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Correlation-enhanced control of wave focusing in
disordered media
ChiaWei Hsu1*, Seng Fatt Liew1, Arthur Goetschy2, Hui Cao1 and A. Douglas Stone1

A fundamental challenge in physics is controlling the propagation of waves in disordered media despite strong scattering from
inhomogeneities. Spatial light modulators enable one to synthesize (shape) the incident wavefront, optimizing the multipath
interference to achieve a specific behaviour such as focusing light to a target region. However, the extent of achievable control
is not known when the target region is much larger than the wavelength and contains many speckles. Here we show that
for targets containing more than g speckles, where g is the dimensionless conductance, the extent of transmission control
is substantially enhanced by the long-range mesoscopic correlations among the speckles. Using a filtered random matrix
ensemble appropriate for coherent di�usion in open geometries, we predict the full distributions of transmission eigenvalues
as well as universal scaling laws for statistical properties, in excellent agreement with our experiment. This work provides a
general framework for describing wavefront-shaping experiments in disordered systems.

Waves propagating through a disorderedmedium undergo
multiple scattering from the inhomogeneities. Interfer-
ence among the multiply scattered fields has important

consequences that cannot be described with incoherent diffusion1,2.
By controlling the incident wave (‘wavefront shaping,’ WFS), one
can manipulate this interference and drastically modify the trans-
port of light, microwaves, and acoustic waves3. One early and
notable example is focusing light onto a local speckle-sized target
through aligning the scattered fields there4–7, which has led to
advances in imaging within biological tissue and other scattering
materials8. The transport through disordered structures is described
by a random field transmission matrix, and the use of WFS over
such local properties has treated the matrix elements as having
only short-range correlations on the scale of a single speckle4,9–13.
However, it has long been known that diffusive waves also exhibit
long-range and infinite-range correlations14–17; this was previously
noted in the context of electron transport throughmesoscopic struc-
tures, where correlations lead to anomalously large conductance
fluctuations18. The long-range correlations are related to the exis-
tence of near-unity-transmission input states (‘open channels’)19–24,
and have measurable effects on other global statistical properties
of diffusive waves such as the total transmission variance25–28, the
increased background for maximally focused waves29–32, and the
singular values of large transmission matrices33–36. With the rapid
growth of WFS, an important question, both scientifically and
technologically, is how correlations affect the coherent control over
targets larger than a single speckle and smaller than the full trans-
mitted pattern—that is, in between local and global. This interme-
diate regime remains poorly understood but is relevant for many
applications, ranging from telecommunications and cryptography
to photothermal therapy and the optical or ultrasound imaging of
large objects behind a scattering medium.

Here, we demonstrate the effects of correlations by means of
optical WFS experiments in this interesting regime. WFS enables
dynamic control over how much light is transmitted into a given
target, and we find that for large targets, correlations increase the

range of control significantly beyond what would be achievable if
correlations were negligible (as is typically assumed). Physically this
is because in a multiply scattering medium, the transmitted flux is
carried by roughly only g open channels19–22; here g is the analogue
of the dimensionless conductance or Thouless number for electron
transport in a waveguide, and its definition in an open geometry
will be discussed below.When the target region is large enough that
the number M2 of speckles in it exceeds g , the output channels are
necessarily correlated. Such positive correlations reduce the effective
degrees of freedomM (eff)

2 that need to be controlled, and lead to the
increased control range and other correlation effects.

WFS experiments on strongly scattering media are typically
performed in an open geometry: the illumination spot spreads
laterally as the wave diffuses into the medium. A rigorous random
matrix theory for such a set-up was not known until recently, when
the ‘filtered random matrix’ ensemble (FRM) was introduced37 and
conjectured to apply to diffusion with an open boundary38. There
were some partial tests of the FRM eigenvalue distributions34–36, but
not with lateral diffusion accounted for rigorously. Here we show
precisely how the FRM can be applied to an arbitrary open diffusion
experiment, and confirm its predictions for the full distributions of
transmission eigenvalues. We prove that the ratioM2/g determines
the presence or absence of significant correlation effects, and derive
new scaling laws for measurable statistical quantities that are found
to agree very well with our experimental data. This theoretical
framework is applicable to the WFS for light, as well as microwaves
and acoustic waves.

