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Stimulated Brillouin scattering (SBS) is often an unwanted loss mechanism in both active and passive
fibers. Highly multimode excitation of fibers has been proposed as a novel route toward efficient SBS
suppression. Here, we develop a detailed, quantitative theory which confirms this proposal and elucidates
the physical mechanisms involved. Starting from the vector optical and scalar acoustic equations, we derive
appropriate nonlinear coupled mode equations for the signal and Stokes modal amplitudes and an analytical
formula for the SBS (Stokes) gain with applicable approximations, such as the neglect of shear effects. This
allows us to calculate the exponential growth rate of the Stokes power as a function of the distribution of
power in a highly multimode signal. The peak value of the gain spectrum across the excited modes
determines the SBS threshold—the maximum SBS-limited power that can be sent through the fiber. The
theory shows that the peak SBS gain is greatly reduced by highly multimode excitation due to gain
broadening and relatively weaker intermodal SBS gain. The inclusion of exact vector optical modes in the
calculation is crucial in order to capture the incomplete intermodal coupling due to mismatch of
polarization patterns of higher-order modes. We demonstrate that equal excitation of the 160 modes of a
commercially available, highly multimode circular step index fiber raises the SBS threshold by a factor of
6.5 and find comparable suppression of SBS in similar fibers with a D-shaped cross section.
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I. INTRODUCTION

Stimulated Brillouin scattering (SBS) is the nonlinear
scattering of light by acoustic phonons generated by optical
forces [1–5]. It was first theoretically predicted by Brillouin
in 1922 [6] and experimentally demonstrated in liquids in
1964 [7] and in optical fibers in 1972 [8]. SBS has been
utilized for diverse applications such as slow light [9],
nonreciprocal light storage [10], strain and temperature
sensing [11], phase conjugation and beam cleaning
[12–14], Brillouin microscopy [15], Brillouin lasers [16],
and integrated photonics [17–20]. On the other hand, SBS
is often a highly undesirable effect in both active and
passive systems. Of particular interest is its role in limiting
the power capacity of narrow-linewidth high-power fiber
lasers and high-power delivery fibers [3,21–24]. As input
power is increased, SBS can cause almost complete
reflection above a certain threshold power, rendering
both active and passive fibers inoperable above that power

level [2,3,8,25]. Significant research efforts have, therefore,
been devoted to suppressing SBS efficiently. Because of
concerns about maintaining high-output beam quality,
almost all of the experimental and theoretical work has
focused on exciting a single fundamental mode (FM) of the
fiber [whether or not the fiber itself is nominally single-mode
or multimode fiber (MMF)]. Recently, highly multimode
excitation of fibers has been proposed as a novel route toward
efficient suppression of SBS in both active and passive fibers
[26–28]. In the current work, we explore theoretically the
effect on SBS of highly multimode excitation of MMFs.
While a number of previous works have introduced elements
of our current theory [29–31], none have developed a
quantitative formalism for computing SBS under highly
multimode excitation, nor has any explored and identified the
physical effects that arisewhen controlled, highlymultimode
signals are imposed.
As noted, most of the previous efforts to suppress SBS

were in single-mode fibers and employed one of the
following approaches: broadening the Brillouin spectrum
by dynamic seed modulation [32–34] or applying temper-
ature and strain gradients along the fiber [35,36], tailoring
the fiber acoustic properties to reduce acousto-optic overlap
[30,37–40], and altering the geometry (shape and compo-
sition) of the fiber cross section [41,42]. Although all of
these efforts have had some success, they suffer from a
number of drawbacks: For seedmodulation, a large linewidth
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broadening [32–34]makes the resultant beams unsuitable for
coherent beam combining and other narrow-band applica-
tions [43–45]; for acoustic mode tailoring, the need for
precise fiber design and fabrication to control both the
acoustic-index and optical-index profiles [30,37–40]; and
for increased core size, the challenge of maintaining single-
mode guidancewith increasingly smaller numerical aperture
and the emergence of other undesirable effects such as
transverse mode instability [46].
The current investigation of a highly multimode approach

was motivated by recent developments in the field of
wavefront shaping, which have shown that (i) it is possible
to control nonlinear effects by manipulating the input
excitation in multimode fibers [47–51] and (ii) it is possible,
even for multimode excitation, to obtain a high-quality
output beam by wavefront shaping, since for a narrow input
linewidth, the light in various fiber modes remains mutually
coherent throughout the fiber [52–55]. Thus, multimode
excitation combined with appropriate wavefront shaping
can, in principle, provide a novelmethod of SBS suppression
while maintaining good beam quality. Any desired output
beam profile can be achieved even at high output powers by
placing a spatial light modulator (SLM) at the fiber input,
which would interact with relatively low seed power. The
manipulation of output beam by input wavefront shaping in
both passive fibers and fiber amplifiers have been demon-
strated experimentally [28,54].
Previous studies, both experimental and theoretical, of

SBS in few-mode fibers appear to support the viability of
increasing the SBS threshold by using multimode excitation
[56–60]. Moreover, several such studies indicate that inter-
modal SBS gain is weaker than intramodal gain [29,61–63].
This suggested that division of power in many modes may
reduce the effective SBS gain within a given fiber; the
efficacy of this approach is a key result of the theory and
computational examples in the current work. Finally, assum-
ing that the fiber is in the phase-matched limit, previouswork
[29,63] and our findings below show that the SBS threshold
depends on only the input power in various modes, leaving
the input phases of various modes as free parameters. Using
wavefront shaping, these phases can, in principle, be care-
fully selected to control and focus the output beam profile via
modal interference [28,54,64]. In order to understand the
potential of power division and wavefront shaping for
suppressing SBS inMMFs,we have developed a quantitative
and computationally tractable theory of the effective SBS
gain spectrum under highly multimode excitation. This
theory is general enough to be applicable to other questions
in the theory of multimode SBS, beyond maximizing the
threshold such as in studying multimode Brillouin fiber
sensors for temperature and strain sensing.
Most previous SBS theories assume single transverse

mode operation for both the signal (which acts as the pump
for Brillouin scattering) and Stokes field [2,3,31,65,66].
There have been efforts to model SBS in MMFs in
the study of phase conjugation and beam cleaning using

MMFs [12–14]. However, these approaches focus only on
identifying the selection rules for nonzero mode couplings
and do not model the individual couplings accurately. In
particular, the guided nature of acoustic modes is generally
ignored, resulting in inaccurate SBS thresholds. There is
also extensive literature on SBS theory in nanowaveguides
[5,17,30,67–70], although only a few studies focus on
intermodal gain and none of them study multimode excita-
tion. The most general previous theory of SBS in MMFs was
done by Ke, Wang, and Tang [29]. They showed that, within
the phase-matched regime, the power in each Stokes mode
grows exponentially at a rate proportional to the signal power
in various modes multiplied by the multimode Brillouin gain
spectra, determined by the overlap of the optical and acoustic
modes involved. The analysis by Ke, Wang, and Tang is,
however, limited in important ways: First, it treats both
acoustic and optical fields as scalar quantities; the latter is
a problematic assumption, as we show below. Second, they
did not undertake any explicit calculations of Brillouin gain
spectra for a highly multimode excitation of a MMF. Hence,
they did not study the major physics questions addressed in
the current work, nor did they provide an accurate enough
computational framework for doing so.
In this paper, we formulate a theory of SBS in MMFs

starting from the full-field wave equations for electric and
acoustic fields [69]. Finite-difference-based simulations of
these equations have been used to model the SBS in the
nanowaveguides [69]. In multimode fibers which are a few
meters long, brute-force simulations of these equations are
not feasible. We derive a semianalytical solution to these
equations for arbitrary multimode excitations in fibers. The
optical field equations are vector Helmholtz equations [71],
sourced by a nonlinear polarization due to the photoelastic
effect [72]. The acoustic field equations [73,74] are those of
general continuum elasticity with the stiffness and viscosity
tensors describing the restoring force and damping, respec-
tively, and the driving source arising from optical forces
generated due to electrostriction [75]. We demonstrate that,
for accurate calculations of the SBS coupling in MMFs, it is
important to take into account the vector nature of the
optical fields and, in general, the acoustic modes. We find
that for standard silica fibers (the focus of the current
work), which are elastically isotropic, taking into account
the vector nature of acoustic modes and the tensor shear
forces is not crucial. However, as noted, the vector nature
of optical modes plays a much more important role,
and neglecting this can lead to errors (approximately
50%–100%) and qualitatively incorrect results for SBS
threshold for multimode excitations. The scalar treatment
of optical modes does not account for polarization mis-
match and, therefore, overestimates the intermodal SBS
coupling. As a result, it underestimates the decrease in
effective SBS gain upon multimode excitation, predicting
qualitatively incorrect results for SBS suppression in multi-
mode fibers. Our formalism is general enough to permit the
calculation of the SBS threshold for an arbitrary input
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excitation in MMFs, with any fiber cross section, refractive
index profile, and fiber length. In particular, our theory iswell
suited to study the optimization of the SBS threshold with
respect to degrees of freedom inMMFs. For example, we use
our theory to calculate the SBS gain for all the approximately
104 mode pairs for an example corresponding to a commer-
cially available highly multimode circular step-index fiber
and find that, when all the modes are equally excited, a
roughly 6.5×-higher SBS threshold can be obtained, com-
pared to exciting only the fundamental mode. The physical
origins of this stability enhancement is discussed and
elucidated below.
The paper is organized as follows. In Sec. II, we start by

deriving the coupled mode equations for Stokes and signal
amplitudes, assuming only the translational invariance in z,
the slowly varying envelope approximation, and highly
damped phonons [2]. All of these approximations are valid
for most multimode fibers. We do not assume phase match-
ing a priori. Then we apply the undepleted-signal approxi-
mation [1], valid below SBS threshold, to obtain linear
growth equations for each Stokes amplitude. This allows
us to formulate a linearized theory of the SBS modal
couplings which accurately captures the vector nature of
all the fields involved.
In Sec. III, we systematically simplify the SBS coupling

under a series of applicable approximations. We show that
the length of the fiber compared to a phase-mismatch
length scale determines whether phase-mismatched terms
need to be kept or can be discarded. In the phase-matched
limit, the equations for various Stokes modes decouple,
leading to independent exponential growth in the backward
direction. The rate of growth for power in each Stokes
mode depends on the modal content of the signal and is
given by a sum of signal power in each mode weighted by
the corresponding Brillouin gain spectra (BGS), which now
generalizes to a matrix of pairwise modal spectra. The BGS
for a Stokes-signal pair is given by a sum of Lorentzians,
for each acoustic mode, with peak values proportional to
the overlap integrals of the Stokes, signal, and acoustic
modes involved. We derive a reasonably accurate simpli-
fied form of the overlap integrals for elastically isotropic
fibers with small shear acoustic velocities, where the dot
product of the two vector optical modes appears in the
integrand. This form is critical for accurately evaluating the
intermodal gain, especially for large numerical aperture
fibers, when the scalar, linearly polarized (LP) modes are
not good approximations of exact vector fiber modes. Both
intramodal and intermodal terms contribute to the growth
rate of a given mode m in a manner determined by the
signal power distribution. Hence, we introduce the impor-
tant concept of an effective gain for each mode, g̃mðΩÞ,
which captures the effect of a particular signal power
distribution on the gain experienced by a Stokes mode m.
This allows us to define a generalized, signal-dependent
formula for the SBS threshold for MMFs within the phase-
matched theory.

