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Complex photonic structures refer to composite optical materials with dielectric con-

stant varying on length scales comparable to optical wavelengths. Light propagation

in such heterogeneous composites is greatly different from homogeneous media due to

scattering of light in all directions. Interference of these scattered light waves gives

rise to many fascinating phenomena and it has been a fast growing research area,

both for its fundamental physics and for its practical applications. In this thesis, we

have investigated the optical properties of photonic structures with different degree

of order, ranging from periodic to random.

The first part of this thesis consists of numerical studies of the photonic band

gap (PBG) effect in structures from 1D to 3D. From these studies, we have observed

that PBG effect in a 1D photonic crystal is robust against uncorrelated disorder due

to preservation of long-range positional order. However, in higher dimensions, the

short-range positional order alone is sufficient to form PBGs in 2D and 3D photonic

amorphous structures (PASs). We have identified several parameters including dielec-

tric filling fraction and degree of order that can be tuned to create a broad isotropic

PBG. The largest PBG is produced by the dielectric networks due to local uniformity

in their dielectric constant distribution. In addition, we also show that deterministic

aperiodic structures (DASs) such as the golden-angle spiral and topological defect

structures can support a wide PBG and their optical resonances contain unexpected

features compared to those in photonic crystals.

Another growing research field based on complex photonic structures is the study



of structural color in animals and plants. Previous studies have shown that non-

iridescent color can be generated from PASs via single or double scatterings. For bet-

ter understanding of the coloration mechanisms, we have measured the wavelength-

dependent scattering length from the biomimetic samples. Our theoretical modeling

and analysis explains why single scattering of light is dominant over multiple scat-

tering in similar biological structures and is responsible for color generation. In col-

laboration with evolutionary biologists, we examine how closely-related species and

populations of butterflies have evolved their structural color. We have used artificial

selection on a lab model butterfly to evolve violet color from an ultra-violet brown

color. The same coloration mechanism is found in other blue/violet species that have

evolved their color in nature, which implies the same evolution path for their nanos-

tructure.

While the absorption of light is ubiquitous in nature and in applications, the ques-

tion remains how absorption modifies the transmission in random media. Therefore,

we numerically study the effects of optical absorption on the highest transmission

states in a two-dimensional disordered waveguide. Our results show that strong ab-

sorption turns the highest transmission channel in random media from diffusive to

ballistic-like transport.

Finally, we have demonstrated lasing mode selection in a nearly circular semicon-

ductor microdisk laser by shaping the spatial profile of the pump beam. Despite of

strong mode overlap, selective pumping suppresses the competing lasing modes by

either increasing their thresholds or reducing their power slopes. As a result, we can

switch both the lasing frequency and the output direction. This powerful technique

can have potential application as an on-chip tunable light source.
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Chapter 1

Introduction

1.1 Complex photonic structures

Complex photonic structures refer to composite optical materials with spatial dielec-

tric constant varying on length scales comparable to optical wavelengths. One class

of the well-known photonic structures is photonic crystals (PhCs), which are char-

acterized by periodic modulation of their spatial dielectric constant function [1–3].

Examples of PhCs in 1D, 2D and 3D are shown in Fig. 1.1. Light transport in PhCs

bears a strong similarity to electron transport in crystalline solids. For example,

due to the interference of waves scattered from crystal planes, there exists frequency

windows that forbid light propagation [1–3]. Such a photonic band gap (PBG) is an

analogue to the energy gap that exists between the conduction and valence bands

of a semiconductor, where no electronic states are present. Similarly, the density of

optical states vanishes within a photonic band gap, forbidding spontaneous emission,

and suppressing vacuum fluctuation [4, 5]. With these properties, photonic crystals

are excellent candidates to mold the flow of light in integrated photonics circuits.

By artificially removing individual or a few unit cells within a PhC, its defect cavity

can support optical resonances with small mode volume, spectrally localized within

1



Figure 1.1: Examples of photonic crystals with periodic dielectric constant modula-
tion in 1D, 2D and 3D. Middle panel is a square lattice PhC and the right most panel
is face-centered cubic (FCC) arrangement of dielectric spheres.

the PBG with very high quality (Q) factor. This defect cavity has been used to

make low-threshold lasers and enhance light-matter interaction [6]. However, due to

fabrication imperfections, experimentally realized photonic crystals usually contain

disorder, which affects light transport and produces unexpected features in their mea-

sured transmission/reflection spectra [7–9].

Another type of ordered structure that is devoid of spatial periodicity and gener-

ated by deterministic mathematical rules has attracted significant attention recently,

due their structural complexity compared to PhCs [10–12]. They are called determin-

istic aperiodic structures (DASs) and are created using Thue-Morse, Rudin-Shapiro

or Fibonacci sequences. The Fourier space of DASs contains spectral features that

interpolate between pure-point discrete pattern in periodic crystals to a diffused pat-

tern in random media. For example, the Fourier spectrum of a Thue-Morse structure

is singular continuous. Consequently, light transport in Thue-Morse structures dis-

play unusual properties such as fractal gaps and anomalous diffusion in light trans-

port [15–17]. Fig. 1.2(a) shows a 2D generalization of the Thue-Morse sequence

with dielectric particles [13,14]. Another fascinating DAS, called Vogel’s spirals, have

full circular symmetry in Fourier space. Among Vogel’s spirals, the golden-angle

(GA) spiral displays the most intriguing structural properties, with hidden azimuthal

symmetries in Fibonacci sequence [Fig. 1.2(b)]. Study of GA spirals was originally

inspired by findings in nature; for example, seeds’ arrangement in a sunflower head
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Figure 1.2: Deterministic aperiodic structures (DAS). (a, b) 2D dielectric
particles arranged in the Thue-Morse sequence and Golden-angle spiral lat-
tice. (c) Picture of a sunflower head showing spiral arms called parastichy
and the seeds are arranged in spiral lattice shown in (b). Photo credit:
http://www.flickr.com/photos/lucapost/694780262/.

follows this pattern [Fig. 1.2(c)] [18]. The GA spiral contains different families

of spiraling arms in both clockwise and counter-clockwise directions that are called

parastichy [white arrow in Fig. 1.2(c)]. Interestingly, the number of parastichy in

each family belongs to the Fibonacci sequence [19]. At low-index contrast, the GA

spiral supports an isotropic PBG, which is larger than the corresponding PhCs and

quasi-crystals with the same filling fraction [20]. With metallic nanoparticles, plas-

monic spirals generate polarization-insensitive light diffraction and planar scattering

over a broad frequency range [21].

In the vast intermediate regime between ordered structures and random media,

little is known about light transport in partially ordered structures. An example of

a partially ordered structure that will be discussed in this thesis is a photonic amor-

phous structure (PAS) with only short-range order. In 2D and 3D, such structures

can be generated by randomly close-packing the finite-size particles together. There

exists a characteristic length scale which corresponds to the minimum center-to-center

spacing between the nearest particles. The Fourier spectrum of a 2D PAS exhibits

a ring pattern, which reflects the isotropic nature of the PAS, and the radius of the

ring equals the dominant spatial frequency in the structure. Therefore, PASs are also

optically isotropic and can be used to form complete PBGs in higher dimensions.
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Figure 1.3: Photonic amorphous structures (PASs) in 1D, 2D and 3D. These struc-
tures only have short-range order and the dominant spatial frequency is determined
by the nearest neighbor distance between particles.

Recent studies have demonstrated the formation of PBGs in two-dimensional (2D)

and three-dimensional (3D) PASs with only short-range order [22–30]. At low in-

dex contrast, a PAS does not support a PBG, but it can generate angle-independent

structural color through single or double scattering of light [31–35]. In fact, nature

has used PAS to generate non-iridescent colors in many different animals, including

birds [31, 36]. Inspired by these findings, biomimetic PASs have been fabricated by

self-assembly of colloidal particles [35, 37], and have potential applications in wide-

angle color displays [38–40].

Random media, with the highest level of structural complexity, are made up of

a completely disordered arrangement of optical materials. Random photonic struc-

tures are most prevalent in our daily life, for example, white-paint, biological tissue,

milk, fog, etc. Fourier spectra of random media display a continuous diffused pattern

and contain many spectral components spanning across the optical frequency win-

dow. Consequently, random media support many degrees of freedom in time, space,

polarization and optical spectrum, and they are all coupled due to multiple scatter-

ing of light. Similar to PhCs, light transport in random media also displays many

interference effects that are predicted in electron transport, such as weak localiza-

tion, Anderson localization, universal conductance fluctuations, open channels, and
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coherent backscattering [41–44]. With the development of spatial light modulators,

electromagnetic waves offer many advantages towards studying these interference ef-

fects compared to electronic systems, because using them the control of optical states

is easier when compared to electronic states. Consequently, by controlling the input

light state, random media can be become a versatile photonic device for use as a

spectral filter, high numerical aperture lens, polarizer, etc [45–48]. Study of waves

interference in random media is not only fundamentally interesting, but also has a

profound impact in the fields of imaging, light harvesting, and light extraction.

In recent years, a large amount of studies on complex photonic structures has been

inspired by nanostructures found in nature. With the prevalence of small-angle X-

ray diffraction and electron microscopy, people have discovered that many animals,

insects and plants in nature contain finely crafted nanostructures that give rise to

beautiful colors [49,50]. Inspired by these studies, biomimicry of photonic structures

found in nature has become an intense area of research. However, it remains a ques-

tion as to how these photonic structures have evolved over the years and whether

they are related. In this thesis, we are going to investigate the coloration mechanism

between closely-related butterfly species in collaboration with evolutionary biologists.

In addition, we have also conducted artificial selection experiments to evolve a brown-

UV colored butterfly to a violet color.

1.2 Photonic band gap

Light propagation in PhCs is highly dependent on its propagation direction with re-

spect to different crystal planes. The interference pattern of scattered light in the

far-field forms a Bragg diffraction pattern, which characterizes the underlying symme-

try of the structure. Bragg diffraction of X-rays from crystalline solids is commonly
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Figure 1.4: Schematic illustrating the Bragg reflection condition. When the incident
angle is θ and the difference in path length between successive reflections 2d cos(θ)
equals to an integer number of wavelengths λ, light reflected from a family of crystal
planes with spacing d interferes constructively at the far-field.

Figure 1.5: Dispersion relation and band-edge modes of a PhC. (a) Dispersion relation
of a 1D PhC. The band splitting at k = π/d creates a frequency window with width
∆ω where no optical modes exist. (b-c) Dashed line indicates the dielectric constant
profile of the 1D PhC. The solid lines correspond to the field intensity of dielectric
band edge mode (b) and air band edge mode (c) respectively. The field intensity of
dielectric band edge mode is concentrated in the high-index part and the air band
edge mode resides in the low-index regions.

used to extract useful information such as their atomic arrangement, lattice constants,

and density of defects [51]. Similarly, Bragg diffraction of optical waves from a PhC

is due to interference of waves scattered from the periodic fluctuation in its refractive

index. When the Bragg condition mλ = 2d cos(θ) is met, the PhC acts as a perfect

mirror, where d is the distance between the crystal planes. This condition is illus-

trated in Fig. 1.4.

The simplest PhC is a one-dimensional stack of alternating layers with different

refractive indices. For certain wavelength ranges that satisfy the Bragg condition,
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the reflected light from the 1D PhC interferes constructively and light propagation

is forbidden. The dispersion relation that relates the frequency ω of light to its wave

vector k = 2π/λ is shown in Fig. 1.5(a). When the wave vector k equals to π/d, where

d is the center-to-center distance between two layers with the same refractive index,

the Bragg condition is met. At this wavelength, the interference of incoming light

with wave vector k = π/d and its reflected counterparts with wave vector k = −π/d

form the optical modes which resemble standing waves. There are two possible solu-

tions for the standing wave pattern at this wave vector, one is cos(kx) and another is

sin(kx). However, the field intensity of one wavefunction mostly concentrates in the

high-index material and another wavefunction mainly resides within the low-index

material. As these two solutions have the same wave vector but experience different

average refractive indices, their frequencies must be different. This difference causes

the dispersion lines to split into two branches with a frequency gap in between, which

is the PBG. The mode at the low-frequency band edge concentrates in the high-

index material, and it is known as the “dielectric band edge mode” [Fig. 1.5(b)]. Its

counterpart at high-frequency is called the “air band edge mode” because its field

intensity is localized in the low-index region [Fig. 1.5(c)]. The width of the band gap

∆ω depends on the refractive index contrast and number of unit cells. The higher the

index contrast, the larger the difference in the average refractive indices experienced

by the dielectric and air band edge modes, leading to larger frequency splitting. For

2D and 3D structures, it is difficult to align band gaps in all directions due to lack of

full circular or spherical symmetry in the Fourier space. As a result, complete PBGs

at higher dimensionality only occur in few examples, such as the diamond structure

in 3D.

Experimentally, to determine the frequency range of PBG, people often mea-

sure the transmission or reflection spectrum. Without the absorption, the transmis-

sion(reflection) spectrum will have a dip (peak) within the forbidden frequency range.
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Figure 1.6: Transmission spectrum and density of optical states (DOS). (a) Trans-
mission spectrum for a 1D PhC where the dip corresponds to the PBG. (b) Density
of states for the same 1D PhC which shows the absence of optical modes within the
PBG.

In 1D, a typical transmission spectrum for a PhC is shown in Fig. 1.6(a), where the

transmission is zero within the PBG. At the edge of the PBG, there are several spikes

with transmission equal to 1, these spikes correspond to the band edge modes. With-

out disorder, all the optical modes supported by the 1D PhC are spatially extended

over the entire structure and thus facilitate light transmission. However, the trans-

mission spectrum for a 2D and 3D PhC varies with the angle of incident light and

is polarization dependent. Hence, polarization- and angle-resolved measurements are

needed to confirm the existence of a complete PBG. Another way to tell whether there

exists a complete PBG is by measuring the density of optical states (DOS). DOS of

a 1D PhC is shown in Fig. 1.6(b) which shows absence of optical modes within its

band gap. The DOS at any frequency includes all the optical modes irrespective of

their wave vectors. As a result, a dip in DOS reflects a PBG in all directions for 2D

and 3D structures. The DOS is a very important parameter to quantify the change

of PBG in the presence of structural disorder, and to determine whether there is a

complete PBG for partially ordered structures.
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1.3 Light scattering

Defects are unavoidable in PhCs due to imperfection of the fabrication process, and

it causes additional scattering of light in random directions. Hence, transmission

and reflection spectra of disordered PhCs show features that are not predicted in

perfect PhCs [7–9]. In addition, the interference effect of multiply scattered light from

partially ordered and random media are interesting research subjects. As a result,

understanding the scattering of light is crucial for the study of light transport in all

complex photonic structures. Two length measures that characterize the scattering

process are the scattering mean free path (ls) and transport mean free path (lt).

The scattering mean free path, ls, is the average distance traveled by light between

two consecutive scattering events. While the transport mean free path, lt, is the

distance light travels before its propagation direction is randomized by scattering

events. Usually, it takes several scatterings to totally randomize the propagation

direction of incoming light and thus lt > ls. The following expression relates these

two quantities together:

lt =
ls

1− ⟨cos(θ)⟩
(1.1)

where ⟨cos(θ)⟩ is the anisotropic factor, and it represents the intensity-averaged scat-

tered light direction. ⟨cos(θ)⟩ = 0 corresponds to isotropic or Rayleigh scattering,

where the scatterers are much smaller than wavelength of light λ. ⟨cos(θ)⟩ ≫ 0 when

the scatterers’ size is larger than the optical wavelength, and light is mostly forward

scattered. This condition is usually satisfied in the case of biological tissue where

the cells are in the order of tens of micrometers. Finally, when the light is mostly

backscattered, ⟨cos(θ)⟩ ≪ 0, and lt < ls. For example, when the light frequency is

slightly higher than the first Mie resonance frequency, the scattered light will have

about 180◦ phase difference with the incoming light. The interference between the

9



Figure 1.7: Schematic showing the scattering of the incoming light by randomly
arranged scatterers. d is the average spacing between two scatterers. Each arrow
represents a scattering event. For independent scattering, d≫ λ.

incident and scattered waves is constructive in the backward direction and destructive

in the forward direction, leading to ⟨cos(θ)⟩ ≪ 0.

To estimate the magnitude of ls and lt, we need to know the scattering cross

section of an individual particle or aggregate of particles. For low-density random

aggregates [Fig. 1.7], we can estimate ls and lt by assuming that the scattering of

light from each particle is independent from one to another. In other words, the

scattered fields from all particles add up incoherently at the far-field, and there is no

interaction within the near-field zone. Under this approximation, and if we assume

each particle is identical, we can estimate both ls and lt by

ls =
1

ρσ
(1.2)

lt =
1

ρσt
(1.3)

where ρ is the particle density, ρ ≈ 1/dn, d is the average spacing between two

particles, n is the dimensionality of the system. σ is the total scattering cross section

from a single particle and σt is the backward scattering cross section [52]. Both σ
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and σt are calculated using the following expressions.

σ =

∫
F (Ω)dΩ, (1.4)

σt =

∫
F (Ω)(1− cos θ)dΩ, (1.5)

where F (Ω) is the differential cross section of a single particle. If the particle is a

sphere, the analytical solution for F (Ω) is already derived from the Mie theory [53].

These simple estimations provide insights on the scattering strength of random me-

dia at low density. Both equation 1.4 and 1.5 assume there is no correlation in the

position of the particles. Presence of positional order will modify these two equations

with a correction called the structure factor [54]. The structure factor takes into

account the interference of the scattered light at the far-field due to structural order.

For example, in ref. [54], the anisotropy factor ⟨cos(θ)⟩ becomes negative and lt < ls

for a colloidal suspension made up of charged particles. However, with increasing

particle density, the near-field interaction of the scattered fields becomes important,

and this has to be taken into account for accurate estimation of lt [55]. In chapter

4 of this thesis, we will investigate the modification of transport mean free paths

by both short-range order and near-field effects in a biomimetic sample. Study of

the scattering lengths in such system will not only improve our understanding of the

coloration mechanism but also help us to determine the critical sample thickness for

color generation.

1.4 Light transport: diffusion and localization

In non-absorbing systems, if the transport mean free path lt is much longer than the

system size L, and lt ≫ L≫ λ, the system falls in the ballistic regime. In this regime,
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light mostly travels in the forward direction with few scattering events. One exam-

ple is when a laser beam propagating through the atmosphere is weakly scattered

by aerosol particles. However, when the system size becomes much larger than the

transport mean free path (L ≫ lt ≫ λ), the number of scattering events increases

exponentially, light transport becomes diffusive, and the system appears turbid or

opaque. The diffusion constant D of the system is connected with the transport

mean free path lt by this relation D = 1
3
vlt, where v is the transport velocity of the

photons. A typical characteristic time after which the diffusing photons start reaching

the edge of the system can be defined as τD = L2/D. τD is usually called the diffusion

time or the Thouless time [56]. The average distance a photon travels through the

random system is lp = v/τD ∼ L2/lt. Finally, when scattering becomes very strong

such that lt ∼ λ, light may be spatially localized, as suggested in ref. [57,58]. Without

absorption, this condition is the criterion for the Anderson localization transition of

an electron with de Broglie wavelength λ in a disordered solid [59–61]. In this regime

of strong localization, strong wave interference from different scattering events causes

the renormalization of the diffusion constant to zero. The localization length ξ can

be calculated from the transmission spectra of random systems of different lengths

where ξ−1 = −d⟨lnT ⟩/dL. When ξ > L, the system is in the localization regime.

One of the most studied interference phenomena in disordered media is the

coherent backscattering (CBS) process, which is a manifestation of the weak local-

ization phenomenon. As a precursor to Anderson localization, the weak localization

phenomenon was first studied in electronic systems, wherein it arises from the in-

terference of electrons under multiple scattering conditions [60, 62]. Under weak lo-

calization conditions, interference of the incoming and time-reversed paths leads to

the formation of energy “loops” inside the disordered media, increasing the photons’

return probability, and reducing light transport in the forward direction. This pro-

cess not only happens for electrons, but also for any waves propagating in disordered
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Figure 1.8: Coherent backscattering of light in random media. (a) Schematic showing
that each scattering path (solid line) will have a time-reversed counterpart (dashed
line) forming a pair of incomplete loops. The amount of phase shift between these
two paths depends on the wavelength λ as well as spacing between the final scatterers
with position at r1 and rm. (b) Schematic showing two possible scattering loops, each
of them will generate modulation with different periodicity in their backscattered in-
tensity. Contribution of each loop to the final coherent backscattering intensity cone
depends on the scattering length lt in the system. (c) The final coherent backscatter-
ing intensity cone after summing up all the possible scattering loops. The width of
the cone is inversely proportional to the transport mean free path lt.
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media. As a result, when we measure the light reflected from a thick random media,

a substantial enhancement of the intensity will be detected at angles very close to the

backscattering direction. This intensity enhancement is called the coherent backscat-

tering (CBS) cone [43,63–66].

To understand this process, we refer to the diagram in Fig. 1.8(a), which shows

two counter-propagating light paths; one is a solid line and another is a dashed line.

Assuming that the spatially coherent light with wave vector kin is incident onto the

disordered medium, the light will be dispersed to many directions due to multiple

scattering. However, note that for each scattering light path (solid line) inside the

random media, there will always be another time-reversed counterpart (dashed line),

forming a pair of incomplete loops. Let us consider the case where we detect the

light reflected in the exact backscattering direction θB = 0. In this case, the two

counter-propagating time-reversed paths will have no phase difference and thus inter-

fere constructively, with output intensity equal to 4I0, where I0 is the input intensity.

At other detection angles where θB ̸= 0, there will be a phase shift of (kin+kout).(r1-

rm), where r1 and rm are the positions of the two last scatterers on the loop and

|r1-rm| = lm. As a result, the backscattered intensity for this pair of loops will ex-

hibit periodic modulation with periodicity dependent on the wavelength λ and lm.

The length of lm depends on the scattering strength of the system, which infers the

transport mean free path lt. For example, as illustrated in Fig. 1.8(b), there are two

scattering loops (i) and (ii) with different sizes, and their corresponding backscat-

tered intensity is plotted on the right. If the system is highly scattering with short

transport mean free path, most of the light will only penetrate little into the dis-

ordered media, and the backscattered intensity is dominated by small loops of type

(ii). Consequently, after summing the contributions from all the possible loops, the

final backscattered intensity cone will have a broader linewidth [Fig. 1.8(c)]. On

the other hand, if the transport mean free path is long, the backscattered intensity
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cone is mostly contributed contributed to by the scattering loops of type (i) and the

linewidth becomes narrow. There, from the linewidth of the coherent backscattering

cone, we can extract the transport mean free path. It has became a powerful tech-

nique to characterize the scattering strength of random media.

Another fascinating interference effect of electron transport in metal with disor-

der is the existence of highly conducting states, called “open channels” [67–70]. In

the diffusive regime where L ≫ lt, the conductance of the system is proportional to

lt/L, which means the conductance in general is quite small. Although most of the

electronic states have small conductance, it was found that there are a small amount

of highly conducting states that carry most of the energy through the disordered sys-

tem. Similar phenomena are observed in light transport through disordered media as

well and has lately caught much attention [71–78]. In principle, these open channels

enable an optimally prepared coherent input beam to transmit through a strong scat-

tering medium with order unity efficiency. Recent developments of adaptive wavefront

shaping and phase recording techniques in optics have enabled experimental studies

of open channels [46,79–81]. The open channels greatly enhance light penetration into

scattering media, and have a profound impact in a wide range of applications from

biomedical imaging and laser surgery to photovoltaics and energy-efficient ambient

lighting [46,82,83].

However, the effect of absorption on these open channels remains largely unex-

plored. Very recently, it has been shown that light absorption in strongly scattering

media can be greatly enhanced or inhibited by coherent control of the input light

state [84–86]. These studies show the intriguing interplay between absorption and in-

terference of light, which can be used to control the amount of energy being deposited

in the random media. In chapter 6 of this thesis, we will show how open channels for

light are being modified by absorption and what their correlation is with absorption

channels.
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1.5 Semiconductor microdisk laser

In recent years, the wavefront shaping technique has been extended to control ran-

dom lasers by designing an optimal spatial pump profile [87–90]. In fact, the concept

of pump profile engineering in the field of semiconductor microcavity lasers precedes

the development of spatial light modulators. Semiconductor microcavity lasers are

an important light source for integrated photonic devices due to their small foot-

print. There are several types of microcavity lasers, including vertical-cavity surface-

emitting lasers (VCSELs) with a 1D cavity formed by a pair Bragg reflectors [91]. In

2D, a photonic crystal nanocavity laser can be created by artificially removing one or

more unit cells within a PhC, thus forming a defect cavity bounded by the photonic

band gap effect [6]. Last but not least, microdisk lasers are one of the most promis-

ing candidates for on-chip light sources since they were demonstrated in that early

90s [92]. The main advantages of microdisk lasers are their simple geometry and low

lasing threshold. In a microdisk cavity, due to high index contrast at the cavity-air

boundary, light is strongly confined by total internal reflection (TIR), forming high-Q

whispering-gallery modes (WGM).

For a circular microdisk cavity with radius R few times larger than the optical

wavelength, its free-spectral range (FSR) is typically smaller than the gain spectrum

bandwidth. Free-spectral range (FSR) is defined as the frequency spacing between

two successive first radial order WGMs and can be approximated by λ/m, where m is

the azimuthal number of the mode. m ≈ nkR, where n is the refractive index of the

disk and wave vector k = 2π/λ. With uniform pumping, as illustrated in Fig. 1.9,

the WGMs can all lase simultaneously with a very small lasing threshold. Usually,

due to surface roughness introduced during the fabrication process, for a large mi-
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Figure 1.9: Multimode lasing from uniformly pumped microdisk laser. When a large
circular microdisk with embedded gain material is pumped uniformly, most of the
whispering-gallery modes covered by the gain spectrum will lase simultaneously be-
cause they all have similar Q factors and thus similar lasing thresholds.

crodisk cavity, the Q factors of the modes are restricted by scattering loss rather than

tunneling loss. Hence, both their Q factors and lasing thresholds are very similar.

Such a multimode lasing spectrum is typically not favorable for many applications

especially as a light source for integrated photonics where single mode operation is

desired. There are several ways to achieve single mode operation, for instance, by us-

ing smaller disk to increase the FSR such that there is only one mode within the gain

spectrum. However, smaller disk will have lower Q factor due to increased tunneling

loss and larger fabrication error.

Another efficient method to control the lasing spectrum is by engineering the

pump profile to change the lasing threshold. To select a particular mode to lase, one

may reduce its lasing threshold by enhancing the spatial overlap between the pump

and the mode. For instance, a donut-shaped optical pump was employed to select

lasing modes with desired transverse intensity profile in VCSELs and Fabry-Perot

cavities [93–97]. Similarly, a ring-shaped pump profile was used to lower the lasing

threshold of WGMs in circular micropillars [98] or to produce directional emission

from spiral-shaped microdisk lasers [99]. The same method is applied for electrically
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Figure 1.10: The spatial magnetic field intensity profile |Hz(x, y)| of three succes-
sive first radial order WGMs. Their field profiles have strong spatial overlap at the
boundary, rendering the conventional selective pumping technique unviable. In the
simulation, refractive index of disk n = 3.13, disk radius R = 3µm and transverse
electric (TE) polarization (in-plane electric field).

pumped semiconductor lasers by patterning the electrodes to match the targeted

mode profiles [100–102]. Using this method, in Ref. [100], selection of lasing modes

with distinct output directions in a quasi-stadium cavity was demonstrated. In addi-

tion, current injection into separate electrodes that have maximum overlap with the

desired mode switches the laser’s emission direction [103]. However, the pump-mode

overlap technique requires a priori knowledge of the mode profiles and demands little

spatial overlap between the targeted modes. Hence, it limits the switching capability

to a few modes, and becomes practically unviable once the modes have strong spatial

overlap.

In a circular microdisk cavity, the highest-Q modes have strong spatial overlap

at the boundary as shown in Fig. 1.10. These three modes correspond to the first

radial order WGM with orbital angular momentum equal to m = 56, 57 and 58

respectively. They have strong spatial overlap at the boundary and thus cannot be

selectively pumped to lase separately. Nevertheless, in chapter 7 of this thesis, we will

show when surface roughness is taken into account, it becomes possible to selectively

cause one mode to lase by optimizing the pump profile. In addition, we will show

that the emission directionality from a microdisk laser can be controlled by selecting a

18



different mode to lase. This selective pumping technique can potentially be extended

to electric pumping and makes the microdisk laser a versatile tunable on-chip light

source.
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Chapter 2

Effect of correlated and

uncorrelated disorder on 1D

photonic structures

2.1 Introduction

1 Since its invention twenty years ago [2, 3], photonic crystal has attracted much

attention for the promise of full control of light propagation and localization [4–6].