When we modulate M1 incident channels with a spatial light
modulator (SLM) and collectM2 channels transmitted into a target
region, the input–output relation can be written as |ψout〉= t̃|ψin〉,
where |ψin〉 and |ψout〉 are vectors of length M1 and M2 that con-
tain the input and output field amplitudes. Here t̃ is an M2-by-M1
transmissionmatrix, andwe use the tilde to indicate the exclusion of
unmodulated inputs and uncollected outputs37. The total flux
into the focal target is T = 〈ψout|ψout〉 = 〈ψin|t̃ † t̃|ψin〉; the
variational principle guarantees that the maximal and minimal
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Figure 1 | Experimental set-up and representative output patterns. a, A phase-only spatial light modulator (SLM) generates the desired incident
wavefront and, together with a CCD camera, measures the optical transmission matrix of the scattering sample (average transmission T̄≈3%, picture
shown in the inset). λ/2, half-wave plate; BS, beam splitter; PBS, polarizing beam splitter; L1−4, lenses. b–d, Output pattern on the CCD for a random input
wavefront (b) and for wavefronts optimized for maximal (c) and minimal (d) transmission into a target region containing M2≈ 1,700 speckles (within the
white dashed circle), in saturated log scale; square on the corner indicates the average intensity inside the target.

transmitted fluxes are the extremal eigenvalues of t̃ † t̃ . The corre-
sponding eigenvectors are the optimal input wavefronts that the
SLM should synthesize. Thus, the variance Var(τ̃ ), where τ̃ denotes
the eigenvalues of t̃ † t̃ , is a measure of the range of focused trans-
mission that is achievable by WFS. If the matrix elements of t̃ were
uncorrelated random numbers, for sufficiently largeM1 andM2 the
eigenvalues would follow theMarčenko–Pastur (MP) distribution39,
which has variance Var(τ̃ (MP))= 〈τ̃〉2M1/M2. The ratio between
Var(τ̃ ) and Var(τ̃ (MP)) is a measure of how correlations affect the
range of coherent control.

We study the transport through a slab of zinc oxide (ZnO)
microparticles (median diameter ≈ 200 nm) deposited on a cover
slip, with slab thickness L≈ 60 µm and total transmission T̄≈3%.
The incident wavefront (wavelength λ = 532 nm) is modulated
with a phase-only SLM and then focused onto the sample with
a high-NA objective, and the transmitted light is collected on a
charge-coupled device (CCD) camera; see the schematic illustration
in Fig. 1a and details in Methods. In our set-up, the SLM/CCD
pixels modulate/detect different angles incident onto/transmitted
from the sample. The nearby SLM pixels are grouped into
macropixels; smaller macropixels correspond to more finely spaced
incident angles, with a larger illumination spot and more available
input channels. The illumination spot size determines the crucial
parameter g in an open geometry, and we consider threemacropixel
sizes that correspond to illumination diameters Din≈ 6, 12, 24 µm;
the number of modes we modulate is M1 = 128, 512, 2,048,
respectively. Our output speckle grains are slightly larger than one
CCD pixel (the intensity autocorrelation width is 1.5 pixels), and
we keep only one pixel out of 2× 2 pixels in the data recorded

on the CCD to remove correlations among neighbouring pixels;
thus each remaining CCD pixel corresponds to one output channel,
free of short-range correlations. With this set-up, we measure
the transmission matrix t̃ using a phase-shifting common-path
interferometricmethod (Methods). Once the transmissionmatrix is
measured, we use it to predict the optimal phase-only wavefront for
a given target (Methods), and then measure the output on the CCD
when such awavefront is applied on the SLM. Exemplary outputs for
enhanced and suppressed transmission into a large target are shown
in Fig. 1b–d.

The intensity correlation functions between the output chan-
nels are calculated from the measured transmission matrices and
shown in Supplementary Fig. 1 (Supplementary Section I). Long-
range correlations are readily seen in the data, which explain why,
in Fig. 1c–d, the background speckle intensities outside the tar-
get increase (or decrease) with those inside the target, as obs-
erved previously29–32.

