor’s second subsystem, Yw, is a causal dynamical system whose
inputs are g and y and whose state and output W is a “weighting matrix” which
takes values in a linear space W. W together with a suitably defined performance
function Il : W x P — IR determine a scalar-valued performance signal of the form

wp 2 I(W, p) (0.6)

which is viewed by the supervisor as a measure of the expected performance of
controller p. Xw and IT are defined by

W:—z,\WJr[xyE] [”“"yE]/ (0.7)
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and

H(va):[cp —11W ey _1]/ (0~8)

respectively. The definitions of Y'w and II are prompted by the observation that if
©p are given by (0.6), then

fip = —2Amp +en, pEP (0.9)

because of (0.5), (0.7) and (0.8).

The supervisor’s third subsystem, called a dwell-time switching logic Xp, is
a hybrid dynamical system whose input and output are W and o respectively,
and whose state is the ordered triple {X,7,0}. Here X is a discrete-time matrix
which takes on sampled values of W, and 7 is a continuous-time variable called a
timing signal. T takes values in the closed interval [0, 7p], where 7p is a prespecified
positive number called a dwell time. Also assumed prespecified is a computation
time T¢ < Tp which bounds from above for any X € W, the time it would take
a supervisor to compute a value p = px € P which minimizes [1(X,p). Between
“event times,” 7 is generated by a reset integrator according to the rule 7 = 1.
Event times occur when the value of 7 reaches either 7p — 7¢ or 7p; at such times
T 1s reset to either 0 or Tp — 7¢ depending on the value of Y'p’s state. X'p’s internal
logic is defined by the computer diagram shown in Figure 0.6 where px denotes a
value of p € P which minimizes I7(X,p).

Initialize
o
v

H(X.E()<I'[(X,c) y
Fig. 0.6. Computer Diagram of X'p

In the sequel we call a piecewise-constant signal & : [0,00) — P admissible if
it either switches values at most once, or if it switches more than once and the
set of time differences between each two successive switching times is bounded
below by 7p. We write S for the set of all admissible switching signals. Because of
the definition of Xp, it is clear its output & will be admissible. This means that
switching cannot occur infinitely fast and thus that existence and uniqueness of
solutions to the differential equations involved is not an issue.



0.3 Discussion

The overall system just described, admits a block diagram description of the form

Y < )

Ty =E| Zp

¢W

Zp d
L !
el T

Fig. 0.7. Supervisory Control System

The following theorem is proved in [12]:

Theorem 0.3.1. Let 7¢ > 0 be fived. Let 7p be any positive number no smaller
than 7c. There are positive numbers €, p € P, for which the following statements
are true provided X'p has a transfer function in Cp.

1. Global Boundedness: For each constant set-point value r, each bounded
precewise-continuous disturbance input d, and each system initialization, u, ¢,
xg, W, and X are bounded responses.

2. Tracking and Disturbance Rejection: For each constant set-point value r,
each constant disturbance d, and each system initialization, y tends to r and
u,v0,vm, W, and X tend to finite limits, all as fast as e~

The theorem implies that the overall supervisory control system shown in Figure
0.7 has the basic properties one would expect of a non-adaptive set-point control
system.

0.4 Analysis

The aim of this section is to re-derive Theorem 0.3.1 in a much more straight forward
manner than in [12]. This will be done for a supervisory control system in which the
switching between candidate controllers is constrained to be “slow” in a sense to be
made precise in §0.4.1. This restrictions not only greatly simplifies the analysis, but
also make it possible to derive reasonably explicit bounds for the process’s allowable
unmodelled dynamics as well as for the system’s disturbance-to-tracking-error gain.

In the sequel we will invariably ignore initial condition dependent terms which
decay to zero as fast as e, as this will make things much easier to follow. A more
thorough analysis which would take these terms into account can carried out in
essentially the same manner.
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0.4.1 Slow Switching

Assume that r is a constant and let  denote the composite state

v = [fE] (0.10)

rc

where 7 g 1s the shifted state

-1
aj«E:xEJr[AEObE]r (0.11)

It is then possible to show in a straightforward manner, that for any ¢ € P and
any given piecewise constant switching signal o : [0,00) — P, whether generated
by X'p or not, the relationships between ey, €, v, and e determined by (0.1)-(0.5)
are given by a system of equations of the form