Rapid developments in nanotechnology have made the fabrication of photonic crystals

operating at optical frequency possible. However, structural disorder that is intro-

duced unintentionally during the fabrication process limits the widespread application

of photonic crystal [7]. The performance of two-dimensional (2D) photonic crystal

waveguides for slow light application is degraded by scattering loss from the fabri-

cation disorder [8–10]. The omnidirectional photonic band gap (PBG), which allows

ultimate control of spontaneous emission of atoms, is fragile to the non-uniformity in

three-dimensional (3D) inverted opal structures [11, 12]. Hence, a thorough under-

1. This chapter is primarily based on the work published in ref. [1].
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standing of the effects of structural disorder is essential to improve photonic crystal

devices.

Recently, there have been many experimental and theoretical studies on how dis-

order influences light propagation and localization in one-dimensional (1D) [13–16],

2D [17–19] and 3D photonic crystals [20–26]. The types of disorder depend on the

fabrication processes. The “top-down” approach including lithography and etching

has been widely used in fabrication of 2D photonic crystals. The typical disorder is

random variation in size and shape of building blocks, and the randomness is usually

uncorrelated. The “bottom-up” approach such as self-assembly introduces random-

ness in both position and size of building blocks. The positions of neighboring building

blocks are often correlated in the closely-packed structures. Most theoretical studies

on disorder in photonic crystals are focused on uncorrelated disorder. Recently it

has been shown that correlation of disorder may result in strong anomalies of light

localization [27–30]. The difference between correlated and uncorrelated disorder is

not well understood, except in metallic photonic crystal slabs [31].

In this chapter, we introduce both correlated randomness and uncorrelated ran-

domness in position and size of building blocks, and study how they modify light

transmission, localization length, density of photonic states, and decay rate of res-

onant modes in 1D dielectric photonic crystals. The results highlight the different

effects that correlated disorder and uncorrelated disorder have on photonic crystals.

The photonic band gaps are more robust against uncorrelated disorder due to preser-

vation of long-range structural order. The dips in the spectra of transmission and

density of photonic states that correspond to PBGs become narrower in the presence

of uncorrelated disorder, but wider in the case of correlated disorder. Correlation of

disorder enhances light localization near the band edges, while uncorrelated disorder

causes a divergence of localization length near the gap edges. The resonant modes

near the pass band center experience the strongest fluctuation of decay rates in the

29



presence of uncorrelated disorder. In contrast, the correlated disorder induces a larger

fluctuation of decay rates for the band gap modes than the pass band modes.

2.2 Correlation of disorder

Our structures consist of N dielectric layers separated by air gaps. In the absence

of disorder, the period of 1D photonic crystal is a. The position of the m-th di-

electric layer is xm = ma. The thickness of each dielectric layer is d. Randomness

is introduced to either position or thickness of dielectric layers. In the case of po-

sition disorder, the position of each dielectric layer is perturbed while its thickness

remains constant. If every dielectric layer is shifted randomly from its position in

the periodic system, the positions of neighboring dielectric layers are uncorrelated

[Fig. 2.1(a)]. The position of the m-th dielectric layer is xm = ma+ δxm, where δxm

is a random number distributed uniformly between −∆a and ∆a, and ∆ represents

the degree of disorder. Alternatively, the positions of neighboring dielectric layers

can be correlated by introducing randomness to their spacings [Fig. 2.1(b)]. Namely,

xm = xm−1+a+δxm. Thus xm includes all position variations of the preceding layers,

xm = ma+
∑m

j=1 δxj.

In the case of size disorder, the thickness of dielectric layers is varied, while their

positions do not change. If the thickness of each dielectric layer is varied indepen-

dently from d, the size disorder is uncorrelated [Fig. 2.1(c)]. The thickness of mth

dielectric layer is given by dm = d+ δdm, where δdm is a random number distributed

uniformly between −∆d and ∆d. The size disorder becomes correlated if the thick-

ness of the m-th dielectric layer is fluctuated around that of the m − 1-th layer,

dm = dm−1 + δdm = d+
∑m

j=1 δdj [Fig. 2.1(d)].

For structural characterization of the disordered photonic crystals, we computed
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Figure 2.1: 1D photonic structure with (a) uncorrelated and (b) correlated position
disorder. (c,d) Structure with (c) uncorrelated and (d) correlated size disorder.
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Figure 2.2: Spatial correlation functions C(∆x) and Fourier spectrum for 1D pho-
tonic crystals with position disorder (a),(c) or size disorder (b),(d). The solid curves
represent correlated disorder, the dashed curves uncorrelated disorder. The degree of
disorder ∆ = 0.1. Note that the second peaks in spatial Fourier spectra are magnified.

32



correlation functions and spatial Fourier spectra. The spatial correlation function

is C(∆x) ≡ ⟨δn(x)δn(x + ∆x)⟩, where δn(x) = n(x)/n̄ − 1, n(x) is the refractive

index at position x, and n̄ is the average refractive index for one configuration, and

⟨...⟩ represents averaging over many configurations with the same degree of disorder

∆. Fig. 2.2(a) and (b) show the correlation functions for position disorder and size

disorder. In the case of uncorrelated disorder, C(∆x) is independent of ∆x as long

as ∆x ̸= 0. Hence, the structure has a long-range order. With increasing disorder

∆, the value of C(∆x) decreases, indicating the structural correlation is reduced by

disorder. In the case of correlated disorder, C(∆x) decays with increasing distance

∆x. Thus the structural correlation or order is short-ranged. For the same value of

∆, the structural correlation in the presence of size disorder is larger than that of

position disorder. This suggests the position disorder reduces structural correlation

more dramatically.

Fourier transform of n(x) gives the spatial Fourier spectrum[Fig. 2.2(c) and (d)].

The peaks in Fourier spectra correspond to the spatial periods of structures. The peak

height reflects the strength of spatial periodicity, and the peak width is inversely pro-

portional to the dimension of ordered regions. In the case of uncorrelated disorder, we

find the Fourier peak height decreases as ∆ increases while the peak width remains

nearly constant. This behavior reflects long-range order of the structure. In the case

of correlated disorder, the peak height decreases more quickly and the peak width

increases with ∆. The peak broadening indicates the ordered regions shrink in size,

and the structural order becomes short-ranged.
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2.3 Transmission and localization length

We used the transfer matrix method to calculate the transmission spectra of 1D dis-

ordered photonic crystals. The parameters in the numerical simulations are n = 1.05,

N = 81, a = 300nm, and d = 100nm. Scattering is weak due to small refractive

index contrast. For each type of disorder, the transmission spectra are obtained by

averaging over 103 − 104 configurations with the same degree of disorder. We focus

on the transmission dip that corresponds to the fundamental PBG, and investigate

how disorder changes the gap width and depth. D is the depth of transmission dip

normalized to that in the absence of disorder [inset of Fig. 2.3(a)], and W the full

width at half minimum (FWHM) of the transmission dip normalized to that without

disorder [inset of Fig. 2.3(b)].

With the introduction of disorder, the transmission dip becomes shallower. For both

position disorder and size disorder, the reduction of D is larger if the disorder is cor-

related. Figure 2.3(a) shows that the correlated disorder causes a rapid drop of D

even when ∆ < 0.3. However, once ∆ exceeds 0.3, the falling of D slows down. The

uncorrelated disorder leads to a different behavior, D decreases slowly at smaller ∆

then faster at larger ∆.

Figure 2.3(b) shows that the gap width W evolves in the opposite way between the

correlated disorder and uncorrelated disorder. For both position and size disorder,

the correlated disorder makes the gap wider, while the uncorrelated disorder makes

it narrower. The position disorder causes a larger change of W than the size disorder

for the same ∆. We attribute the larger effect of position disorder to the relatively

small refractive index contrast in our structures. For larger n, the trend may be

different [11].

We also calculated the variation of transmission T with structure length L. In

the case of correlated disorder, T decreases with increasing L both inside and outside

the PBG. Figure 2.4(a) shows the transmission spectra for various lengths L of struc-
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Figure 2.3: Depth D (a) and width W (b) of the transmission dip as a function
of degree of disorder ∆. Squares and circles represent position disorder and size
disorder, respectively. Solid symbols are for correlated disorder and open symbols for
uncorrelated disorder.

tures with a fixed degree of correlated position disorder, ∆ = 0.3. The frequency ω

is normalized to the center frequency ω0 of the fundamental PBG. From the decay of

T with L, we obtained the localization length, ξ = −L/⟨lnT ⟩ [32]. Figure 2.5(a) is

a plot of ξ versus ω/ω0 for several values of ∆. The vertical lines mark the edges of

the fundamental PBG. With increasing disorder, ξ increases inside the gap and de-

creases in the pass bands. Near the band edges, ξ first decreases then increases with

∆. Therefore, correlated disorder weakens the interference effect that suppresses light

transmission in the gap of a periodic structure, leading to an increase of transmission.

In the pass bands, the effect of disorder is opposite, it enhances light localization and

reduces transmission. Near the band edge, a small degree of disorder improves local-

ization but large disorder suppresses it.

The dependence of T on L is quite different in the case of uncorrelated disorder.

Figure 2.4(b) is a log-linear plot of T versus ω/ω0 for different lengths L of structures

with a fixed degree of uncorrelated position disorder ∆ = 0.3. Unlike the case of

correlated disorder where the shape of transmission spectra remains qualitatively the

35



Figure 2.4: lnT versus ω/ω0 for several lengths L of structures with a fixed degree of
position disorder ∆ = 0.3. The randomness is correlated in (a) and uncorrelated in
(b).

[htbp]

Figure 2.5: Localization length ξ as a function of normalized frequency ω/ω0. The
position disorder is correlated in (a) and uncorrelated in (b).
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same with increasing L, the uncorrelated disorder modifies the shape of transmission

spectra. The edges of transmission dip become much sharper at larger L. In the pres-

ence of long-range order, the interference effect becomes stronger in the larger system,

making the transmission dip steeper. Near the gap center T decreases quickly with

increasing L. The decrement slows down as the frequency moves away from the gap

center. Close to the edges of PBG the transmission curves for different L cross [left

inset of Fig. 2.4(b)]. Around the crossing points, T changes little with L. Beyond the

crossing points, T oscillates with frequency. Farther away from the crossing points,

the oscillation dies out, and T again decreases with increasing L [right inset of Fig.

2.4(b)]. The crossing points move towards the gap center with increasing ∆. Figure

2.5(b) shows the localization length ξ within the PBG. ξ increases with ∆, similar

to the case of correlated disorder. The major difference is that ξ rises rapidly as ω

moves towards the gap edges and diverges at the crossing points. This result reflects

the underlying long-range order.

2.4 Density of Photonic States

Next, we studied the effects of disorder on the density of photonic states ρ(ω). We fol-

low the definition for density of states in a 1D finite-length structure in reference [33]

and obtain ρ(ω) from the complex transmission coefficient t =
√
T exp(iϕ) [33, 34].

The effective wavevector is keff = ϕ/L, where ϕ is the total phase accumulated by the

light propagates through the structure and L is the total length of the finite structure.

It gives ρ(ω) = dkeff/dω. ρ(ω) is normalized by the density of states (DOS) for a

homogeneous medium with an effective group velocity veff = c[f/n+(1− f)], where

f is the filling fraction of the dielectric material with refractive index n [33].

In a periodic structure, the DOS is depleted within the PBG, and peaked near
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the band edges. Disorder creates defect states inside the gap. ρ(ω) is obtained by

ensemble average over 103−104 configures with the same type and degree of disorder.

Figure 2.6(a) shows the normalized ρ(ω) for various degree of uncorrelated position

disorder. ω is normalized to ω0. With increasing ∆, the depletion of DOS inside

the PBG is diminished. Outside the PBG, the high peaks of DOS at the band edges

are reduced, and at large disorder the normalized ρ(ω) approaches unity. Since ρ(ω)

never reaches below one outside the PBG, the DOS dip gets narrower at larger ∆.

The correlated disorder has more dramatic effect on DOS. As shown in Fig. 2.6(b),

the DOS gap is quickly filled by defect states, and the large peaks at the band edges

diminish rapidly while being broadened. At certain ∆, the normalized ρ(ω) is reduced

to below unity outside the PBG, resulting in a broadening of the DOS gap. Even-

tually at large disorder, the DOS dip disappears and the normalized ρ(ω) becomes

unity at all frequencies.

Figure 2.7(a) plots the normalized DOS at the frequency ω1 of the PBG center

Figure 2.6: Normalized density of States (DOS) ρ(ω) versus ω/ω0 in 1D structures
with various degree ∆ of uncorrelated position disorder (a) and correlated position
disorder (b).

and the frequency ω2 of the largest DOS peak at the band edge versus the degree of

position disorder. The correlated disorder causes a much faster rise of ρ(ω1) with ∆.
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Figure 2.7: (a) Normalized ρ(ω) as a function of degree ∆ of correlated position
disorder (solid symbols) and uncorrelated position disorder (open symbols) at the
frequency ω1 of the PBG center (squares) and the frequency ω2 of the largest DOS
peak at the band edge (circles). (b) Total number of depleted states Ns as a function
of ∆ (symbols notation is the same with Figure 2).

ρ(ω2) first decreases then increases with ∆ for the correlated disorder, while it de-

creases monotonically with increasing ∆ in the case of uncorrelated disorder. Similar

behaviors are observed for the size disorder.

For a quantitative description of depletion of photonic states, we computed the

area of DOS dip [inset of Fig. 2.7(b)] to obtain the total number of depleted states

Ns. Figure 2.7(b) is a plot of Ns, normalized by its value in the absence of disor-

der, as a function of ∆. With increasing disorder, more defect states appear in the

gap and Ns is reduced. For both correlated position and size disorder, Ns decreases

first rapidly with increasing ∆, then gradually at large ∆. The trend is opposite for

uncorrelated position and size disorder. Ns decreases slowly at smaller ∆. Once ∆

exceeds a critical value, Ns drops quickly. Hence, the PBG is more robust against

small uncorrelated disorder. This is attributed to the preservation of long-range or-

der.
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2.5 Decay rates of resonant modes

Finally we investigated the modification of resonant modes by disorder. γ is the imag-

inary part of eigenfrequency that is calculated with the outgoing boundary condition

[35]. In a finite-sized periodic structure, the modes at the band edges have the lowest

decay rates. γ increases as the frequency moves towards the pass band center. Struc-

tural disorder perturbs both the frequency and decay rate of resonant modes. Their

values fluctuate from one configuration to another. We ensemble-averaged the decay

rates of modes within a small frequency window, ∆ωn = (ωn+1+ωn)/2−(ωn+ωn−1)/2,

centered at each mode of frequency ωn in the periodic structure. Every data point in

Fig. 2.8(a) and (b) represents the decay rate γ̄ averaged over 103−104 configurations

with the same degree of position disorder. In the pass bands the modes with frequen-

cies around the band center have reduced γ̄ with increasing ∆, while the modes near

the band edges have higher γ̄ at larger disorder. The defect modes appear inside the

PBG, and they have lower γ̄ than the modes outside the gap. At large disorder, the

decay rate is nearly constant for all modes as the PBG disappears. The trends are

similar for correlated disorder and uncorrelated disorder, though the latter modifies

the decay rates more than the former. Similar results are obtained for the size disor-

der.

To quantify the decay rate fluctuation, we computed the variance of γ, var(γ) =

⟨(γ/γ̄ − 1)2⟩, where ⟨...⟩ represents the ensemble average over modes within the small

frequency window ∆ωn. Figure 2.9(a) and (b) show the variance of decay rates for

correlated and uncorrelated position disorder.

In the case of uncorrelated disorder, the modes close to the pass band cen-

ters have large var(γ). To explain the large fluctuation of decay rates, we plot in

Fig. 2.10(a) the frequency and decay rate of all modes in 50 configurations with the

same degree of uncorrelated position disorder ∆ = 0.1. It is evident that deep in

the pass bands there are some very leaky modes, leading to large fluctuation of γ.
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Figure 2.8: (a) Average decay rate of resonant modes in 1D structure with different
degree ∆ of uncorrelated position disorder (a) and correlated position disorder (b).

Figure 2.9: (a) Variance of decay rate of resonant modes in 1D structure with different
degree ∆ of uncorrelated position disorder (a) and correlated position disorder (b).
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Figure 2.10(b) shows the spatial distribution of electric field intensity for one of such

leaky modes. The mode is concentrated near one boundary of the system, leading

to significant leakage of light from the boundary. It resembles the doorway state in

an open cavity [36]. Hence, the decay rates of the majority of modes near the pass

band center are reduced by disorder, resulting in an decrease of γ̄. However, a few

of them acquires extremely large decay rates, leading to an increase of var(γ). Such

“doorway states” are mostly likely to be formed at frequency close to the pass band

center where the interference effect resulting from the structural periodicity is the

weakest. As the frequency moves away from the pass band center, the interference

effect becomes stronger due to the existence of long-range order. It is more difficult

for the “doorway states” to be formed by uncorrelated disorder, causing a decrease

of var(γ). Near the band edges var(γ) rises again, indicating the band edge modes

are very sensitive to disorder. This is because the band edge modes are formed via

strong interference of multiply reflected light, and a small perturbation of structure

can induce a large modification.

In the systems with correlated disorder, the very leaky modes can also be found

Figure 2.10: (a) Normalized frequency ω/ω0 and decay rate γ of all modes in 50
configurations with the same degree of uncorrelated position disorder ∆ = 0.1. (b)
Spatial distribution of electric field intensity for one leaky mode marked by an arrow
in (a).
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near the pass band centers, leading to similar values of var(γ) as the case of uncor-

related disorder. However, var(γ) does not decrease as the frequency moves towards

the band edges. This is attributed to the lack of long-range order which is necessary

to suppress the formation of very leaky modes. Near the band edges, var(γ) increases

and exhibits double peaks for small ∆. With increasing disorder, the double peaks

move towards the gap center, and merge to a single peak at certain ∆. This be-

havior is consistent with the result in [15], and is related to the breakdown of single

parameter scaling. Therefore, the correlated disorder causes larger fluctuation of γ

for the band gap modes than the pass band modes, while the opposite is true for the

uncorrelated disorder.

2.6 Conclusion

We introduce both correlated and uncorrelated randomness in position and thickness

of dielectric layers in 1D periodic structures, investigate their effects on light trans-

mission, localization length, density of photonic states, and decay rate of resonant

modes. The systems with uncorrelated disorder maintain the long-range order, while

the ones with correlated disorder have only short-range order. Our simulation results

illustrate the differences between correlated disorder and uncorrelated disorder.

The correlated disorder diminishes the transmission dips that correspond to PBGs

more quickly than the uncorrelated disorder. The robustness of PBGs against uncor-

related disorder is attributed to the preservation of long-range order of the structures.

Another difference is that the uncorrelated disorder makes the transmission dips nar-

rower while the uncorrelated disorder makes them wider than those in the perfectly

ordered systems.

As the degree of structural disorder ∆ increases, the localization length ξ increases
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inside the PBG and decreases outside the PBG. Unlike the case of correlated disorder,

ξ diverges near the gap edges in the case of uncorrelated disorder. This divergence is

attributed to edge sharpening of the transmission dips by increasing system length.

Like the dips in the transmission spectra, the dips in the photonic density of states

are narrowed by uncorrelated disorder and widened by correlated disorder. The total

number Ns of depleted photonic states within a PBG falls rapidly at small degree

∆ of correlated disorder, then slowly at large ∆. The trend is just opposite for the

uncorrelated disorder, the drop of N2 is gradual at small ∆, then accelerates at larger

∆.

The structural disorder not only produces defect states inside the PBG, but also

reduces the decay rate of resonant modes in the pass bands. In the presence of uncor-

related disorder, the variance of decay rates is the highest near the pass band center

due to the formation of very leaky modes. In contrast, the correlated disorder causes

a larger fluctuation of decay rates for the band gap modes than the pass band modes.

We think that the general conclusions presented in this chapter can be extended

to higher dimensions. However, cautions must be exerted because in 2D and 3D con-

nected network structure can be formed which does not exist in 1D. It has been shown

that a connected network can be more robust against disorder than a disconnected

structure [37]. Therefore, further studies on 3D disordered structures consist of both

cermet and network topologies are shown in the following chapter.
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Chapter 3

2D & 3D complex photonic

structures

3.1 Photonic Band Gaps in 3D Network Struc-

tures with Short-range Order

3.1.1 Introduction

1 A photonic band gap (PBG) describes a frequency range within which light prop-

agation is prohibited due to depletion of optical states. The most known structures

having PBGs are photonic crystals (PhCs) with periodic modulations of dielectric

constant [2]. Since PhCs are anisotropic, PBGs vary with directions. To have a

complete PBG, the gaps in all directions must overlap in frequency. This condition

is difficult to achieve for many PhCs, for example, simple cubic lattices. It is there-

fore easier to produce complete PBGs in more isotropic structures, e.g. photonic

quasicrystals that possess higher rotational symmetry (but no translational symme-

try) [3, 4]. Photonic amorphous structures (PAS) are most isotropic, due to the

1. Chapter 3.1 is primarily based on the work published in ref. [1].
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absence of long-range translational or rotational order. Recent studies demonstrate

that PBGs can be formed in two-dimensional (2D) and three-dimensional (3D) PAS

with short-range order [5–11]. However, the exact physical mechanism or condition

for the PBG formation in PAS is not well understood. An improved fundamental un-

derstanding of PBG formation would allow researchers to design photonic amorphous

materials with optimized and tunable PBGs.

In addition to geometric order, structural topology plays an important role in

forming a PBG. For the composite dielectric materials consisting of two components

with different refractive indices, there are two cases regarding the topology of the

high-index component. (i) Cermet topology: the high-index material consists of iso-

lated inclusions, each of which is completely surrounded by the low-index material.

(ii) Network topology: the high-index material is connected and forms a continuous

network running through the whole composite. Previous studies of periodic structures

have indicated that the cermet topology is more favorable for the PBG formation of

a scalar wave, while the network topology for a vector field [12]. Such conclusions

also apply to PAS. For example, in 2D PAS, PBGs for the transverse magnetic (TM)

polarization (electric field out of plane) are easily obtained with isolated islands of

high-index materials, because the electric field has same polarization direction ev-

erywhere and can be regarded as a scalar wave. For the transverse electric (TE)

polarization (electric field in plane), the electric field has varying polarization direc-

tion and behaves like a vector field, thus it is easier to produce PBGs in connected

dielectric networks [13]. It has been proposed that a hybrid structure with a mixture

of both topologies can possess a full PBG for both TE and TM polarizations [9].

It is much more difficult to form complete PBGs in 3D structures. Substan-

tial reductions in the density of optical states (DOS) have been demonstrated in

PAS composed of randomly packed dielectric spheres of uniform size [8], as a result

of evanescent coupling of the Mie resonances of individual spheres. Dielectric net-
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work structures, for example, the photonic amorphous diamond (PAD), exhibit much

stronger depletion of the DOS [7, 10]. It was conjectured that the tetrahedral bond-

ing configuration in the PAD plays an important role in the formation of isotropic

PBG. However, the PAD is constructed from a “continuous-random-network” (CRN)

originally developed for modeling of amorphous Si or Ge [14], thus it is difficult to

separate the relative contributions of tetrahedral bonding and local geometric order

to the PBG formation. Identifying the key parameters that determine when a PBG

will form in PAS is important not only for developing novel photonic glasses [15],

but also for understanding color generation in nature [16]. Both cermet and network

topologies have been found in color-producing PAS of many animal species [17, 18].

It is also conjectured that pseudo PBGs may be formed and responsible for non-

iridescent coloration of many PAS [19].

In this chapter, we present a detailed numerical study of the DOS and PBGs in

3D PAS. We vary the topology, short-range geometric order, refractive index con-

trast, and filling fraction to maximize the depletion of DOS and the strength of PBG

in the absence of long-range structural order. This study allows us to identify the

essential elements for the formation of PBGs in PAS. In Sec. 3.1.2, we describe the

methods used to generate PAS numerically and analyze their structural and topo-

logical properties. The calculated DOS for both cermet and network topologies are

presented in Sec. 3.1.3, together with interpretations of the results. In Sec. 3.1.4, we

explore dielectric networks with different degrees of structural order to maximize the

reduction in the DOS.
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3.1.2 Structure generation and characterization

Spheres packings

We first study dielectric composites with the cermet topology—high-index dielectric

spheres embedded within a low-index host material (air). We employ a two-stage nu-

merical protocol to generate ‘just-touching’, jammed sphere packings in a cubic sim-

ulation cell with varying positional order [20,21]. First, liquid states of monodisperse

spheres are cooled at fixed packing fraction ϕ = 0.60 from an initial high temperature

T0 to zero temperature at different rates. In the second step, each zero-temperature

configuration is compressed in steps of ∆ϕ = 10−3 followed by minimization of the

total energy until a static packing with infinitesimal particle overlaps is obtained.

By varying the cooling rate, we are able to create static packings with a range of

positional order and packing fractions from random close packing at ϕ = 0.64 to the

face centered cubic (FCC) structure at ϕ = 0.74. In general, the slowly cooled sam-

ples can be compressed to higher packing fractions. Figure 3.1 (a) shows a cluster

of 50 spheres from the interior of a jammed sphere packing containing 1000 spheres

at ϕ = 0.64. For comparison, we generate completely disordered configurations by

placing spheres randomly in the cubic box with no overlaps at ϕ = 0.35.

Dielectric network

We also generate structures with network topologies, where the high-index dielectric

material forms the continuous network, using two methods. For the first method, we

invert the cermet structure of jammed dielectric spheres in air. The inverse structure

consists of low-index (air) spherical inclusions in a continuous high-index dielectric

network. By adjusting the radius R of the spheres (but fixing their positions), we can

vary the air fraction γ in the inverse structure. An inverse structure with γ = 0.8
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is shown in Fig. 3.1 (b). At this γ, adjacent air spheres begin to overlap and the

dielectric material exhibits an irregular topology.

The second method, which is based on an algorithm described in Ref. [9, 22],

produces more uniform network topologies than those from the first method. In

this method, a 3D Delaunay tessellation is performed on the sphere centers from the

cermet structures in Sec. 3.1.2. Each tetrahedron of the tessellation has four facets

shared with four neighbors. We then calculate the center of mass of each tetrahedron,

and connect the centers of mass of nearest neighbors by a dielectric rod. This creates

a tetrahedrally connected dielectric network, where each junction (vertex) has four

dielectric bonds. All dielectric rods have same radius W , but different lengths d. By

changing W , we can vary the air fraction γ. A tetrahedral network with γ = 0.8 is

shown in Fig.3.1 (c).

Figure 3.1: Three examples of photonic amorphous structures: (a) jammed packing
of dielectric spheres at ϕ = 0.64, (b) inverse structure of (a) with air fraction γ = 0.8,
and (c) tetrahedral network of dielectric rods with γ = 0.8 obtained from the Delaunay
tessellation of (a).

Structural characterization

We now calculate the density autocorrelation function and spatial Fourier spectra

of the cermet and network structures described above. Since the dielectric spheres

embedded in air and the corresponding inverted structure possess identical geomet-

rical properties, we focus only on the air spheres and tetrahedral network structures
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below.

As shown in the inset to Fig. 3.2 (a), the 3D spatial Fourier transform of the

tetrahedral network structures displays concentric spherical shells without discrete

Bragg peaks, which reflects structural isotropy and a lack of long-range order. The

radii of the shells provides the characteristic spatial modulation frequencies of the

structures. Similar results are obtained for the tetrahedral networks generated from

the jammed sphere packings. The angle-averaged power spectra for both sphere and

network structures are plotted in Fig. 3.2 (a). The main peak represents the domi-

nant spatial frequency, and its width is inversely proportional to the average size of

ordered domains [23]. The sphere and network structures have similar peak widths,

and thus comparable domain sizes.

We also calculated the real-space density autocorrelation function C(∆r) aver-

Figure 3.2: Structural characterization of photonic amorphous structures. (a) Angle-
averaged power spectra of the spatially Fourier transformed density for jammed sphere
packings (dashed line) and tetrahedral networks (solid line) versus qa/2π, where q is
the spatial frequency and a is the mean spacing between spheres. The inset shows
a cross-section of the 3D power spectrum for the tetrahedral network. (b) Angle-
averaged density autocorrelation for the sphere packing and network structures. The
inset shows the amplitudes of the oscillatory peaks of C(∆r) for sphere packings
(circles) and tetrahedral networks (crosses).

aged over all angles for the sphere and network structures [23]. As shown in Fig. 3.2

(b), both structures display highly damped oscillations of C(∆r). The first peak away
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from ∆r = 0 is located at the average spacing a between nearest neighbors. We find

that the amplitudes of the oscillatory peaks decay exponentially [inset to Fig. 3.2

(b)] with a decay length (excluding the first peak) ξr ≈ 0.9a for the sphere packings

and 1.1a for the tetrahedral networks. Hence, there are weak spatial correlations and

short-range order in these PAS.