We obtain the eigenvalues of t̃ † t̃ from themeasured transmission
matrices, for circular targets of increasing sizes. As the target size
grows, the eigenvalue variance becomes larger than the uncorrelated
MP variance, as shown in Fig. 2a. For small targets (M2.103), we
observe Var(τ̃ )≈ Var(τ̃ (MP)) with no obvious correlation effects,
consistent with prior work involving small transmission matri-
ces9–13. However, for large targets (M2 & 103), Var(τ̃ ) becomes sig-
nificantly larger than Var(τ̃ (MP)), indicating an enhanced range of
control due to correlations. The ratio between the eigenvalue range
τ̃max− τ̃min and that from an uncorrelated matrix τ̃ (MP)

max − τ̃
(MP)
min is

shown in Supplementary Fig. 2 (Supplementary Section II), which
follows the same trend as the eigenvalue variance.
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Figure 2 | Correlation e�ects in wavefront shaping and their universal scaling. a, Eigenvalue variance of the measured transmission matrix divided by that
of an uncorrelated matrix. This quantity characterizes how the correlations between matrix elements enhance the range of control in wavefront shaping,
and it departs significantly from unity (dotted line) when the target size M2 exceeds the dimensionless conductance g (values given in the text). Symbols:
data with di�erent illumination diameters Din. Lines: scaling curve of equation (2) using the measured g values. b, Eigenvalue skewness of the measured
transmission matrix divided by that of an uncorrelated matrix. Black line is the scaling curve of equation (3).

The extremal eigenvalues τ̃max and τ̃min are shown in Fig. 3 (green
filled symbols) for the case Din≈12 µm. They stretch a wider range
than the uncorrelated ones τ̃ (MP)

max/min=〈τ̃〉(1±
√
M1/M2)

2 (grey dot-
dashed lines), and the difference grows with M2. We can readily
achieve this extended range experimentally: when M2&3,000,
the largest and the smallest focused transmission reached with
our phase-only SLM (red crosses) cover a wider range than
the uncorrelated extrema, even though the uncorrelated extrema
were calculated assuming both phase and amplitude modulations.
Having access to the transmission matrix is important as it helps us
find near-optimal wavefronts (Methods); a recent experiment32 used
feedback-based optimization and reported enhancements lower
than the uncorrelated value τ̃ (MP)

max /〈τ̃〉 because it did not reach a
near-optimal wavefront.

The full distributions of eigenvalues are shown in Fig. 4 for
two representative target sizes. When M2≈ 103, the experimental
distribution already differs detectably from the uncorrelatedMP law
(Fig. 4a).With amuch larger target ofM2≈4×104, the experimen-
tal distribution spreads five times the width of the corresponding
MP distribution (Fig. 4b)—a drastic change due to correlations.

To understand and to describe quantitatively these correlation
effects, we make the following ansatz: The M2-by-M1 partial
transmission matrix t̃ of an open disordered slab measured with
a finite illumination area can be treated as a filtered matrix drawn
from a larger N2-by-N1 full transmission matrix t of a disordered
coherent conductor in a closed waveguide of non-uniform width.

The parameters of the unknown full matrix t account for the
effects of finite illumination area and lateral diffusion in an open
geometry, and they remain to be determined. It is known that for
closed diffusive waveguides in the absence of absorption, t †t has a
bimodal eigenvalue density19–21

pt†t(τ )=
T̄

2τ
√
1−τ

(1)

that is universal22,40 and parametrized only by the average
transmission T̄ ; this allows us, using the FRM, to predict the
statistical properties of t̃ .

Equation (1) differs drastically from the MP distribution39,
indicating that the matrix elements of t are necessarily correlated.
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Figure 3 | Allowed and achieved range of focused transmission as a
function of the target size. The extremal eigenvalues of the measured
transmission matrix (green circles) give the allowed range. The achieved
range through phase-only wavefront modulation (red crosses) is slightly
narrower but still exceeds the Marčenko–Pastur (MP) law for uncorrelated
matrices (grey lines with shading) when the target is large. The allowed
range is well described by theoretical predictions using the filtered random
matrices (green lines with shading) and the e�ective MP model (blue
dashed lines).

In particular, this asymmetric bimodal distribution indicates that
the transmitted waves consist mainly of a relatively small number,
g � N1, of ‘open’ eigenchannels with order-unity transmission
(τ≈1), while most of the other eigenchannels have τ ≈ 0 and
barely contribute to transmission. The available degrees of freedom
at the output is not the number of output channels defined by
the geometry, N2, but rather it is approximately g ≡ 〈Tr(t †t)〉 =
N1T̄ ; more precisely, it can be defined by the participation number
〈(
∑N1

n=1 τn)
2/(
∑N1

n=1 τ
2
n )〉 (refs 30,31,41), which is 3g/2 for the
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Figure 4 | Full distributions of transmission eigenvalues. Data are shown
for the two target sizes marked in Fig. 3: M2≈ 103

≈g (a) and
M2≈4× 104

�g (b). The experimental data (green circles; averaged
over ten data sets) di�er from the uncorrelated MP law (grey dot-dashed
lines) but are described accurately by the filtered random matrix theory
(green solid lines) and approximately by the e�ective MP model (blue
dashed lines).

bimodal distribution in equation (1). If we collect more output
channels than the available degrees of freedom at the output (when
M2>3g/2), we expect to see strong correlation effects.