In Sec. IV, we explicitly calculate the BGS for highly
multimode step-index fibers with circular and D-shaped
cross sections. We show that the SBS threshold is increased
significantly if the input power is optimally distributed in
multiple fiber modes, initially using a two-mode example.
We show that this increase arises from two effects. First, the
intermodal gain is typically weaker than the intramodal
gain, due to the mismatch in different optical modal spatial
and polarization profiles. This significantly decreases the
effective SBS gain when multiple modes are excited.
Second, the peaks of the BGS for different mode pairs
are shifted relative to each other, since they are mediated by
different acoustic modes; thus, power division among many
modes tends to broaden the gain spectrum, leading to
further SBS suppression [57]. Here, we present the example
of exciting equally all 160 modes of a circular step-index
fiber, leading to a 6.5×-higher SBS threshold, compared to
exciting just the fundamental mode. Because of the distinct
polarization properties of D-shaped fiber, we find that the
increase of the SBS threshold in this case is dependent on
the input polarization and is highest for input polarized at
45° with respect to the axis of symmetry, an effect which is
explained by our theory.
Finally, in Sec. V, we provide a discussion of exper-

imental validation, applicability, and future directions for
our work.

II. MULTIMODE SBS MODEL

A. Coupled optical and acoustic equations

SBS is a result of optical scattering by acoustic phonons
generated by electrostriction [1–3]. A schematic of the SBS
in a fiber is shown in Fig. 1. The forward-going signal wave
at frequency ω1 interferes with a backward-going and
Stokes-shifted wave at frequency ω2 ¼ ω1 −Ω, generating
a moving intensity grating. This intensity pattern results in
optical forces through electrostriction, which generate
acoustic phonons with frequency Ω. These phonons, in
turn, reflect light in the backward direction, leading to
exponential growth in the Stokes power. To model SBS, we
solve the optical and acoustic wave equations coupled
through nonlinear source terms due to electrostriction and
the photoelastic effect. The total electric field E⃗ satisfies the
vector Helmholtz equation [68,69]:

�
∇2 −

n2

c2
∂
2

∂t2

�
E⃗ ¼ μ0

∂
2

∂t2
ðχNE⃗Þ: ð1Þ

Here, n is the linear refractive index of the fiber, μ0 is the
free space permeability, c is the speed of light in vacuum,
and χN is the nonlinear photoelastic susceptibility [72] and,
in a sufficient approximation, is given by

χN ¼ γe∇ · u⃗; ð2Þ
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where γe is the electrostriction constant and the isotropic
part of the acoustic strain is given by the divergence of the
acoustic displacement field u⃗. Here, we assume an isotropic
fiber medium, where we find that isotropic (pressure)
effects are dominant, and the shear effects have negligible
impact on the nonlinear polarization for typical fibers, such
as the silica multimode fibers considered below.
However, the formalism derived here in the main text can

be straightforwardly generalized to the full tensor theory
of elasticity, as shown in Appendix A, for both fibers or
waveguides with significant shear effects. The electro-
striction constant is replaced by the full photoelastic tensor
contracted with the acoustic strain tensor, and a generalized
acoustic equation is used which involves the elasticity
and viscosity tensors. For isotropic fiber, these equations
simplify but still include shear effects, which need to be
evaluated. In Appendix A, we do this for standard silica
fibers and show examples; we conclude that for such fibers
the effects are small enough to neglect in the calculations
reported in the main text.
When shear effects are negligible, the acoustic field

can be described by scalar density fluctuations given by
δρ ¼ ρ0∇ · u⃗, which satisfy a scalar acoustic equation:

��
V2
L þ Γ̃

∂

∂t

�
∇2 −

∂
2

∂t2

�
δρ ¼ −∇ · F⃗: ð3Þ

Here, VL is the longitudinal acoustic velocity, ρ0 is the
mean fiber density, and Γ̃ is the acoustic loss rate. The
source term in the acoustic equation is proportional to
the divergence of the optical force F⃗ and is given by [69]

∇ · F⃗ ¼ −
1

2
γe∇2ðE⃗ · E⃗Þ: ð4Þ

The optical force is proportional to the electrostriction
constant γe and the gradient of the optical intensity given by

the dot product of electric field E⃗ with itself. Note that the
acoustic source term is quadratic in the optical field and the
optical source term is also “quadratic” as the product of
the optical field with the displacement field. We include
only the electrostriction term in the optical force and χN and
neglect the force generated due to the deformation of the
fiber boundary [17,68,69]. This is justified if the core size
of the fiber is much larger than the wavelength of light,
which is typically the case for multimode fibers. Note that,
unlike prior work on SBS in fibers, we retain the vector
nature of the electric field in Eqs. (1) and (4), instead of
assuming a uniform polarization with scalar profile. We
find that using the full vector optical modes is critical for
accurate calculation of Brillouin scattering between differ-
ent modes with different (and spatially varying) polariza-
tion profiles. In Appendix B, we show that qualitatively
incorrect results for the SBS threshold are obtained in the
scalar approximation.

B. Modal decomposition and acoustic mode elimination

To study the Stokes growth, we split the total electric
field E⃗ ¼ E⃗1 þ E⃗2 into a forward-going signal wave E⃗1 and
a backward-going Stokes wave E⃗2. Assuming the refractive
index is translationally invariant along the fiber axis, we
can decompose both E⃗1 and E⃗2 in terms of relevant vector
fiber modes [76–78] with slowly varying amplitudes [2]:

E1 ¼
X
m

Amðz; tÞf⃗ð1Þm ðr; θÞeiðω1t−βmzÞ þ c:c:;

E2 ¼
X
m

Bmðz; tÞf⃗ð2Þm ðr; θÞeiðω2tþγmzÞ þ c:c: ð5Þ

Here, βm ðγmÞ and f⃗ð1Þm ðr; θÞ [f⃗ð2Þm ðr; θÞ] denote the propa-
gation constant in the z direction and the transverse mode
profile for themth signal (Stokes) mode, respectively. ω1 is
the signal frequency, ω2 is the Stokes frequency, and the

Input signal ω1

Acoustic wave Ω

Stokes seed

x

y

zr

Transmitted signal ω1

θ

Backward stokes amplification

Reflected stokes ω1
− Ω

FIG. 1. Schematic of SBS in a multimode fiber with arbitrary core shape (here, D-shaped). Stokes-shifted backward-traveling
light (seeded by spontaneous Brillouin scattering) experiences amplification due to the scattering of the forward-going signal by the
acoustic phonons, which are generated by electrostriction. This process can take away significant power from the signal and limits the
transmitted power.
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difference of the two frequencies, Ω ¼ ω1 − ω2, represents
the Stokes shift. The transverse modes satisfy the vector
fiber modal equations given by [77,78]

�
∇2

T þ
�
n2ω2

1

c2
− βm

2

��
f⃗ð1Þm ðr; θÞ ¼ 0;

�
∇2

T þ
�
n2ω2

2

c2
− γm

2

��
f⃗ð2Þm ðr; θÞ ¼ 0: ð6Þ

The solution for the mode profiles and the corresponding
propagation constants canbeobtained analytically in the case
of a circular step-index geometry [77,78] or numerically for
an arbitrary fiber cross section and refractive index profile. In
Fig. 2, we plot the polarization and the x component of the
electric field for the fundamental and a higher-order mode in
step-index fibers with circular and D-shaped cross sections.
The fields are determined using the finite element method in
the wave optics module of COMSOL MULTIPHYSICS (version
5.5) [79]. In general, both the electric field amplitude and the
polarization vary spatially for the different modes. For the
circular fiber, the fundamental mode [Fig. 2(a)] is approx-
imately uniformly polarized, while higher-order modes
[Fig. 2(b)] have spatially varying polarizationwith azimuthal
and radial components. For the D-shaped fibers, modes are
approximately uniformly polarized either along the axis of
symmetry (x polarized) or orthogonal to it (y polarized) for
both the fundamental mode [Fig. 2(c)] and the higher-order
modes [Fig. 2(d)]. The choice to studyD-shaped core fibers,
in particular, is motivated by chaotic ray dynamics in
D-shapedcavities [80], leading tomore ergodic field profiles,
especially for significantly higher-order modes.

We normalize both the signal and Stokes modes such that
the power in the mth signal and Stokes modes is propor-
tional to jAmj2 and jBmj2, respectively. The interference
between the signal and Stokes fields gives rise to an
acoustic source term for each signal-Stokes pair fi; jg
which oscillates at frequency Ω and has propagation
constant qij ¼ βi þ γj in the z direction. Therefore, we
expand the density fluctuation into a series of acoustic
modes fkg for each source term fi; jg:

δρ ¼
X
i;j

X
k

cijk ðz; tÞgijk ðr; θÞeiðΩt−qijzÞ þ c:c: ð7Þ

Here, cijk ðz; tÞ is the slowly varying amplitude for the kth
acoustic mode corresponding to optical pair fi; jg. The
associated transverse mode profile is given by gijk ðr; θÞ,
which satisfies the following modal equation [68]:

�
∇2

T þ
�Ω2

ijk

v2L
− q2ij

��
gijk ðr; θÞ ¼ 0: ð8Þ

Here, ∇T is the transverse gradient operator. We choose to
not include the acoustic loss given by Γ̃ explicitly in the
modal equation; it is accounted for through the coefficients
ckij. This choice has an advantage that it allows the operator
of the modal equation to be Hermitian, which leads to
useful properties such as orthogonality and completeness of
the modal basis [71].
To obtain the solution for the acoustic field, δρ, we

evaluate source terms in Eq. (3) using Eqs. (4) and (5).