3.1.3 DOS of PAS with cermet and network topologies

In this section, we describe calculations of the DOS for jammed dielectric spheres in

air, the inverse structure, and the tetrahedral networks of dielectric rods using the

order-N method [24]. We choose a cubic supercell with size 8.7a containing 1000

spheres and refractive indices n = 3.6 and 1 for the high- and low-index materials,

respectively. We find that the optimal air fraction that yields the largest reduction of

the DOS is γ = 0.75 for the dielectric sphere packings and 0.80 for both the inverse

structure and tetrahedral network. The DOS was ensemble-averaged over five distinct

configurations at the optimal γ for each topology, and then normalized by the DOS

of a “homogeneous” medium with the same γ. The latter structure is generated by

placing cubic dielectric voxels (with lateral dimension 0.043a, which is much smaller

than the wavelength of light λ) randomly in the supercell.

As shown in Fig. 3.3, the maximal DOS reduction occurs in the tetrahedral

network structure, which is two orders of magnitude larger than that for the dielec-

tric spheres and inverse structures. For the tetrahedral networks, the PBG is formed

at normalized frequency d/λ ≈ 0.22, where d is the average length of dielectric rods

and d/a = 0.39. The width of the PBG normalized by the gap center frequency is

∼ 5.5%. The modest reduction in the DOS at a/λ ≈ 0.41 for the dielectric spheres

stems from Mie resonances of individual spheres [8]. The uniformity of the dielectric

spheres allows the coupling of their Mie resonances, which of the lowest order for
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Figure 3.3: DOS for (a) jammed dielectric spheres in air with γ = 0.75, (b) inverted
structures with γ = 0.8, and (c) tetrahedral networks with γ = 0.8. The wavelength
λ is normalized by the mean spacing between spheres a (average bond length d) on
the top (bottom) scale.
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isolated dielectric spheres in air occurs at a/λ ≈ 0.41. In contrast, the air sphere

structures have only a small reduction of the DOS in the frequency range where the

tetrahedral networks show a pronounced PBG, despite the fact that both structures

have dielectric network topology and similar degree of spatial correlation. It is clear

that the dramatic difference in the DOS cannot be explained by the small differences

in spatial correlations.

Our studies of jammed dielectric sphere packings show that uniformity in the size

of dielectric spheres leads to strong coupling of Mie resonances that result in a deple-

tion of the DOS. In the inverse structure of air spheres, the basic scattering unit is the

dielectric filling between air spheres. For the tetrahedral network structure, the basic

scattering unit is centered at each junction where four dielectric rods meet. Note

that in the network topology, the adjacent scattering units are connected, in contrast

with the cermet topology. To compare the uniformity of local scattering units in

dielectric networks, we calculate the average refractive index near the center of each

unit. For the tetrahedral network structure, we calculate the mean refractive index

n̄ within a sphere of radius r whose center coincides with the center of each junction.

We then compute the average ⟨n̄(r)⟩ and its variance V (r) over all junctions. For

the air spheres, the dielectric junction center is set at the center of refractive index

distribution within each tetrahedron obtained from the 3D Delaunay tessellation of

the sphere centers. Similarly, we calculate the mean refractive index n̄ around each

junction center, ⟨n̄(r)⟩, and V (r) averaged over all junctions.

In Fig. 3.4 (a) we show that on average the tetrahedral network and air spheres

structure have similar distributions of the mean refractive index ⟨n̄(r)⟩ around each

dielectric junction. In addition, the average refractive index for both networks ap-

proaches the same value at large r since the air fraction γ is the same for both struc-

tures. However, the variance V (r) of n̄ for the two network structures shows marked

differences for all r as shown in Fig. 3.4 (b). The tetrahedral network possesses much
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Figure 3.4: Uniformity of the local scattering environment for the dielectric networks
of tetrahedral bonding (solid line) and air spheres (dashed line). (a) Mean index of
refraction ⟨n̄(r)⟩ and (b) variance V (r) within a distance r from the dielectric junction
center. r is normalized by the mean spacing of spheres a (average bond length d) on
the top (bottom) scales.

smaller fluctuations in n̄ from one junction to another. Thus, the scattering units are

much more uniform for the tetrahedral network than those in the air spheres. The

uniformity of local refractive index distribution ensures similar scattering character-

istic of individual dielectric junctions and facilitates their coupling which leads to a

dramatic depletion of the DOS.

The formation of a PBG in the tetrahedral network structure also depends on the

air fraction γ and the refractive index of the dielectric material n. In Fig. 3.5 (a),

we show the variation of the PBG for different values of γ while keeping n at 3.6.

Reducing the air fraction below 0.8 leads to a decrease in the PBG. A reduction in γ

increases the average refractive index of the structure, thus reducing the ratio of the

index difference (n− 1) to the average refractive index. It leads to a decrease of the

overall scattering strength, and a weakening of the PBG. In contrast, if γ is increased

to above 0.8, there is an insufficient amount of high-index material to scatter light.

Thus, there exists an optimal air fraction γ at which the scattering strength is max-

imal and the PBG is the largest. The optimal value of γ varies with the refractive

index contrast. As shown in Fig. 3.5 (b), as n decreases, the maximal DOS reduction
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shifts to smaller γ value. In addition, the DOS dip becomes shallower, reflecting the

PBG effect is weaker at lower refractive index contrast. While the depth of DOS re-

duction changes slightly when n varies from 3.6 to 3.2, it drops by nearly two orders

of magnitude with a further reduction of n from 3.2 to 2.8. This threshold behavior

indicates there is a cut-off value of n for the PBG formation in the tetrahedral net-

work structure.

Figure 3.5: DOS of tetrahedral networks for different values of the air fraction γ and
refractive index n. (a) n = 3.6, (i)γ = 0.85, (ii)γ = 0.72, and (iii) γ = 0.6. (b) (i)
n = 3.2, γ = 0.77, (ii)n = 3.0, γ = 0.74 and (iii) n = 2.8, γ = 0.72.

3.1.4 Effect of short-range order

In addition to the factors studied above, short-range positional order and tetrahedral

bond order play important roles in the formation of PBGs in PAS. In this section,

we focus on the dielectric network of tetrahedral bonding, which yields the largest

PBGs, and vary the amount of positional and tetrahedral bond order. In particular,

we tune the positional order of the original sphere packings from which the tetrahedral

networks are formed. The degree of positional order increases with the volume fraction
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Figure 3.6: Tetrahedral dielectric networks generated from sphere packings with pack-
ing fraction (a) ϕ = 0.35, (b) 0.64, and (c) 0.69. 2D cross-sections of the 3D spatial
Fourier spectra of the corresponding tetrahedral networks are shown in (d), (e), and
(f).

of spheres ϕ, which varies from 0.35 to 0.69. We label the tetrahedral networks

(Fig. 3.6 (a)-(c)) generated from the sphere packings at ϕ = 0.35, 0.64, and 0.69 as

A, B, and C. 2D cross-sections of the 3D spatial Fourier spectra for these structures

are presented in Fig. 3.6 (d)-(f). The power spectra of networks A and B consist of

concentric shells, but the shell width is notably larger for A. Thus both A and B are

isotropic structures, but B possesses more positional order than A. In contrast to

A and B, network C features discrete diffraction peaks in the Fourier spectrum, and

the structure is no longer isotropic.

In Fig. 3.7, we compare the DOS of the tetrahedral networks A, B, and C, with the

refractive index of the dielectric rods set to n = 3.6. By adjusting the dielectric rod

radius W , we find that the optimal air fraction for all three structures is γ = 0.8. As

expected, network A, with the least positional order, possesses the smallest depletion

in the DOS. However, network C with the strongest degree of positional order has
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a smaller DOS depletion than network B. This result contrasts with recent findings

for 2D PAS with air cylinders embedded in dielectric materials that show increasing

positional order leads to stronger DOS depletion [23]. To understand these results,

we must also compare the uniformity of the local refractive index distribution and the

structural topology of the three network structures at fixed radius W of the dielectric

rods. We find that networks B and C have comparable fluctuations in n̄ over all the

junctions. Thus, local uniformity does not explain the difference in the depletion of

the DOS for networks B and C.

To investigate the effects of local topology on the depletion of the DOS, we

Figure 3.7: The DOS for three tetrahedral dielectric networks (a) A, (b) B, and (c)
C with positional order increasing from A to C.

compute the tetrahedral order parameter [9, 10]

ζ = 1− 3

8

3∑
j=1

4∑
k=j+1

(
cosψjk +

1

3

)2

, (3.1)
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where ψjk is the angle between two dielectric rods joined at a junction in the tetra-

hedral network [25]. For a periodic diamond network, ψjk = 109.5◦, cos(ψjk) = −1/3

for all j and k, and thus ζ = 1 at each junction. If the dielectric rods are randomly

orientated, ⟨ζ⟩ = 0. In Fig. 3.8, we plot the distributions of ψjk and ζ for the A, B,

and C networks, and provide the mean values (ψ̄jk or ζ̄), and standard deviations sψ

and sζ .

Network A possesses the widest distributions for both ψjk and ζ, which indicates

Figure 3.8: ( Characterization of the local topology for networks A, B and C. (a) The
distribution of angles ψjk between dielectric rods j and k at each tetrahedral junction.
The vertical dashed line indicates the angle for the periodic diamond structure, ψjk =
109.5◦. (b) Distribution of the tetrahedral order parameters ζ at each junction. The
average ψ̄jk and ζ̄ and standard deviations sψ and sζ are also provided.

that the local topology varies significantly from one junction to another and the bond

angles within each junction are not uniform. The distributions of ψjk and ζ are nar-

rower for network B, and are peaked at ψjk = 114◦ and ζ = 0.95, which indicates

that most of the junctions have a similar topology to that in a diamond lattice. In

contrast, network C displays multi-modal distributions for ψjk and ζ. For example,

the ζ distribution possesses peaks at ζ = 0.95, 0.72, and 0.5. The first peak reveals

that there are many junctions with strong tetrahedral order, while the second and

third peaks reflect the existence of many “defect” junctions with low ζ. Such defect
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junctions are likely located at domain boundaries, and introduce irregularity in the

local configuration of scattering units. Figures 3.7 and 3.8 show that photonic amor-

phous networks with strong tetrahedral order and few defect junctions have broad

PBGs.
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3.2 Localized photonic band edge modes and or-

bital angular momenta of light in a golden-

angle spiral

3.2.1 Introduction

2 Golden-angle spirals have been discovered in the arrangements of seeds, leaves, and

stalks in sunflowers, pine cones, artichokes, celery, daisies, and many other plants [27].

Such patterns give the most even distributions of seeds in the sunflower heads, with

no seeds clumping. Mathematically the golden-angle spiral is a form of Fermat’s

spiral representing the densest packing of identical circles within a circular region.

Those circles form many spiral arms, or parastichies, in clockwise (CW) and counter-

clockwise (CCW) directions. The numbers of parastichies are consecutive numbers

in the Fibonacci series, the ratio of which approximates the golden ratio [28]. In-

spired by nature, optical properties of spiral structures have been explored in recent

years. For instances, photonic crystal fibers (PCF) with air holes arranged in the

golden-angle spiral pattern exhibit large birefringence with tunable dispersion [29].

Nanoplasmonic spirals generate polarization-insensitive light diffraction and planar

scattering over a broad frequency range [30].

Another fascinating feature of the golden-angle spiral structure is its ability to cre-

ate an isotropic photonic bandgap (PBG), which inhibits light propagation in all di-

rections [31]. In fact the 1D analogue of dielectric layers stacked in Fibonacci sequence

have been explored earlier and shown to possess multiple photonic bandgaps [35,36].

Of course, the most well-known structures that produce PBGs are photonic crys-

tals [32], but their structural anisotropy leads to spectral mismatch of gaps in dif-

ferent directions. To have complete PBGs, more isotropic structures, e.g. photonic

2. Chapter 3.2 is primarily based on the work published in ref. [26].
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quasicrystals with higher rotational symmetries, are preferred [33,34]. However, the

photonic quasicrystals still have discrete Fourier spectra and are not fully isotropic.

The golden-angle spiral has better isotropy because its Fourier space is diffuse and

circularly symmetric [30]. It has been predicted [31] that a 2D golden-angle spiral

array of dielectric cylinders in air, even with low refractive index contrast, can create

a broad omnidirectional PBG for transverse magnetic (TM) polarization. The gap

width exceeds that in a six-fold lattice or a 12-fold fractal tiling. One advantage

over the photonic amorphous structure which can also produce an isotropic PBG is

that the golden-angle spiral structure is deterministic and has predictable and repro-

ducible properties. The absence of sample to sample variations is critical to many

applications.

Although it is now known that the golden-angle spiral can produce an omnidi-

rectional PBG, little is known on the nature of its photonic band edge modes. In

photonic crystals, the photonic band edge modes have low group velocities and high

quality factors, thus useful to slow light devices and lasers. The band edge modes are

spatially extended in the photonic crystals, but can be critically localized in the pho-

tonic quasicrystals which lacks translational symmetry [33,34,37]. The golden-angle

spiral does not have discrete translational or rotational symmetries, and its band edge

modes are distinct from those in photonic crystals and quasicrystals. Recent studies

demonstrated that spiral structures can transfer net orbital angular momentum to

the scattered optical waves [30]. Hence, the unique structural characteristic of the

golden-angle spiral may impose unique and novel features on the photonic band edge

modes.

In this paper, we present a systematic study on the photonic band edge modes in

2D golden-angle spiral arrays of air holes in dielectric host media. The PBG exists

for the transverse electric (TE) polarization, and multiple classes of band edge modes

are identified. Each class is localized in a specific region of the structure, due to spa-
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tial inhomogeneity in the distribution of neighboring air holes. We discover that the

photonic band edge modes possess discrete angular momenta that correspond to the

Fibonacci numbers, which are associated with the parastichies in the spiral structure.

The close relationship between the structural properties and characteristics of the

photonic band edge modes is unveiled using the Fourier Bessel spatial analysis. The

unique properties of the photonic band edge modes in the golden-angle spiral may

lead to applications in light emitting devices and optical sensors.

3.2.2 Structural analysis of the golden-angle spiral

The golden-angle spiral, also called the Vogel’s spiral, was first proposed by Vogel to

simulate the seeds distribution in a sunflower head [38]. The location of each seed or

circle is specified by a simple generation rule and expressed in the polar coordinate

(r, θ) as

r = b
√
q , (3.1)

θ = qα , (3.2)

where q = 0, 1, 2, . . . is an integer, b is a constant scaling factor, α = 360◦/ϕ2 ≈

137.508◦ is an irrational number known as the “golden angle”, ϕ = [1 + 51/2]/2 =

1.6180339 . . . is the golden ratio. The value of ϕ is approached by the ratio of two con-

secutive numbers in the Fibonacci series (1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . . ). With

this generation rule, the qth circle is rotated azimuthally by the angle α from the

location of the (q − 1)th one, and also pushed radially away from the origin by a

distance ∆r = b
(√

q −
√
q − 1

)
.

Figure 3.9(a) shows a golden-angle spiral that consists of N = 1000 circles. Vi-

sually there are multiple families of spiral arms formed by the circles. Within each
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family, the spiral arms, also called parastichies, are regularly spaced. Some of the

families have parastichies all twisting in the CW direction, and the others in the

CCW direction. The families are all intertwined. The number of parastichies in ev-

ery family is a Fibonacci number [28].

The 2D spatial Fourier spectrum of the golden-angle spiral is shown in Fig.

Figure 3.9: (a) Golden-angle spiral array consisting of 1000 circles. (b) Spatial Fourier
spectrum of the spiral structure in (a). (c) Delaunay triangulation of (a). The line
segments that connect neighboring circles are color-coded by their lengths d. (d)
Statistical distribution of the distance between neighboring particles d normalized to
the most probable value do. The colors are consistent to those in (c).

3.9(b). It has a continuous background, on top of which are discrete concentric rings.

The isotropy of the Fourier space reflects the structural isotropy. The diffuse back-

ground in the Fourier space indicates the golden-angle spiral is not a quasicrystal,
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but has many more spatial frequency components [30]. The radii of discrete rings

correspond to the dominant spatial frequencies of the structure. We extract the dis-

tance between neighboring particles d by performing the Delaunay triangulation on

the spiral array. In Fig. 3.9(c), each line segment connects two neighboring circles,

and its length d is color coded. The statistical distribution of d in Fig. 3.9(d) is

broad and non-Gaussian. d is normalized by d0, the most probable value of d where

the distribution is peaked. d0 scales linearly with b, as shown in [30]. The broad

distribution of d is consistent with the rich Fourier spectrum. The brightest ring in

the Fourier space, which is also the smallest, has a radius close to 2π/do. The non-

uniform color distribution in Fig. 3.9(c) reveals the spatial variation of neighboring

particles spacing in the spiral structure. This special type of spatial inhomogeneity

is a distinctive feature of the golden-angle spiral, and it has a significant impact on

its optical resonances as will be shown later.

In order to better understand the structural complexity of the golden-angle spiral,

we perform a Fourier Bessel spatial analysis. The Fourier Bessel transform decom-

poses the density function associated with the spiral structure in a series of Bessel

functions.

f(m, kr) =
1

2π

∫ ∞

0

∫ 2π

0

r dr dθ ρ(r, θ) Jm(krr) e
imθ , (3.3)

where the density function ρ(r, θ) is shown in Fig. 3.9(a), the azimuthal number

m is an integer, and kr represents a spatial frequency in the radial direction. The

2D plot of |f(m, kr)|2 shown in Fig. 3.10(a) illustrates that there are multiple and

well-defined azimuthal components m in the golden-angle spiral. After integrating

over the radial frequency kr, we obtain F (m) =
∫
|f(m, kr)|2krdkr which is plotted in

Fig. 3.10(b). The frequency range of integration is [π/do, 3π/do], centered around the

dominant spatial frequency 2π/do. We notice interestingly the dominant m values
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are 5,8,13,21,34,55,89, which are Fibonacci numbers and represent the number of

parastichies in each family. Later we will demonstrate that the parastichies encode

discrete angular momenta, quantized in the Fibonacci numbers, onto the optical

resonances.

Figure 3.10: Fourier Bessel Transform (FBT) of the golden-angle spiral structure in
Fig. 3.9(a) gives |f(m, k)|2 (a) and F (m) (b).

3.2.3 Photonic bandgap and band edge modes

We investigate now the optical properties of a golden-angle spiral that consists of

N = 1000 air cylinders in a dielectric medium with refractive index n = 2.65. This

structure, inverse of that in Ref. [31], facilitates the formation of PBG for the TE

polarized light with (Er, Eθ, Hz). We calculate the local density of optical states

(LDOS) at the center of the spiral structure, g(r, ω) = (2ω/πc2)Im[G(r, r, ω)], where

G(r, r’, ω) is the Green’s function for the propagation of Hz from point r to r’. The

numerical calculation is implemented with a commercial program COMSOL (version

3.5) [39]. Since the golden-angle spiral has a finite dimension, light may leak through

the outer boundary. In our simulation, the spiral structure is surrounded by a per-

fectly matched layer that absorbs the escaped light. From the calculated LDOS in

Fig. 3.11, we clearly see a PBG, and its width is about 11% of the gap center fre-

68



quency.

There are two peaks inside the gap at do/λ = 0.323 and 0.331. They represent

Figure 3.11: LDOS calculated at the center of the golden-angle spiral array as a
function of the normalized frequency do/λ. The regions at the lower and upper band
edge where the band edge modes exist are highlighted.

defect modes localized at the center of the spiral array where a small dielectric region

free of air holes acts as a structural defect. At both edges of the gap, there are many

more peaks which correspond to the band edge modes. Those on the higher (lower)

frequency edge of the gap are denoted as upper (lower) band edge modes. Due to

light leakage through the open boundary of the spiral structure, the band edge modes

have complex frequencies, and the imaginary parts of the frequencies represent the

leakage rates. We calculate the complex frequencies ω = ωr + iωi and spatial field

distributions of the band edge modes using the eigensolver of COMSOL. The qual-

ity factor Q = ωr/2ωi is obtained for every mode. From their frequencies and field

patterns, we identify several classes of the band edge modes. Within each class the

modes have similar field patterns and display monotonic variation of Q. Two classes

of the lower band edge modes are labeled in a plot of Q vs. do/λ = ωrdo/2πc in Fig.

3.12(a), another two classes of the upper band edge modes in Fig. 3.12(b). Within
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each class, the modes are ordered numerically following their spectral distances from

the edge of the PBG. As the modes in each class move further away from the PBG,

the frequency spacing of adjacent modes increases and the Q decreases.

The spatial distributions of the magnetic field (Hz) for the first three modes in

Figure 3.12: Quality factors of the lower band edge modes (a) and upper band edge
modes (b) versus the normalized frequency do/λ.

classes A, B, C and D are presented in Figs. 3.13-3.16. Every mode is accompanied

by a degenerate mode, e.g., A1 and A1’ have the same frequency and complemen-

tary spatial profile. The lower band edge modes have magnetic (electric) field mostly

concentrated in the air (dielectric) part of the structure, while the upper band edge

modes are just the opposite. This behavior is similar to that of a photonic crystal,

but there are also remarkable differences. The band edge modes in the golden-angle

spiral are spatially localized, each class of modes is confined within a ring of different

radius. As long as the ring is notably smaller than the system size, the modes are in-

sensitive to the boundary, as for the localized states. For example, mode D1 remains

unchanged when the air cylinders near the boundary are removed [D1” in Fig. 3.16].

A careful inspection of the mode profiles reveals that the class A modes have the

magnetic field maxima along the parastichies that are formed by the air cylinders

and twist in the CCW direction, while class B follow a different family of parastichies

that twist in the CW direction. These local standing wave pattern behaviors indicate
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light is confined in the direction perpendicular to the parastichies via Bragg scatter-

ing from the air holes. Since the orientation of parastichies changes with the polar

angle, these standing waves rotate azimuthally and wrap around to form a circular

pattern. Similarly, the magnetic field maxima of class C modes stay along the di-

electric parastichies that are formed in between the air cylinders and twist in the

CCW direction, and class D on a different family of dielectric parastichies twisting

in the CW direction. Bragg scattering from the dielectric parastichies leads to the

confinement of light in a ring. The envelop functions of the band edge modes exhibit

clear modulations in the azimuthal direction. The number of nodes (zero points) is

an odd integer for the modes in class A, B, C, but an even integer for D. This feature,

as will be explained later, is related to the number of parastichies on which the modes

are located.

Figure 3.13: Spatial distributions of magnetic field Hz for the first three pairs of band
edge modes of class A. The modes are localized within a ring of radius ∼ 12do.
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Figure 3.14: Spatial distributions of magnetic field Hz for the first three pairs of band
edge modes of class B. The modes are localized within a ring of radius ∼ 7do , close
to the center of spiral than the modes of class A.

Figure 3.15: Spatial distributions of magnetic field Hz for the first three pairs of band
edge modes of class C. The modes are located near the boundary of the spiral and
have stronger light leakage through the boundary.
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Figure 3.16: Spatial distributions of magnetic field Hz for the first three pairs of
band edge modes of class D. The modes are localized closer to the center of the spiral
and have small light leakage through the outer boundary. Mode D1” has the same
field distribution as D1 after the air cylinders in the outer layer of the spiral are
removed. The light leakage increases since the mode is closer to the boundary now.
The insensitivity of mode D1 to the change at the boundary confirms it is a localized
mode.
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3.2.4 Spatial inhomogeneity and localization

In this section, we will demonstrate that the spatial localization of photonic band

edge modes in the golden-angle spiral structure results from inhomogeneous distri-

bution of spacing between neighboring particles d. From the colors of line segments

connecting neighboring circles in Fig. 3.9(c), we see alternating rings of green color

[(i) and (iii) in Fig. 3.9(c), 1.1d0 < d < 1.3d0] and blue-reddish color [(ii) in Fig. 3.9

(c), d0 < d < 1.1d0 (blue) and 1.3d0 < d < 1.5d0 (red)]. Different classes of band

edge modes are localized in the rings of distinct colors. For example, by overlaying

the region that contains 90% energy of modes in class A on the color map of d in

Fig. 3.9(c), we find these modes are confined in region (ii), which is sandwiched by

regions (i) and (iii) of different color. The distribution of d in region (ii) is distinct

from that in (i) or (iii), leading to a change of PBG. We compute the LDOS in regions

(i), (ii) and (iii) by removing air cylinders outside that region. As highlighted in Fig.

3.17(b), the frequency range of class A modes is inside the PBG of region (i) and (iii)

but outside the PBG of region (ii). Consequently, light within this frequency range is

allowed to propagate in region (ii) but not in (i) or (iii). Hence, regions (i) and (iii)

act like barriers that confine class A modes in region (ii).

Next we consider the upper band edge modes, e.g. class C modes that concen-

trate in region (iii). The LDOS in region (ii) exhibits little difference from that in

(iii) within the frequency range of class C modes. Thus region (ii) does not act like a

barrier to confine modes in (iii). However, in region (iii) the distances between some

air cylinders match the wavelengths of class C modes, thus providing distributed

feedback for the formation of class C modes. Consequently, the class C modes stay

mostly in region (ii), even though there is no barrier at the boundary of this region.

It is similar to the formation of resonances in the conventional distributed feedback

structures. Thanks to its broad distribution of spacing between neighboring particles

d, the golden-angle spiral can support numerous modes at different frequencies. The
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spatial inhomogeneity of d leads to mode confinement in different parts of the struc-

ture.

Figure 3.17: (a) Overlay of the region where class A modes are localized on the color
map of the neighboring particles distance of air cylinders revealing class A modes
stay mostly inside a ring labeled (ii) and sandwiched between two other rings (i) and
(iii). (b) LDOS in the regions (i), (ii) and (iii).

3.2.5 Discrete angular momentum

As mentioned earlier, the standing wave patterns of the photonic band edge modes

are formed by distributed feedback from the parastichies that spiral out. One ex-

ample is presented in Fig. 3.18 (a), where the dashed arrows denote two families of

parastichies along which the field maxima of mode A1 follow. The magnetic field Hz

oscillates between the positive maxima on one parastichy and the negative maxima

on the next one of the same family. We perform the FBT on the field distribution by

replacing ρ(r, θ) in Eq. (3) with Hz(r, θ). To compare with the FBT of the structure

[ρ(r, θ) > 0], we set m′ = 2m and k′r = 2kr for the field FBT, which is equivalent to
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Figure 3.18: (a) Magnetic field distribution of mode A1 revealing the field maxima
follow a family of 21 parastichies twisting in the CCW direction and another family
of 89 parastichies in the CW direction (both are marked by the dashed arrows). (b)
FBT of the field distribution in (a) gives F (m′, k′r). (c) Region of the spiral array that
contains 90% energy of mode A1 is shown after removing the air cylinders outside.
(d) FBT of the structure in (c) gives F (m, kr) of the local region where mode A1
stays.
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considering the FBT of the field intensity distribution.

As shown in Fig. 3.18 (b), mode A1 has discrete angular momenta m′ = 21 and

m′ = 89, both are Fibonacci numbers. To find their origin, we perform FBT of the

structure in the region where mode A1 is localized [Fig. 3.18(c)]. The result is pre-

sented in Fig. 3.18(d), and show indeed m = 21 and m = 89 components with radial

frequency kr similar to that in the field profile of mode A1. While there are also

m = 34 and m = 55 components in the structure, they are at lower kr, thus corre-

sponding to modes at lower frequencies and further away from the band edge. Hence,

these analysis show that the angular momenta of the band edge modes are imparted

by the underlying structure, more specifically, the parastichies in the golden-angle

spiral. Similar analysis of mode B1 reveals that it supports angular momenta m = 13

and m = 55. They are also Fibonacci numbers, but smaller than those of mode A1,

because mode B1 is localized in a smaller ring that has less number of parastichies.

Moving to the upper band edge, Figure 3.19(a) shows that mode D1 is located

along the parastichies twisting in the CW direction (marked by the dashed arrow).