€6 = CgqT + €4

z = Ao'o'-r + ho'eo'

v = fo'o'-r + go€os (012)
er = €s;— CsT

where d 2 column{—-bg, 0, 0, bc}, b 2 column{0, bg, bc, 0}, and for all p,l € P,

fplé[_gpcl I»] hpéb9p+d Cplé[cp_cl 0] Elé[cl 0]

and
Apl 2 block diagonal {Ag, Ag, Ac, Ac} —d[ci 0]+ bfu

One readily verifiable and important property of the matrices defined above is that
for each p,I € P, (cpi, Al + Ap) is a detectable matrix pair [9]. This is a conse-
quence of certainty equivalence, the Stability Margin Property, the requirements
that Al + Ag be a stability matrix and that for p € P, {A + Ay, by, fp, gp} be a
stabilizable and detectable system. Since cpp = 0, p € P, this means that for each
such p, A + App, must be a stability matrix [9]. In the sequel we will assume the
following.

Slow Switching Assumption: The dwell time 7p is large enough so that for each
admissible switching signal o : [0,00) = P, M + Ags is an exponentially stable
matris.

It 1s possible to compute an explicit lower bound for 7p for which this assumption
holds [9].

0.4.2 Norms

It 1s especially useful to introduce the following. For any piecewise-continuous func-

tion z : [0,00) — IR™, and any times to > t1 > 0, let us write ||z||f¢,+,} for the
exponentially weighted 2-norm

A b2
Felliasay 24 [ Teistpar
ty
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Note that e**T7,(T) = ||ep||?{07T}7 T >0, p€ P, because of (0.9) and the assump-
tion that W (0) = 0.
For any time-varying SISO linear system X of the form y = c(t)x + d(t)u,
& = A(t)z + b(t)u we write
A b
c d

for the induced norm sup{||yu|| (o, «o} : u € U} where y, is X’s zero initial state, out-
put response to u and U is the space of all piecewise continuous signals u such that
[lu|| 10, .oy = 1. The induced norm of X' is finite whenever Al 4 A(t) is {uniformly}
exponentially stable.

We note the following easily derived facts. If e=**||u| (0, is bounded on [0, 00)
{in the £ sense}, then so is y, provided d = 0 and Al — A(¢) is exponentially

>\t||u||{07t}. Ifu—=0

stable. If u is bounded on [0, 00) in the £°° sense, then sois e”
as t — oo, then so does ™ ||ul| {0}

0.4.3 Block Diagrams

Using the diagram of Y'p in Figure 0.1 together with (0.1)-(0.5) and (0.12), it is
not difficult to verify that, up to initial condition dependent terms decaying to zero
as fast at e 7**, the relationships between d, €., v, and et are as shown in the block
diagram in Figure 0.8 where wg is the characteristic polynomial of the estimator
matrix Ag [9]. In developing this diagram we’ve represented the system defined by
(0.12) as two separate subsystems, namely

-T./‘l = Ao'o'-rl + ho'eo' -T./‘2 Ao'o'-r2 + ho'eo'
v = fo'o'-rl + go€os er = € — Col2

where 1 = x2 = x. Note that the signal in the block diagram labeled b, will tend
to zero if d is constant because of the zero at s = 0 in the numerator of the transfer
function in the block driven by d.

sa. | b
d— —= e. e Ao Mol @
O)E A p —Cs 1
ﬁp* 6 V AIU hU
) f(Y(Y g(Y
a)E

Fig. 0.8. Block Diagram I

Let us note that each of the five blocks in Figure 0.8 represents an exponentially
stable linear system. It is convenient at this point to introduce certain “system
gains” associated with these blocks. In particular, let us define for p € P

{sup
c€S

By

WE

Ao’o’ ho’
fo’o’ 9o

Ao’o’ ho’

—Cs 1

’ bpé\/i

}, céﬂsup

c€S
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where, as defined earlier, | - | is the shifted infinity norm and S is the set of all
admissible switching signals. In the light of Figure 0.8, it is easy to see that

C
||eT||{0,t} < ﬁ”eo’”{o,t}w t >0, (0~13)
by
llep {0, 13 < €pr EH%H{O’ oy +Ibllo, ey,  £20, (0.14)
and
[Ibllo, ¢y < ap+lldll0, ey ¢2>0 (0.15)

where €,+ is the norm bound on 6. The inequality in (0.13) bounds the norm of
eT in terms of the norm of e, whereas (0.14) and (0.15) bound the norm of e+ in
terms of the norms of e, and d. To develop a bound for the norm of et in terms of
the norms of d, it would therefore be enough to establish a bound for the norm of
es In terms of the norm of ep+. As a first step toward this end, we shall make use
of the following result which is a direct consequence of dwell time switching.