The intuitive discussion in the preceding paragraph can be made
quantitative by using the analytic FRM formalism37 to describe
the matrix filtering process in our ansatz. In general, this requires
knowing the three parametersN1,N2, T̄ of the unknownmatrix t , in
addition to the known sizeM1,M2 of the measured matrix t̃ . But for
thick samples (specifically, when T̄�2/3, which is always the case
in the diffusive regime), our derivation (Supplementary Section III)
shows that the variance normalized to the uncorrelatedMP variance
is simply

Var(τ̃ )
Var(τ̃ (MP))

=1+
2M2

3g
(2)

which depends on a single parameter,M2/g (recall that Var(τ̃ (MP))=

〈τ̃〉2M1/M2). As expected, when the target region contains more
than 3g/2 channels, the eigenvalues exhibit substantially more
variation than the uncorrelated MP behaviour, leading to a wider-
than-expected range for coherent control.

To compare the experimental data with equation (2), the only
parameter we need is the dimensionless conductance g . For a fixed
input, the intensity correlation between far-away output speckles
equals 2/(3g ) (refs 14–16), allowing us to determine g from the
experimental correlation functions (Supplementary Fig. 1). We also
determine g through the measured variance of the normalized total

transmission (as in refs 25,27), which also equals 2/(3g ). The two
methods yield almost the same values of g , whose average values are
g=894±26, 1,164±38, 1,642±82 for the three illumination sizes
Din ≈ 6, 12, 24 µm considered here (Supplementary Section IV).
Analytic expressions of g for an open geometry25,27,38,42,43 predict
similar values, which we describe in Supplementary Section V.

With g determined, we compare equation (2) to the eigenvalue
variance without any free parameter and observe excellent
quantitative agreement (Fig. 2a). Equation (2) reveals that the
MP-normalized eigenvalue variance follows a scaling law with
respect to a single-parameter M2/g . Furthermore, we show in
Supplementary Section III that when T̄� 4/15, the third central
moment Skew(τ̃ )≡〈(τ̃ −〈τ̃〉)3〉 of the eigenvalues also follows a
single-parameter scaling law

Skew(τ̃ )
Skew(τ̃ (MP))

=1+
2M2

g
+

8M 2
2

15g 2
(3)

once normalized by the eigenvalue skewness of an uncorrelated
matrix, Skew(τ̃ (MP))=〈τ̃〉3(M1/M2)

2. Again M2/g sets the depar-
ture from the uncorrelated behaviour. This scaling is validated with
the experimental data in Fig. 2b, again with no free parameter. In
Supplementary Section III, we also calculate the MP-normalized
fourth central moment (kurtosis) and find that in general it depends
on two parameters M2/g and M2/M1, with the dependence on
M2/M1 dropping out when it is small; this is validated with experi-
mental data in Supplementary Fig. 3.

We also calculate the full eigenvalue distributions with the
analytic FRM formalism. For the parameters of the unknownmatrix
t in our ansatz, we use the measured average transmission T̄=3%,
takeN1=g/T̄ , andN2≈6×105 as the number of CCDpixels when
output collection is complete; note thatN1 is not simply the number
of modes in the illumination area because g is enlarged by the
lateral diffusion in an open geometry (Supplementary Section V).
The predicted eigenvalue distribution of the filtered matrix t̃ † t̃ and
its extremal values are obtained by solving Supplementary Eqns (S8)
and (S13) in Supplementary Section III. These predictions, plotted
in Figs 3 and 4 as green solid lines, agree with the experimental data
(green circles) and differ from the uncorrelated MP law (grey dot-
dashed lines).