FBT of the mode profile gives a single dominant angular momentum component at

m′ = 34. FBT of the corresponding region where D1 locates also reveals that there

is a m = 34 component at the similar value of kr. Other m components in the struc-

ture have higher kr, thus corresponding to higher-frequency modes farther away from

the band edge. Similar analysis of mode C1 reveals that it has angular momentum

m′ = 55, and the underlying structure contains a family of 55 parastichies.

With a better understanding of the connections between the mode profiles and the

underlying structures, we can now explain why the numbers of nodes in the envelope

functions are either odd or even for all modes belonging to one class. Note that the

number of parastichies that correspond to mode A1, B1 or C1 is an odd number, but

that for D1 is an even number. A1, B1 or C1 has one node in the envelop function,

while D1 has none. As mentioned previously, the field maxima alternate between
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Figure 3.19: (a) Magnetic field distribution of mode D1 revealing the field maxima
follow a family of 34 parastichies twisting in the CW direction(marked by the dashed
arrow). (b) FBT of the field distribution in (a) gives F (m′, k′r). (c) Region of the
spiral array that contains 90% energy of mode D1 is shown after removing the air
cylinders outside. (d) FBT of the structure in (c) gives F (m, kr) of the local region
where mode D1 stays.
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the positive on one parastichy and the negative on the next. After wrapping around

one turn (360◦) and returning to the original parastichy, the field maxima must coin-

cide with the one at the original parastichy. This is possible when there are an even

number of parastichies, e.g. for mode D1. For mode A1, B1, or C1, the number of

parastichies is an odd number, thus the field maxima would change sign after one

turn. Since the field maxima of different sign cannot coincide spatially, there must

be a radial shift, e. g., the positive maxima of the returning field shift away from the

negative maxima of the original field along the parastichy, and there is a field node

in between them. After a second round trip, there must be another nodal point. All

these nodal points of the field form a node for the envelop function.

For the higher-order modes in every class of A-D, the number of nodes in the

Figure 3.20: F (m′) from the FBT of the field profiles of mode D1 (a), D2 (b), and D3
(c) illustrating the splitting of the peak due to azimuthal modulations of the envelop
functions of D2 and D3.
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envelop function increases in a step of two, thus remain as an odd number for A-C

and an even number for D. The addition of an even number of radial shift of field

maxima adds a multiple of 2π to the phase of the returning field, and does not affect

the constructive interference at the starting point. We perform FBT on the field

distributions of the higher-order modes, and find the additional nodes in the envelope

function causes a splitting of the peaks in F (m′). For example, mode D1 has only a

single peak at m = 34 [Fig. 3.20(a)], while D2 has two peaks at m = 32 and m = 36

[Fig. 3.20(b)]. The change in m, ∆m = 2, is equal to the number of nodes in the

envelope function. For D3 mode [Fig. 3.20(c)], ∆m = 4 due to four nodes in the

envelop function. Such splitting is observed in all higher-order modes of classes A,

B and C. The azimuthal modulation of the envelop function introduces additional

angular momenta to the band edge modes.

3.2.6 Conclusion

In summary, we have studied numerically the photonic bandgap and band edge modes

in the golden-angle spiral array of air cylinders in dielectric media. Despite the

absence of long-range translational and rotational order, there exists a significant PBG

for the TE polarized light. The upper and lower band edge modes can be categorized

into different classes based on the field patterns. Due to spatial inhomogeneity in

the distances of neighboring air holes, the band edge modes are localized within

the rings of different radii via Bragg scattering from the parastichies in the spiral

structure, and wrapped around azimuthally to form circular patterns which carry the

well-defined angular momenta. The band edge modes have discrete angular momenta

that originate from different families of the parastichies whose numbers correspond

to the Fibonacci numbers. The unique structural characteristic of the golden-angle

spiral impose special features on the band edge modes that are absent in the photonic
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crystals and quasicrystals. These modes may lead to unusual properties of light

transport in the spiral structure, and also produce laser emission with well-defined

angular momenta when optical gain is added.
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3.3 Optical resonances in topological defect struc-

tures

3.3.1 Introduction

Topological defects in liquid crystals have attracted a lot of attention recently for ef-

ficient generation of optical vortices [40–42]. By spin-to-orbital momentum coupling,

an incoming circularly polarized beam is converted to a vortex beam after transmit-

ting through a liquid crystal thin film with topological defects. However, the liquid

crystal molecules are much smaller than optical wavelengths, thus light cannot be

trapped at the topological defect. The questions are whether photonic structures

with topological defects can support optical resonances and if so how they are differ-

ent from those in photonic crystals (PhCs). To address these questions, we perform

a numerical study on topological defect structures with wavelength-scale anisotropic

scattering units. These structures do not possess any translational symmetry as each

scattering unit is rotated as a function of their center position. Recent studies show

that the flow of optical energy can be molded to form optical vortices in plasmonic

nanostructures [43, 44]. In this work, we demonstrate another scheme of generating

vortex-like energy flow by strategically tuning the form factors across the sample. We

have observed extended optical resonances which exhibit circular flux flow around the

singular point in the topological defect structure. In addition, we artificially remove

some scattering units at the center of the structure to generate defect states with high

Q factor. High Q localized modes with broken chiral symmetry are formed within

the defect cavity. Such chiral cavities may be useful to enhance or suppress light

interaction with chiral materials.
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3.3.2 Topological defect structure

In our simulation, we adopted the elliptical shape scattering units which emulate the

elongated liquid crystal molecules. As shown in Fig. 3.21(a), we arrange the air

ellipses with aspect ratio of 1.4 periodically on a square lattice in a dielectric back-

ground with refractive index n = 2.83. The air area fraction is 28%. We define the

crystal orientation parallel to the major axis of ellipses as X1 and the orthogonal one

as X2. In Fig. 3.21(b), we compare the transverse electric (TE) photonic band struc-

tures between the square lattices consist of air ellipses (solid line) and circles (dashed

line). Due to anisotropy of the scattering unit, degeneracy of optical resonances at

the Γ − X1 and Γ − X2 crystal orientation is lifted for the square lattice tiled with

elliptical air holes. Comparing to circular air holes, the dielectric region between two

adjacent ellipses decreases in X1 direction, causing the reduction of the effective in-

dex. The opposite happens in the X2 direction where the effect index increases. As

a result, the frequency of the optical resonances at X1 direction increases and vice

versa for resonances at X2 direction.

A photonic topological defect structure is then generated by rotating each el-

lipses on the lattice to different directions. The orientation of each ellipses on the

lattice is determined by a simple rule, ϕ = kθ + c, where ϕ is the angle between the

major-axis of an ellipse with the horizontal x-axis, θ represents the polar angle of the

center position of the ellipse, k is the disclination strength and c is a constant. Fig.

3.21(c) shows a topological defect structure with k = 1 and c = π/4 which resembles

a matter vortex. The orientation of an ellipse ϕ at the center of the structure is

undefined and thus it is a singular point. At each four corners of this topological

defect structure, all the ellipses are aligned in same direction but they are rotated

from one corner to another by 90 degrees. As a result, this structure is aperiodic

and does not possess any mirror symmetries, i.e. the chiral symmetry is broken. The

spatial Fourier transform of the topological defect structure (Fig. 3.21(e)) possesses
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Figure 3.21: Square lattice PhC and topological defect structure. (a) PhC with ellipti-
cal shape unit cells. The three crystal orientations are indicated. (b) Photonic band
structures for transverse electric polarization in square lattice with circular shape
scattering units (dashed line) and elliptical shape scatteiring units. (c) Topological
defect structure with k = 1 and c = π/4. (d,e) Spatial Fourier spectra of the square
lattice in (a) and (c). Elliptical shape form factor is observed in the Fourier spectra
for (a).
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the same dominant Bragg peaks as in a square lattice PhC (Fig. 3.21(d)). However,

due to constantly rotating ellipses, the elliptical shape form factor curve (blue color

line in Fig. 3.21(d)) which exists in the Fourier spectrum of a PhC is smeared out in

the Fourier spectrum of the topological defect structure.

3.3.3 Optical resonances at major crystal orientations

Figure 3.22: Modes’ quality factor distribution in a photonic topological defect struc-
ture. The shaded area corresponds to the partial band gap in the Gamma − X
direction for a PhC with circular air holes. The topological defect structure preserves
the partial band gap effect where the density of modes is lower within the shaded
frequency range. The high-Q modes at the boundary of the shaded region correspond
to the modified band-edge modes.

Since the topological defect structure is aperiodic, we limit our numerical simu-

lation to a structure composed of N = 1024 elliptical air holes. Aspect ratio of the

ellipses is fixed at 1.4. In the numerical simulation, the structure is surrounded by

dielectric medium and terminated by perfectly matched layers to absorb light leaked

out from the structure. We consider transverse electric (TE) polarization, with only
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(Ex, Ey, Hz) field components. For an open system, one can define quasi-normal

mode. These are eigenfunctions of the Maxwell equations with complex frequency

that satisfy the boundary conditions of the outgoing wave. They describe states that

have stationary normalized spatial profiles and amplitudes decaying in time due to

radiative losses. We used the finite element method (COMSOL) to compute the com-

plex eigenfrequency (ω = ωr + iωi) of the modes and their spatial fields distribution.

In Fig. 3.22, we show the mode’s quality factor (2ωi/ωr) distribution for the topolog-

ical defect structures. Even though the structure lacks translational symmetry, the

mode quality factor distribution remains very similar to the PhC, and the photonic

band gap effect is preserved.

Therefore, we expect that the quasi-normal modes in the topological defect struc-

ture evolve from the ones in PhC, and their spectral frequencies are close. Here, we

focus on the quasi-normal modes with highest frequency a/λ along certain crystal

direction which are usually termed as ”band edge modes” in PhC. For each direction,

there are two band edge modes, one has field intensity localized in the air regions,

which is called air band edge mode and the opposite one is called dielectric band edge

mode. Fig. 3.23(a) and (b) show the spatial distribution of magnetic field Hz(x, y)

for the dielectric band edge mode at Γ − X1 and air band edge mode at Γ − X2 in

a PhC with elliptical shape unit cells. The band edge modes are formed via Bragg

reflection from the dielectric-air ellipses layers in the Γ −X1 and Γ −X2 directions.

The quality factor of these two modes are higher than their counterparts in each

direction. This is because from the photonic band calculation in Fig. 3.21(b), the

frequencies of mode (a) and (b) shift towards the center of the partial photonic band

gap. On the other hand, the frequencies of their counterparts shift away from the

partial photonic band gap center and into the pass band. As a result, mode (a) and

(b) have better confinement with higher Q factors.

In Fig. 3.23(c) and (d), we plot the corresponding quasi-normal modes found in
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Figure 3.23: Quasi-normal modes in topological defect structure at Γ−X1 and Γ−X2

directions. Spatial magnetic field distribution realHz(x, y) of the band edge modes in
a PhC (a,b) and topological defect structure (c,d). (a,c) correpond to dielectric band
edge modes in Γ−X1 direction and (b,d) are air band edge modes in Γ−X2 direction.
(e,f) Spatial distribution of the angular momentum density Jz(x, y) for modes (c) and
(d).
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the topological defect structures with very similar frequency and local spatial field

distribution to the modes shown in Fig. 3.23(a) and (b). Vortex-like arrangement

of elliptical air holes (Fig. 3.21(c)) creates local crystalline regions at four corners

of the topological defect structure which resemble the PhC in Fig. 3.21(a). The el-

lipses located approximately at around 45◦ and 225◦ have major-axis parallel to the

y-axis, and at 135◦ and 315◦, they become parallel to the x-axis. This alternating

arrangement of ellipses rotation enables the formation of modes which support the

PhC-like spatial field distribution within each crystalline regions. As a result, the

mode pattern consists of four separated regions with same spatial field distribution

but rotated 90◦ going from one corner to the next. Note that close to the center of

the structure, the orientations of the ellipses change more drastically from one to an-

other than those at the corners, so the field intensity diminishes going into the center.

The field amplitude at the center of the structure becomes zero which resemble the

singular point in a vortex field. As the field of the mode extends to the edge of the

structure, the radiative decay rate is high and thus the Q of the modes becomes lower

than their counterparts in a PhC.

From the spatially rotated field pattern of the modes, one might expect the mode

exhibits vortex-like energy flow. To investigate such phenomena, we compute the

spatial distribution of the angular momentum density Jz = r × pθ, where r is the

radial distance to the center of structure, pθ is the azimuthal component of the time-

averaged Poynting vector S⃗(x, y) = 1
2
Re[E⃗(x, y)× H⃗∗(x, y)] divided by square of free

space velocity of light. pθ is positive if the azimuthal energy flow is counterclockwise

(CCW) and negative for clockwise (CW). The angular momentum density Jz is an

analogue to the mechanical torque. Fig. 3.23(e) and (f) show the spatial distribution

of Jz(x, y) for mode (c) and (d) respectively. For mode (c), the dominant angular

momentum density is in counterclockwise (CCW) direction where the spatially av-

eraged ⟨Jz(x, y)⟩x,y = 0.36. On the other hand, mode (d) contains mostly clockwise

88



(CW) components with ⟨Jz(x, y)⟩x,y = - 0.96. As a result, these topological defect

resonances can potentially be used to exert a net torque on nanoparticles in an optical

tweezer setup.

Figure 3.24: Dielectric band edge modes at Γ −M crystal orientation. (a,c) Spatial
magnetic field distribution realHz(x, y) of the modes for a PhC and topological defect
structure. (c,d) Arrows plot of the Poynting vectors within boxed regions of the field
profiles in (a) and (c). The topological defect resonance shows circular energy flow in
the counter-clockwise direction which is absence in the PhC.

At another major crystal orientation Γ −M , the light fields contain spatial fre-

quency in 45◦ direction. As a result, the field profile of a PhC dielectric band edge

mode resembles the conventional “checkerboard” pattern [Fig. 3.24(a)]. To visualize
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the energy flow, we generate a spatial arrows plot for the Poynting vectors. For the

mode in a PhC, the energy only flow outwards from the center of the structure with

growing amplitude due to the complex eigenfrequencies [Fig. 3.24(b)]. On the other

hand, the field profile of the corresponding topological defect resonance is distorted

by the continuously rotating elliptical shape particles and resembles a “cross” sign

[Fig. 3.24(c)]. Furthermore, from Fig. 3.24(d), we observe circular flow of energy in

the counter-clockwise direction close to the center of the structure.

3.3.4 Defect states in topological defect structures

We have observed that by introducing topological defect in a square lattice of ellipses,

the flux can be molded to exhibit circular flow. However, all the spatially extended

band edge modes have very low Q because light can leak out from the structure easily

at the boundary. To trap light within the topological defect structure, we artificially

removed 16 ellipses from the center and form a defect cavity [Fig. 3.25(a)]. In Fig.

3.25(b), there exists several high-Q modes within the partial band gap in the Γ−X

direction. In particular, there exist a defect mode (c) with Q about one order of

magnitude higher than the rest of the modes.

For this mode (c), we compute its spatial distribution of Poynting vectors in Fig.

3.26(a) and its spatial distribution of angular momentum denstiy Jz in Fig. 3.26(b).

This high-Q defect mode exhibits net energy flow in the counter-clockwise direction

and possess net orbital angular momenta to form an optical vortex. To understand

why this happen, we need to consider the boundary of the defect region which contains

continuously rotating ellipses. As result, the chiral symmetry of the defect cavity is

broken and this breaks the balance of scattering for CCW and CW waves. For this

high-Q defect mode, the CW wave experience more scattering loss compared to the

CCW wave and thus the net energy flow in the CCW direction. To confirm that this
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Figure 3.25: Defect states in topological defect structure. (a) A defect cavity is created
by artificially removing 16 ellipses at the center of the structure. (b) Quality factors
for several defect states are highlighted and their spatial field profiles are shown in
(c-f).
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is the underlying mechanism, we compute another defect state within a topological

defect structure with the paramter c flipped to -1. As shown in Fig. 3.26(c), all the

ellipses are rotated 90◦ from those in Fig. 3.26(a). Consequently, we observe that

both the energy flow and net orbital angular momenta are dominated by the CW

component, which is opposite to the previous one seen in Fig. 3.26(a) and (b). From

these observations, we can conclude that due to the breaking of chiral symmetry

at the boundary of the defect cavity, the high-Q mode contain net orbital angular

momenta and thus form an optical vortex.
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Figure 3.26: Optical vortices generation in a defect cavity with broken chiral symme-
try. (a) Arrows plot of the Poynting vectors within the defect cavity showing a net
flow of flux in the counter-clockwise direction. (b) Spatial distribution of the angular
momentum density Jz within the boxed region of the mode in (a), showing it mainly
has net orbital angular momenta in the counter-clockwise direction and thus it forms
an optical vortex. (c) This structure contains the opposite “charge” compared to (a).
Consequently, the net energy flow also flips to become clockwise. (d) The optical
vortex now have net orbital angular momenta in the clockwise direction.
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Chapter 4

Short-range Order and Near-Field

Effects on Optical Scattering and

Structural Coloration

4.1 Introduction

1 Structural color, which has been widely employed in nature, originates from light

scattering by nanostructures with spatial variation in the refractive index on the scale

of optical wavelengths. The most studied examples are periodic structures that pro-

duce iridescent color via Bragg scattering [2, 3]. In recent years, there is a growing

interest in the previously unappreciated class of quasi-ordered structures that can

generate non-iridescent color [4–8]. Such structures have only short-range order and

are isotropic, making color invariant with viewing angle in natural lighting conditions.

Biomimetic samples have been fabricated by self-assembly of colloidal particles [8,9],

and have potential applications in wide-angle color displays [10–12].

We recently studied the mechanism of coloration of quasi-ordered nanostructures

1. This chapter is primarily based on the work published in ref. [1].

98



in feather barbs of many bird species [5]. Single scattering of light [7], with contri-

butions from double scattering [13,14], is shown to determine the color. The angular

dispersion and polarization characteristic of the major/secondary peak in the scatter-

ing spectra agree well to the predictions of single/double scattering. Local structural

correlation leads to strong backward scattering of light within a narrow frequency

range, which is selected by the characteristic length scale of the structure. A puzzle

left from our previous study is why only low-order scattering events are observed from

those structures even though simple estimations of scattering length would predict

strong multiple scattering. As an example, Fig. 4.1 shows part of a cross-sectional

transmission electron micrograph (TEM) of the feather barb of Cotinga maynana (a

blue green bird). The nanostructured layer underneath the cortex is about 10 µm

thick, and consists of random close-packed [15,16] spherical air cavities in a β-keratin

matrix. The transport mean free path lt of light in this structure, assuming inde-

pendent scattering approximation, is significantly smaller than the thickness of the

nanostructured layer. Thus, one might expect that multiple scattering to dominate

over single scattering and remove wavelength dependence in the reflection spectrum.

However, such structures create vivid colors in reflection as shown in Ref. [5]. The

dominant peak in the optical scattering spectrum coincides with the X-ray scattering

peak, confirming the former is from single scattering of light [7].

To resolve this puzzle, we have directly measured the transport mean free path lt

in biomimetic samples, which are made of random close-packed dielectric spheres in

air [Fig. 4.2]. The reason we use biomimetic samples instead of biological samples is

that the nanostructured layers in the latter [Fig. 4.1] are too thin for the coherent

backscattering (CBS) experiment which we perform to extract lt [17]. We find an

order of magnitude difference between the measured value of lt and the estimated one

over a broad frequency range. Our theoretical analysis reveals that short-range order

and near-field effects reduce the overall (angle-integrated) scattering strength and in-
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crease lt dramatically. Thus, in the biological samples which have similar scattering

strength as the biomimetic samples, the transport mean free path is comparable to the

thickness of nanostructured layer. Consequently, single scattering is much stronger

than multiple scattering, and dominates coloration.

Figure 4.1: Transmission electron micrograph (TEM) showing the amorphous pho-
tonic structure (right part) in a feather barb of Cotinga maynana that produces blue
color. Uniform spherical air cavities (white) are closely packed in β-keratin (grey).
The structure is isotropic and has only short-range order.

4.2 Measurement of transport mean free path

To avoid polycrystalline structures that can be easily formed with monodisperse

spheres, we fabricate the biomimetic samples by self-assembly of bi-disperse spheres of
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Figure 4.2: Scanning electron micrograph (SEM) of our biomimetic sample made of
random close-packed polystyrene spheres of two sizes. Inset is a photo image of the
entire sample.

polystyrene [18]. Fabrication of the samples were performed in Prof. Eric Dufresne’s

lab in Yale by Dr. Jason Forster. First, the monodisperse spheres are synthesized

using a surfactant-free polymerization technique [8, 19]. The sphere size can be var-

ied by changing the methanol concentration. Then, equal volumes of monodisperse

suspensions with polydispersity of 2% are mixed to make a bi-disperse suspension.

An approximate 0.5 mL droplet of this bi-disperse suspension is pipetted into a 5 cm

diameter petri dish containing 5 mL of Fluorinert FC-70. The suspension droplet

is almost completely surrounded by Fluorinert, allowing slow evaporation of water.

After all the water has evaporated from the suspension, the sample is removed from

Fluorinert, and placed on a Kimwipe to allow any residual Fluorinert to drain from

the sample. The final sample has a dome shape [inset of Fig. 4.2]. The maximum

thickness at the center is about 1 mm, much larger than the thickness of nanostruc-

tured layers in bird feather barbs [Fig. 4.1].

101



Figure 4.2 is a scanning electron micrograph (SEM) taken from the interior sur-

face of a cracked sample. It shows the polystyrene spheres are random close-packed.

This structure is the inverse of that with air spheres in the bird feather [Fig. 4.1].

It also resembles the color-producing structures made of dielectric spheres in some

species of beetles [6]. We have performed small-angle X-ray scattering (SAXS) mea-

surement on the sample for quantitative structural characterization. The SAXS data

yield a diffused ring pattern as shown in the inset of Fig. 4.3(a), indicating the

structure is isotropic. Azimuthal-averaged SAXS intensity (black solid curve) in Fig.

4.3(a) reveals that our structure has a dominant spatial frequency qo = 0.03 nm−1.

The corresponding spatial periodicity is a = 2π/qo = 210 nm. The form factor of

monodisperse spheres causes regular oscillation of SAXS intensity at large q value,

where the structure factor diminishes. Since our sample has bi-disperse spheres, there

are two oscillations with slightly different periods. Their beating can be clearly seen

in Fig. 4.3(b) (black solid curve). By fitting the oscillation and beating of the SAXS

intensity with the analytical expression of form factors [red dashed line in Fig. 4.3(b)],

the diameters of two spheres are found to be 223 nm and 265 nm respectively.

To characterize the scattering properties of our biomimetic samples, we have

performed coherent backscattering (CBS) experiment to obtain the transport mean

free path lt as a function of wavelength λ. A supercontinuum light source is used

to cover a broad range of λ from 520 nm to 700 nm. Beyond this range, several

lasers with operation wavelengths of 406 nm, 445 nm, and 473 nm are used to probe

scattering at shorter λ. Supercontinuum light is generated in a photonic crystal fiber

by femtosecond pulses from a mode-locked Ti:Sapphire laser (pulse width ∼ 200 fs,

repetition rate 76 MHz). The output beam is dispersed by a diffraction grating, and

a slit picks light at certain wavelength (with a bandwidth of 5 nm). The filtered light

is collimated and incident on the sample after passing through a linear polarizer. The

illumination spot on the sample surface is about 2 mm in diameter. The sample is

102



Figure 4.3: Small Angle X-ray Scattering (SAXS) measurement of the biomimetic
sample. (a) SAXS pattern (inset) showing an isotropic ring pattern. The azimuthal-
averaged SAXS intensity (black solid line in main panel) reveals the existence of a
dominant spatial frequency in the structure. The red-dashed curve is obtained from
the power Fourier spectrum of a computer-simulated structure shown in Fig.4.6(a).
(b) Log-linear plot of SAXS intensity (black solid line) at high q value featuring the
oscillation and beating, caused by the form factors of bi-disperse spheres. Red dashed
curve is from the calculation with form factors of two spheres with diameters 265 nm
and 223 nm. The red dashed curve is shifted vertically for better comparison.

tilted in such a way that the surface reflection of the incident beam deviates from the

backscattering direction.

The scattered light with polarization parallel to the incident one is detected by a

photomultiplier tube. An optical chopper and a lock-in amplifier are used to enhance

the signal to noise ratio. The scattered light intensity Is is measured as a function of

angle θB from the backscattering direction. The sample is rotated during the mea-

surement to smear out the speckle pattern. Figure 4.4 shows the measured Is(θB) at

λ = 473 nm, 580 nm and 660 nm. As λ increases, the CBS cone becomes narrower,

indicating lt is longer. The measured Is(θB) is fitted by the analytical expression of

CBS intensity [17], taking into account the finite angular resolution δθ of the experi-

mental apparatus. By replacing the scattering sample with a highly-reflective mirror,

we determine δθ ≃ 0.6 mrad. Fitting parameters for Is(θB) are the enhancement fac-

tor, the constant background from single scattering, and the transport mean free path
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lt. By repeating the CBS measurement at many wavelengths, we obtain lt as a func-

tion of λ (black squares in Fig. 4.5]. The fitting error for all data points are below 5%.

4.3 Theoretical analysis

To interpret the experimental data, we estimate lt = (ρσt)
−1 from the transport cross

section σt [20],

σt =
π

k2

∫ π

0

B(θ) sin θ(1− cos θ)dθ, (4.1)

where

B(θ) = xF11(θ)S11(θ) + (1− x)F22(θ)S22(θ) + 2
√
x(1− x)F12(θ)S12(θ). (4.2)

The partial structure factors for the bi-disperse system are

S11(q) =
1√
N1N1

⟨
∑
n,m

eiq�(r
(1)
n −r

(1)
m )⟩ −

√
N1N1δ(q), (4.3)

S22(q) =
1√
N2N2

⟨
∑
n,m

eiq�(r
(2)
n −r

(2)
m )⟩ −

√
N2N2δ(q), (4.4)

S12(q) =
1√
N1N2

⟨
∑
n,m

eiq�(r
(1)
n −r

(2)
m )⟩ −

√
N1N2δ(q). (4.5)

The binary form factors are F11 = fs,1f
∗
s,1 + fp,1f

∗
p,1, F22 = fs,2f

∗
s,2 + fp,2f

∗
p,2, and

F12 = Re[fs,1f
∗
s,2 + fp,1f

∗
p,2] [21–23]. Particles with diameter 265 nm are labeled as

1, and 223 nm as 2. N1 and N2 denote the numbers of larger and smaller particles

respectively. x = N1/(N1 + N2) is the fraction of larger particles in the mixture,

which is 0.4 in our sample. fs and fp are the scattering amplitudes of two orthogonal

polarizations from a spherical particle, which can be calculated by Mie scattering
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theory [24]. k = 2πneff/λo is the scattering wave vector, where neff is the effective

refractive index of the scattering medium. q = 2k sin(θ/2) is the spatial frequency,

where θ is the scattering angle ranging from 0◦ in the forward direction to 180◦ in the

backward direction. The particle density is ρ = ϕ/[xv1 + (1− x)v2], where v1 and v2

are the volumes of particles with diameter 265 nm and 223 nm respectively.

Figure 4.4: Coherent backscattering (CBS) measurement (a) CBS intensity Is vs.
scattering angle θB, measured at λ = 660 nm (red triangle), 580 nm (orange circle)
and 473 nm (blue square). θB = 0 in the backscattering direction. Black solid lines
represent the fitted curves.

We start with a simple estimation of lt in our sample with two assumptions. First,

we assume independent scattering of light by individual particles. Secondly, we ig-

nore the short-range order by assuming the particles are randomly located without

any correlation, namely, S11 = 1, S22 = 1, and S12 = 0. The dielectric spheres have

the refractive index of n = 1.58, and the filling fraction of ϕ = 64% [25]. The form

factors are calculated from optical scattering of individual dielectric spheres in air.

The computed value of lt is plotted by the green dash-dotted line in Fig. 4.5.

Next, we take into account local correlation of particle position in the random
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Figure 4.5: Measured (black square) and estimated (lines) transport mean free path
lt vs. wavelength λ. Green dash-dots curve represents lt estimated without short-
range order and near-field effects, blue dashed line is with short-range order but no
near-field effects, and red solid curve is with both.

Figure 4.6: (a) Computer-simulated structure of random close-packed spheres of di-
ameters 265 nm (blue) and 223 nm (yellow). (b) Partial structure factors computed
for the structure in (a). Blue solid curve is S11, green dashed curve S22, and red
dash-dots curve S12.
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close-packed structure by including the structure factors of the bi-disperse system in

the estimation of lt. However, it is very difficult, if not impossible, to accurately ex-

tract all partial structure factors S11, S22, and S12 from the SAXS data. Alternatively,

they are obtained from a computer-simulated random close-packed system of 1000 bi-

disperse spheres of diameters equal to the experimental values [Fig. 4.6(a)] using the

methods described in Ref. [26]. The filling fraction is 64% [25]. The partial struc-

ture factors are calculated from the center positions of all spheres and plotted in Fig.