0.4.4 Dwell-Time Switching

Lemma 0.4.1. Suppose that P contains m > 0 elements, that W is generated by
(0.7), that the mp, p € P, are defined by (0.6) and (0.8), that W(0) = 0, and that
o 18 the response of Xp to W. For each fized time T > 0, there exists a piecewise-
constant function Y7 : [0,00) — {0, 1} such that

| erar < mirp + 7c) (0.16)

and

(1= ¢r)es + Yreglliory < Vmllegllo,ry, g€ P (0.17)

This lemma is proved in the appendix.

0.4.5 Block Diagram II

Let us fix T' > 0. In view of (0.17) there is a piecewise constant signal 7 : [0, 00) —
{0,1} satisfying (0.16) such that

(1= ¢r)es + Yreps|lro,ry < Vmlleps (o, (0.18)

But as noted before, what we need is a bound for the norm of e, not (1 — z/JT)eU +
Yreps. To get around this, we first note from (0.12) that for ¢ € P

€c —€q = Cogl &= Ago® + hoes (0.19)

Next consider the block diagram in Figure 0.9 which depicts this sub-system with

q 2 p* together with an additional block and summing junctions representing the
formulas

e =vYres+ (1 —Yr)es and €c = €pr + €5 — Epr

Let us define for g € P



12

Fig. 0.9. Block Diagram II

¢
0g 2 sup sup/ |wql(t, T)ek(t_T) [*dr
o€S t>0 Jo

where wq(t, 7) 2 Co(t)q@(t, T)ho(r) and D(t,7) is the state transition matrix of
Agso. Note that each v, is finite because of the Slow Switching Assumption. Using
Cauchy-Schwartz it can easily be shown with v, so defined that

¢
1wy 0 el o, 1) < ¢ oo [ Hleclliy i t20 (020)
where wq 0 €, is the zero initial state output response of (0.19).
From Figure 0.9 it is clear that
o = Yr(epr +wpr0es)+ (1 — Yr)es
Rearranging terms and taking norms we thus obtain
lleallio, ey < (L —r)es + drepr[lio, 13 + |[0r(wpr 0 €5)ll10, 03, €20

Moreover |[(1 — ¢1)es + ep || 10,61 < |[(1 — ¥1)es + ep||10,r}, t € [0, T]. Using
(0.18) we thus get

lleallto, ¢y < Vmlleps 10,7y + [[¥T(wpr 0 €0)llf0, 13, £20
Taking squares
||60||?{0, ¢ < 2mlleps ||?{0, 71 + 2|7 (wpr 0 6cr)||?{0, ¢, 0T

Using (0.20) with g = p*

t
||60||?{0, o < 2m||€p*||?0, 71 + 20ps / ¢2T||60)||?{0, prdp, 0<E<T
0

Hence by the Bellman-Gronwall Lemma

T .2
llewllfo, 7 < 2mllepe[[fo, e Jo ¥2

From this, (0.16), and the fact that Y% = o7, we arrive finally at an expression for
the norm of e, in terms of ey+, namely

lleallio, 7 < V2me®* ™R e g 1y, T >0 (0.21)
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0.4.6 Stability Margin

Examination of (0.21) and (0.14) reveals that if e,+ satisfies the small gain condition

e Vp* m(Tp+7c)
* < 0.22
€p bp*\/ﬁ ( )
then (0.21) and (0.14) can be combined to give
V2
lleollto, 73 < IIbllo, 73, T 20 (0.23)

e Upt m(rp+7c)

T —¢p

* *

b

The inequality in (0.22) provides an explicit bound for the allowable process dy-
namics.