El
ec

tr
ic

 fi
el

d 
E x

[a
rb

. u
ni

ts
]

x

y

(a) (d)(c)(b)

Po
la
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n

0
+1
+2
+3
+4
+5

–1
–2
–3
–4
–5

FIG. 2. Polarization (upper) and x component of the electric field, Ex (lower) profiles for fundamental (a),(c) and higher-order (b),(d)
optical modes of step-index multimode fibers with circular (a),(b) and D-shaped (c),(d) core cross sections. Note the more ergodic
behavior of theD fiber modes compared to the circular case. Modes of the circular cross-section fiber have spatially varying polarization
depending on the mode. Modes of the fiber with a D-shaped cross section have polarization either along the axis of symmetry (x axis) or
orthogonal to it (y axis).
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The left-hand side of Eq. (3) can be simplified by
substituting the ansatz for δρ from Eq. (7). We multiply
with acoustic mode profile gij�k and utilize orthogonality of
acoustic modes to isolate the equation for a single acoustic
amplitude. Upon applying the slowly varying approxima-
tion, where we ignore the second-order z derivatives of cijk
and using the modal equations [Eq. (8)], we get the
following equation:

�
2iqij

∂

∂z
þ 2iΩ

∂

∂t
þ ðΩ2

ijk − Ω2 þ iΩΓÞ
�
cijk ¼ −O1

2
AiB�

j ;

ð9Þ

where O1 denotes the overlap integral of the source term
with the relevant acoustic mode and is given by

O1 ¼ −q2ijγehðf⃗ð1Þi · f⃗ð2Þ�j Þgij�k i: ð10Þ

The angular brackets h:i denote integration over the entire
fiber cross section. To study the steady-state behavior, we
set the time derivative in Eq. (9) to zero. Also, the typical
phonon propagation length in fibers is much smaller than
the fiber length [1,2]. Thus, SBS is effectively mediated by
localized phonons, which allows us to drop the z derivative
term in Eq. (9) as well. In that case, the acoustic modal
coefficients are simplified to

cijk ¼ − 1

2

O1

Ω2
ijk − Ω2 þ iΩΓ

AiB�
j : ð11Þ

Here, we define a renormalized acoustic loss Γ ¼ q2Γ̃,
where q ¼ 4πn=λ. We drop weak modal dependence of Γ
by assuming qij ≈ q. This completes a formal solution for
the acoustic field in terms of amplitudes of the signal and
Stokes fields and the relevant overlap integrals, assuming
acoustic modes have been solved either numerically or
analytically [using Eq. (8)]. For special cases, such as
elastically isotropic, circular, step-index fibers, it is possible
to obtain acoustic modes semianalytically [31,81].
However, in general, for arbitrary fiber geometries and
refractive index profiles, they can be obtained using a
numerical solver such as COMSOL [79].

C. Coupled modal equations

We can now use the acoustic field to determine the source
terms in the optical equation [Eq. (1)] and obtain coupled
modal equations for the optical fields. The left-hand side of
Eq. (1) can be simplified by substituting the modal decom-
position of the electric field as given in Eq. (5) and using the
optical modal equations [Eq. (6)]. The equation for a
particular mode m can be isolated by taking a dot product
with f⃗�m and integrating over the fiber cross section. This
leads to the following coupled amplitude equations:

−
dBmðΩÞ

dz
¼

X
i;j;l

YmlijðΩÞAlA�
i Bjeiðβiþγj−βl−γmÞz; ð12Þ

dAlðΩÞ
dz

¼
X
i;j;m

XlmjiðΩÞBmB�
jAie−iðβiþγj−βl−γmÞz: ð13Þ

These are scalar, one-dimensional, ordinary differential
equations in z, which accurately describe the acousto-optic
interaction in a guided, translationally invariant in z, material
system. The growth in each Stokes amplitude Bm is propor-
tional to the sum of the products of two signal amplitudes,Al
and A�

i , and a Stokes amplitude, Bj. The strength of each
contribution depends on both a phase-mismatch factor and a
coupling coefficient, YmlijðΩÞ, which has a resonant fre-
quency dependence and quantifies how efficiently the optical
and acoustic modes in the source terms overlap with each
other. The transverse dependence and vector nature of the
interaction are contained within the coupling coefficients
Ymlij and Xlmji, given by, respectively,

Ymlij ¼
X
k

μ0ω2

4n2ρ0ϵ0

O�
1O2

−iðΩ2
ijk −Ω2Þ þΩΓ

;

Xlmji ¼
X
k

μ0ω1

4n2ρ0ϵ0

O1O�
2

−iðΩ2
ijk −Ω2Þ −ΩΓ

: ð14Þ

The coupling coefficient for a particular four-wave-mixing
term fm; l; i; jg is a sum of Lorentzians for each acoustic
mode, k, with a center frequency givenby the eigenfrequency
of the acoustic mode, Ωijk, and the linewidth given by the
effective acoustic loss Γ. The peak value of the curves is
proportional to the overlap integralsO1 andO2, whereO1 is
given in Eq. (10). The second overlap integral O2 is the
projection of the optical source termonto themodal basis and
has a similar form to O1:

O2 ¼ γehðf⃗ð1Þl · f⃗ð2Þ�m Þgml�
k i: ð15Þ

The only assumptions we have used so far are transla-
tional invariance, neglecting the moving boundary terms
[17], slowly varying approximation [1], and damped
phonon approximation [1]. To the best of our knowledge,
this is the first time these equations have been derived at
this level of generality, for acousto-optic interactions in
multimode, translationally invariant systems. These equa-
tions accurately capture the acousto-optic interaction at any
length scale for arbitrary input excitations in multimode
fibers, with any cross-section geometry. The equations can
be integrated numerically much more efficiently than the
original 3D nonlinear coupled optical and acoustic wave
equations. This is because here the transverse degrees of
freedom need to be accounted for only once (in the modal
equations), due to the translational invariance in the
longitudinal direction.
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D. Undepleted signal

Despite the simplifications due to translational invari-
ance imposed above, the general coupled mode equations
for Stokes and signal amplitudes derived above are non-
linear equations and are difficult to solve analytically.
However, for analyzing the question of the threshold for
significant SBS loss, we can assume that the Stokes
amplitudes are much smaller than the signal amplitudes.
The SBS threshold is typically defined as when the
power of the backward-going Stokes waves reaches a
few percent of the signal power [2,3]. In this limit, the
decay in signal power, due to SBS, is negligible; with this
undepleted signal approximation, the signal modal ampli-
tudes can be assumed to be constants, determined by the
input. The equations for the Stokes amplitudes then become
a set of linear ordinary differential equations and can be
rewritten in the following matrix representation:

− dBðΩÞ
dz

¼ Mðz;ΩÞBðΩÞ: ð16Þ

Here, BðΩÞ is an N × 1 column vector with the mth entry
equal to the Stokes amplitude, BmðΩÞ. N is the total number
of optical modes in the fiber. The coupling matrix Mðz;ΩÞ
is an N × N matrix whose entries are given by

Mmj ¼
X
il

YmlijAlA�
i e

iðβiþγj−βl−γmÞz: ð17Þ

Equation (16) is a coupled linear system of first-order,
homogeneous ordinary differential equations; its solution is
given by

BðzÞ ¼ P exp

�Z
z

L
Mðz0Þdz0

�
BðLÞ; ð18Þ

where the Stokes amplitude vector B at any point z is given
by the path-ordered exponential [82] of the mode-coupling
matrix M times the Stokes amplitude vector at the output
end of the fiber, BðLÞ, which is typically seeded by the
spontaneous Brillouin scattering. At this level of approxi-
mation, the Stokes amplitudes in various modes remain
coupled, so that the growth of each Bm is affected by all the
others. The signal amplitudes and the fiber properties act as
parameters in the Stokes growth through the coupling
matrix Mðz;ΩÞ. In principle, these equations can be used
to evaluate the contribution of non-phase-matched and
quasi-phase-matched terms in the growth equations at
length scales where they are non-negligible.

III. PHASE-MATCHING LIMIT

A. Phase-matched Stokes power growth

The coupling matrix Mmj dictates the effect of Stokes
amplitude Bj on the growth of Stokes amplitude Bm. Most

of the elements of M have complex phases, which vary on
the length scale given by the mismatch of longitudinal wave
vectors (propagation constants) for the modes involved.
Typically, these terms grow only over length scales in the
range of 10−6–10−3 m, whereas the total fiber length in
realistic experiments with high average power is much
greater than these length scales (L ∼ 1–100 m). As a result,
the terms with complex phases oscillate along the fiber axis
and have significantly lower magnitude compared to the
phase-matched terms, which grow exponentially. In this
limit, the effect of phase-mismatched terms becomes
negligible compared to phase-matched terms and, thus,
can be neglected. We focus on this limit for the remainder
of this work. The condition for phase matching of terms can
be obtained directly from Eq. (17):

βi þ γj − βl − γm ¼ 0: ð19Þ

A straightforward solution to this condition is i ¼ l, j ¼ m.
This solution corresponds to transfer of power from signal
mode l to Stokes mode m. Note that there can be alternate
solutions to the phase-matching equation. For instance,
when there are exactly degenerate modes in the fiber, i.e.,
two different modes have the same propagation constant,
there are more solutions to Eq. (19). We call them “non-
trivially phase-matched terms.” Since exact degeneracies
are usually lifted in realistic step-index fibers due to
fabrication imperfections, these alternate phase-matching
solutions are typically absent. Note that in graded-index
fibers there can be a significantly large number of degen-
erate modes, in which case this assumption is not appli-
cable. When the exact degeneracies are present, all the
solutions need to be included for maintaining consistency
in the theory. For an ideal circular step-index fiber, the
near degeneracy of the vector modes within the same
group [77] gives rise to the nontrivially phase-matched
terms over relevant length scales, which provides a con-
nection between the vector and scalar SBS theories (see
Appendix B for more details). For the rest of this work, we
assume that in real materials any exact symmetries are
broken and, thus, there are no exactly degenerate solutions
for the propagation constants leading to the uniqueness
of the i ¼ l, j ¼ m solution. This leads to a dramatic
simplification of the Stokes growth equations. The cou-
pling matrix becomes diagonal (m ¼ j), leading to inde-
pendent growth for each of the Stokes amplitudes:

− dBmðΩ; zÞ
dz

¼
�X

l

Ymllm×ðΩÞjAlj2
�
BmðΩ; zÞ: ð20Þ

The growth rate of Stokes amplitude m is proportional to
the signal power in various modes, l, weighted by effective
coupling Ymllm. The Stokes amplitude growth equations
can be converted to the growth equations for Stokes power
by multiplying with the complex conjugate of the Stokes
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amplitude on both sides and adding the complex conjugate
term, leading to

dPs
mðΩ; zÞ
dz

¼ −
�X

l

gðm;lÞ
B ðΩÞP̃l

�
P0Ps

mðΩ; zÞ

≡ −g̃mðΩÞP0Ps
mðΩ; zÞ; ð21Þ

where Ps
mðΩ; zÞ is the Stokes power in mode m, P̃l is the

fraction of signal power in mode l (
P

l P̃l ¼ 1), P0 is the
total signal power, Ω is the Stokes frequency shift, and

gðm;lÞ
B ðΩÞ is the BGS for Stokes-signal mode pair ðm; lÞ.
The Stokes power in each mode grows independently in the
backward direction. Here, we define for each Stokes mode
m an effective BGS g̃mðΩÞ, which is equal to the weighted

sum of pairwise BGS gðm;lÞ
B ðΩÞ with weights equal to the

fractional signal power P̃l in various modes. Both the
pairwise and effective BGS have units of [W−1 m−1].
We see below that the effective BGS g̃mðΩÞ is physically
meaningful; it is the engineered Brillouin spectrum for the
mode m induced by our choice of input power distribution
into signal modes and can be used to understand the
increase in the SBS threshold due to multimode excitation.

The pairwise BGS gðm;lÞ
B depends on the fiber properties

and is equal to twice the real part of coupling coefficient
Ymllm; thus, it can be calculated using Eq. (14):

gðm;lÞ
B ðΩÞ ¼ G0

X
k

jOmlkj2
Γ
2

ðΩmlk −ΩÞ2 þ ðΓ
2
Þ2 : ð22Þ

Here,G0 is a constant including various material and optical
constants and is given by G0 ¼ ð8π3cμ0γ2e=λ3ρ0ϵ0ΩÞ. The
BGS for mode pairs ðm; lÞ is a sum of Lorentzian curves for
each acoustic mode k with a center frequency equal to the
acoustic eigenfrequency Ωmlk, and the linewidth is equal to
effective acoustic loss Γ. Each acoustic mode contribution is
weighted by jOmlkj2, the corresponding overlap integral of
the optical and acoustic modes involved, given by

Omlk ¼ hðf⃗ð1Þl · f⃗ð2Þ�m Þgml�
k i: ð23Þ

The presence of the dot product between the optical
mode profiles is a key difference from standard scalar
SBS theories [29] and is crucial for accurate calculation of
theBGSundermultimode excitation. For single-mode fibers,
(l ¼ m), the dot product simply reduces to scalar multipli-
cation of modes, making a scalar SBS treatment acceptable.
For multimode fibers, the polarization for different modes
can be significantly different and spatially varying (see
Fig. 2). We find that correctly evaluating this dot product
is necessary to obtain accurate results for the intermodal gain
(l ≠ m). Specifically, the scalar treatment consistently over-
estimates the intermodal gain, an effect which was reported
in Ref. [29], where they were able to compare the predicted

scalar intermodal gain to experimentally measured values.
For instance, the scalar theory predicted the intermodal
coupling coefficient between modes LP0;1 and LP1;1 to be
0.51 m−1W−1, which was 50% higher than the experimen-
tally measured value of 0.36 m−1W−1. In addition, we find
that, for two-mode excitation of the fibers studied in
Refs. [29,63], the vector theory predicts the highest SBS
threshold occurs for a superposition of the two modes. This
contrasts with the findings of the scalar theory, where single
HOM excitation has the highest threshold [29,63]. We
discuss these findings in detail in Appendix B and give
the conditions when the scalar theory is accurate, as well as
two examples of when it fails to reproduce results predicted
by our vectorial treatment.
Finally, we can solve Eq. (21) to derive the exponential

growth in Stokes power in various modes:

Ps
mðΩ; 0Þ ¼ Ps

mðΩ; LÞeg̃mðΩÞPoutLeff : ð24Þ
The Stokes power in each mode grows exponentially in the
backward direction with a growth rate equal to the effective
BGS g̃m multiplied by the total output signal power Pout.
We define an effective fiber length which takes into account
the absorption in the fiber, Leff ¼ Lð1 − e−αL=αLÞ, where
L is the fiber length and α is the absorption coefficient [2].
In the limit of small absorption, αL ≪ 1, we recover
Leff ≈ L, and when absorption is large αL ≫ 1, we
get Leff ≈ 1=α.

B. Multimode SBS threshold

The SBS threshold is typically defined as the output signal
power at which the backward-reflected Stokes power
becomes a non-negligible fraction (typically, > 1%) of the
signal power [1–3,63]. We can use the Stokes growth
equation derived in Sec. II A [Eq. (24)] to obtain the formula
for the multimode SBS threshold. We assume SBS is seeded
by spontaneous Brillouin scattering at the far end of the fiber,
which leads to average photon density of one photon per
mode in all the modes of the fiber. We set the threshold to be
when the ratio of exponentially amplified Stokes power over
the total signal power is equal to ξ ¼ 1%. The seed power
from spontaneous Brillouin scattering is typically multiple
orders of magnitude smaller than the signal power; thus, the
amplification factor required to reach SBS threshold is very
high. The mode with the highest Stokes growth rate, thus,
exponentially dominates the Stokes power and can be used to
approximate the total reflected power. Therefore, the thresh-
old condition becomes

Ps ¼ PNePthLeffgB ¼ ξPth; ð25Þ
which can be rearranged as

PthLeffgB ¼ log

�
ξPth

PN

�
; ð26Þ
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where Pth is the SBS threshold, Leff is the effective length of
the fiber taking into account the fiber absorption, and PN is
the Stokes noise power seeded by the spontaneous Brillouin
scattering. We have introduced an overall Brillouin gain
coefficient gB which is equal to

gB ≈max
Ω;m

g̃mðΩÞ ¼ max
Ω;m

X
l

gðm;lÞ
B ðΩÞP̃l: ð27Þ

The SBS threshold is inversely proportional to the length
of the fiber and the overall Brillouin gain coefficient gB.
It also weakly (logarithmically) depends on the output
power level, seed power, and the fraction (ξ) at which the
threshold is set. Additionally, we approximate the final
Stokes power by the Stokes power in the mode with the
highest growth rate, which is justified due to the expo-
nential nature of the growth. In case there are multiple
modes (say, Ms) with similar growth rates, the Stokes
power will be Ms times higher than our estimation, which
will lead to a logðMsÞ correction to the effective SBS gain
and threshold, which we find to be quite small. It can be
verified that the multimode threshold formula in Eq. (26)
reduces to the formula for single-mode fiber when only the
fundamental mode is present. More generally, however,
the SBS threshold depends on both the fiber properties

[through gðm;lÞ
B ðΩÞ] and the distribution of power in various

signal modes, fP̃lg. Our formalism allows an efficient
calculation of the SBS threshold for different input multi-
mode excitations for highly multimode fibers with any
cross section. In addition, this formalism allows the
investigation of SBS suppression by using highly multi-
mode excitation to vary the power distribution in the signal
modes at the input, a restricted form of wavefront shaping.
In the next section, we show that by distributing power in
multiple modes it is possible to substantially reduce the

effective SBS gain, since gðm;lÞ
B strongly depends on mode

indices ðl; mÞ. This leads to a significant increase in SBS
threshold with the number of excited modes when all the
modes are equally excited.

IV. NUMERICAL RESULTS

In summary, we have shown that in a MMF the Stokes
power in each mode grows exponentially with a growth rate
equal to the total signal power multiplied with the effective
BGS [Eq. (24)]. Therefore, the effective BGS and the SBS
threshold [Eq. (26)] in a MMF depend on both the input
signal power distribution fP̃lg and the pairwise BGS

gðm;lÞ
B ðΩÞ. For a given Stokes mode m and signal mode
l, the BGS can be calculated by the formula given in
Eq. (22). The BGS for each mode pair is a sum of
Lorentzians corresponding to individual acoustic modes,
weighted by the overlap of the optical and acoustic modes.
For elastically isotropic fibers, we identify a simplified
form of the overlap integral, which is reasonably accurate

for calculating BGS, involving a dot product of the vector
optical modes multiplied with a scalar acoustic eigenmode
[Eq. (23)]. These equations [Eqs. (22), (24), (26), and (23)]
are sufficient to determine the SBS threshold for a given
multimode fiber for any input multimode excitation.
The extent to which the input power division influences

the SBS threshold is determined by the fiber properties

through the pairwise BGS, gðm;lÞ
B . To study the properties of

the pairwise BGS, we calculate the BGS for all the mode
pairs for a highly multimode circular step-index fiber.
We consider a commercially available fiber (fiber A) with
germanium-doped silica core and pure silica cladding. The
core radius of the fiber is 10 μm and with a numerical
aperture of 0.30, supporting 160 optical modes. The
detailed parameters are given in Table I.
To illustrate key properties of multimode BGS, we plot

the BGS for the intramodal gain of the fundamental mode
(FM) (mode number m ¼ 1) and a higher-order mode
(HOM) (mode numberm ¼ 120), as well as the intermodal
gain between them, in Fig. 3(a). The intramodal gain for the
FM (solid red curve) has the maximum peak value. The
intramodal gain for the HOM (dash-dotted blue curve)
has a slightly lower peak value, due to a larger effective
acousto-optic area [3,83] and also shows secondary peaks
corresponding to interactions with higher-order acoustic
modes. Interestingly, the intermodal gain (dashed black and
yellow curves) between the FM and the HOM has a
substantially lower peak value than both intramodal curves.
This is a result of inefficient acousto-optic overlap between
the FM and the HOM due to significant variations in the
polarization and intensity profile (shown in the inset).
Furthermore, the intermodal BGS (dashed black and
yellow curves) peak at a higher Brillouin frequency than
the intramodal BGS (solid red and dash-dotted blue
curves). This is because lower-order radially symmetric
acoustic modes facilitate intramodal gain, whereas higher-
order acoustic modes (with higher eigenfrequency) are

TABLE I. Detailed parameters for fiber A.