4.6(b). Power Fourier spectrum, computed by Fourier transform of this structure,

matches well the azimuthal-averaged SAXS intensity in Fig. 4.3(a). This agreement

confirms that our sample has a filling fraction of 64%, because with identical sphere

sizes and number ratio x of bi-disperse spheres, the dominant spatial frequency would

coincide only if the filling fraction is the same. The estimated lt is plotted by the

blue dashed line in Fig. 4.5. Its value is increased from the previous estimation as a

result of short-range order. This result is a little surprising, as structural correlation

is often thought to enhance light scattering, at least, at certain wavelength. Short-

range structural order introduces the phase correlation of light scattered by adjacent

particles, leading to constructive interference in certain direction and destructive in-

terference in other directions. To be more concrete, let us consider light with an

incident wave vector ki being scattered to a wave vector ko. The scattering is elastic,

|ki| = |ko| = k. The difference between ki and ko is provided by the spatial vector

q of the structure, ko − ki = q. For example, in the backward scattering direction,

ko = −ki, thus 2k = q. The dominant spatial frequency qo of the random close-

packed system causes the strongest backward scattering at k = qo/2. Consequently,

lt exhibits a shallow “dip” at the corresponding λ ≈ 550 nm [blue dashed line in Fig.

4.5] [27]. More generally, for any k > qo/2, short-range structural order introduces a

phase correlation of light scattered by adjacent particles. They constructively inter-

fere in specific directions, enhancing the scattered light intensity. However, in all other
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directions they interfere destructively, suppressing light scattering. The suppression

of scattering intensity occurs in many more directions than the enhancement. Hence,

the total (angle-integrated) scattering strength reduces and lt increases. It has been

shown in Ref. [28] that short-range order reduces scattering and is responsible for the

transparency of cornea to visible light. However, in Ref. [28], the characteristic length

scale of the nanostructure is about an order of magnitude smaller than the optical

wavelength, while in our case they are comparable.

In the above two estimations of lt, we calculate the form factors by assuming the

particles are situated in a background of air. However, in a random close-packed

system, particles are in contact with each other, and the scattering cross section of

a particle is affected by the presence of nearby particles [29]. The near-field cou-

pling of the adjacent particles modifies the form factor of an “average” particle. Such

near-field effects have been reported in the study of white pigmentation using TiO2

particles [30] and it is called optical crowding. Scattering of solar electromagnetic

radiation by dust particles in the atmosphere or on the surface of celestial bodies are

also affected by the near-field effects [31]. To take into account the near-field effects in

our random close-packed sample, the form factors of particles are computed by assum-

ing each particle is effectively surrounded by a homogeneous dielectric background

of refractive index nb. The value of nb is obtained by averaging the actual refractive

index surrounding a particle with a weighting factor from an exponentially-decaying

evanescent field. Namely,

nb =

∫∞
0
n(r)e−αr/λor2dr∫∞
0
e−αr/λor2dr

(4.6)

where r is the distance from a particle’s surface, n(r) is the ensemble-averaged re-

fractive index based on on the sphere packings described above, and α is a fitting

parameter that we expect to depend on the refractive indices of the particles and the
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surrounding medium as well as the local particle packing geometry. We can calculate

lt for any value of α using the modified form factors with background refractive index

nb from Eq.(4.6). The least square fitting between the measured and estimated values

of lt for all probed wavelengths gives α = 14.1 ± 3.2. The relative standard error is

≈ 9%. With larger/smaller α value, the magnitude of lt decreases/increases, but the

shape of the curve remain constant. The final estimated lt which includes the short-

range order and near-field effects is plotted by red solid line in Fig. 4.5, and in good

agreement with the experimental values at all measured wavelengths. This result

indicates that short-range order and near-field effects reduce the scattering strength

by one order of magnitude in random close-packed structures.

4.4 Discussion and Conclusion

Although the transport mean free path has been well studied in disordered photonic

crystals with long-range order [32–35], there have been only a few studies on amor-

phous photonic structures with short-range order. It has been shown in colloidal liq-

uids, local order induces a local minimum of the transport mean free path [27]. Since

the particles are not closely packed, the near-field effect is negligible. In Ref. [29], lt

is shown to increase at high filling fraction of a random close-packed random film of

monodisperse dielectric spheres. This result is explained by accounting for evanescent

wave coupling of contacting spheres. The modification of near-field scattering envi-

ronment is included in the form factors of isolated scatterers in an effective dielectric

background. The background refractive index is obtained after setting a coupling

length that scales linearly with λ. Following this method, we calculate nb as a func-

tion of wavelength and plot (with blue dashed line) in Fig. 4.7(a). Its value displays

a sharp rise at λ ∼ 200 nm. Within the wavelength range of our study, its value
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is nearly invariant with λ. The lt calculated with this background index is roughly

3 times larger than the measured values for our samples (not shown). For compar-

ison, we plot (with black solid line) in Fig. 4.7(a) the value of nb obtained from

Eq.(4.6) with α = 14.1. It has a much more gradual increase with λ. The back-

ground index nb is notably lower within the wavelength range of our measurement.

The good agreement between the estimated lt with this nb and the measured values

over a broad wavelength range clearly shows that our proposed model works better

to incorporate the near-field effects in a random close-packed scattering environment.

The asymptotic behavior of nb can be understood as follows. At longer wavelength,

the near-field of a particle would extend farther away, coupling to more particles and

probe the global environment. Thus the background refractive index approaches that

of a homogenized medium which is nh = 1.39 in our case. In the short-wavelength

limit, the particle would only be able to sense its immediate environment and nb

approaches the refractive index of air. As an example, we plot in Fig. 4.7(b) the scat-

tering efficiency Qsca of a dielectric sphere in different backgrounds. Qsca is defined

as the ratio of the total scattering cross section over the geometrical cross section

of a sphere. The sphere diameter is 244 nm and the refractive index is 1.58. Qsca

calculated with background nb from Eq. (4.6) approaches that of scattering in air at

short wavelength, and that in homogenized medium of nh at long wavelength.

Assuming the same α value, we have estimated lt ≈ 5µm at λ = 540 nm the center

wavelength of the major reflection peak for the nanostructures of bird feather barb

as shown in Fig. 4.1. Thus, lt is comparable to the total thickness of the scattering

nanostructures, and single scattering is dominant over multiple scattering to produce

color. However, the nanostructures of bird feather barb (air cavities embedded in

β-keratin) are inverse of the biomimetic structures (dielectric spheres in air), and the

value of α is likely to be different. We expect the α value determined here is not
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Figure 4.7: (a) Near-field effects on form factors can be included in an effective
background refractive index nb, whose value is calculated from Eq.(4.6). It approaches
the refractive index of air at short wavelength, and that of a homogenized medium
at long-wavelength. The wavelength range of our CBS measurement is highlighted
with color. For comparison, the value of nb obtained from Ref. [29] is plotted with
blue dashed line. (b) Calculated scattering efficiency Qsca of a dielectric sphere in
different backgrounds. The sphere has a diameter 244 nm and a refractive index of
1.58. Qsca = σsca/σgeo is the ratio of the scattering cross section σsca to the geometical
cross section σgeo. The refractive index of the background is equal to nb from Eq.(4.6)
(black solid line), nh = 1.39 of the homogenized medium (blue dashed line), and that
of air 1 (red dash-dotted line).
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universal, since it depends on the properties of the scatterer and its surrounding. It

is sensitive to the parameters such as ratio of refractive index of scatterer with its

background, size of scatterer and maybe the packing geometry. Hence, further study

of light scattering by systematic tuning of the above mentioned parameters has the

potential of fully characterizing α, and providing physical insight to dependent scat-

tering.

In summary, we have measured the transport mean free path lt with coherent

backscattering in amorphous photonic structures over a broad wavelength range. Such

structures are made of random close-packed dielectric spheres of two sizes, and have

only short-range order. The measured lt is significantly larger than the estimated

value based on the assumptions of independent scattering and the absence of struc-

tural order. With particles in close contact with one another, we must consider the

phase correlation of scattered light and local scattering environment. Short-range

order accounts for the interference of light scattered from particles located in close

proximity. Near-field effects originate from the evanescent wave coupling of adjacent

particles and leads to reduced refractive index contrast between particles and sur-

rounding. Both increase the transport mean free path. Since many color-producing

biological nanostructures consist of random close-packed dielectric or air spheres, we

expect both effects exist. They increase lt and make it comparable to the total size of

the nanostructure. Consequently, single scattering becomes dominant over multiple

scattering, and is responsible for structural coloration.
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Chapter 5

Evolution of structural color on

butterfly wings

5.1 Introduction

1 Organisms produce colors in two basic ways: by synthesizing pigments that se-

lectively absorb light of certain spectral bands and, thus, only light outside the ab-

sorption bands is backscattered (chemical color), or by developing nano-morphologies

that enhance reflection of light of certain wavelengths by interference (physical color

or structural color). Structural colors play major roles in natural and sexual selection

in many species [2], and have a broad range of applications in color display, paint,

cosmetics, and textile industries [3]. Structural color surveys across widely divergent

species have revealed a large diversity of color-producing mechanisms [4–10]. However,

there has been a lack of systematic study and comparison of how different colors from

closely-related species or within populations of a single species evolve, even though

their colors can vary dramatically. By examining how these species/populations

evolve different colors, it is possible to identify the minimal amount of morphologi-

1. This chapter is primarily based on the work published in ref. [1].
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cal change that results in significant color variation. Furthermore, this research may

serve as an inspiration for future application of similar evolutionary principles to the

design of photonic devices for color tuning, light trapping or beam steering [3,11–21].

From an evolutionary biology point of view, we are curious to examine how structural

colors respond to selection pressure, and whether there is sufficient standing genetic

variation in natural populations to allow rapid evolution of novel colors. The but-

terflies were raised in the insectory of Prof. Antonia Monteiro’s lab in Yale and the

artificial selection experiment was carried out in her lab. Here we focus on determin-

ing the morphological changes and the physical mechanisms that cause the evolution

of violet structural color in populations of a single species, and also across different

species within a single genus of butterflies.

We focus on the genus Bicyclus (Lepidoptera: Nymphalidae), composed of more

than 80 species that predominantly exhibit brown color along with marginal eye-

spots. Some Bicyclus species, however, have independently evolved transverse bands

of bright violet/blue structural color on the dorsal surface of the forewings (black

asterisks in Fig. 5.1(a)) [22,23]. One species, Bicyclus anynana, has become a model

species amenable to laboratory rearing, and multiple aspects of its marginal eyespots

(size, relative width of the color rings, shape) have been altered by artificial selec-

tion [24–28]. However, change of color (hue), either pigmentary or structural, via

artificial selection has not been reported. B. anynana does not exhibit bright violet

coloration on its wings and therefore provides an excellent opportunity to investigate

whether there is genetic potential to produce violet color upon directed selection. We

investigated this potential by performing an artificial selection experiment in B. any-

nana that targeted the color of the specific dorsal wing region that evolved violet/blue

coloration in other members of the genus [Fig. 5.1(b-g)].

B. anynana, like other butterflies, has two types of scales (cover and ground)

which alternate each other within a row, with cover scales partially covering the
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Figure 5.1: (a) A phylogenetic estimate of Bicyclus butterfly relationships (modified
from [33]) illustrating the evolution of color in the genus. The black asterisks mark two
clades that evolved violet/blue color independently, represented here by B. sambulos
and B. medontias. (b-d) Dorsal wing images of B. sambulos, B. anynana (region used
for artificial selection marked by white asterisk), and B. medontias. (e-g) Graphs
of reflectance spectra of the blue/violet wing band showing reflectance peaks in the
400-450 nm range and in the brown-colored homologous region in B. anynana with a
UV reflectance peak centered at 300 nm (colored arrows).
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Figure 5.2: (a) Three-dimensional illustration of the wing and scales in the selected
wing area of B. anynana. (b) Magnified view of the ripped region in (a) showing how
cover (c; brown) and ground (g; green) scales are attached to the wing membrane
(m, pink), and alternate each other along rows. Scales on the other (ventral) side
of the wing membrane are also visible. (c) Cross-sectional view of a single scale,
showing the trabeculae (T) connecting the lower lamina (LL) to the upper lamina
that includes ridges (R), microribs (Mr), and crossribs (Cr). Windows (W) are the
spaces between the ridges and crossribs. Both cover and ground scales have the
same basic morphology. Panels H-J are illustrations by Katerina Evangelou. (d-g)
Scanning electron microscope (SEM) images of B. anynana brown wing scales. (d)
Section of the wing where the scales in the top left corner have been removed and
the wing membrane (m) is visible. Attached to the membrane are the cover (c) and
ground (g) scales, which alternate each other along rows. (e) A cover scale showing
its fine sculpting on the abwing surface. (f,g) Top-view and tilt-view of a B. anynana
wild-type cover scale.
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ground scales, and where both scales attach to a wing membrane [Fig. 5.2(a,b,d)] [29].

Both cover and ground scales contain a lower lamina with a continuous smooth sur-

face below a region composed of longitudinal ridges and crossribs, collectively referred

to as the upper lamina, and connected to the lower lamina via pillars called trabecu-

lae [Fig. 5.2(c,e,f,g)] [7]. Previous studies on butterflies showed that structural color

can be produced by the interference of light reflected from the overlapping lamella

that build the longitudinal ridges, from microribs protruding from the sides of the

longitudinal ridges, or from the lower lamina which can vary in thickness and pat-

terning [30, 31] [see Fig. 5.2(c)]. However, it is not clear how the violet/blue color is

produced in members of the two Bicyclus clades that separately evolved this color,

whether B. anynana can be made to evolve the same violet/blue color via artificial

selection, and whether it will generate the color in the same way as the other species.

To answer these questions, we have conducted detailed optical characterization and

structural analysis of butterfly wing scales from three separate species and artificially

evolved populations of Bicyclus to illustrate how color is generated and how it has

evolved.

5.2 Artificial selection for violet scale color in B.

anynana

Optical reflectance spectra of the violet/blue colored bands on the dorsal forewings of

two representative species from the two clades that independently evolved violet/blue

color, B. sambulos and B. medontias, exhibit peaks in the wavelength range of 400-

450 nm [Fig. 5.1(e,g)]. The reflectance spectrum from the same wing region in B.

anynana does not show any peak in the violet/blue wavelength range ( 380-495 nm),

but it does show a peak in the ultraviolet (UV) at the wavelength of 300 nm [Fig.
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5.1(f)]. The aim of our artificial selection experiment was to shift this UV peak to

the violet/blue range of the spectrum.

5.2.1 Experimental animals

B. anynana were reared at 27◦C, 80% humidity in Prof. Monteiro’s lab, as previously

described [32]. Upon eclosion, virgin male and female adults were isolated from one

another to ensure virginity and kept in cooler conditions (17◦C) until all animals of

that generation emerged and were measured. Selected adults were mated with each

other, subsequently preserved in glassine envelopes, and stored at -20◦C. SEM and re-

flection microspectrophotometry analyses were done with females of B. anynana and

male specimens of two other species: B. sambulos, collected in 9/2012 from the Lake

Kivu region of the eastern Democratic Republic of Congo, and B. medontias, collected

from the Ebogo region of Cameroon, both generously provided by Steve Collins. A

multi-locus phylogenetic estimate of Bicyclus relationships was constructed and mod-

ified from previous Bicyclus studies to illustrate the relationship between B. anynana,

B. sambulos, and B. medontias [33]. Briefly, this estimate is the consensus of trees

drawn from a posterior distribution populated by a Metropolis-coupled Markov chain

Monte Carlo exploration of tree likelihood space [34].

5.2.2 Selection procedure

We artificially selected the most extreme B. anynana individuals of each sex by mea-

suring their reflectance spectra from a region of the dorsal forewing associated with

violet/blue color in other Bicyclus species (white asterisk in Fig. 5.1(c), approxi-

mately 1 mm in diameter). Individuals displaying reflectance peaks nearest to 400

nm were bred with each other, and this procedure was repeated six times during eight
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consecutive generations. Due to low adult numbers, all individuals in generations 4

and 7 were allowed to reproduce and did not undergo selection. This procedure led

to the gradual increase of reflectance peak wavelength for the selected population.

In the parental generation (generation 1), the average wavelength of the reflectance

peak for the targeted dorsal region was 311 nm for males and 341nm for females. By

generation 8, the peaks shifted to 362 nm and 385 nm in males and females, respec-

tively [Fig. 5.3(a)]. Selected individuals exhibited significantly increased reflectance

in the wavelength range of 400-500 nm.

Figure 5.3: (a) Representative reflectance spectra of wild-type (wt) and violet-line
(violet) females. (b) Response to selection plotted against a cumulative measure
of the selection pressure applied to each generation, and realized heritability (h2)
estimates for reflectance peak wavelength in B. anynana females (closed circles) and
males (open circles) over 6 generations of selection.

5.2.3 Realized heritability

The proportion of the variation in reflectance peak wavelength that is due to additive

genetic variation in our lab population is called the realized heritability (h2) [35].

This measure of heritability was estimated from two quantities: the response to se-

lection and the cumulative selection differential. The response to selection (Y axis in
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Fig. 5.3(b)) tracks the change in mean reflectance peak wavelength for all individuals

in a generation over the course of the selection experiment. The cumulative selection

differential (X axis in Fig. 5.3(b)) is a cumulative measure of the selection pressure

applied in each generation. The selection pressure applied in a particular generation is

estimated by subtracting the mean reflectance peak wavelength of all the individuals

in a generation from the mean reflectance peak wavelength of the selected individuals

in that generation. In Fig. 5.3(b), the response of one generation is plotted against

the cumulative selection differential of the previous generations. From a linear fit of

the data, we obtained the slope, which is the realized heritability (h2). Graphs for

realized heritability and reflectance data were constructed using GraphPad Prism (v.

6.00; GraphPad Software, La Jolla, CA).

The realized heritabilities, h2, are 0.41 (41%) in females and 0.54 (54%) in males)

[Fig. 5.3(b)], which explains the rapid response to selection. This measure of heri-

tability was estimated from the selection pressure applied and the response to selection

(reflectance peak wavelength shift). In summary, our artificial selection experiment

demonstrated that B. anynana lab populations have significant additive genetic vari-

ation controlling reflectance peak wavelength that allowed the rapid evolution of a

novel scale color.

5.3 Changes to ground scales led to B. anynana

violet color evolution

5.3.1 Scale optical imaging and microspectrophotometry

To determine how the violet color evolved, we performed optical measurements on the

wings of females from generation 8, whose dorsal reflectance peak was closest to 400
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nm [Fig. 5.3(a)]. All scale images were taken on a Nikon Optiphot 66 microscope in

reflection or transmission mode using BD Plan 5X to 40X lenses and a moticam 2500

USB camera at maximum (5mp) resolution. The reflectance spectra were taken using

an Ocean Optics HR2000+ spectrometer, either attached to the Nikon microscope for

the visible spectra or, for the ultraviolet, using a home-built microscope including an

Oriel Instruments 66902 Xenon Arc Lamp and a Nikon TU Plan Fluor Epi 50x objec-

tive lens (numerical aperture = 0.8). Measurements performed on the wing were taken

from three scales and/or wing areas from each of 5 different individuals, and mea-

surements for individual scales (taken against a black background of carbon-coated

glass) represent 3 scales in each of 3 different individuals. Reflectance spectrum for

each sample/scale was measured in triplicate and then averaged. Analysis of Variance

(ANOVAs) to test for significant differences in mean reflectance between wild-type

or violet scales were calculated for a variety of reflectance points along the spectrum

using JMP statistical software package (v.10, SAS Institute Inc., Cary, NC).

Comparisons of optical images of wild-type (wt) and violet-line (violet) B. anynana

female wings revealed patches of violet color in the violet-line individuals, from regions

where cover scales were missing and ground scales were fully exposed, suggesting the

violet color is produced by the ground scales [Fig. 5.4(a)]. Indeed, high-magnification

images of single ground scales from violet-line females showed an intense violet re-

flection when compared to wild-type scales[Fig. 5.4(b)]. In order to investigate in

a quantitative manner which scale types were primarily contributing to the violet

color, we measured reflectance spectra from individual cover scales (while attached to

the wing) from both wild-type and violet-line females, then from ground scales (after

removing some cover scales), and finally from the wing membrane (with both cover

and ground scales removed).

We found no significant changes in violet reflectance of cover scales or wing mem-

branes between wild-type and violet-line individuals [Fig. 5.4(c)]. However, ground
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Figure 5.4: (a) Image of violet cover (C) and ground (G) scales with violet hue visible
only in ground scales. (b) Images of wild-type (left) and violet (right) ground scales
(generation 8) in the selected wing region. (c) Mean reflectance spectra (of 5 wild-type
and 5 violet females) for cover scales and (d) for ground scales on the wing with cover
scales removed. In all graphs, error bars represent standard error of the mean and
asterisks represent statistically significant differences in reflectance. Scales bars in C
and D = 20 µm. Note the reflectance from ground scales with cover scales removed
(d) peaked at a slightly longer wavelength than the reflectance taken directly from
an intact violet-line wing Fig. 5.3(a), due to the inclusion of both ground scales and
cover scales (averaged over a relatively large area) in Fig. 5.3(a).
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scales in violet-line females exhibited a significant increase in reflectance between 400

nm and 450 nm, compared to wild-type ground scales [Fig. 5.4(d)]. We conclude that

changes to the ground scales in B. anynana are primarily responsible for violet color

evolution in this artificial selection experiment.

To pinpoint where the violet color was produced, we isolated single cover and

ground scales and measured reflectance spectra from both the abwing and adwing

scale surfaces (those facing away and facing towards the wing membrane, respec-

tively). Our results confirmed that violet-line ground scales exhibited more visible

violet color (matching the reflectance spectra) relative to wild-type ground scales

[Fig. 5.5(a,b)]. Both surfaces, but especially the adwing surface of these scales, had

significantly higher reflectance in the violet range of the spectrum (380-450 nm) than

the corresponding surface of wild-type ground scales. The higher reflectance from

the adwing surface of the violet-line ground scales indicates the violet color originates

from the lower lamina of the scale. The adwing of cover scales also showed a sig-

nificant increase in reflectance at the violet wavelength ( 450 nm), but the abwing

reflectance barely changed [Fig. 5.5(c,d)]. Therefore, both ground and cover scales

evolved violet color, which is produced in the lower lamina of the scales, but ground

scales changed more dramatically.

To explore whether changes in scale pigmentation contributed to scale color evolu-

tion, and to understand the difference in reflectance from the adwing and abwing sur-

faces, we measured light transmission through isolated cover and ground scales, and

obtained the absorbance spectra log10[T
′(λ)], where T ′(λ) represents the measured

transmittance of scales immersed in refractive index matching fluid. The violet-line

ground scales exhibit significantly higher transmission or lower absorption compared

to their wild-type counterparts [Fig. 5.6(a, b)]. Variation in transmission is due to

light absorption by pigments observed in the mass of the scales. The reduced absorp-
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Figure 5.5: (a, c) Images of abwing (left column) and adwing (right column) surfaces
of individual ground/cover scales from wild-type (top row) and violet-line (bottom
row) females. (b, d) Reflectance spectra of individual ground/cover scales from wild-
type (wild) and violet-line (violet) individuals. Scale bar is 20 µm. In (b, d), error
bars represent standard error of the mean and statistically significant differences in
reflectance are indicated with asterisks (⋆) for the adwing surfaces of scales or pound
symbols (#) for abwing scale surfaces.
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tion in the violet-line scales increases light reflection from the lower lamina of these

scales. In addition, the ridges and crossribs were the less transmissive areas across

all scale types and we notice that these structures appear to have evolved a thinner

appearance in violet line versus wt scales [Fig. 5.7]. These changes in morphology

on the upper surface of the scale will have contributed to the lower absorption of the

violet-line scales. Differences in reflectance measured from adwing and abwing sur-

faces can be attributed to additional absorption and scattering of light by the ridges

and cross-ribs that are only present in the upper lamina [Fig. 5.6(a)] [31]. Hence,

the appearance of the violet color resulted from a combination of enhanced reflection

and reduced absorption by the violet-line ground scales.

Figure 5.6: (a) Transmission images for B. anynana wild-type (top row) and vio-
let (bottom row) cover scales (right column) and ground scales (left column). (b)
Absorbance measurements for individual scales. Scale bars = 20 µm.
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Figure 5.7: SEMs of cover and ground scales of Bicyclus species. Top-view SEM
images of cover (left column) and ground (right column) scales of wild-type and
violet-line B. anynana. The scale structures are similar, and the lower lamina is
clearly visible through the windows of the upper lamina.

5.4 Structural analysis of violet scales

5.4.1 Scanning electron microscopy (SEM)

To discover the mechanism that produces the violet color in selected B. anynana, we

collected scanning electron microscope (SEM) images of the scales nanomorphologies.

Butterfly wings were first soaked in a mixture of water and alcohol, then dipped into

liquid nitrogen for approximately 5 minutes to ensure thorough freezing. Following

freezing, the wings were removed from liquid nitrogen and immediately sectioned in

the region of the color band using a microtome blade [36]. After complete evaporation

of the remaining liquid at room temperature, the wing fragment was pressed gently

against a conductive carbon tape to transfer the scales onto the tape, which was

then attached to the sample mount. The samples were first imaged with an optical

microscope to identify the scale type and the color-producing regions on the scales,
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then they were coated with a layer of 10nm gold to increase sample conductivity.

To obtain cross-sectional SEM images of the scales, the samples were mounted on a

rotation stage. All SEM images were taken using a SU-70 UHR Schottky (Analytical)

FE-SEM (Hitachi High Technologies America, Inc.) at 2kV accelerating voltage and

28A probe current.

Although cover scales are more elongated than ground scales, their nanomorpholo-

gies are similar, i.e., both have a typical ridge-lamellar structure similar to previously

described nymphalid wing scales [Fig. 5.2(c)] [29, 30]. Note also that the lower lam-

ina is clearly visible through the windows in the upper lamina [Fig. 5.7] A direct

comparison of optical and SEM images of the same cross-sectioned scales allowed

us to measure the thickness of the lower lamina from the color-producing region of

cover and ground scales [Fig. 5.8(a,b)]. Using measurements from multiple scales we

obtained an estimate of the average lamina thickness for each scale type [Fig. 5.8(c)].

While unselected B. anynana cover and ground scale lower laminae have almost the

same thickness ( 120 nm), both became thicker through artificial selection. Thickness

of cover scale lamina increased from 126 ± 13 nm (95% CI) to 144 ± 5 nm (F = 2.8,

p = 0.142), while that of ground scales increased significantly from 120 ± 23 nm in

wild-type to 176 ± 10 nm in the violet-line individuals (F = 21.8, p ¡ 0.01).

5.4.2 Numerical simulations of reflectance spectra from lower

lamina

To investigate whether the increases in lower lamina thickness were responsible for the

spectral shifts in reflectance peaks (i.e., in scale color), we numerically calculated the

reflectance spectra for the lower lamina by modeling it as a dielectric thin-film. Lam-

ina thickness was set to the measured values for each scale type, and the refractive
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Figure 5.8: (a, b) Magnified cross-sectional SEM images of lower lamina (LL) in a
wild-type cover scale (a) and a violet-line ground scale (b). (c) Mean lower lamina
thickness measured from the cross-sectional SEM images of cover and ground scales
of wild-type and violet-line B. anynana. The error bar represents 95% confidence
intervals for the means. (d) Calculated reflectance peak wavelengths of lower lamina
using the individually measured thickness values of cover and ground scales of wild-
type and violet-line B. anynana. (e) Comparison of the calculated (dashed line) and
measured (solid line) reflectance spectra of the violet-line ground scales. Because
our calculations did not include absorption caused by pigments in the thin-film, the
magnitude of the calculated reflectance peak is higher than that observed. Peak
magnitudes were normalized by lowering the magnitude of the calculated reflectance
peak to match the magnitude of the measured peak. (f) Calculated reflectance spectra
for the cover scales of wild-type (brown dashed line) and violet-line (purple dashed
line) B. anynana. 133



index and its variation with wavelength were set according to previous measurements

of non-pigmented butterfly wing scale chitin [37]. We also took into account the

range of incident angle of the light and the variation in thickness of the lower lamina.