0.4.7 Global Boundedness

The global boundedness condition of Theorem 0.3.1 can now easily be justified as
follows. Suppose d is bounded on [0, co). Then so must be e™*||b||(o, ;1. Hence

by (0.23), e™*||es|| 0, ¢} must be bounded on [0, co) as well. This, the differential
equation for z in (0.12), and the exponential stability of AI + A,, then imply that
z is also bounded on [0, oo). In view of (0.10) and (0.11), zz and z¢ must also
be bounded. Next recall that the zeros of wg {i.e., the eigenvalues of Ag} have

negative real parts less than —A, and that the transfer function %5 in Figure 0.8

is strictly proper. From these observations and the block diagram in Figure 0.8 one
readily concludes that ep+ is bounded on [0, c0). Hence from the formulas in (0.12)
for e, v and et one concludes that these signals are also bounded. In view of (0.3)7
y must be bounded. Thus W must be bounded because of (0.7). Finally note that
u must be bounded because of the boundedness of y — n and v and because of the
observability of the cascade interconnection of (0.2) with any minimal realization
of X' p. This, in essence, proves Claim 1 of Theorem 0.3.1.

0.4.8 Convergence

Now suppose that d is a constant. Examination of Figure 0.8 reveals that b must
tend to zero as fast as e because of the zero at s = 0 in the numerator of
the transfer function from d to b. This implies that ||b||{o, 3 < oo. Therefore

lles|l o, o} < 00 because of (0.23). Hence e, must tend to zero as fast as e™*. So
therefore must  because of the differential equation for z in (0.12). In view of (0.10)
and (0.11) Zg and x¢ must tend to zero as well. From Block Diagram I in Figure
0.8 it now can be seen that e+ tends to zero. Hence from the formulas in (0.12) for
es, v and et one concludes that these signals must tend to zero as well. In view
of (0.3), y must tent to r . Thus W must approach a finite limit because of (0.7).
Finally note that u tend to a finite limit because y and v do and because of the
observability of the cascade interconnection of (0.2) with any minimal realization
of X' p. This, in essence, proves Claim 2 of Theorem 0.3.1.
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0.4.9 A Bound on the Disturbance - to - Tracking - Error Gain

By combining the inequalities in (0.13), (0.15) and (0.23) we obtain an inequality
of the form

llexllo, 7 < gp*lldllgo, 73, T >0
where

Cap*
e Upt m(rp+rc)

T — €p* bpe

e = (0.24)

Thus gp+« bounds from above the overall system’s disturbance - to - tracking - error
gain.

0.5 Concluding Remarks

The formula for g,+ in (0.24) and the stability margin bound in (0.22) are probably
the most explicit discovered so far for an estimator-based adaptive control system
with the properties outlined in Theorem 0.3.1. We believe that even simpler expres-
sions than these can be found for the system under consideration. For example, it
is likely that instead of (0.22), it will suffice to bound e,+ by m' Under certain
conditions, it also possible to derive useful relationships between system gains and
the the shifted infinity norms of the transfer functions of the constant linear sys-
tems being switched. For example, for 7p sufficiently large, any strict upper bound
on the family {v/2|1 —&p(s] — App) " hy| : p € P} is an upper bound on ¢ [14].
Results such as these suggest that a bona fide, input-output performance theory
for adaptive control may be within our reach.

0.6 Appendix

In the sequel, o 1s a fixed switching signal, & 2 0, t; denotes the ith time at which
o switches and p; is the value of o on [t;_1, t,'); if o switches at most n < co times

then &,41 2 oo and pny1 denotes o’s value on [tn, oo) Any time X takes on the
current value of W is called a sample time. We use the notation |¢]| to denote the
sample time just preceding time ¢, if ¢t > 7p — 7¢, and the number zero otherwise.
Thus, for example, || =0 and [t;| = t; — 7¢, > 0.

To prove Lemma 0.4.1 will need the following algebraic fact

Lemma 0.6.1. For all u; €[0,1], 1 € {1,2,...,m}
D—p)<(m=-1)+ ][00 —n) (0.25)
=1

Proof of Lemma 0.6.1: Set z; = 1 — p;, 1 € {1,2,..., }. It is enough to show
that for z; € [0,1], 1 € {1,2,...,}

Yow<G-1+]]w (0.26)
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for j € {1,2,...,m}. Clearly (0.26) is true if j = 1. Suppose therefore that for some
k > 0, (0.26) holds for j € {1,2,...,k}. Then

k41

k
E Ty = Tr41+ E x;
=1 =1

k
ver + (k= 1)+ [ 2

=1

(1 —@p41) (1—H$i> tarp (k=1 + [

i=1 =1

IA

IA

k41

= k+H$i
=1

By induction, (0.26) thus holds for y € {1,2,...,m}. W

Proof of Lemma 0.4.1: Let Pr be the image of [0, 7] under o. Let k be that inte-
ger for which T' € [tx_1, tk). For each p € Pr, let T, denote the set of nonnegative
integers ¢ such that o = p for t € [¢;_1, t,'). Let jp denote the largest integer in Z,,.
Note that j,, = k.