We provide a simple heuristic model that approximates the FRM
results. The correlations reduce the degrees of freedomat the output,
but have no effect on the input channels, which are modulated
independently by theM1 SLMmacropixels. This suggests modelling
the correlated M2-by-M1 matrix t̃ using an uncorrelated M (eff)

2 -by-
M1 matrix t̃ (eff) with fewer output channelsM (eff)

2 ≤M2. By choosing

M (eff)
2 =M2

(
1+

2M2

3g

)−1
(4)

we match the eigenvalue variance of t̃ (eff) with that of t̃ given
in equation (2). As expected, this effective degrees of freedom
followsM (eff)

2 ≈M2 whenM2� g , andM (eff)
2 ≈3g/2 whenM2�g .

Within this model, all statistical quantities of t̃ (eff) follow the
simple MP law with the reduced M (eff)

2 , and all correlation
effects are encapsulated in this reduction (which only depends on
M2/g ). For example, the correlation enhancement of control range(
τ̃ (eff)max − τ̃

(eff)
min

)/(
τ̃ (MP)
max − τ̃

(MP)
min

)
plotted in Supplementary Fig. 2 is

simply
√
1+2M2/3g whenM (eff)

2 >M1. For large targets (M2�g ),
the ratio τ̃ (eff)max/min/〈τ̃

(eff)
〉 approaches (1±

√
2M1/3g )2 and becomes

independent ofM2, meaning that the achievable total transmission
enhancement (as studied in ref. 38) is determined solely by M1/g
within this model. Predictions of this ‘effective MP model’ are
reasonably good, and are shown in Figs 3 and 4 for the extremal
eigenvalues and the eigenvalue distributions, and in Supplementary
Figs 2 and 3 for the eigenvalue range and kurtosis.

500

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE PHYSICS | VOL 13 | MAY 2017 | www.nature.com/naturephysics

http://dx.doi.org/10.1038/nphys4036
www.nature.com/naturephysics


NATURE PHYSICS DOI: 10.1038/NPHYS4036 ARTICLES
The correlation-enhanced control enables more energy delivery

into a multi-speckle-sized region, such as a photodetector for
optical communications. Meanwhile, the existence of non-local
correlations14–16 prevents the generation of truly independent
random numbers through coherent diffusion44. These correlation
effects can be enhanced or suppressed by changing the illumination
spot size Din (through the SLM macropixel size or through focus
alignment27,28), which changes g . Note that optimizing the target
intensity does not necessarily optimize the target-to-background
contrast, so imaging and photothermal therapy applications will
require objective functions that account for both. The theory here
is applicable to microwaves and acoustic waves, for which smaller
g can be readily achieved. The correlations are even stronger
when approaching localization45, and deep inside the localized
regime (g� 1) the maximal transmission enhancement equals M1
independent of the target size, since a single eigenchannel dominates
the transmission33,46. Future workmay extend the present formalism
to broadband47 and spatial–temporal control48,49, and to the control
of reflection and absorption in open disordered systems35,40,50.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
Experimental set-up. As illustrated in Fig. 1a, the expanded beam from a
continuous-wave Nd:YAG laser (Coherent, Compass 215M-50 SL, wavelength
λ=532 nm) is split into two parallel beams with orthogonal linear polarizations
and equal intensity. The two beams are modulated with different areas of a SLM
(Hamamatsu, X10468-01) and then recombined. Using a 4-f system (lenses L1 and
L2; focal lengths= 21 cm), the surface of the SLM is imaged onto the entrance
pupil of a microscope objective (NAin=0.95, Nikon CF Plan 100×) and then
focused onto the scattering sample. The transmitted light is collected with an
oil-immersion objective (NAout=1.25, Edmund DIN Achromatic 100×), and the
exit pupil of the objective is imaged onto a CCD camera (Allied Vision, Prosilica
GC 660) through another 4-f system (lenses L3 and L4; focal lengths= 20 cm). In
this way, the SLM pixels and the CCD pixels correspond to the different angles
incident onto and transmitted from the sample.

The nearby SLM pixels are grouped into square macropixels; smaller
macropixels correspond to more finely spaced incident angles, which yields a larger
illumination spot and provides more input channels (macropixels) for modulation.
For example, when one macropixel consists of 8×8 SLM pixels, we have
M (tot)

1 =978 macropixels (489 per polarization) imaged onto the entrance pupil of
the input objective and available to use. We measure the transmission matrix for
theM1=512 input channels (macropixels) at the centre (16×16 per polarization),
using the otherM (ref)

1 =466 available macropixels as the reference. Then we
synthesize the desired wavefront at theM1 macropixels; at this stage the other
macropixels are ‘switched off’ by displaying a high-spatial-frequency phase
pattern, making them blocked by the iris placed at the Fourier plane of
the lens L1.