However we did not include lamina absorption due to pigments in the calculation,

since it is not known how much of the measured absorbance occurred in the lower

versus upper lamina. In the violet-line ground scales, the measured and calculated

reflectance spectra exhibited similar modulation with wavelength, which is a clear

spectral signature that confirms the reflectance peak is produced by thin-film inter-

ference [Fig. 5.8(e)]. The calculated peak wavelength (374 nm), however, is slightly

lower than the average measured peak wavelength (405 nm) [Fig. 5.8(e)]. Similar

results were obtained for the wild-type ground scales. In sum, the calculated spectral

shift from wild-type to violet-line ground scales is close to the measured shift, but the

calculated reflectance peaks have a shorter wavelength [Fig. 5.8(d)]. For the cover

scales, the calculated shift in reflectance peaks was from 273 nm (wild-type) to 310

nm (violet-line) [Fig. 5.8(f)]. These calculated reflectance peak wavelengths were also

slightly lower than the measured values [ 300 nm in Fig. 5.1(f)]. The peak remained

in the UV range due to the smaller increment of lower lamina thickness in cover

scales compared to that in ground scales. Simultaneously, the calculated reflectance

at longer wavelengths (500 nm 700 nm) was reduced [Fig. 5.8(f)], in agreement with

results in Fig. 5.4(c). Consequently, the violet-line cover scales appeared dark violet

as compared to the wild-type cover scales [Fig. 5.5(d)].

We attribute the discrepancies in simulated and measured reflectance peak wave-

length described above to a modification of the refractive index of lower lamina in-

duced by pigments within it, which was not included in our calculation. The measured

absorbance spectra of our various scale types [Fig. 5.6(b)] do not exactly match the

melanin absorbance spectrum [31,38,39], indicating that brown scales in B. anynana

either do not contain melanin or, more likely, contain additional pigments besides
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melanin. Since the type and amount of pigments that exist in the lower lamina of

scales are not known, it is impossible for us to correctly estimate the change of refrac-

tive index value due to pigmentation. However, the shape of the measured reflectance

spectra as well as the direction of the observed spectral shifts of the reflectance peak,

from UV to violet, indicate that the observed color change in ground scales is caused

by the increase in thickness of the lower lamina of these scales.

5.5 Natural evolution of violet/blue color within

the Bicyclus genus

After demonstrating that B. anynana can readily produce violet colored scales, we

investigated how the other members of the Bicyclus genus naturally evolved their

violet/blue colors. The Bicyclus genus is composed of over 80 species [22, 23], and

violet/blue color has evolved twice independently in two separate lineages [black as-

terisks in Fig. 5.1(a)]. To identify the primary sources of violet/blue color on the

dorsal wing bands of these species, we isolated cover and ground scales from repre-

sentative species from each lineage, B. sambulos, B. medontias [Fig. 5.1(b,d)], and

examined their reflectance and transmittance spectra.

In B. sambulos, optical reflectance images of isolated cover and ground scales re-

vealed that the violet/blue color was predominantly coming from the cover scales [Fig.

5.9(a)]. Reflectance measurements showed enhanced light reflection in the wavelength

range of 400-500 nm from both sides of the cover scale, while ground scales had no

peak in this wavelength range [Fig. 5.9(b)]. Absorbance measurements [Fig. 5.9(c)]

and transmission images [Fig. 5.9(d)] show that cover scales from the violet/blue

dorsal band region had the lowest absorbance, followed by ground scales in the same
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Figure 5.9: B. sambulos: (a) Images of abwing and adwing surfaces of individual
cover (top) and ground (bottom) scales from B. sambulos. (b) Reflectance spectra
of individual cover and ground scales. (c) Absorbance measurements for B. sambulos
scales from blue region (denoted by black asterisk in inset) and brown region of the
dorsal wing (white asterisk in inset). (d) Transmission images of B. sambulos cover
scales (top) and ground scales (bottom), left column is from the blue region and right
column is from the brown region. Scale bars = 20 µm.

136



region, compared to the cover and ground scales in the adjacent brown region. Since

the cover scales in the violet/blue wing band region of B. sambulos were much less

pigmented than those of B. anynana, the difference in reflectance measured from both

abwing and adwing surfaces is much smaller. SEM images of B. sambulos cover and

ground scales [Fig. 5.10] revealed similar nanomorphologies to the scales of B. any-

nana. From the cross-sectional SEM images, we measured the lower lamina thickness

of cover scales to be 204 ± 13 nm. These measurements produce a calculated re-

flectance spectrum with a peak at 428 ± 26 nm, which agrees well to the measured

reflectance peak at 450 nm [Fig. 5.9(b)]. These results confirm that the violet/blue

color is produced via thin-film interference in the lower lamina of cover scales. In

summary, the violet/blue color of B. sambulos is primarily produced by cover scales

and not by ground scales, as we observed in B. anynana, but the mechanism of color

production is the same in both species.

Figure 5.10: SEM images for B. sambulos cover scale in tilt-view (left) and top-view
(middle), ground scale in top-view (right). The scale structure is very similar to the
one of B. anynana shown in Fig. 5.7.

In B. medontias, the violet color was visible from both sides of cover and ground

scales [Fig. 5.11(a)]. The scales’ optical reflectance data [Fig. 5.11(b)] was similar to

the reflectance of B. sambulos cover scales, except for a slight shift in the wavelengths

of the reflectance peaks. The scales’ absorbance data[Fig. 5.11(c)] were also similar
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to those of B. sambulos, where the violet scales had lower absorption relative to the

adjacent brown scales. SEM images of the violet scales [Fig. 5.12] showed similar

scale nanomorphologies to the scales of both B. anynana and B. sambulos, suggesting

the violet color is produced by the same mechanism. Further confirmation of thin-

film interference was observed in a cover scale of B. medontias, part of which adhered

to the substrate, which led to the disappearance of the violet color [Fig. 5.12(b)].

Color produced by thin-film interference relies on the interference of light reflected

from the top and bottom surfaces of a thin film, such as the lower lamina of a scale.

When one side of the scale lamina is attached to the closely index-matched substrate,

light reflection from that interface is greatly reduced, thus the thin-film interference

diminishes, and color disappears as observed in that preparation.

5.6 Discussion

Here we document the first artificial selection study on structural color in butterflies

and show that structural violet color can evolve in a short period of time (6 genera-

tions) in a lab-reared butterfly population. We also show that violet/blue structural

color has evolved independently within a genus and that the descendant species are

using the same mechanism for color generation (thin-film interference) but in different

scale types: ground scales in B. anynana, cover scales in B. sambulos, and both scale

types in B. medontias. Violet structural color in B. anynana evolved via changes

in cuticular properties (i.e. thickness) of the lower lamina of individual wing scales,

concurrently with a decrease in absorption in the same scales.

Structural color is more often produced by cover scales because they overlay
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Figure 5.11: B. medontias: (a) Images of abwing and adwing surfaces of individual
cover (top) and ground (bottom) scales from B. medontias. (b) Reflectance spectra of
individual cover and ground scales. (c) Absorbance measurements for B. medontias
scales from blue region (denoted by black asterisk in inset) and brown region of the
dorsal wing (white asterisk in inset). (d) Transmission images of B. medontias cover
scales (top) and ground scales (bottom), left column is from the blue region and right
column is from the brown region. Scale bars = 20 µm.
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Figure 5.12: (a)SEM image of a B. medontias cover scale in tilt-view. (b) SEM (top)
and optical image (bottom) showing part of a B. medontias scale (with adwing surface
facing up) adhering to the substrate leading to the disappearance of color produced
by thin-film interference. (c,d) Top-view SEM images for cover and ground scales of
B. mendontias showing similar nanostructure with B. anynana.
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ground scales and are more exposed to incident light [7]. Thus, the evolution of

violet color in B. anynana ground scales is unexpected, and we speculate it may be

a result of the artificial selection procedure. The relatively high density cages where

we kept the animals, before they were measured and selected, as well as the handling

during measurement, may have led to partial loss of some cover scales, preferentially

exposing the ground scales to selection, and leading to their more extensive modifica-

tion. This unexpected result, compared to the natural evolution of blue color in the

other species of Bicyclus, revealed that both cover and ground scales in B. anynana

have the remarkable potential to be independently modified through the process of

selection.

Our results, in conjunction with other recent studies [40], suggest that struc-

tural colors can evolve rapidly and ultimately play pivotal roles in butterfly fitness

and diversity. For instance, structurally colored wing patterns in butterflies have

been proposed to function as species recognition signals, as sexually dimorphic sig-

nals involved in female mate choice, and as signals that are predictive of nuptial gift

size [40–43]. Furthermore, the evolution of these colors in only certain species of a

genus, as we have documented here for Bicyclus, may depend less on the availability

of genetic variation in natural populations for producing these colors and more on

natural or sexual selection favoring specific colors. While we know of no comparable

artificial selection study on pigmentary color in butterflies, previous research on pig-

mentary color evolution in birds revealed that shifts to new diets and/or gains/losses

of enzymatic steps in biochemical pathways were required to modify the color due to

pigments acquired through diet [44,45]. In contrast, structural colors, as exemplified

here, can evolve simply via quantitative variation in the amount of cuticular secre-

tions produced by individual cells, without modification of any additional material

property. This may lead to a faster rate of evolution of structural colors in nature,

as compared to pigmentary colors, and should be examined in future.
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Finally, by identifying a process, artificial selection, that can readily lead to struc-

tural color evolution in butterflies, our study lays the ground for future research on the

genetics of structural colors, e.g. by crossing selected lines within a species, followed

by linkage mapping. In addition, the artificial selection used in this study may inspire

future applications of similar evolutionary principles to the design of reconfigurable

photonic materials and devices.
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Chapter 6

Effect of absorption on light

transport in disordered waveguides

6.1 Introduction

1 In mesoscopic transport, wave interference plays an essential role, giving rise to

well-known phenomena such as enhanced backscattering, Anderson localization and

universal conductance fluctuations [2–7]. Recently, another striking interference ef-

fect has caught much attention, that is, the existence of highly transmitting channels,

terms “open channel” in a random system [8–15]. These open channels, which enable

an optimally prepared coherent input beam to transmit through a strong scatter-

ing medium with order unity efficiency, were predicted initially for electrons [16–19].

However, they have not been directly observed in mesoscopic electronics due to the

extreme difficulty of controlling the input electron states. In contrast, it is much easier

to prepare the input states of classical waves, such as electromagnetic waves or acous-

tic waves. Recent developments of adaptive wavefront shaping and phase recording

techniques in optics have enabled experimental studies of open channels [20–23]. The

1. This chapter is primarily based on the work published in ref. [1].
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open channels greatly enhance light penetration into scattering media, that will have

a profound impact in a wide range of applications from biomedical imaging and laser

surgery to photovoltaics and energy-efficient ambient lighting [23–25].

The transmission channels are eigenvectors of the matrix t†t, where t is the field

transmission matrix of the system. The eigenvalues τ are the transmittance of the

corresponding eigenchannels. In the lossless diffusion regime, the density of eigen-

values τ has a bimodal distribution, with one peak at τ ≃ 0 that corresponds to

closed channels, and a peak at τ ≃ 1 that corresponds to open channels [16–19]. The

diffusion process is dominated by the open channels, and the average transmittance

is proportional to the ratio of the number of open channels by the total number

of propagating channels [16, 17]. At the transition to localization, the number of

open channels is reduced to one, and the open channels disappear in the localization

regime. The conductance of a localized system is dominated by the single highest

transmitting channel. In the past few years, wavefront shaping has been utilized

to increase the coupling of the incident light to the open channels of random me-

dia [8,12,13,15,26,27]. Numerical simulations reveal that the open channels enhance

the energy stored inside the disordered medium [10]. In the diffusion regime, the field

energy of an open channel is spread over the entire transverse extent of a sample,

while in the localization regime the maximal transmission channel becomes confined

in the transverse direction normal to the transmission direction [11].

In addition to the transmission channels, the transport can also be interpreted

in terms of resonances, which are referred to as “levels” for electrons and “modes”

for classical waves [28, 29]. For an open system, one can define quasi-normal mode.

These are eigenfunctions of the Maxwell equations with complex frequency that sat-

isfy the boundary conditions of the outgoing wave. They describe states that have

stationary normalized spatial profiles and amplitudes decaying in time due to radia-

tive losses. These quasi-normal modes play an important role in transport, e.g., in
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the localization regime energy is transported either by tunneling through a localized

mode in the middle of the sample or by hopping over a necklace state that is formed

via coupling of several localized modes [30–35]. If the input beam is coupled to mul-

tiple modes, the interference of these modes at the output end determines the total

transmission [28]. The two approaches to describe transport phenomena, transmis-

sion channels and resonant modes, complement each other [29]. At any frequency, the

transmission eigenchannels can be expressed as a frequency-dependent superposition

of resonant modes with specific resonance frequencies and widths. In the localization

regime, the maximal transmission channel can typically be identified with a single

resonant mode [29].

Absorption of radiation is usually assumed to suppress interference effects such

as the occurrence of open channels. Most studies on transmission eigenchannels have

considered lossless random media where absorption is negligible. In reality absorp-

tion exists in any material system, and could have a significant impact on diffusion

and localization [36, 37]. In the microwave regime for instance, absorption is par-

ticularly difficult to avoid and leads to a significant reduction of the transmission

through disordered waveguides [12, 38]. Absorption does not destroy the phase co-

herence of scattered waves, but it attenuates the longer scattering paths more than

the shorter paths, thus modifying the interference patterns. Since the open channels

penetrate deeper into the random medium than the closed channels, they would ex-

perience more absorption. In other words, absorption should have a stronger effect

on the open channels than on the closed channels. However, it is not clear how ab-

sorption would modify the open channels. Moreover, it has been shown lately that

light absorption in strongly scattering media can be greatly enhanced or inhibited

by coherent effects [39–41]. Thus the interplay between absorption and interference

determines not only the amount of energy being transmitted, but also the amount of

energy being deposited in the random media. The investigation of strongly scattering

151



systems with absorption is therefore not only important to the fundamental study of

mesoscopic transport, but also relevant for applications in imaging, light harvesting,

and lighting technology [23–25,42,43].

In this chapter, we address the following questions: how does absorption modify

the open channels? How does the channel bandwidth vary with absorption? What

is the correlation between a transmission and a reflection channel in the presence

of absorption? In weak absorption, when the ballistic absorption length la is much

larger than the average path length lp = 2L2/lt (lt is the transport mean free path),

most scattering paths are not affected by absorption. However, when ballistic ab-

sorption length becomes smaller than the average path length la < lp, attenuation

of long scattering paths significantly affects the transport through the system. To

study the change of light transport, we compute the spatial field distribution inside

the random medium. The spectral width of the maximal transmission channel is

important to many of the aforementioned applications, for instance, a broad spec-

tral width is desired for light harvesting. To address this question, we calculate the

frequency bandwidth of input wavefront corresponding to the maximal transmission

channel and its scaling with absorption. Experimental studies of the transmission

channels rely on the access to both sides of the scattering media. It is, however, of-

ten more convenient and less invasive to work in a reflection configuration, where all

measurements are on the input side of the sample. For example, without absorption,

the total transmission is maximized by finding the minimal reflection channel [44]. In

presence of absorption, the relation between the maximal transmission channels and

the minimal reflection channels is not known. Therefore, we investigate the correla-

tion between these two channels as a function of absorption.
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6.2 Numerical model

Figure 6.1: Schematic of the 2D disordered waveguide used in our numerical simula-
tion. Dielectric cylinders are placed randomly in a waveguide with perfect-reflecting
sidewalls. The waveguide width is W , and the length of the disordered region is L.
A light field E

(m)
in is launched from the left end of the waveguide, and scattered by

the cylinders. The transmitted light field E
(m)
t is probed at the right end, and the

reflected light field E
(m)
r at the left end. Perfectly-matched-layers are placed at both

open ends to absorb the transmitted and reflected waves.

We consider a two-dimensional (2D) disordered waveguide, shown schematically

in Fig. 6.1. Dielectric cylinders with refractive index n = 2.5 and radius rc = 0.098λ

are randomly positioned inside the waveguide with perfectly reflecting sidewalls. The

dielectric cylinders occupy an area fraction of 0.04 corresponding to an average dis-

tance between cylinders of a = 0.87λ. We select to work at the wavelength of input

light that avoids the Mie resonances of individual dielectric cylinders. This frequency

is in photonic regime above the first band gap of a triangular lattice with the same

area fraction [45]. Light enters the waveguide from the left open end and is scattered

by the cylinders. Light transmitted through or reflected from the random array is

absorbed by the perfectly-matched-layers placed at both ends of the waveguide. We

consider transverse-magnetic (TM) polarized light, whose electric field is parallel to

the cylinder axis (z-axis). The width of the waveguide is W = 10.3λ, the number of

guided modes in the empty waveguide is N = 2W/λ = 20. The length of the random

array of cylinders is L = 20.2λ.
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To calculate the electromagnetic field inside the random waveguide, we solve

Maxwell’s equations using the finite-difference frequency-domain method [46]. The

intensity is averaged over a cross-section of the waveguide to obtain the evolution

I(x) along the waveguide in the x direction. The ensemble-averaged I(x) exhibits

the well known linear decay, from which we extract the transport mean free path

lt = 0.073L [47]. Since lt ≪ L, light experiences multiple scattering. The localization

length is ξ = (π/2)Nlt = 2.3L. The system is in the diffusion regime, as confirmed

from the linear decay of intensity but it is close to the localization regime. The

reason we chose this regime is as follows. In the localization regime, the maximal

transmission eigenchannel is composed of only one or two quasi-normal modes [29].

In the diffusion regime (ξ ≫ L), many overlapping modes contribute to the maximal

transmission channel, making the analysis complicated. Since our system is in the dif-

fusive regime, close to the localization transition, the maximal transmission channel

consists of a few quasi-normal modes. In this regime the transport displays a large

fluctuation from one realization to another. Within the same statistical ensemble

there are random realizations that are closer to or further away from the localization

transition. We can therefore study a wide range of behavior in the same ensemble.

Usually, absorption exists either inside the scattering particles, in the waveguide

wall or in the background material that hosts the particles. The concomitant contrast

in the imaginary part of the refractive index causes additional scattering, which mod-

ifies the resonant modes [48]. We prefer to avoid this additional scattering effect by

introducing a spatially homogeneous imaginary refractive index γ to both scatterers

and background, so that mode wavefunctions do not change and we can focus on the

effects of absorption and energy loss. The ballistic absorption length is la = 1/(2kγ),

where the wavevector is k = 2π/λ. When the ballistic absorption length la reaches

the average path length of light in a 2D diffusive system lp = 2L2/lt, the diffusive

absorption length ξa =
√
ltla/2 becomes equal to the system length ξa = L.
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To construct the transmission matrix t of the disordered waveguide, we use the

guided modes or propagation channels in the empty waveguide as the basis. We

launch a guided mode E
(m)
in from the input end, calculate the transmitted wave and

decompose it by the empty waveguide modes at the output end, E
(m)
t =

N∑
n=1

tnmE
(m)
in .

The coefficient tnm relates the field transmission from an input channel m to an out-

put channel n. After repeating this procedure for m = 1, 2, ...N , we obtain all the

elements tnm for the transmission matrix t. Similarly, the reflection matrix is con-

structed by computing the reflected waves E
(m)
r at the input end.

6.3 Maximal transmission channel

A singular value decomposition of the transmission matrix t gives

t = U Σ V † , (6.1)

where Σ is a diagonal matrix with non-negative real numbers, σn =
√
τn, τn is the

eigenvalue of t†t, τ1 > τ2 > τ3... > τN . U and V are N ×N unitary matrix, V maps

input channels of the empty waveguide to eigenchannels of the disordered waveguide,

and U maps eigenchannels to output channels. The column vectors in V (U) are

orthonormal and are called input (output) singular vectors. The value τn represents

the transmittance of the nth transmission channel. The input singular vector corre-

sponding to the highest transmission eigenvalue τ1 gives the maximal transmission

eigenchannel, its elements represent the complex coefficients of the waveguide modes

that combine to achieve maximum transmission through the random medium.
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6.3.1 Effects of absorption on spatial field distribution and

energy flow of the maximal transmission channel

We inject light into the maximal transmission channel and investigate the field pro-

file inside the random medium. In Fig. 6.2(a) we plot the spatial distribution of the

electric field amplitude |Ez| inside the disordered waveguide with increasing L/ξa. To

map the energy flow inside the disordered medium, we compute the Poynting vector

S⃗(x, y) = 1
2
Re[E⃗(x, y) × H⃗∗(x, y)]. Its projection onto the propagation direction (x-

axis) is Sx(x, y) = S⃗(x, y) · e⃗x, where e⃗x is the unit vector along the x-axis. The net

flow over a cross section of the disordered waveguide is F (x) =
∫W
0
Sx(x, y)dy. With-

out absorption, the net flow is a constant, F (x) = F (0). In the presence of absorption,

F (x) decays exponentially along x. For a clear visualization of the energy flow deep

inside the random structure, we normalize the Poynting vector S⃗(x, y) by F (x) to

compensate the energy decay such that S⃗ ′(x, y) = S⃗(x, y)/F (x). Figure 6.2(b) plots

the magnitude of normalized Poynting vector |S⃗ ′(x, y)|. For a quantitative analysis of

the light propagation direction, we compute the angle of the Poynting vector S⃗(x, y)

with respect to the x-axis, θs(x, y) = tan−1[(S⃗(x, y) · e⃗y)/(S⃗(x, y) · e⃗x)] where e⃗y is the

unit vector along the y-axis. In Fig. 6.2(c), we plot the histogram of θs weighted by

the relative amplitude of the Poynting vector, P (θs) =
∫
|S⃗ ′(x, y)|δ(θs−θs(x, y))dxdy.

Let us now discuss the results in Fig. 6.2(a-c). When absorption is weak (L/ξa <

1), the maximal transmission channel has nearly the same field pattern as the channel

without absorption. The energy flow inside the random structure resembles mean-

dering random paths that are intertwined, and many “loops” are seen. The multiply

scattered light propagates in many directions, and the distribution of Poynting vec-

tor’s angle P (θs) is broad and has a large variance. Once L/ξa exceeds 1, the spatial

profile evolves. At L/ξa = 4, a noticeable change of the field pattern is observed: the

loops gradually disappear, and the creeks become straighter. This behavior occurs

because the longer scattering paths that involve more windings are strongly attenu-
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Figure 6.2: Evolution of maximal transmission channel with absorption. Calcu-
lated electric field amplitude |Ez| [column (a)], normalized Poynting vector amplitude

|S⃗ ′(x, y)| in gray scale [column (b)], and histogram of weighted Poynting vector di-
rection P (θs) [column (c)] of the maximal transmission channel inside the disordered
waveguide as absorption L/ξa increases from top to bottom. In (a), the maximal
transmission channel remains robust against absorption with nearly identical field
pattern up to L = ξa and changes significantly beyond that point. In (b) the wind-
ing paths of light are illustrated inside the random structure in the weak absorption
regime L/ξa < 1, and more straight “snake-like” paths in the strong absorption regime
L/ξa > 1. A ”loop” in the energy flow is circled in red. In (c), the angle θs from the
Poynting vector to the x-axis is widely spread between −π and π when L/ξa < 1,
but concentrates close to 0 when L/ξa > 1. The variance of θs, indicated above each
panel, decreases with increasing L/ξa
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Figure 6.3: Maximal transmission eigenvalue and eigenvector versus absorption.
Filled squares connected by solid line represent the ensemble-averaged highest trans-
mission eigenvalue ⟨τ1⟩ as a function of absorption (bottom axis L/ξa, top axis lt/la).
Open circles connected by dashed line represent the correlation of the input singular
vector with absorption to the one without absorption CT . The maximal transmission
eigenchannel changes at higher absorption level compared to its eigenvalue.

ated by absorption. To maximize the transmission through the random system, light

takes a shorter and more straight path to minimize absorption. As a result, the dis-

tribution of Poynting vector’s angle P (θs) becomes narrow and its variance decreases.

When absorption becomes very strong (L/ξa = 9), the maximal transmission channel

bears no resemblance to the one with weak absorption. All meandering creeks even-

tually merge into a single stream with few windings and light propagates mostly in

the forward direction.

For a quantitative characterization of the change of the maximal transmission

channel by absorption, we compute the correlation of its input singular vector v1 with
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the one without absorption v0:

CT = |(v0,v1)|, (6.2)

where (v0,v1) = v0
†v1 is the inner product of the normalized singular vectors v1

and v0. Figure 6.3 plots the channel’s correlation CT , averaged over 40 random re-

alizations, as a function of L/ξa. Its value stays close to 1 when system length is

smaller than the diffusive absorption length L < ξa, and it drops abruptly as L > ξa.

In the same figure, we also plot the ensemble-averaged highest transmission eigen-

value ⟨τ1⟩ versus L/ξa. Due to the small number of input channels (N = 20) in the

waveguide, the highest transmission eigenvalue ⟨τ1⟩ does not reach 1 even without

absorption (L/ξa = 0). As the absorption L/ξa increases, the highest transmission

eigenvalue ⟨τ1⟩ decreases much earlier than the channel’s correlation CT . For exam-

ple, at L/ξa = 2.2, the highest transmission eigenvalue ⟨τ1⟩ is already reduced by

a factor of 4, while the correlation CT remains more than 0.9. Thus in the weak

absorption regime, the maximal transmission eigenvalue decreases while the eigen-

vector remains almost the same. This means that interference remains strong, and

absorption merely reduces the amount of energy reaching the output end, but does

not change the interference pattern. However, in the strong absorption regime, the

number of significant scattering paths is greatly reduced, and the interference effects

are weakened. Consequently, the maximal transmission channel starts to change dra-

matically and becomes “ballistic-like” as we have seen in Fig. 6.2.
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Figure 6.4: Quasi-normal modes contributing to the maximal transmission channel.
(a) Spatial distribution of electric field amplitude (|Ez|) for the six quasi-normal
modes with the highest degree of correlation with the maximal transmission channel
in Fig. 6.2. The normalized center frequency δkrL = (kr − ko)L and linewidth kiL
of each mode are given on top of each panel within parentheses (δkrL, kiL), where
(kr + iki)c = ωr + iωi is the complex frequency of the quasimode at zero absorption.

6.3.2 Correlation of the maximal transmission channel with

quasi-normal modes

To understand how the maximal transmission channel is formed and how it is modi-

fied by absorption, we investigate the related quasi-normal modes. Unlike the input

or output singular vectors of the transmission matrix, the quasi-normal modes of

an open random system are not orthogonal [49–51], thus it is difficult to decompose

the 2D field pattern of a transmission eigenchannel by the quasi-normal modes. Al-

ternatively, we compute the degree of correlation between each quasimode and the

eigenchannel to identify the modes that contribute significantly to the transmission

channel. We used the commercial program Comsol to compute the complex frequency

(ω = ωr + iωi) and field pattern of each quasi-normal mode in the disordered waveg-

uide. The imaginary part ωi of the complex frequency gives the decay rate or spectral

width of the resonance, and the ratio of ωr to ωi is proportional to the quality fac-

tor. The contribution of a mode to the maximal transmission channel is reflected in
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the correlation of their spatial field profiles, CM = |
∫
E∗
q (x, y)Ec(x, y)dxdy|, where

Eq(x, y) and Ec(x, y) represent the normalized spatial distribution of the electric field

Ez for the mode and the channel, respectively.

For the maximal transmission channel in Fig. 6.2, we identify six quasimodes

Figure 6.5: (a) A typical transmission spectrum for a random input field. The arrows
mark the center frequency of the modes (i)-(vi).

with the highest degrees of correlation, and present their field patterns in Fig. 6.4.

The first three modes, labeled (i) - (iii), have the dominant contributions to the max-

imal transmission channel at zero absorption. Mode (i) is a tightly confined mode,

which is visible in the field profile of the eigenchannel [Fig. 6.2(a)]. Modes (ii) and

(iii) are more extended, but they are not spread over the entire system, instead mode

(ii) concentrates in the left-half of the disordered waveguide, and mode (iii) in the

right-half. Their field patterns can be recognized in that of the eigenchannel. In con-

trast, modes (iv)-(vi) are spatially extended over entire disordered waveguide, and
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their linewidths (decay rates) are larger than those of modes (i)-(iii). Figure 6.5 plots

a typical transmission spectrum for a random input field. Modes (i)-(iii) are closest

to the probe frequency and they have the largest contributions to the maximal trans-

mission channel. Since these modes have little spatial overlap, optimum transport

of energy is facilitated by hopping through them. Hence, the maximal transmission

channel can be regarded as a necklace of resonances strung from one side of the system

to the other. It is similar to the necklace state that dominates the transport in the

localization regime [31], except that it is not a single state (quasi-normal mode) but

an eigenchannel of the transmission matrix. Although the total transmission at the

center frequency of mode (ii) is lower than that of mode (v), mode (v) is spectrally

further away from the probe frequency than modes (ii), and its contribution to the

maximal transmission channel is much smaller. We note that if the probe frequency

shifts to the vicinity of the center frequency of mode (v), this mode will dominate

the highest transmission channel, and the maximal energy transport occurs via an

extended mode. Thus the necklace-like channels of maximal transmission exist only

at certain probe frequencies.