For each ¢ € {1,2,...,k} define

. {t,' if i <k
T fi=k
The definition of dwell-time switching then implies that for p € Pr,
m(ltic]) < m(ltima]),  YeePael,
(k] —7c) < wmo(lti]|—7c), VgePiel, ifti—ti_1>7p

Setting 7 2 Jjp and using the fact that e**'z,(t) = ||ep||?07t}7 p€E P, t>0, we
obtain the expressions

A

||€p||?0, ltip-1lt = ||€q||?0, Ltip—1l} VgeP

A

||€p||?{o, Eipl-mc} = ||€q||?{o, [Fipl=Tc b Yge P, if t;, —t;,—1 > 7D
(0.27)
For each p € Pr, let ¢, : [0,00) — {0,1} be that piecewise-constant signal
which is zero everywhere except on the interval

(Ltip—1], ), if tj, —tj,—1 <7p

or
[I_EJpJ - TC, E]p), if E]p — t]p_l >TpD

In either case ¢, has support no greater than 7p + 7¢ and is idempotent {i.e.,

¢123 = ¢p}. It follows that if

Yr 21— [ (1), (0.28)
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then ¢ is also idempotent and has support no greater than m(TD + Tc). In view
of the latter property, (0.16) must be true.
The definitions of the ¢, imply that for p € Pr and l € P

1—¢ 612 . ift;, —t 1 <71p

(L= gp)erllor, ) = (1= ¢p) Hé{o’ I

» [1(1— ép)edlfo, &, 1-rc) i Gy —t,—1 > 7D
From this and (0.27) we obtain for all ¢ € P

||(1 - ¢p)€p||?0,fjp} = ||€p||?0, [tsp—1]} < ||€q||?0, ltjp—11} = ||(1 - ¢p)€q||?0,fjp}
if £;, —t;,—1 < 7p and
[1(1— ¢p)€p||?o,fjp} = |lepll%o, [, —rc 1} S lleqllFo, lEj, —rc I} = [1(1— ¢p)€q||?o,fjp}
if £;, —t;,—1 > 7p. From this and the fact that
[1(1 - ¢p)€q||?0,fjp} <L — ¢p)€q||?0,T}7 qgeEP, pePr

there follows

[1(1 - ¢p)€p||?0,fjp} < l(1- ¢p)€q||?0,T}7 Vp&Pr, qeP (0.29)
Now
(1= ¢r)esllfory = Y D L= vr)epllfe,_y ey < D (1 - Yr)epllfor, 1
pEPT iGIp pEPP
(0.30)

In view of (0.28) we can write

2

Z (1 - ¢T)€p||?o,fjp} = Z H (L—¢1) pep (0.31)

pEPT pPEPT lePr 0,8}
Fip

2

> IT—e)pen <> la- sp)enllio;,

pEPT lePp . pEPT
{0,6, 1
From this, (0.29), (0.30), and (0.31) it follows that
(1= vr)esllfory < D (1= dp)edllfory, ¥ a€P
pEPT

Thus for ¢ € P

T
(1= bn)ealliory < 3 / {eae™ P (1 — 6p)%dt
pePp Y0
T
- / fea™ P S (1=, bat
0 pEPT

/0 fea®P{ S (1-0y) bt

pEPT
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This, Lemma 0.6.1 and (0.28) imply that

IA

/0 {eqe”}2 m—1+ H (1 —¢p) pdt

pEPT

/ e Y m — wr )t

(1 = ¥ )ec|lfo,r)

[ ey pm e

Hence
||(1 - Z/’T)eff”?{o,T} < m||€q||?{0,T} - ||¢T€q||?{0,T}
Now
(1 = ¢r)esllfo,ry + llredllfo,ry = II(1 — ¥r)es + Yreqllfo,ry
because (1 — ¢r) = 0. From this and (0.32) it follows that

[|(1—¢7)es + Z/’T€q||?{0,T} < m||€q||?{0,T}

and thus that (0.17) is true. W

17

(0.32)
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