Parameter Fiber A

Core shape Circular
Core radius (μm) 10
Cladding radius (μm) 50
Core refractive index 1.4803
Cladding refractive index 1.4496

Δ
�
¼ n2co−n2cl

n2co

�
0.041

Signal wavelength (μm) 1.064
Number of optical modes 160
Core acoustic velocity VL (m/s) 4946
Core acoustic velocity (shear) Vs (m/s) 3189
Cladding acoustic velocity VL (m/s) 5944
Cladding acoustic velocity (shear) Vs (m/s) 3749
Number of acoustic modes ≥1000
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responsible for intermodal gain. We show the profile of the
acoustic modes with the dominant contribution correspond-
ing to each of the peaks in the BGS in Fig. 3(a).
The relatively lower peak value of intermodal BGS

along with the shifted spectrum suggests that multimode
excitation can lead to SBS suppression by lowering the
effective Brillouin gain [Eq. (21)], leading to a higher SBS
threshold. To show this explicitly, we consider three
different input excitations: (i) all of the signal power is
in the FM (m ¼ 1)—this will be used as a reference since
this is by default the case in single mode fibers (SMFs);
(ii) all of the signal power is in a single HOM (m ¼ 120);
and (iii) the signal power is divided between the FM and
HOM. The SBS threshold is inversely proportional to the
overall Brillouin gain coefficient gB [Eq. (26)], which is
given by the maximum value of the effective BGS across all
the Stokes modes and frequencies [Eq. (27)]. Recalling that
the effective Brillouin gain is a weighted combination
(depending on the input signal mode content) of pairwise

BGS [see Eq. (21)], we can compare the three cases. When
all of the power is in a single mode, as in cases (i) and (ii),
the effective BGS is simply equal to the intramodal BGS for
that mode, gm;m

B , and the intermodal BGS gn;mB for modes
n ≠ m. Typically, we find that intramodal BGS have a
higher peak value than intermodal BGS. Hence, for single-
mode excitations gB is simply the peak value of respective
intramodal BGS shown in Fig. 3(a), which we reproduce in
Fig. 3(b) (solid red and dash-dotted blue curves). Since the
FM-FM BGS has the highest peak value [red triangle
in Fig. 3(b)], FM-only excitation results in the lowest
SBS threshold (for reference, we denote it by P0

th). The
HOM-only curve has a slightly lower peak [blue square in
Fig. 3(b)] and leads to a higher SBS threshold (1.4P0

th). In
case (iii) (two-mode excitation), the effective BGS in each
Stokes mode is a weighted sum of intramodal and inter-
modal BGS [shown as dotted purple and long-dashed teal
curves in Fig. 3(b)]. Maximum peak value gB in this case
can be 2.2 times lower [purple circle in Fig. 3(b)] for the
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FIG. 3. Illustration of SBS suppression with multimode excitation using a two-mode example. (a) Brillouin gain spectra (BGS) for a
circular step index fiber (fiber A) (summed over all possible acoustic interactions) for the fundamental mode (FM) (m ¼ 1) and a higher-
order mode (HOM) (m ¼ 120). The intermodal BGS (dashed black and yellow curves, remains identical under index interchange) have
significantly lower peak values and relatively higher Brillouin frequency (frequency of the peak) compared to both intramodal BGS
(solid red and dash-dotted blue curves). Acoustic modes with dominant contributions are shown corresponding to each peak in the BGS.
The intramodal BGS has a dominant contribution from the fundamental acoustic mode, whereas the intermodal BGS has a dominant
contribution from the higher-order acoustic mode. As shown, intramodal BGS for HOMs can have multiple peaks. (b) Effective BGS in
the FM and HOM Stokes modes for three different input excitations. For single-mode input excitations (FM-only or HOM-only), the
effective BGS in each mode g̃m is given by the corresponding intramodal or intermodal BGS [curves reproduced in (b) with lighter
colors]. For a multimode excitation, the effective BGS in each Stokes mode is a weighted sum of intramodal and intermodal BGS
(shown as dotted purple and long-dashed teal curves for optimal two-mode excitation). The overall Brillouin gain coefficient gB for a
particular input excitation is given by the maximum value of effective BGS across all the Stokes modes and frequencies [Eq. (27)]. gB is
highest for FM-only excitation (red triangle), is 1.4 times lower for HOM-only excitation (blue square), and is 2.2 times lower for
optimal combination (purple circle) of FM and HOM (P̃1 ≈ 0.4 and P̃120 ≈ 0.6). Thus, SBS threshold (which is inversely proportional
to gB) is 2.2 times higher for optimal two-mode excitation compared to FM-only excitation. Further power division among many modes
leads to even higher SBS thresholds.
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optimal combination of FM and HOM (P̃1 ≈ 0.4 and
P̃120 ≈ 0.6), leading to a 2.2× higher SBS threshold
compared to FM-only excitation. Note that for this two-
mode case the optimal power distribution corresponds to
matching the two peak values of the effective BGS for the
FM and HOM.
The SBS suppression (increase in SBS threshold) illus-

trated with two modes (m ¼ 1 and m ¼ 120) in Fig. 3 is
due to generic properties of BGS such as relatively weaker
intermodal gain and shifted BGS peaks and, hence, gen-
eralizes to many-mode excitation. In Fig. 4(a), we show in a
color scale the matrix of peak values of BGS for all possible
mode pairs for the circular step-index fiber described before
(fiber A). This gives a 160 × 160 matrix of positive entries,
where each element ðm; nÞ describes the SBS interaction
between Stokes mode m and signal mode l. An enlarged
view of a section of the matrix is shown in the inset. It can
be clearly seen that the intermodal gain (off-diagonal
elements) is generically smaller than the intramodal gain
(diagonal elements). For generality, we also consider
another fiber (fiber B), which has all the same material
properties as fiber A but with a D-shaped cross section (see
Fig. 2). A motivation to study this fiber is the ray chaotic
nature of the D-shaped cavities, leading to more ergodic

modal profiles. This fiber supports 130 optical modes with
polarization roughly aligning with either the x axis (axis of
symmetry) or y axis (perpendicular to x axis), unlike the
circular cross-section fiber (see Fig. 2). The matrix of peak
values of the BGS for fiber B is shown in Fig. 4(b). An
enlarged view of a section of the matrix is shown in the
inset. The intermodal gain is again generically weaker than
the intramodal gain, similar to fiber A. In addition, there is a
checkerboard pattern in the matrix which is a result of
complete decoupling of modes with two orthogonal polar-
izations (x and y). The contrast between intermodal and
intramodal gain (for modes with the same polarization) is
actually found to be lower than for fiber A.
The presence of relatively weaker intermodal gain in

both circular and D-shaped fiber suggests that exciting
multiple modes instead of exciting only the FM or a single
HOM can lead to substantially higher SBS threshold. To
show this, we consider equal division of signal power in all
of the modes up to mode numberMe and calculate the SBS
threshold asMe is varied. The results for fiber A are shown
in Fig. 5(a). For reference, we compare all the results to the
SBS threshold for FM-only excitation (dashed black line)
by defining a threshold increase factor as the ratio of the
SBS threshold for a given excitation divided by that with
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FIG. 4. Matrix of peak values of pairwise BGS for all possible Stokes-signal mode pairs for highly multimode step-index fibers with
(a) circular (fiber A) and (b) D-shaped (fiber B) cross sections. The insets show enlarged views of sections of the matrices in each case.
The modes are ordered according to their effective refractive indices. The peak values of intermodal BGS (off-diagonal elements) are
typically lower than the intramodal BGS (diagonal elements) for both fibers A and B. The matrix for fiber B has a checkerboard
structure, since modes are either completely x or y polarized. Fiber A does not exhibit this structure due to the spatially varying
polarization patterns of the optical modes.
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FM-only excitation. The SBS threshold increases almost
monotonically for equal mode excitation (solid blue curve)
as Me is increased and reaches 6.5 times when Me ¼ 160.
As illustrated with the two-mode example above, the
increase in SBS threshold upon multimode excitation
results from relatively small intermodal gain and not simply
from increasing the acousto-optic effective area, due to
increasing mode order. To illustrate this further, we also
show in the plot the SBS threshold when the highest single
HOM (mode number = Me) is excited (orange curve). For
the best HOM (Me ¼ 160), the threshold increase is 2.1
times, significantly lower than for equal mode excitation.
As we note above, power division tends to broaden the
effective SBS gain spectrum, which also reduces the peak
value. This is seen dramatically in the case of equal power
division among all 160 modes of this circular fiber. The
effective gain spectrum is shown in Fig. 6, compared to that
of FM-only excitation. We find a more than doubling of the
gain bandwidth under equal power division, along with the
peak value of the spectrum decreasing greatly, leading to a
factor of 6.5 increase in the SBS threshold.
The threshold behavior for fiber B, shown in Fig. 5(b),