Figure 6.6 shows how the correlation between the maximal transmission channel

and the quasi-normal modes change with absorption. In the regime of weak absorp-

tion (L < ξa), the correlation with each mode remains nearly constant, thus the field

pattern of the transmission channel hardly changes. Note that the absorption is uni-

form and does not modify the spatial profile of individual quasimodes. When the

absorption is strong (L > ξa), the correlations with modes (i)-(iii) decreases while the

correlations with modes (v)-(vi) increases. These modes, unlike modes (i)-(iii), are

extended over the entire system, and their contributions to the maximal transmission

channel increase with absorption. With a further increase of absorption to L/ξa = 9,

the maximal transmission channel has contributions from all the quasimodes that

have spectral overlap with the channel. The interference of these modes leads to the
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Figure 6.6: Correlation of the six quasimodes, labeled (i) - (vi) in Fig. 6.5, with the
maximal transmission channel CM as a function of L/ξa. Modes that contribute the
most at low absorption are closest to the channel frequency but spatially confined
in the random structure so maximal transmission is facilitated through resonances
hopping. However, when absorption is strong, more modes contribute to the maximal
transmission channel and form less winding light paths to reduce the total absorption.
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formation of the ballistic-like channel with maximal transmission.

6.3.3 Scaling of spectral width of maximal transmission chan-

nel with absorption

The profile of the maximal transmission channel changes with frequency. Its spectral

width gives the frequency interval over which a fixed input wavefront, optimized at a

single frequency, still leads to strongly enhanced transmission. A previous study on

light focusing through lossless turbid media shows that the frequency bandwidth of

a wavefront optimized for a single focus is equal to the width of speckle correlation

function D/L2, where D is the diffusion coefficient [52]. In this section, we investi-

gate how absorption modifies the frequency bandwidth of the maximal transmission

channel.

To compute the bandwidth, we first input monochromatic light at frequency k0

with the wavefront corresponding to the input singular vector of the maximal trans-

mission channel, and calculate the total transmission T (k0) at the output end. Then,

we scan the input light frequency k while keeping the same wavefront and calculate the

new transmission value T (k). As the frequency k is detuned from k0, the total trans-

mission T decreases. The bandwidth of the transmission channel is defined by the full-

width-at-half-maximum (FWHM) as ∆k = k2 − k1, where T (k1) = T (k2) = T (k0)/2,

k1 < k0 < k2. With the introduction of absorption, ∆k increases.

We observe varying scaling of ∆k with lt/la for various disorder configurations.

Figure 6.7(a) shows three types of behavior where the bandwidth increases linearly

for realization A (blue dashed line), sub-linearly for realization B (green solid line),

and super-linearly for realization C (red dotted line) with lt/la. In contrast, all the

quasi-normal modes exhibit the same linear increase of their spectral width with ab-

sorption. The average spectral width of quasimodes is shown by the black dash-dotted
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Figure 6.7: Dependence of the spectral width of the maximal transmission channel
on absorption. (a) Spectral width of the maximal transmission channel ∆k with
absorption (bottom axis lt/la, top axis L/ξa) for three waveguide realizations A, B,
C. The increase is linear for realization A (open squares connected by blue dashed
line), sub-linear for B (filled circles connected by green solid line), and super-linear for
C (filled diamonds with red dotted line). Black dash-dotted line represents the average
linewidth for the quasimodes. (b) Mode participation number Meff vs. absorption,
it increases slightly for A, decreases for B and increases dramatically for C. (c,d)
Total transmission for the input vector that gives the maximal transmission at k0 as
a function of frequency detuning of input light k − k0 at lt/la = 0 (dashed line) and
0.016 (solid line) for realizations B and C.
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line in Fig. 6.7(a).

To interpret these results, we again consider the quasi-normal modes underlying

the transmission eigenchannel. We calculate the mode participation number defined

as Meff ≡ (
∑
CM)2/(

∑
C2
M). The summation includes modes within a fixed fre-

quency range of |k − k0|L < 0.62. Modes with a frequency beyond this range have a

negligible contribution as they are spectrally located far outside the bandwidth of the

maximal transmission channel. Figure 6.7 (b) plots the mode participation number

versus absorption for the three realizations A, B, C. For A (linear scaling of ∆k with

lt/la), Meff increases slightly with lt/la, whereas for B (sublinear scaling of ∆k with

lt/la), Meff decreases. In contrast, C, which features a superlinear scaling of ∆k with

lt/la, exhibits a rapid increase in Meff as absorption increases. These results indicate

that the bandwidth of the maximal transmission channel is related to the number of

quasimodes contributing to the transmission. Figure 6.7 (c) and (d) show the total

transmission for the input vector that gives the maximal transmission at k0 versus

the frequency detuning of input light k − k0 at lt/la = 0 and 0.016 for realizations

B and C, respectively. We note that without absorption, the transmission of B that

possesses a higher mode participation number, has a broader bandwidth than C. This

is explained by the fact that more modes at different frequencies contribute to the

total transmission. The dramatic increase in the mode participation number for C

adds to the absorption-induced broadening, leading to a super-linear increase of the

channel bandwidth. Conversely, for B the broadening due to the increase of absorp-

tion is partially compensated by the reduction in the number of modes participating

in the transmission, resulting in a sub-linear behavior.

We have calculated many realizations, and found the behavior of A and C to

be more common. To explain the trend of B in Fig. 6.7(b), we plot in Fig. 6.8(a)

the correlations of the maximal transmission channel with six quasimodes, labeled

(i)-(vi), in the disordered waveguide B. These modes have the highest correlations
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Figure 6.8: Effect of modes’ contribution in the change of linewidth. (a) Correla-
tion of six quasimodes, labeled (i)-(vi), with the maximal transmission channel as
a function of lt/la. The normalized center frequency of each mode is marked by an
arrow in (c), and the normalized linewidth kiL at zero absorption is given next to
the panel. (b) Schematic of the transmission spectrum having two quasimodes in the
absence of absorption (dashed line) and with absorption (solid line). It shows how
the spectral broadening by absorption modifies the contributions of these two modes
to the transmission channel at k0. For the mode centered at k0, its contribution to
the channel decreases rapidly. For the mode farther way from the probe frequency,
its contribution increases when absorption becomes strong.
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with the maximal transmission channel at zero absorption. The center frequencies

of these modes are marked by arrows in Fig. 6.7(c), and their linewidths are given

in Fig. 6.8(a). With increasing absorption, mode (vi) quickly de-correlates with the

maximal transmission channel, indicating its contribution to the channel decreases

rapidly. This mode is located close to the probe frequency and its linewidth is small

without absorption. As shown schematically in Fig. 6.8(b), absorption spectrally

broadens this mode, and its spectral overlap with the channel decreases, leading to a

reduction in its contribution to the maximal transmission channel. Another mode (v)

which has narrower linewidth than mode (vi) is detuned from the probe frequency,

and its spectral overlap with the channel is lower. Consequently its contribution only

decreases slightly with absorption. All other modes have broader linewidth at zero

absorption, and the absorption-induced broadening is relatively weak. Thus their

contributions to the maximal transmission channel change more slowly with absorp-

tion. Therefore, the decrease of mode participation number with absorption is due

to rapid reduction in contributions from the long-lived modes that are almost in res-

onance with the channel. With a further increase of absorption, the modes, initially

having little overlap with the probe frequency, are spectrally broadened enough to

contribute to the maximal transmission channel at the probe frequency, leading to an

increase of the mode participation number.

Even though there appears to be different scaling behavior from one disorder re-

alization to another, the ensemble-averaged bandwidth of the maximal transmission

channel increases linearly with absorption. This result echoes the finding reported in

Ref. [41] where the linewidth of perfect absorption channel exhibits a linear scaling

with absorption.
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6.4 Minimal reflection channel

In lossless random media, the maximal transmission channel is equivalent to the mini-

mal reflection channel; the only way of reducing reflection is to enhance transmission.

In an absorbing medium, this is no longer true: reflection may be reduced by en-

hancing absorption instead of transmission. In this section, we study the relations

between the maximal transmission channel, the minimal reflection channel and the

maximal absorption channel in absorbing random media.

The reflection eigenchannels are obtained by singular value decomposition of

Figure 6.9: Absorption-induced change of minimal reflection channel. Filled circles
connected by solid line represent the correlation between the minimal reflection chan-
nel and the maximal transmission channel. Open squares connected by dashed line
represent the correlation between the minimal reflection channel and the maximal
absorption channel. The minimal reflection channel is the same as the maximal
transmission channel when absorption is weak L < ξa, but it approaches the maximal
absorption channel as absorption is strong L > ξa.

the field reflection matrix r. The input singular vector corresponding to the lowest
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singular value gives the minimal reflectance. We compute the correlation between

the input singular vector for maximal transmission and that for minimal reflection

using the same definition as in Eq.(6.2) and present the result in Fig. 6.9 (blue solid

line). The correlation is almost one in the weak absorption regime (L < ξa), but

drops quickly once in the strong absorption regime (L > ξa). When the absorption is

weak, the lowest reflection is still achieved by maximizing transmission. With strong

absorption, light that is not reflected can be either transmitted or absorbed. Hence,

reflection is reduced by enhancing both transmission and absorption.

To find the maximal absorption channel, we introduce the matrix h that links

Figure 6.10: Example of increasing minimal reflectance with absorption. (a) Open
circles connected by dashed line represent the ensemble-averaged lowest reflection
eigenvalue as a function of absorption. Filled squares connected by solid line represent
the lowest reflection eigenvalue of a selected realization that increases with absorption.
(b-g) are for the selected realization. (b, c) Spatial distribution of the electric field
amplitude |Ez(x, y)| inside the random waveguide at L/ξa = 0 and 3, respectively.
The lowest reflection eigenvalue reaches a local maximum at L/ξ = 3. (d) Correlation
of the minimal reflection channel with quasimodes 1 and 2. (e, f) Electric field patterns
of mode 1 and 2.
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light incident from one end of the waveguide to the transmitted and reflected fields:

h =

 r

t

 (6.3)

where r and t are the field reflection and transmission matrices. An eigenvalue of h†h

represents the sum of the reflectance and the transmittance of its associated input

singular vector. The singular vector of h with the smallest singular value corresponds

to the maximal absorption channel. The correlation coefficient between the minimal

reflection and maximal absorption channels is plotted as a function of the absorption

in Fig. 6.9 (black dashed line). As the correlation between the minimal reflection

channel and the maximal transmission channel decreases, the correlation between the

minimal reflection channel and the maximal absorption channel increases. Eventually,

in the strong absorption regime, the minimal reflection channel becomes identical to

the maximal absorption channel, indicating that the minimal reflection is achieved

by maximizing absorption instead of transmission.

Intuitively one expects all reflection eigenvalues to decrease with increasing ab-

sorption. Indeed, we show in Fig. 6.10(a), the ensemble-averaged minimal reflection

eigenvalue decreases with absorption. Strikingly, in a significant number of realiza-

tions we have observed the opposite behavior, a counter-intuitive increase of reflection

caused by absorption. In Fig. 6.10(a) we show the minimal reflectance of a selected

realization. The minimal reflectance (eigenvalue of r†r) first decreases slightly as

L/ξa increases from 0 to 1, then rises rapidly by a factor of 3 before dropping again

at larger absorption. In Fig. 6.10(b) and (c) we show the electric field patterns inside

the random waveguide corresponding to the minimal reflectance without absorption

and at L/ξa = 3 where the lowest reflection eigenvalule reaches a local maximum. In

the absence of absorption, light penetrates deep into the random medium with the
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field maxima close to the center of the sample. However, at L/ξa = 3, the penetration

depth is greatly reduced and the field maxima shift to the input end of the random

system. The field pattern close to the input surface of the same is also strongly mod-

ified.

To understand this counter-intuitive behavior, we investigate the quasi-modes

that contribute to the minimal reflection channel. Fig. 6.10(d) plots the degree of

correlation between the minimal reflection channel and two quasi-modes (labeled 1,

2) that have the highest contributions, and in Fig. 6.10(e) and (f) show their field

patterns. Without absorption, the least reflection channel is dominated by mode 1

that is located near the center of the sample. Destructive interference of various

scattering paths of light in the disordered waveguide minimizes the reflectance. This

explains the low minimal reflectance value of the selected realization compared to the

ensemble-averaged one. With the introduction of absorption to the system, relative

amplitudes of these paths are changed, the longer paths are attenuated more than the

shorter paths, thus the destructive interference is weakened, leading to an increase of

the reflectance as shown in Fig. 6.10(a). When the minimal reflectance has a maxi-

mum at L/ξa = 3, the field pattern of the minimal reflection channel shown in Fig.

6.10(c), resembles that of mode 2 in the left half of the waveguide. At this strong

absorption level, the contribution of mode 1 to the minimal reflection channel is neg-

ligible, whereas mode 2 becomes dominant, which is a mode with a larger overlap

with the input light into the disordered waveguide. Therefore, the interference in the

bulk of the sample - that is the cause of open transmission channels - is suppressed,

which leads to an increased reflectance.

Let us now consider the input wavefront E1, which corresponds to the minimal

reflection channel (or maximal transmission channel) without absorption. E1 couples

most of the input energy into mode 1. Figure 6.11 shows the reflectance associated

with input wavefront E1 as a function of absorption L/ξa. When absorption be-
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Figure 6.11: Reflection with different input wavefronts. Filled circles connected by
solid line (open diamonds connected by dashed line) represent the reflectance of a
fixed input wavefront E1(E2) that corresponds to the input singular vector of the
minimal reflection channel at L/ξa = 0 (L/ξa = 3).
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comes significant (L > ξa), the reflectance increases rapidly, up to 5 times its value

at L/ξa = 0. Another input wavefront E2, corresponding to the minimal reflection

channel at L/ξa = 3, couples most of the energy into mode 2. In Fig. 6.11, we show

the evolution of the reflection value associated to this wavefront with absorption. As

expected, the reflectance decreases with increasing absorption. Once the reflectance

with input wavefront E2 becomes lower than that associated with E1, mode 2 becomes

dominant in the minimal reflection channel. This illustrates that with increasing ab-

sorption, the mechanism that produces the minimal reflection channel changes from

transmission to bulk absorption. Moreover, it shows the significant role played by in-

terference of scattered waves up to the point where the absorption becomes dominant.

6.5 Discussion

It has been suggested that the change in transport behavior of the maximal transmis-

sion channel with increasing absorption bears similarity to the change found recently

in the dynamic transport of localized samples [53]. There ballistic transport was ob-

served at early times after a pulsed excitation, which involved all excited quasimodes.

At later times, the modes with shorter lifetimes dissipate, and only the modes with

longer lifetimes survive and dominate transmission. In the case of strong absorption,

long optical paths are eliminated and only short paths survive, making the trans-

port ballistic-like. The maximal transmission channel consists of both long-lived and

short-lived modes, similar to the dynamic transport at early times. In the long time

limit, the transmission of a localized sample is dominated by a single quasi-mode with

the longest lifetime, however, the maximal transmission channel in a diffusive sample

with weak or no absorption consists of multiple long-lived modes as shown in section

III.
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It is worth to note that such necklace-like transport due to hopping of several

spatially confined modes is unlikely to exist if the width of the disordered waveguide

is increased significantly. This is because the localization length, which increases lin-

early with the waveguide width, will become much larger than the system length.

Hence the system moves further away from the localization regime, most quasimodes

are spatially extended over the random media. Also the mode density increases with

the system size. No matter what the probe frequency is, there are always extended

modes nearby which contribute significantly to the transmission channel. Thus the

maximal transmission channel is expected to consist of many extended modes whose

interference leads to highest transmission. Only in the diffusive system close to lo-

calization transition, some of the quasi-modes become spatially confined, and the

maximal transmission channel can be necklace-like.

The ballistic-like maximal transmission channel, found here in the presence of

strong absorption, may enable new modes of imaging that are specific to absorbing

media. To check whether such ballistic-like transmission channels also exist without

absorption, we examine all transmission channels in the non-absorbing disordered

waveguides. We compute the histogram of Poynting vector direction P (θs) for every

transmission eigenchannel in three random realizations. The variance of P (θs) re-

mains large for all transmission eigenchannels, including those with low transmission

eigenvalues. Hence, ballistic-like transmission channel does not seem to exist in our

systems without absorption. Nevertheless, it is important to introduce a physical

quantitative that measures how ”ballistic” a transmission channel is. One possibility

is the average transmission time [54], which merits further study.
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6.6 Conclusion

We have performed a detailed numerical study to understand how absorption modifies

transport in a 2D disordered waveguide, with emphasis on the maximum transmission

channel. The maximal transmission channel is relatively robust against absorption

compared to the transmittance. Its input wavefront remains nearly unchanged up

to L ≈ ξa, but changes rapidly beyond that point. In the maximal transmission

channel, light propagates through the random structure along winding paths when

absorption is weak (L < ξa), and takes more straight routes once absorption is signif-

icant (L > ξa). We investigate the correlations between the quasi-normal modes and

the maximal transmission channel to illustrate the mechanism of enhanced transmis-

sion in both weak and strong absorption regimes. Maximal transmission is facilitated

by hopping through localized modes when absorption is weak, and is dominated by

more extended modes when absorption is strong. We observe distinct scaling behavior

for the spectral width of maximal transmission channel in different random config-

urations. Such differences result from the absorption-induced change in the number

of quasimodes that participate in the maximal transmission channel. The channel

spectral width increases linearly with absorption, if the mode participation number

Meff remains almost constant; the width increases sublinearly if Meff decreases, and

superlinearly if Meff increases.

In the absence of absorption, minimal reflection corresponds to maximal trans-

mission, but this correspondence no longer holds in the regime of strong absorption

(L > ξa), where minimal reflection corresponds to enhanced absorption. In some in-

stances, we have observed the surprising feature that the minimal reflection eigenvalue

increases with absorption, which can be explained by the reduction of destructive in-

terference. The numerical study presented here provides a physical understanding

of the effects of absorption on transmission and reflection eigenchannels at the rele-

vant mesoscopic scale, which will hopefully serve in the interpretation of experimental
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work, and in the design of practical applications.
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Chapter 7

Control of microcavity lasers by

selective pumping

7.1 Introduction

1 Semiconductor microdisk lasers have simple geometry, small footprint, and low

lasing threshold, making them excellent candidates for on-chip light sources for in-

tegrated photonics applications [2, 3]. Due to high refractive index contrast at the

disk boundary, light is strongly confined by total internal reflection, forming the

whispering-gallery modes (WGMs) with high-quality (Q) factor. A circular microdisk

much larger than the optical wavelength support densely packed WGMs, and lasing

usually occurs in multiple modes of different frequencies. For many applications, las-

ing at a single frequency is desired. However, it is difficult to have only one mode

lasing when many WGMs of similar Q exist within the gain spectrum. It is even

more challenging to switch the lasing mode from one to another, after the laser is

fabricated.

In addition to the lack of control on the lasing frequency, the isotropic emission

1. The first half of this chapter is primarily based on the journal article published in ref. [1].
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from circular microdisks seriously limits the application because directional output

is usually required. One way to generate directional emission is deforming the cavity

shape to break the circular symmetry [4–6]. Directional coupling of light output from

whispering-gallery mode microdisk lasers has been realized using patterned asymme-

tries in the shape of microdisk resonators, which enabled control of both direction and

intensity of light output without dramatically increasing laser thresholds [7,8]. With

large deformation, refractive escape is dominant, and all the whispering-gallery-like

modes have similar output directionality which is dictated by the ray dynamics [9–11].

Such universality hinders switching of emission directionality even if one can select

different mode to lase. For a weakly deformed cavity, evanescent tunneling domi-

nates over refractive escape. Although the intracavity mode patterns remain nearly

unaltered by slight shape deformation, the external emission can be much more sen-

sitive [12–16]. Even a tiny boundary variation may lead to wildly varying external

fields, producing large intensity contrast between the directions of maximal and min-

imal emission. The emission patterns differ significantly for the high-Q modes, offer-

ing the capability of switching the output directionality by selecting different mode

to lase.

Pump engineering is an efficient way to control the lasing frequency and output

direction of a semiconductor laser. To select a particular mode to lase, one may re-

duce its lasing threshold by enhancing the spatial overlap between the pump and the

mode [17–21]. For instance, a ring-shaped optical pump has been used to lower the

lasing threshold of WGMs in circular micropillars [22] or to produce directional emis-

sion from spiral-shaped microdisk lasers [23]. The same method has been adopted

for electrically pumped semiconductor lasers by patterning the electrodes to match

the targeted mode profiles [24–26]. Switching of emission directions was realized

by injecting currents to separate electrodes that had maximal overlap with individ-

ual modes [27]. This technique requires a priori knowledge of the mode profiles and
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demands little spatial overlap between the selected modes. Hence, it limits the switch-

ing capability to a few modes, and becomes practically unviable once the modes have

strong spatial overlap.

Lately active control of pump profile was demonstrated for random lasers using

the spatial light modulator (SLM) [28]. Even for strongly overlapped modes, adaptive

shaping of the spatial profile of the optical pump enabled selection of any desired las-

ing frequency without prior knowledge of the mode profiles [29,30]. Numerical studies

also demonstrated pump-controlled directional emission from two-dimensional (2D)

random lasers [31].

In this chapter, we apply the active control of pump profile to the semiconductor

microdisk lasers. The disks are slightly deformed due to fabrication imperfection.

Since the Q spoiling is weak, the lasing threshold remains low. The high-Q modes,

whose emission is determined by evanescent tunneling, exhibit distinct emission pat-

terns. Optical gain is provided by optical pumping of the semiconductor quantum

dots (QDs) embedded in the disk. The broad gain spectrum allows lasing in multi-

ple high-Q modes. These modes have strong spatial overlap near the disk boundary,

which adds complexity to the mode selection process, and makes finding the best

solution a nontrivial operation. By adaptive control of the pump profile, we are able

to select different modes to be the dominant lasing mode and suppress all other lasing

modes. Consequently, the laser emission pattern is changed. Our results demonstrate

an effective and flexible method to exploit the multimode characteristic of nearly cir-

cular microdisk lasers for switching of lasing frequency and emission direction.

184



Figure 7.1: Fabrication of microdisk. The structure was first patterned using e-beam
lithography on a GaAs substrate with embedded layers of InAs QDs. The pattern
was then transfered to the GaAs by non-selective wet etching process using HBr.
Due to anisotropic etching rate, the disk can be easily distorted. Additional selective
etching step using HF undercut the AlGaAs layer below the microdisk and form a
thin pedestal to support the disk.

Figure 7.2: (a) Low magnification top-view scanning electron micrograph (SEM) of
the microdisk. Red circle denotes the outer edge of an annular air gap, which is
used to measure emission pattern. (b) The microdisk shows slight deformation from
circular shape. Center dark area is on top of the AlGaAs pedestal. (c) Tilt-view of
the microdisk in (a). (d) Surface roughness exists at the edge of the disk.
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7.2 Microdisk fabrication and characterization

The sample is grown on a GaAs substrate by molecular beam epitaxy. It consists of

a 1µm-thick Al0.68Ga0.32As layer and a 200nm-thick GaAs layer with three embedded

layers of InAs QDs. Each QD layer contains 2.5 monolayers of InAs. As shown in

Fig. 7.1, the microdisks are fabricated by electron beam lithography and two steps

of wet etching [32]. The first is non-selective etching of the GaAs and Al0.68Ga0.32As

layers with HBr, forming microcylinders. The second step is a HF-based selective

etch to undercut the Al0.68Ga0.32As and create a pedestal to isolate the GaAs disk

from the substrate. Figure 7.2(a) shows the top-view scanning electron micrograph

(SEM) of a fabricated disk. The disk at the center is surrounded by an annular air

gap that separates the disk from the unetched GaAs layer. The outer circle (red

dashed line), with a radius of 18µm, is used to measure the emission pattern. The

non-selective etching process is not perfectly isotropic, thus the disk shape deviates

from the original design of a circle, as can be seen in Fig. 7.2(b). In addition, the

etching also creates surface roughness at the disk boundary [Fig. 7.2(d)]. From the

high-resolution SEM, we extract the disk boundary and fit it in the polar coordi-

nates as ρ(θ) = R [1 + a cos(2θ + α) + b cos(3θ + β)], where R = 3.71µm, a = 0.024,

b = 0.0089, and α = 1.38, β = 0.13. The dominant deformation originates from the

cos(2θ) modulation, but the contribution from the cos(3θ) is non-negligible. Note

that both modulations have very small magnitudes, a, b ≪ 1, confirming the cavity

is nearly circular and the output is dominated by evanescent tunneling.

7.3 Adaptive shaping of spatial pump profile

The fabricated samples are tested in a liquid helium cryostat at temperature ∼ 10K.

Optical excitation is provided by a mode-locked Ti:Sapphire laser (λ = 790nm) op-
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Figure 7.3: Schematic of optical setup: L1, L2, L3: lens. PBS: polarizing beam
splitter. SLM: spatial light modulator. BS: non-polarizing beam splitter. LWD obj:
long-working distance objective lens.

erating at 76MHz with 200fs pulses. As shown schematically in Fig. 7.3, the pump

beam is first expanded by a telescope to cover the entire surface of the SLM (Hama-

matsu X10468-02). The SLM is positioned between a pair of polarizers to introduce

intensity modulation on the pump beam. The spatially modulated pump pattern

is then projected onto the top surface of a microdisk. Since the AlGaAs pedestal

causes light leakage from the GaAs disk to the substrate, the high-Q modes avoid the

central region of the disk. Thus the pump region is set as a ring. It is divided into

two subrings, each is further divided into eight sections in the azimuthal direction.

Optical power within each section can be modulated separately using the SLM while

the total power is kept constant.

In order to select one mode to lase while suppressing all other modes, we adopt

the genetic algorithm in MATLAB to search for the optimum spatial pump profile.

The cost function is defined as G = Im/Io, where Im is the intensity of the targeted

mode, and Io is the highest intensity among all other modes in the spectra. The

algorithm starts with an initial population of ten pump patterns where one of them

is a homogeneous ring and the rest are random. The emission spectrum for each
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pump pattern is recorded, and the cost function is evaluated. The pump patterns are

ranked by their cost function, and the ones with higher ranking have a larger chance

of being chosen as “parents” to generate ten “children”. The first two are the pump

patterns with the highest ranking among the parents, which are copied to the next

generation without changes. The next six childrens are generated through crossover

by randomly selecting different parts of the pump patterns from a pair of parents

and combine them. The last two are created through mutation by making random

changes to a single parent. The mutation rate decreases with generation and is set

to zero after ten generations. After ten generations, we reset the initial population to

include the highest ranked pump pattern from the previous trial and nine randomly

generated patterns, and repeat the genetic algorithm to search unexplored parameter

space for a better solution. During the optimization process, the total pump power

is kept constant, the pump energy is merely re-distributed to different regions of the

disk. Between successive pump patterns test, the microdisk is pumped with a homo-

geneous ring to eliminate any residual thermal effect from the previous pump profile.

7.4 Spectral and emission pattern control of mi-

crodisk laser

Figure 7.4 presents the results for adaptive pumping of the microdisk shown in Fig.

7.2. When the pump intensity is uniform across the annular pump region, the emission

spectrum contains three major peaks at the pump power of 2.2 mW [Fig. 7.4(a)]. No

additional lasing peak is found beyond the spectral range of Fig. 7.4(a). We are able to

make any one of the three to be the dominant lasing mode after optimizing the pump

pattern in 30 generations. Figure 7.4(b-d) are the emission spectra after optimizing

modes (i)-(iii) respectively, and the insets are the optimized pump patterns. The
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Figure 7.4: Emission spectra of the microdisk shown in Fig. 7.2(a) when pumped
with different spatial patterns. The total pump power is kept at 2.2mW. Three modes
lase with a homogeneous ring pump (a). Each of the three modes, (i-iii), becomes the
dominant lasing mode (b-d) after the optimal pump profile is found by the genetic
algorithm. The inset in each panel is the final pump pattern. Darker color corresponds
to higher pump intensity.

emission intensity of the selected mode changes slightly but the intensities of non-

selected modes are greatly reduced. For example, when mode (iii) is chosen to be the

dominant lasing mode [Fig. 7.4(d)], the intensities of mode (i) and (ii) are an order

of magnitude lower than under the homogeneous pumping [Fig. 7.4(a)].