For the theoretical prediction of the dimensionless conductance g
(Supplementary Section V), we need to know the size and spatial profile of the
illumination spot. In our set-up, the SLM macropixels are mapped to the space
(kx ,ky) of transverse wavevectors on the surface of the sample. Let q×q denote the
size of one macropixel in the k space. Then the intensity profile of the incident
light is

I(x ,y)∼ sinc2(qx/2)sinc2(qy/2) (5)

The illumination area is Ain≡[
∫∫

dxdyI(x ,y)]2/
∫∫

dxdyI 2(x ,y)= (3π/q)2.
The available number of macropixels is the number of q×q squares within
two circles of radii (2π/λ)NAin in the k space, soM (tot)

1 =2π(2π/λ)2(NAin)
2/q2.

Thus we can determine the area Ain and the diameter Din≡
√
4Ain/π of the

illumination spot fromM (tot)
1 and λ. In this study we use 16×16-, 8×8-, and

4×4-sized macropixels, corresponding toM1=128, 512, 2,048 and Din≈6, 12
and 24 µm.

Sample preparation and characterization.We dissolve 6 g of ZnO microparticle
powder (Alfa Aesar Puratronic) into 3ml of deionized water and 3ml of ethanol,
and sonicate the mixture in an ultrasonic bath for 30min for thorough dispersion.
The solution is then spin-coated onto a microscope cover slip (22× 22mm2,
thickness 0.15mm) and allowed to dry. The resulting sample is shown in the inset
of Fig. 1a. Scanning electron microscopy shows that the ZnO particle diameters
centre around 200 nm. We use the centre of the sample, where the thickness of the
ZnO film is measured by a profilometer to be L≈60µm, and the total transmission
is measured with a photodetector to be T̄≈3%.

Transmission matrix measurement.Wemeasure the transmission matrix t̃ using
a modified version of the phase-shifting common-path interferometric method. As
in refs 11,12, we controlM1 macropixels on the SLM and switch on additionalM (ref)

1
macropixels with a flat phase as the reference. When the ath input mode is sent in
with a relative phase of φ, the measured intensity on the bth pixel of the CCD is
|eiφ t̃ba+ sb|2, where sb denotes the transmitted field from the reference pixels. With
four measurements at φ=0,π/2,π, 3π/2, we obtain uba= t̃bas∗b . We perform the
measurements with the input channels {a} in the Hadamard basis, and then
transform back to the basis of SLM macropixels (that is, incident angles).

So far this method yields only uba, which is the transmission matrix t̃ba
multiplied by an unwanted field s∗b from the reference, which obscures the relative
phase and amplitude between the output channels {b}. To study t̃ † t̃ and the
transmitted intensity, it is necessary to recover the relative amplitude between
channels in {b}. Thus, for each input channel a, we perform an additional
measurement with theM (ref)

1 reference pixels switched off51, which provides |t̃ba|2
that contains the relative amplitude between the output channels. Specifically, we
use uba|t̃ba|/|uba|= t̃bas∗b/|sb| as our transmission matrix; the relative phase between
{b} is still unknown, but is irrelevant for us. The whole measurement process takes
2, 8, 32min, respectively, for Din≈6,12, 24 µm.

For each illumination diameter, we measure ten transmission matrices at
sufficiently different times that there is no discernible correlation between the
measured matrices. The ten sets of data are used to improve the statistics of the
eigenvalues and the intensity correlations.

Determination of optimal phase-only wavefront.With the transmission matrix
measured, we can instantly determine the optimal wavefront for any given target.
When both amplitude and phase can be modulated, the optimal wavefront for
maximal (minimal) transmission into the target is simply the eigenvector of t̃ † t̃
with the largest (smallest) eigenvalue; this is not the case for phase-only
modulation. For maximal transmission of a phase-only wavefront, we use the
phase part of the maximal eigenvector. For minimal transmission, taking the
phase of the minimal eigenvector is not optimal (for reasons explained in ref. 24),
so we look for the phase profile {φ1, . . . ,φM1 } that minimizes

∑M2
b=1 |t̃bae

iφa |
2,

using the gradient-based low-storage Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm52,53 implemented in the free optimization package NLopt54. The
optimization takes only a few seconds.

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding author upon
reasonable request.
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