has an interesting new feature. For the D-shaped fiber core,
the SBS threshold strongly depends on the input polariza-
tion. When the polarization of light is along either the x or y
axis, and power is equally divided in the modes (teal curve),
the maximum SBS threshold obtained is 3.5 times higher
than the FM-only threshold for Me ¼ 130. However, with
polarization at an angle of 45° to the x axis, the maximum
SBS threshold is 6.7 times higher than FM-only excitation,
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FIG. 5. Scaling of the SBS threshold with the number of modes for different input excitations in multimode step index fibers with
(a) circular (fiber A) and (b) D-shaped (fiber B) cross sections. For reference, the FM-only excitation is set to be 1, shown as a black
dashed line. In (a), the blue curve represents the case when all the modes are equally excited up to mode number Me with any
polarization. When Me ¼ 160, a 6.5-times-higher SBS threshold is obtained for equal mode excitation, substantially higher than
exciting a single HOM (mode number ¼ Me) shown by the orange curve. In (b), the SBS threshold for equal mode excitation increases
more slowly for x- or y-polarized input (teal curve) as compared to input polarized at 45° (blue curve) with respect to the axis of
symmetry (x axis). A 6.7-times-higher SBS threshold is obtained when Me ¼ 130 for equal mode excitation and 45° polarization,
significantly higher than exciting a single HOM (mode number ¼ Me) shown by orange curve.
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mode excitation (solid red curve) in a circular step index fiber
(fiberA). The spectra are normalized such that peak value of gain for
FM-only excitation is equal to one. Brillouin gain for equal mode
excitation is significantly broadened leading to a full width at half
maximum (FWHM) of 86 MHz, which is more than twice the
FWHM for Brillouin gain for FM-only excitation (40 MHz). The
broadening is a result of addition of multiple intermodal and
intramodal BGS which peak at different frequencies, upon equal
mode excitation. As a result of this broadening and weak intermodal
coupling, the peak value ofBrillouin gain is 6.5 times lower for equal
mode excitation, leading to an equivalent increase in SBS threshold.
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when all 130 modes are equally excited (blue curve). A
strong dependence of SBS threshold on input polarization
has been previously observed in single-mode birefringent
fibers [84]. Similar dependence has been observed for the
threshold of transverse mode instability [85], which is a
thermo-optic nonlinear effect that results from a four-wave
mixing type interaction, similar to SBS. In our model, it is
easy to understand this dependence through the checker-
board structure of the BGS matrix [see Fig. 4(b)]. When the
light is launched at 45°, power is launched equally in x- and
y-polarized modes, which have zero intermodal interaction
with each other, qualitatively reducing the intermodal
gain, leading to roughly a factor of 2 reduction in the total
effective SBS gain and almost a twofold increase in SBS
threshold. Note that this polarization dependence is not
present in fiber A (circular core), since there is no preferred
axis of symmetry in an ideal circular fiber. Overall results in
both the circular and D-shaped fibers show that a signifi-
cant enhancement (approximately 6.5) in SBS threshold
can be obtained upon equal excitation of many modes.

V. DISCUSSION AND CONCLUSION

In this work, we have presented and implemented the
first accurate theoretical model for predicting the SBS
threshold under arbitrary multimode excitation. The theory
elucidates the physics of intermodal gain and explains
why it is generically weaker than intramodal gain, hence
favoring highly multimode excitation to achieve a sub-
stantially higher SBS threshold. The theory presented
above can be used, after the applicable approximations
(primarily, the assumptions of undepleted signal and phase
matching), to calculate the SBS gain spectrum and thresh-
old for highly multimode fibers with any refractive index
profile and cross-sectional geometry, taking into account
fully the vector nature of the optical fields and forces. The
signal modal power distribution enters the theory as a set
of control parameters, determining the effective spectrum
and the threshold. The vector nature of optical forces
considered here is necessary to obtain an accurate theory
of SBS for highly multimode excitations. In Appendix A,
we generalize the formalism in the main text to include the
tensor nature of the acousto-optic interaction. The general-
ity of our linearized equations, with correct treatment of
vector modes and tensor interaction coefficients, makes
them suitable for micro- and nanowaveguides, although in
the latter case boundary terms [17,30,69] will need to be
added to the sources, which will modify the overlap
integrals. These equations are potentially applicable in
semiconductor waveguides, where shear waves play a
significant role.
As demonstrated, these equations provide a realistic

computational framework for calculating the intramodal
and intermodal gain spectra for all pairs of modes in a
highly multimode fiber. The power in each Stokes mode
grows exponentially, with a modal growth rate independent

of the power in the other Stokes modes. Typically, the
SBS threshold will be determined by the mode with the
highest growth rate, and each growth rate depends
strongly on the modal power distribution of the signal
excitation. We have shown that dividing the input power
among modes generically decreases the maximal Stokes
gain, increasing the SBS threshold, due to the relative
weakness of the intermodal gain, and the broadening of
the effective SBS spectrum.
While our formalism includes effects neglected in

previous theories, we are not able to compare our results
to exact numerical simulations, since they are impractical
due to the multiscale nature of the problem. In parallel with
this theoretical work, experiments have been performed on
SBS in passive multimode fibers with results in quantitative
agreement and confirming the basic physical principle
implied by our theory: that exciting a multimode fiber
with many modes substantially increases the SBS threshold
compared to single-mode excitation of the same fiber [28].
One important prediction of the current theory, not studied
here, is that the increase of the SBS threshold is indepen-
dent of the relative phases of the signal modal amplitudes
and depends on only the power in each mode. This suggests
that these relative phases can be controlled (e.g., using an
SLM), so as to refocus the beam at the output, while
maintaining an increased SBS threshold due to multimode
excitation. The experiments validated this important prop-
erty, demonstrating refocusing of the speckled multimode
beam to a reasonable focal spot in the far field using
wavefront shaping at the input [28]. Further applications of
the theory to experimental data under different excitation
conditions are made in that work as well.
In the current work, we have presented only results for

single-mode and equal mode excitation of a fiber. Beyond
this, our theoretical framework allows us to pose the
maximization of the SBS threshold as a convex optimiza-
tion problem for a given matrix of Brillouin gain coef-
ficients. In future work, we will explore this approach and
expect that an even larger suppression of SBS can be
achieved with a highly multimode, but nonuniform input
signal power distribution [86].
Suppression of SBS is especially important in fiber

amplifiers, since it will allow power scaling in narrow-
linewidth high-power fiber lasers [22]. In this work, we
have not explicitly included the signal gain of the active
fiber. This is trivial in the absence of linear mode-dependent
gain and loss [87], but to model realistic fiber amplifiers
these effects will need to be included. This can be modeled
and/or measured and included without significant compli-
cation of the analytic and computational framework.
Similarly, linear mode coupling due to fiber bending or
other fiber imperfections and external perturbations can be
a significant effect in realistic fibers. Our formalism allows
taking this into account straightforwardly by replacing the
fractional signal power in each mode at the input P̃l in
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Eq. (27) with fractional signal power in each mode averaged
over the length of the fiber hP̃liz. For a multimode fiber with
randombut time-invariantmicrobends, linearmode coupling
can be modeled as successively multiplying the signal mode
content vector by banded random matrices [88]. The polari-
zation mixing is already accounted for in the coupling of
vector modes of the fiber. This approach allows calculating
averaged mode content hP̃liz via numerical integration.
A further quite important effect in fiber amplifiers is that of

gain saturation of the signal [89]. This is a space-dependent
nonlinear effect which cannot be neglected if one wants to
describe such systems quantitatively. However, we can
still neglect the depletion of the signal to the Stokes mode
when calculating the saturated signal field; moreover,
there are iterative self-consistent approaches to include
this in a semianalytic framework [90]. The qualitative
physics which makes intermodal gain weaker than intra-
modal gain and favors highly multimode excitation is not
changed by gain saturation.
Increasing the threshold for SBS is very important for the

long-range optical transmission [91], which is limited by
backscattering. Note that the random coupling of fiber
modes can scramble the optical signals, but the information
is not lost, as long as the mode coupling is a linear and
deterministic process. Even for a long fiber, the relation
between the input fields in all modes and output fields
in all modes is completely characterized by the trans-
mission matrix of the fiber, Eout ¼ TEin at any frequency.
Coherent measurement of output fields in all modes
allows full recovery of the input fields, which has already
been done in recent years [92]. In the case of optical
pulses, there can be broadening by modal dispersion in a
fiber, but again this can be digitally compensated to
recover the optical signals by digital signal processing
(DSP) with frequency-resolved or time-resolved trans-
mission matrix. In fact, coherent communication protocol
based on multi-input, multi-output was already developed
for mode-division multiplexing in telecommunications,
thanks to the rapid progress of DSP [93,94].
Another important application of SBS in fibers has been in

developing distributed sensors for temperature and strain.
Most studies focus on single-mode fibers, but it has been
posited that SBS in multimode fibers can lead to better
performance in sensing applications [95]. InMMFs, different
Stokesmodes have distinct Brillouin frequency shifts, which
also depend on external parameters such as temperature and
strain. Thus, sensing platforms based on SBS in MMFs can
possibly be utilized to extract more information about the
fiber environment compared to SMFs. Our multimode SBS
theory will be quite useful in providing a comprehensive
framework for any such future studies.
Finally, our general approach is applicable to model

other nonlinear effects for which wavefront shaping and
modal control can be applied to affect their manifestation.
Already we have applied this theoretical approach to the
study of transverse modal instability and uncovered new

physical effects due to the thermal origin of the instability
[51]. In this case, multimode excitation is predicted to be
even more effective in suppressing the instability. A similar
approach seems possible for controlling the effect of Kerr
nonlinearity in multimode fibers [96,97]. In our view,
wavefront shaping in multimode fibers has the potential
to become a standard tool to control nonlinear effects in
fibers, and possibly in waveguides, of great practical utility.
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APPENDIX A: GENERALIZED ACOUSTO-
OPTICAL INTERACTION

1. Optical equation

In the main text, we study isotropic silica fibers, where
acousto-optical interaction can be accurately described by
interaction between vector electric fields and scalar acoustic
fields. In general, however, the acousto-optical interaction
takes a more complicated form, involving a fourth-rank
photoelastic tensor coupling a vector electric field to a
vector acoustic displacement field. The formalism for
multimode SBS threshold developed in the main text
can be utilized for the tensor acousto-optical interactions
by replacing the overlap integral in Eq. (22) with an
appropriately generalized formula. In this section, we
provide the generalized formula for the overlap integral
and show that it reduces to the form in Eq. (23) under
suitable approximations valid for standard silica fibers.
The presence of shear effects also requires a generalized
acoustic equation involving elasticity and viscosity tensors,
which is discussed in the next subsection.
The generalized nonlinear polarization due to photoelas-

tic effect is given by the tensor product of the second-rank

susceptibility tensor χ
↔

N and the electric field [68,69]:

P⃗NL ¼ χ
↔

N · E⃗; χ
↔

N ¼ π
↔∶∇ ⊗ u⃗ ¼ π

↔∶S
↔
: ðA1Þ

Here, ⊗ denotes the outer product of two vectors and

ð∇ ⊗ u⃗Þij ¼ ∂iuj ≡ S
↔

ij is the second-rank strain tensor.