Next, we investigate the output directionality of the lasing modes. The in-plane

emission from the disk boundary propagates to the outer edge of the air gap [red

circle in Fig. 7.2(a)] and is scattered out of the plane. The scattered light is imaged

from the top of the disk by an objective lens onto a CCD camera, and its intensity

distribution reflects the emission pattern. When three modes lase simultaneously

with homogeneous pumping [Fig. 7.4(a)], the total laser emission is bidirectional

as shown in Fig. 7.5(b). It is attributed to the dominant cos(2θ) modulation of

the cavity boundary and light is emitted tangentially from the two places of the

highest curvature on the cavity boundary. Next we place a narrow-bandpass filter
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Figure 7.5: (a) Schematic showing that the emission pattern was inferred from the
out-of-plane scattering of the light escaping from the boundary of the disk. (b)
Angular distribution of emission intensity measured for the microdisk in Fig. 7.2
when pumped with a homogeneous ring. The corresponding emission spectra are
shown in Fig. 7.4(a). The total emission from all three lasing modes is bi-directional.

in front of the camera to select a single lasing mode. Figure 7.6 show the angular

distribution of emission intensity for each of the three lasing modes. It is evident that

the three modes have distinct emission patterns. When one of them becomes the

dominant lasing mode by selective pumping, we remeasure its emission pattern and

find it remains the same. Hence, the modes themselves are barely modified by the

redistribution of pump energy. This result differs from the weakly scattering random

lasers [29,30], because in our case the modes are strongly confined due to high index

contrast at the disk boundary.

7.5 Numerical simulation

To understand the modal dependent output directionality, we extract the cavity shape

from the SEM and perform numerical simulation. The lasing modes usually corre-

spond to the high-Q modes in the passive cavity, whose frequencies are within the
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Figure 7.6: Angular distribution of emission intensity measured for individual lasing
mode. Each of the lasing mode, (i-iii), exhibits distinct emission pattern. The mode
labeling is the same as that in Fig. 7.6.

gain spectrum. Thus we numerically calculate the high-Q modes in the passive disk

using the finite element method (COMSOL). Since the disk radius is much larger

than the disk thickness, a microdisk can be treated as a 2D cavity with an effective

index of refraction n = 3.13 [32]. To simulate the open boundary condition, the disk

is placed in air, which is surrounded by a perfectly matched layer (PML) to absorb

all outgoing waves. Since we do not know the exact temperature of the GaAs disks

when optically pumped inside the liquid-Helium cryostat, we cannot get the accurate

value of the refractive index n to match the numerically calculated modes with the

experimentally measured lasing peaks. Instead of a quantitative comparison, our nu-

merical simulation aims to provide a qualitative understanding of the characteristic

of the lasing modes.

Figure 7.7 presents the results of two high-Q modes in the wavelength range

of InAs QD gain spectrum. Their quality factors Q = ωr/2ωi are 67000 and 69000

respectively, where ωr − iωi is the complex frequency of the cavity mode, and the

imaginary part ωi is inversely proportional to the mode lifetime in the open cavity.

As shown in Fig. 7.7(a,b), both modes are spatially localized near the cavity bound-

ary, similar to the WGMs. However, their intensities are not uniformly distributed in

the azimuthal direction, because of boundary roughness. Outside the cavity, the az-

imuthal variation of the field intensity becomes much stronger as seen in Fig. 7.7(c,d).
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Figure 7.7: Numerical simulation of two high-Q modes, one at λ = 913.4nm (a,c,e),
the other at λ = 927.7nm (b,d,f), in the microdisk shown in Fig. 7.2. (a,b) Spa-
tial distribution of electric field intensity, resembling the WGM but distorted due
to boundary roughness. (c,d) Electric field intensity distribution outside the disk,
highlighted by saturating the intensity inside the disk, showing the two modes have
distinct outputs. (e,f) Angular distribution of emission intensity, convolved with the
experimental resolution, at a distance of 18µm from the disk center.

192



The two modes exhibit distinct intensity distributions outside the cavity, indicating

that light output via evanescent tunneling is dramatically different. Figure 7.7(e) and

(f) are the angular distributions of emission intensity at a distance of 18µm from disk

center, similar to the experimental measurement. The calculated intensity distribu-

tion is convolved with the experimental resolution of ∼ 0.9 µm. We have simulated

other high-Q modes and observed similar phenomena. Finally, we checked that with-

out boundary roughness, the microdisk defined by the fitted boundary curve ρ(θ),

contains only high-Q modes with similar emission patterns. This result confirms that

boundary roughness is responsible for the distinct emission directionality of individual

high-Q modes. The sidewall roughness not only modifies the local evanescent tunnel-

ing, but also induces mode coupling which affects the far-field pattern [15, 16]. The

diversity in the output directionality among the high-Q modes enables the switching

of emission direction by selecting different modes to lase with adaptive pumping.

In conclusion, we demonstrate selection of lasing modes with directional emission

in weakly deformed semiconductor microdisks by adaptive pumping. Despite strong

spatial overlap of the lasing modes, we are able to select any one of them to be the

dominant lasing mode by suppressing all other modes. Slight shape deformation and

sidewall roughness due to fabrication imperfection creates directional emissions that

are mode dependent. Combining these features, both lasing frequency and emission

pattern can be switched by external pump, after the laser is fabricated. This method

may be extended to electrically pumped microdisks by using multiple eletrodes to

modulate the spatial profile of current injection.

7.6 Pump controlled lasing dynamics

We measured the lasing thresholds and power slopes of each lasing modes to under-

stand the underlying physical mechanisms for mode selection. However, the lasing
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Figure 7.8: SEM of microdisk. (a) Top-view SEM of the big microdisk. (b) Tilt-view
SEM of the microdisk showing surface roughness at the boundary.

threshold for the weakly deformed microdisk cavity is very high and thus it is difficult

to measure the power slope. Hence, we switch to another disk with a larger radius

and less deformation, where lasing thresholds are low and allow us to obtain the

power slope. The new microdisk had a radius of 9.2 µm and fabricated with slightly

different process than the previous disk. Instead of non-selective wet-etching process,

the disk was fabricated by selective etching process (reactive-ion etching) where the

etching rate is more isotropic across the disk. Fig. 7.8(a) shows that the fabricated

disk has very little deformation compared to the smaller disk in Fig. 7.2. However,

from the tilt-view SEM in Fig. 7.8(b), surface roughness still exists at the edge of the

disk.

By using the same experimental setup, we test the fabricated device at cryo-

temperature about 10K. With a uniform ring pump pattern, the lasing spectrum

contains more than ten modes within a wavelength range of 28 nm [Fig. 7.9(a)]. The

free spectral range (FSR) of the disk is estimated to be ∆λ λ/nkR = 4.7nm. The

small FSR indicates the lasing spectrum in Fig. 7.9(a) contains higher-order radial

WGMs as well. Then, we select each of the modes labeled (i-v) to become the domi-

nant lasing mode using the Genetic algorithm with same cost function as defined in

the previous section. The final lasing spectra and optimized pump profile for each
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Figure 7.9: Lasing spectra of the microdisk shown in Fig. 7.8 with different spatial
pump patterns. The total pump power is kept at 4 mW. More than ten modes lase
with a homogeneous ring pump in (a). Each of the five dominant modes, labeled
(i-v) becomes the dominant lasing mode (b-f) after the optimal pump profile is found
by the genetic algorithm. The inset in each panel is the final pump pattern. Darker
color corresponds to higher pump intensity.

mode are shown in Fig. 7.9(b-f). The total pump power is kept constant at 4 mW

during the optimization process. We observe that for modes (iv) and (v), their final

lasing intensity becomes higher with selective pumping but for the other modes, their

lasing intensity either decrease (i, iii) or remain similar (ii).

To investigate the lasing dynamics of different modes, we measured their lasing

thresholds and power slopes (differential quantum efficiency). In Fig. 7.10(a), we

show the change of lasing intensity as a function of pump power for mode (i-v) with

uniform ring pump profile. All L-I curves show threshold behavior and the lasing

modes turn on at similar pump power of 3 mW. The lasing thresholds are estimated

by the intersection point of the two linear regression lines, each fitting the data points

before and after a lasing mode turns on. Fig. 7.10(b) plots the lasing thresholds of

195



Figure 7.10: Lasing thresholds and power slopes of lasing modes with uniform ring
pump pattern. (a) Emission intensity of different lasing modes as a function of pump
power. From (a), we extract the (b) lasing thresholds and (c) power slopes of each
modes (i-v).

different modes with uniform pumping. The power slope of each lasing mode is the

slope of the second linear line fitting the data points for pump power higher than

the threshold. Power slopes of mode (i-v) are presented in Fig. 7.10(c) which show

a larger fluctuation than the lasing mode thresholds. For example, power slope of

mode (ii) is about three times of mode (iii) and (iv) while their lasing thresholds only

differ less than 2 %.

We measured the lasing thresholds and power slopes again after optimizing each

mode to become the dominant lasing mode. Fig. 7.11(a-e) show the results after
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optimizing for each mode (i-v) and their corresponding lasing spectra are plotted in

Fig. 7.9(b-f). In general, selective pumping increases the lasing thresholds of all

modes including the targeted mode compared to uniform pumping. In Fig. 7.11(a),

(c) and (e), Mode (i), (iii) and (v) have the lowest thresholds with selective pumping

to make them the dominant lasing modes. Power slopes of these two modes reduce

compared to uniform pumping but remain the highest among the non-selected modes.

As a result, we can attribute the selection of mode (i), (iii) and (v) to their lowest

lasing threshold and highest power slope. However, this is not a necessary condition

for a lasing mode to be selected as the dominant one. In Fig. 7.11(b) and (d), mode

(ii) and (iv) were selected as the dominant lasing mode but their thresholds were not

the lowest among all other modes. Nevertheless, after lasing mode (ii) and (iv) turns

on, they lases with the highest power slope and surpass the intensity of earlier lasing

modes. From these results, we observe that the selective pumping not only suppresses

the non-selected modes by increasing their lasing threshold but also decreasing their

power slopes. The suppression of power slopes indicates that the selective pumping

not only changes the spatial overlap between the mode and pump but also affects the

lasing modes interaction/competition.

7.7 Numerical simulation of microdisk with sur-

face roughness

To understand the effect of selective pumping on the microdisk laser, we simulated

a circular microdisk with artificially introduced boundary roughness. Surface rough-

ness is added to the boundary of the disk by introducing some high order harmonic

perturbations, ρ(θ) = ro +
∑80

20 am cos(mθ + ϕm) where ro =3 µm, |am| ≤0.5 nm and

|ϕm| ≤ π. Values of am and ϕm were randomly selected for each azimuthal number m.

Using COMSOL, we compute the eigenfrequencies and the magnetic spatial field pro-
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Figure 7.11: Lasing thresholds and power slopes of lasing modes for different opti-
mized pump profiles. (a-e) Lasing thresholds (left column) and power slopes (right
column) for lasing modes (i-v) with lasing spectra correspond to Fig. 7.9(b-f). Some
of the modes stop lasing with selective pumping and we omit those data points in the
plots.
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Figure 7.12: Spatial distribution of magnetic field |Hz(x, y)| and chirality of the
simulated modes. (a,b) The spatial magnetic field profile for two high-Q modes are
shown in the top row. The Q for the modes are (a)Q = 119500, (b)Q = 108900
respectively. (c,d) Bessel functions decomposition of field profiles for mode (a,b).
Mode (a) with orbital angular momentum m = 57 has very high chirality of 0.9 and
mode (b) with m = 58 mixed with another low-Q mode with m = 34.

file (|Hz|) of two successive first order radial WGM with TE polarization (in-plane

electric fields) [Fig 7.12(a-b)]. Mode (a) and (b) have very similar Q, their Q are

119500 and 108900 respectively. Mode (a) is more radially confined at the edge of

the disk compared to mode (b) which has additional field components closer to the

center of the disk. Mode (a) looks more like a propagating wave than stationary wave

pattern because the node points have disappeared. This propagating wave pattern

indicates that mode (a) has very high chirality.

To investigate the chirality of mode (a) and additional field components in

mode (b), we decompose the field profile using Bessel functions Jm(nkr) as the basis,
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Hz(r, θ) =
∑∞

−∞ amJm(nkr) exp(−imθ). At the bottom row of Fig. 7.12, we plot

the square of the decomposition coefficients C(m) = |am|2. For both modes, the CW

and CCW waves have unequal weight. This imbalance of CW and CCW waves can

be attributed to the random ϕm term in the harmonic perturbations, which breaks

the chiral symmetry of the disk boundary. As a result, the scattering of CW and

CCW waves at the boundary is not symmetry and the final mode profile contains un-

equal portions of CW and CCW waves. The spatial chirality of a mode is defined as

α = 1−min[
∑1

−∞C(m),
∑∞

1 C(m)]/max[
∑1

−∞C(m),
∑∞

1 C(m)] [33]. Surprisingly,

even though the surface roughness is added randomly, chirality of the modes are quite

significant where α = 0.9 and 0.55 for mode (a) and (b) respectively. Since mode (a)

is dominated by the positive orbital angular momentum component, the field profile

resembles a propagating wave pattern instead of the conventional standing wave pat-

tern.

In addition to the large chirality, mode (b) also contains field components that

correspond to a higher order radial WGM. Ref. [15] shows that coupling of multiple

resonances can occur by boundary wave scattering. For this coupling mechanism to

occur, the resonances have to be spectrally close to one another. More importantly,

the cavity must have harmonic boundary deformation that enables scattering of waves

from one resonance to another with different angular momentum. These conditions

are satisfied for the two modes, one is a high-Q mode with m = 58 and another is a

low-Q higher order radial mode with m = 34. The random harmonic perturbations

that were artificially introduced to the disk boundary provide the scattering path

that couple the CW or CCW waves of these two resonances with different angular

momentum. As a result, the mode profile of m = 58 contains the field components

from the adjacent m = 34 mode due to the boundary wave scattering.
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Figure 7.13: Modal intensity of two lasing modes [mode(a) and (b) in Fig. 7.12]
with uniform pumping (dashed lines). Their lasing order exchanged with selective
pumping (solid lines). Lasing threshold and power slope of mode (a) increase more
compared to mode (b). Inset shows the interaction coefficients and the optimized
pump pattern is shown on the right.

7.8 Numerical analysis using SPASALT

To understand how selective pumping might affect the lasing behaviors of mode (a)

and (b) in Fig. 7.12, we compute the lasing intensity by using the Steady-state

ab initio laser theory [34]. For qualitative understanding, we use the single-pole

approximation and solve a set of linear equations to obtain their lasing intensity.

The lasing dynamics depends greatly on the mode interaction and the interaction

coefficients are defined as

χij =
1

A

∣∣∣∣∫
cavity

dr⃗ψ2
i (r⃗)|ψj(r⃗)|2

∣∣∣∣ (7.1)

where ψ(r⃗) is the normalized magnetic field profile inside the cavity. As the modes

are strongly localized at the disk boundary with very high Q, we assume the wave

functions remain the same as the passive cavity and not affected by selective pumping.

In Fig. 7.13, we show the lasing intensity of mode (a) and mode (b) with uniform

pumping (dashed lines) and selective pumping (solid lines). Their interaction coeffi-
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cients are given in the inset of Fig. 7.13. Mode (a) with higher Q is the first mode

to lase. Then, we adopt the same genetic algorithm to find the pump pattern which

makes mode (b) becomes the first lasing mode and increases the threshold of mode

(a). Figure 7.13 shows that with selective pumping, mode (b) becomes the first lasing

mode and lasing threshold of mode (a) increases by more than factor of 2. The final

pump pattern in Fig. 7.13 indicates more pump energy is being deposited in the inner

ring compared to outer ring. Since mode (b) has additional field components closer

to the center of the disk, the final pump patten will favor the lasing of mode (b) and

greatly suppress mode (a). To be more quantitative, we can compute a pump overlap

factor to determine the spatial overlap between the pump pattern and the mode field

intensity. The overlap factor is defined as

fi =
1

A

∫
cavity

dr⃗P (r⃗)|ψi(r⃗)|2 (7.2)

where P (r⃗) is the distribution of pump power. f = 1 with the uniform ring pump

pattern. The final overlap factors for mode (a) and (b) are fa = 0.4699 and fb =

0.5487. The lasing thresholds of both modes increase by selective pumping because of

overlap factor less than 1. However, the pump pattern overlaps better with mode (b)

than mode (a), and switches the lasing order. This switching is only possible because

both mode (a) and (b) have different field profile due to surface roughness. If the

boundary is smooth, both of these modes will have almost identical field profiles in

the radial direction, and selective pumping will not work.

We have shown that selective pumping can switch the lasing order of the two

high-Q modes. Now, we will consider another case where the lasing order remains the

same but the power slope of the first lasing mode is suppressed significantly. For this

purpose, we choose another pair of high-Q mode with different ratio of χ11/χ21 and

χ22/χ12. Figure 7.14 shows the field profile of the two second radial order WGMs.
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Figure 7.14: (a,b) Spatial field profile of two high-Q modes with Q = 130800 and
Q = 104560 respectively. (c) Modal intensity of the two lasing modes with uniform
pumping (dashed lines). Their lasing order remain the same but power slope of mode
(a) is suppressed significantly with selective pumping (solid lines). Inset shows the
interaction coefficients and the optimized pump pattern is shown on the right.

203



Again, mode (b) contains extra field components close to the center of the disk and

mode (a) is dominantly confined at the boundary. Mode (a) has Q = 130800 which

is higher than mode (b) with Q = 104560, so mode (a) is the first one to lase. Then,

we use the genetic algorithm to maximize the ratio of power slopes of mode (b) to

(a). In Fig. 7.14(c), the lasing order remains the same with selective pumping but

the power slope of mode (a) is greatly suppressed. In this case, selection of mode

(b) is due to higher power slope and not lower lasing threshold. This results match

with the experimental observations in Fig. 7.11(b) and (d), where the targeted mode

does not has the lowest lasing threshold but highest power slope. In summary, our

numerical simulation here serves as a qualitative explanation of the lasing dynamics

we observed in experiment. Exact matching between experiment and simulation

is difficult because of the inaccuracy in measuring the refractive index and surface

roughness of the microdisk cavity in experiment. Nevertheless, we have shown that

by using selective pumping, not only is the lasing order can be switch by changing the

pump and mode overlap but the mode interaction (power slope) can be controlled as

well.
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A 88, 043801 (2013).

[16] L. Ge, Q. Song, B. Redding, and H. Cao, Phys. Rev. A 87, 023833 (2013).

[17] S. F. Pereira, M. B. Willemsen, M. P. van Exter, and J. P. Woerdman, Appl.

Phys. Lett. 73, 2239 (1998).

[18] Y. F. Chen and Y. P. Lan, J. Opt. B 3, 146 (2001)

[19] Y. F. Chen, Y. P. Lan, and S. C. Wang, Appl. Phys. B 72, 167 (2001).

[20] J.-F. Bisson, A. Shirakawa, Y. Sato, Y. Senatsky, and K.-I. Ueda, Opt. Rev. 11,

353 (2004).

[21] D. Naidoo, T. Godin, M. Fromager, E. Cagniot, N. Passilly, A. Forbes, and K.

At-Ameur, Opt. Commun. 284, 5475 (2011).

[22] N. B. Rex, R. K. Chang, and L. J. Guido, IEEE Photon. Technol. Lett. 13, 1

(2001).

[23] G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M.

Johnson, Appl. Phys. Lett. 83, 1710 (2003).

[24] T. Fukushima, T. Harayama, P. Davis, P. O. Vaccaro, T. Nishimura, and T.

Aida, Opt. Lett. 27, 1430 (2002).

206



[25] M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K.

Chang, Appl. Phys. Lett. 84, 2485 (2004).

[26] S. Shinohara, T. Harayama, T. Fukushima, M. Hentschel, T. Sasaki, and E. E.

Narimanov, Phys. Rev. Lett. 104, 163902 (2010).

[27] T. Fukushima and T. Harayama, IEEE J. Sel. Top. Quantum Electron. 10, 1039

(2004).

[28] M. Leonetti and C. Lpez, Appl. Phys. Lett. 102, 071105 (2013).

[29] N. Bachelard, J. Andreasen, S. Gigan, and P. Sebbah, Phys. Rev. Lett. 109,

033903 (2012).

[30] N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, Nat. Phys. Advance online

publication, doi:10.1038/nphys2939 (2014).

[31] T. Hisch, M. Liertzer, D. Pogany, F. Mintert, and S. Rotter, Phys. Rev. Lett.

111, 023902 (2013).

[32] Q. H. Song, L. Ge, J. Wiersig, J.-B. Shim, J. Unterhinninghofen, A. Eberspächer,
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Chapter 8

Conclusions and future prospects

In this thesis, we have investigated numerically the effect of disorder on photonic

band gap, localization length and decay rates of modes on 1D PhC in chapter 2. In

particular, we studied two types of disorders, one is uncorrelated disorder and another

is correlated disorder. For structures with uncorrelated disorder, the PBG remains

robust and is only affected when the magnitude of disorder becomes comparable to

the lattice constant. The long-range order in the PhC is preserved under indepen-

dent perturbation from their center position/size. However, in the case of correlated

disorder, the PBG diminishes very quickly due to accumulation of disorder with each

successive layer in the structure and causes the loss of long-range order just after

a few periods. In top-down fabrication process such as lithography, the structural

disorder is likely to be uncorrelated, where the size of the scatterers or their center

position is slightly perturbed from its designed values. On the other hand, structures

fabricated using the self-assembly or deposition method is likely to accumulate errors

during the growth process, and thus it corresponds to correlated disorder.

In chapter 3, we studied numerically the PBG effect in 3D photonic amorphous

structures (PASs) which only have short-range order. In the first part, we com-

pared the PBG in two types of topologies, the cermet topology which consists of
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closely-packed dielectric spheres or its inversed counterpart, and the network topol-

ogy which each vertex is connected by four bonds (tetrahedral bonding). The tetra-

hedral network structures which contain uniform interconnected dielectric cylinders

support better PBG. Counter-intuitively, we observed that a more ordered network

has smaller PBG compared to a partially ordered network. In other words, between

totally disordered (random) and completely ordered (periodic) networks, there exists

an optimum degree of order to generate the largest PBG. The largest PBG is gen-

erated when the network has the most uniform distribution of bond angles. Higher

refractive index contrast and lower fraction of high-index material are also important

for PBG formation. From this study, we have identified several parameters that can

be tuned to create broad isotropic PBG in photonic amorphous structures in the ab-

sence of long-range structural order.

Another class of non-periodic structures which supports complete PBG is the de-

terministic aperiodic structures (DASs). In this thesis, we focus on the golden-angle

(GA) spiral lattice that has full circular symmetry in its Fourier spectrum. In the

absence of translational and rotational symmetries, the GA spiral supports a wide

PBG similar to the one in a triangular lattice. More interestingly, the optical reso-

nances display unexpected features compared to the conventional band edge modes in

a PhC. The band edge modes in a GA spiral are all extended azimuthally but radially

confined, exhibiting ring patterns with different radius. In addition, due to the un-

derlying structural symmetry, each mode contains discrete orbital angular momenta

which correspond to the numbers in Fibonacci sequence. These optical resonances

can be promising candidates for free-space optical communication where information

is encoded using the orbital angular momentum of light instead of modulation in

intensity or frequency [1,2]. In this way, it can improve the security and also increase

the capacity of the communication link by multiplexing different orbital angular mo-

mentum beams that are in principle orthogonal to each other. The GA spiral can be
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used as cavity for generating laser beams which carry certain orbital angular momen-

tum, similar to the photonic crystal surface emitting laser (PCSEL) [3].

Instead of non-periodic structure factor, a DAS can also be created by spatially

varying anisotropic scatterers (form factor). This structure was inspired by the topo-

logical defects in liquid crystal systems, which shows interesting optical properties.

Here, we studied the optical resonances in photonic structures with topological de-

fects, where the system consists of wavelength scale ellipses. Due to continuously

rotating ellipses in the system, the spatial profile of the extended band edge mode

is twisted compared to those in a PhC. Moreover, the presence of a singular point

at the center of the structure generates modes which display circular energy flow.

By artificially removing some scattering units, we created a high-Q defect state that

contains non-zero net orbital angular momentum and potentially be used to generate

optical vortex beam.

In nature, photonic amorphous structures (PASs) have been widely used to gener-

ate non-iridescent colors. The color is being generated by single or double scattering

instead of PBG effect because the refractive index of the biological materials is too low

to open up a band gap. Inspired by these findings, a biomimetic PAS was fabricated

to generate angle-independent structural colors. The work in chapter 4 characterizes

the scattering lengths of the biomimetic PAS to provides a better fundamental un-

derstanding and also to determine the critical system size for the PAS to operate in

single scattering regime. We observed that the transport mean free path extracted

from the coherent backscattering experiment is much longer than the simple estima-

tion using independent scattering approximation. Further modeling shows that both

the short-range order and near-field effect have to be taken into account to match the

experimental results. These results also demonstrate a counter-intuitive phenomena,

where higher packing density reduces scatterings. Nevertheless, the near-field effect

can be accounted by the reduced index contrast between the particles and its sur-
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rounding due to close packing.

Studies of structural colors in nature usually involve random sampling of animals

with interesting nanostructures and recreating it artificially in the lab. The evolution

of the colors and the nanostructures have been overlooked in most of the studies.

In a collaborative work with the evolutionary biologists, we investigate how these

colors and nanostructures evolved within a group of closely related butterflies from

the genus Bicyclus. We also artificially evolve violet color from a lab model butterfly

which originally has UV-brown color. From detailed nanostructure characterizations

and numerical analysis, we identified the color producing mechanism, which is the

thin-film interference effect from the lamina layer at the bottom of the scale. The

artificial evolution of color is due to the change of the lamina thickness. We further

analyze two butterfly species that have evolved their blue/violet colors in nature sep-

arately and found that their coloration mechanisms are the same. This result implies

that the natural evolution of colors in different species of Bicyclus butterflies is likely

to be the same, which is through the change of the lamina thickness. In this work,

we only show the artificial color evolution from UV to violet, but the color can po-

tentially be extended to longer wavelengths.

In chapter 6 of this thesis, we turn our attention to light transport in random

media especially on the transmission channels with the highest transmission eigenval-

ues. We show that with strong absorption where system length L is larger than the

diffusive absorption length ξa, light transport in the maximal transmission channel

changes from diffusive to quasi-ballistic. This behavior implies that with absorption,

we are able to increase the ratio of the ballistic photons to the diffusive one and could

potentially find applications in the field of imaging by making the samples slightly

more absorbing. When absorption is weak (L < ξa), we can use the minimum re-

flection channel to infer the maximum transmission channel because they are the

same. However, this relation breaks down when absorption becomes strong, where
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the minimum reflection channel converges to the maximum absorption channel. Ex-

perimentally, minimizing reflection to achieve maximum transmission will not work

when the sample is absorbing.

Finally, in the last chapter, we show that by optimizing the spatial profile of the

pump beam, a multimode lasing microdisk can be turned into a single mode laser.

Due to slight deformation and surface roughness on the microdisk, each of the lasing

modes has different emission directionality, which provides us the knob to tune the

final laser emission pattern as well. From the measurements of the lasing thresh-

olds and power slopes, we observe that selection of a lasing mode can be achieved

by either increasing the lasing thresholds of the competitive modes or reducing their

power slopes. From numerical simulations, we show that selective pumping not only

can change the lasing threshold through the overlapping between mode and pump but

also affect the lasing mode interactions. As a result, selective pumping can be used as

a powerful method to create a tunable on-chip light source. Instead of manipulating

the pump beam, we are investigating the change of lasing dynamics in a microdisk

cavity by introducing another probe laser beam that will change the real part of

the refractive index through photothermal effect [4]. Preliminary experimental result

shows that by focusing the probe beam at different locations on the disk, some lasing

modes can be greatly suppressed while the others can be enhanced. Consequently,

we hope this probe beam can offer another degree of control to manipulate the las-

ing spectrum and also for fundamental understanding of the complex lasing dynamics.

212



Bibliography

[1] G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’Ko, S. M. Barnett,

and S. Franke-Arnold, Opt. Express 12, 5448 (2004).

[2] N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner,

and S. Ramachandran1, Science 340, 1545 (2013).

[3] M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, Appl.

Phys. Lett. 75, 316 (1999).

[4] M. A. Dündar, J. A. M. Voorbraak, R. Nötzel, A. Fiore, and R. W. van der
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