π
↔∶S

↔ ¼ P
kl πijklSkl denotes the contraction of the strain
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tensor with the fourth-rank photoelastic tensor π
↔

to yield

the second-rank susceptibility tensor χ
↔

N. The photoelastic
tensor generalizes the electrostriction constant γe used in
the main text.
As such, the overlap integral in Eq. (15) corresponding to

the optical source term is generalized to the following form:

O2 ¼ h½ðπ↔∶q⃗� ⊗ u⃗ml�
k Þ:f⃗ð1Þl �:f⃗ð2Þ�m i: ðA2Þ

Here, u⃗ml�
k is the vector displacement field of the

kth acoustic mode, driven by the interference of optical
modes m and l and q⃗ ¼ ∇T − iqmlẑ. The derivative of the
acoustic mode profile, u⃗ml�

k , contracted with the photoelas-

tic tensor π
↔
, gives the nonlinear susceptibility, which, when

multiplied with optical mode profile f⃗ð1Þl , gives the acousto-
optic polarization field. The projection of this polarization

on the particular Stokes mode profile, f⃗ð2Þm , gives the optical
scattering strength.
For elastically isotropic fibers, the full photoelastic

tensor can be described by just two independent constants
[72,75,98], resulting in dramatic simplification in the form

of the overlap integral. The form of π
↔

for an isotropic
medium can be written in the index notation as follows:

πijkl ¼ π1122δijδkl þ π1212ðδikδjl þ δilδjkÞ; ðA3Þ

where π1122 and π1212 are the two independent parameters
describing the entire photoelastic tensor and δij is the
Kronecker delta function for indices i and j. A useful way

to visualize π
↔

in this case is by employing the Voigt
notation [99,100]. We introduce a set of six new labels for
the three diagonal and the three independent off-diagonal
elements: f1; 2; 3; 4; 5; 6g≡ f11; 22; 33; 12; 13; 23g. With

such notation, the fourth-rank tensor π
↔
can be written as the

following 6 × 6 matrix [100]:

Π
↔¼

2
6666666664

π12þ 2π44 π12 π12 0 0 0

π12 π12þ 2π44 π12 0 0 0

π12 π12 π12þ 2π44 0 0 0

0 0 0 π44 0 0

0 0 0 0 π44 0

0 0 0 0 0 π44

3
7777777775
:

ðA4Þ

The π12 component (π1122 in original notation) is directly

related to the electrostriction constant γe. The formula for π
↔

in Eq. (A3) can be substituted in Eq. (23) to simplify the
overlap integral for the elastically isotropic materials. We

contract π
↔

and f⃗ð1Þl ⊗ f⃗ð2Þ�m to obtain

Omlk ¼ π12h∇⃗ðf⃗ð1Þl · f⃗ð2Þ�m Þ · u⃗ml�
k i

þ 2π44h∇⃗ · ðf⃗ð1Þl ⊗ f⃗ð2Þ�m Þ · u⃗ml�
k i: ðA5Þ

The overlap integral contains two terms, one for each of the

two independent components of π
↔
. Here, ∇! is equal to

∇!T − iqmlẑ. We can further simplify the first term in the
overlap integral by using integration by parts:

Omlk ¼ π12hf⃗ð1Þl · f⃗ð2Þ�m ∇⃗ · u⃗ml�
k i

þ 2π44hð∇⃗ · f⃗ð1Þl Þf⃗ð2Þ�m · u⃗ml�
k i

þ 2π44hðf⃗ð1Þl · ∇⃗Þf⃗ð2Þ�m · u⃗ml�
k i: ðA6Þ

The first term in the overlap integral (we call it the direct
interaction term) is proportional to π12 and the dot product
between the Stokes and the signal mode profiles multiplied
with the divergence of the displacement field profile. The
other two terms (we call them cross interaction terms)
consist of dot products between the optical mode and
displacement field profiles multiplied with the derivative of
the remaining optical mode profile. Typically, the direct
interaction term is significantly larger than the cross
interaction terms. This is due to the predominantly trans-
verse nature of the optical modes [77,78] and longitudinal
nature of the acoustic modes [31,73,81], which leads to an
extremely small dot product between optical and acoustic
mode profiles. Therefore, we can ignore the cross inter-
action terms leading to

Omlk ≈ π12hf⃗ð1Þl · f⃗ð2Þ�m ∇! · u⃗ml�
k i: ðA7Þ

It should be noted that for specialty optical fibers or
sufficiently higher-order modes the primarily longitudinal
and transverse character of acoustic and optical modes can
break down, leading to nontrivial contribution from the
cross interactions, in which case Eq. (A6) should be used
for accurate calculations.

2. Acoustic equation

Similar to the optical equation, the source term in the
acoustic equation takes a generalized form involving the
photoelastic tensor. In addition, for the acoustic equation,
the wave operator also generalizes leading to the following
equation [17,68,69]:

�
∇ ·

�
C
↔ þ ∂

∂t
η
↔
�
∶∇ ⊗ −ρ0

∂

∂t2

�
u⃗ ¼ −F⃗; ðA8Þ

where C
↔

and η
↔

are fourth-rank elasticity and viscosity
tensors, respectively [73,74]. The elasticity tensor general-
izes various elasticity moduli which determine the acoustic
velocities in the fiber. The viscosity tensor plays the role of
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generalized phonon loss in the fiber. The source term F⃗ is
the optical force, given by [69]

F⃗ ¼ −
1

2
∇ · ½π↔∶E⃗ ⊗ E⃗�: ðA9Þ

As a result, the overlap integral in Eq. (10) corresponding to
the acoustic source term takes the following form:

O1 ¼ −hðq⃗ · ½π↔∶f⃗ð1Þi ⊗ f⃗ð2Þ�j �Þ · u⃗ij�k i: ðA10Þ

The angular brackets h:i denote integration over the entire
fiber cross section, and q⃗ is the gradient operator with z
component set equal to −iqijẑ. The derivative of the tensor
product of optical mode profiles, f⃗ð1Þi and f⃗ð2Þj , contracted

with the photoelastic tensor π
↔
, represents the optical force.

This is then projected onto the relevant acoustic mode
profile u⃗ijk and integrated over the fiber cross section to give
the relevant source integral.
Similar to the previous subsection, for isotropic fibers,

the acoustic overlap integral can be simplified, and it
reduces to a similar form as Eq. (A7). In addition, the

elasticity tensor C
↔
can be described by just two independent

constants and takes the following form [73,101]:

Cijkl ¼ λδijδkl þ μðδikδjl þ δilδjkÞ; ðA11Þ

where λ and μ are the well-known Lamé parameters
[73,101] and are related to the longitudinal velocity VL

and the shear velocity Vs for the acoustic waves; λ ¼ v2Lρ0
and μ ¼ v2sρ0, where ρ0 is the average density of the
material. δij is Kronecker delta function for indices i and j.

This form of the elasticity tensor, C
↔
, can be directly

substituted in Eq. (A8) to obtain a simplified acoustic
equation for isotropic fibers [31,66,73,81,102]:

�
ρ0V2

L þ η11
∂

∂t

�
∇ð∇ · u⃗Þ −

�
ρ0V2

s þ η44
∂

∂t

�
∇ ×∇ × u⃗

− ρ0
∂
2

∂t2
u⃗ ¼ −F⃗: ðA12Þ

Here, VL and Vs are the longitudinal and shear acoustic
velocities in the fiber, respectively. ρ0 is the unperturbed
fiber density, and η11 and η44 are the respective components
of the viscosity tensor and provide the relevant acoustic
loss. Here, the first term is given by the gradient of the
divergence of the displacement field and is proportional to
the longitudinal acoustic velocity squared. This term is

related directly to the density fluctuations, δρ ¼ ρ0∇! · u⃗;
hence, it maps onto the ∇2

T term in the scalar acoustic wave
equation [1–3,29]. The second term is given by the curl of
curl of displacement field and captures the role of the shear

forces, parametrized by the shear velocity Vs. This term has
no analog in the scalar acoustic wave equation. Typically, in
silica fibers the shear acoustic velocity is much smaller than
the longitudinal acoustic velocity [103,104]; this results in
primarily longitudinal acoustic modes. However, the non-
zero shear velocity does produce an observable effect even
for these primarily longitudinal acoustic modes because of
the shear-longitudinal coupling due to the boundary con-
ditions. We calculate the longitudinal acoustic modes for a
circular step-index fiber, with germanium-doped silica core
and pure silica cladding, with [Fig. 7(b)] and without the
shear term [Fig. 7(a)]. The details of the fiber parameters
are given in Table I. Without the shear term, each acoustic
mode is characterized by two indices ði; jÞ, and it varies
in the radial direction as an ith-order Bessel function (of
the first kind) with j − 1 zeros in the core and as a cosine or
a sine function with i nodal lines in the azimuthal
direction. Including the shear-longitudinal coupling leads
to a rapidly varying perturbation (small feature size) in
addition to the dominant Bessel-like behavior [31,81].
These fast variations are understood [31,81] and are a
result of higher shear propagation constants, due to lower
shear velocity in the core compared to the longitudinal
velocity. Additionally, the effect of the shear term is
higher in the higher-order acoustic mode, compared to the
fundamental acoustic mode. These variations can, in
principle, substantially affect the calculation of the over-
lap integrals for the acousto-optic interaction, especially
for materials with relatively high shear velocities. To
show this, we also calculate the acoustic modes of a
possible fiber with negative Poisson ratio [105], such that
shear velocity is comparable to the longitudinal velocity.
The resultant mode profiles are shown in Fig. 7(c), where
it can be seen that shear-longitudinal coupling impacts
the mode profiles significantly such that modes of scalar
acoustic equation are no longer a good approximation for
full vectorial modes [106]. Our formalism allows calcu-
lation and utilization of full vectorial acoustic modes to
calculate BGS in such fibers.
However, for standard silica fibers, we find that the effect

of fast variations due to the shear velocity term in the
overlap integrals is small and does not change the Brillouin
gain spectra significantly (1%–5% error). For this reason,
we conclude that using the scalar theory to evaluate the
relevant acoustic modes is a useful and accurate approxi-
mation. In that case, to calculate the overlap integral in

Eq. (A7), we make the substitution ρ0∇! · u⃗ml
k ¼ gml

k , where
gml
k is the kth eigenmode (for optical mode pair fm; lg) of
the scalar density fluctuation equation:

�
∇2

T þ
�
Ω2

mlk

V2
L

− q2ml

��
gml
k ¼ 0: ðA13Þ

Here, ∇2
T is the transverse Laplacian, Ωmlk is the modal

eigenfrequency, and qml is the acoustic propagation
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constant in the z direction and is given by qml ¼ βl þ γm.
When the scalar acoustic modes are considered, the
acousto-optic overlap integral in Eq. (A7) reduces to the
formula used in Eq. (23) in the main text:

Omlk ≈ hf⃗ð1Þl · f⃗ð2Þ�m gml�
k i: ðA14Þ

As stated in Sec. III B, this form of the overlap integral is
accurate enough for fibers with relatively low shear velocity.
It should be noted that ignoring the shear velocity contribu-
tion can lead to substantial errors especially if the shear
velocity is comparable or even higher than the longitudinal
velocity. In such a case, Eq. (A7) should be used for acoustic
mode calculation to evaluate the overlap integrals.

APPENDIX B: COMPARISON TO SCALAR
THEORY

In this section, we compare our phase-matched vector
multimode SBS theory, simplified for elastically isotropic
fibers, to the scalar multimode SBS theory presented in Ke,
Wang, and Tang [29] (henceforth referred to as “the scalar
theory”). We note that much of the work on SBS in SMFs
and in other contexts also uses similar scalar approxima-
tions. Ke, Wang, and Tang were able to obtain power

growth equations for multimode Stokes growth similar to
Eqs. (21) and (22), which are capable of capturing many
aspects of the physics of SBS in multimode fibers.
However, as we discuss below, the scalar model leaves
out effects which have both quantitative and qualitative
importance for suppressing SBS in MMF. These authors
did not discuss the efficacy of highly multimode excitation
in suppressing SBS, nor did they apply it to calculate the
full gain matrix for MMFs with many modes (< 100), as we
do in the current work. In the scalar theory, SBS growth
equations were obtained by solving scalar optical and
acoustic wave equations by expanding in terms of scalar
linearly polarized (LP) fiber modes and eigenmodes of
scalar density fluctuation equation, respectively. This
formulation is inadequate for nonisotropic fibers and
waveguides, which can have non-negligible contributions
from cross components of the photoelastic tensor. Even for
isotropic fibers, there can be significant errors due to shear-
longitudinal coupling in acoustic modes. However, most
importantly, as noted in the main text, the use of
uniformly polarized LP modes instead of exact vector
fiber modes can lead to overestimation of intermodal gain
due to neglect of space-dependent polarization variations
in exact fiber modes, which can strongly affect the
relevant overlap integrals.
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FIG. 7. Mode profiles for the fundamental and higher-order longitudinal acoustic modes, calculated for different regimes of shear
velocity for a circular step-index fiber. The fiber is elastically isotropic. (a) When scalar acoustic equation is utilized, where shear
velocity is completely neglected, each acoustic mode is characterized by two indices ði; jÞ and it varies in the radial direction as ith-order
Bessel function (of the first kind) with j − 1 zeros in the core and as a cosine or a sine with i nodal lines in the azimuthal direction.
(b) Inclusion of relatively small shear velocity leads to a rapidly varying (small feature size) perturbation in addition to the dominant
Bessel-like behavior. In this regime, scalar modes are a good approximation. (c) In a fiber with negative Poisson ratio, where shear
velocity is comparable to longitudinal velocity, shear-longitudinal coupling results in significant distortion such that modes of scalar
acoustic equation are no longer good approximations for full vectorial modes.
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1. Scalar limit of vector theory

There are special cases when the scalar theory is
reasonably accurate. An important case is the SBS coupling
between forward- (signal) and backward- (Stokes) propa-
gating fundamental modes of the circular step-index fibers.
This is by default the case in most SBS studies focusing on
single-mode fibers. In this instance, because the vector
fundamental mode has constant polarization in space, the
scalar multiplication of the amplitudes is the same as the
vector dot product between the mode profiles. Another case
when scalar theory is accurate is when the cross section of
the fiber has two well-defined polarization axes and,
therefore, supports uniformly (in space) polarized modes,
such as in the case of an elliptical orD-shaped cross section
[Figs. 2(c) and 2(d)].
Interestingly, even circular step-index fibers can support

uniformly polarized modes, commonly known as linearly
polarized (LP) modes. However, these are only approx-
imately the eigenmodes of the fiber, obtained for weakly
guiding fibers. Strictly speaking, each LP mode (designated
as LPi;j, where i is the azimuthal index and j is the radial
index) is a linear combination of two nearly degenerate
vector modes EHi−1;n and HEiþ1;n for i ≥ 1 [77].
A representative example is shown in Fig. 8(a). The
x-polarized LP7;1 mode is equal to 1=

ffiffiffi
2

p
times the sum

of exact vector modes EH6;1 and HE8;1. Because the EH
and HE modes are not exactly degenerate, there is a small
difference, Δβ, in their propagation constants. Over short
enough length scales (L ≪ 2π=Δβ), the effect of the
difference in propagation constants is negligible, and the
LP modes form a good basis. In this limit, the scalar theory
utilizing the uniformly polarized LP modes should be
reasonably accurate. Thus, the effective SBS gain calcu-
lated from the scalar and the vector theories is expected to
match closely in this limit. This leads to a specific
consistency condition on the BGS calculated by the two
theories. If all the power is sent in an x-polarized LP mode
with mode number m (say, m ¼ 51), the effective BGS in
that mode according to the scalar theory is given by

gm;m
scalarðΩÞ. Generically gðm;lÞ

scalarðΩÞ denotes the BGS for
Stokes-signal mode pair (m, l) in the scalar theory. In
the vector basis, exciting the x-polarized LP mode with
mode number m is equivalent to exciting two vector modes
with mode number m and m0 with half the power in each
mode. Here, m0 is the nearly degenerate partner of mode m
(for m ¼ 51; m0 ¼ 53). Therefore, the effective BGS is

given by 0.5½gðm;mÞ
vector ðΩÞ þ gðm;m0Þ

vector ðΩÞ�. In addition, since in
this limit the vector modes are effectively degenerate, there
are additional “nontrivially phase-matched terms” (see
Sec. III) equal in number to the trivially phase-matched
terms, which appear on the off-diagonals of the SBS
coupling matrix [Eq. (17)]. This causes the maximum
eigenvalue of the matrix to increase by a factor of 2 and
minimum eigenvalue to go to zero, with the trace preserved.

This is the well-known effect of eigenvalue repulsion
in Hermitian matrices due to the off-diagonal elements.
Thus, the effective SBS gain in the vector theory is

gðm;mÞ
vector þ gðm;m0Þ

vector ðΩÞ. Hence, the consistency requires

gðm;mÞ
scalar ðΩÞ ¼ gðm;mÞ

vector ðΩÞ þ gðm;m0Þ
vector ðΩÞ: ðB1Þ

We verify the validity of this relation by explicitly calcu-
lating the BGS using both our vector formalism and the
scalar theory. As an example, we show the results for
m ¼ 51 (which gives m0 ¼ 53) in Fig. 8(b). The individual
BGS describing the self- and cross-interaction between m
and m0 calculated using the vector theory are shown as
dotted blue and dashed red curves, respectively. The sum of
these curves is given by the solid black curve. The purple
dots represent the BGS calculation using the scalar theory
which closely matches the sum of the BGS from vector
theory (solid black curve), verifying the relation in Eq. (B1).

2. General case: Failure of scalar theory

Note that the scalar theory is valid only in a very special
scenario when pairs of exact vector fiber modes are
perfectly degenerate. In most experiments, this assumption
does not hold true, both due to spatial variation in the
propagation constants of the fiber modes which becomes
significant in long-enough fibers and due to the presence of
disorder. The scalar theory typically overestimates the SBS
gain, especially for intermodal SBS couplings, since it
simply multiplies the optical mode profiles in the overlap
integrals instead of correctly using their spatially varying
dot product. This issue is probably the origin of a
discrepancy noted but not explained in Table I in Ke,
Wang, and Tang [29]. A comparison is presented between
the SBS coupling calculated from the scalar theory and
the experimental values provided in Ref. [61], showing
that the scalar theory consistently overestimates the
intermodal gain, while intramodal gain values match
closely with the experiments. The vector formalism
presented in this work should be more accurate for
calculating intermodal coupling and indeed does find
weaker intermodal gain than the scalar theory. In general,
the inaccuracies in intermodal gain can have significant
consequences for the prediction of the SBS threshold
upon multimode excitation.
To show this explicitly, we consider exciting fiber A with

a diffraction-limited focused spot at the input facet of the
fiber for various offset distances din from the fiber axis.
This is a relatively straightforward way of exciting multiple
modes with variable mode content in experiments. We plot
the prediction of the SBS threshold (relative to FM-only
excitation) for each din using both the vector and scalar
formalisms in Fig. 8(c). For din ¼ 0, only radial modes
(with zero azimuthal nodes) are excited leading to a small
increase in SBS threshold (1.2 times). As din is increased, a
higher number of nonradial modes are excited, leading to a
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monotonic increase in SBS threshold. The scalar theory
(dashed black curve) consistently predicts lower threshold
enhancement than the vector theory (solid red curve) due to
the overestimation of intermodal SBS gain. To show this
explicitly, we calculate the effective Brillouin gain spec-
trum for maximum offset, din ¼ 10 μm, leading to highly

multimode excitation. Figure 8(d) shows that the scalar
theory predicts significantly higher SBS gain compared to
the vector theory. Comparison with recent experiments on
SBS in multimode fibers (Fig. 3 in Ref. [28]) confirms that
the vector theory is quantitatively accurate, highlighting the
impact of the full vectorial formalism presented here.
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axis. As din is increased, more modes are excited and SBS threshold increases. For real fibers, vector modes are non-degenerate making
scalar theory inaccurate, which predicts lower SBS threshold compared to the vector theory. (d) This difference can be seen explicitly by
evaluating the effective Brillouin gain spectrum for maximum offset din, which shows that the scalar theory predicts significantly higher
SBS gain due to the overestimation of intermodal gain. Effective gain is normalized to that for fundamental-mode-only excitation.
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In fact, for few-mode fibers we find that the scalar
formalism can give qualitatively incorrect results. The work
of Refs. [29,63] both considered few-mode fibers with two-
mode excitation (FMþ HOM) and in each case found that
the highest SBS threshold is found when exciting only the
HOM. However, when we do the calculation with the
vector formalism, we find that the highest threshold is for
a superposition of FM and HOM weighted toward HOM
(see Fig. 9). This is consistent with similar results (for
highly MMF) shown in Fig. 5(a).
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