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Delivering broadband light deep inside 
diffusive media
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Wavefront shaping enables the targeted delivery of coherent light into 
random-scattering media, such as biological tissue, by the constructive 
interference of scattered waves. However, broadband waves have short 
coherence times, weakening the interference effect. Here we introduce a 
broadband deposition matrix that identifies a single input wavefront that 
maximizes the broadband energy delivered to an extended target deep 
inside a diffusive system. We experimentally demonstrate that long-range 
spatial and spectral correlations result in sixfold energy enhancement for 
targets containing 1,700 speckle grains and located at a depth of up to ten 
transport mean free paths, even when the coherence time is an order of 
magnitude shorter than the diffusion dwell time of light in the scattering 
sample. In the broadband (fast decoherence) limit, enhancement of energy 
delivery to extended targets becomes nearly independent of the target 
depth and dissipation. Our experiments, numerical simulations and analytic 
theory establish the fundamental limit for broadband energy delivery deep 
into a diffusive system, which has important consequences for practical 
applications.

Waves propagate diffusively through disordered media, such as bio-
logical tissue, clouds and paint, due to random scattering. This process 
is deterministic for elastic scattering in static disordered structures, 
enabling the control of wave propagation by input wavefront shap-
ing1–3. For a coherent beam, spatial modulation of its wavefront incident 
on a random medium can manipulate the interference of scattered 
waves from different paths, resulting in light focusing4–10, enhance-
ment of total transmission11–21 or energy deposition deep inside scat-
tering media7,22–40. Such success relies on the coherence time τc of the 
input light exceeding the diffusion dwell time τd of light inside the 
multiple-scattering system, enabling scattered waves to remain phase 
coherent and thereby interfere. However, many applications use par-
tially coherent light, for example, broadband light from a supercon-
tinuum source or a superluminescent diode. Once τc < τd, dephasing 
among the scattered waves will weaken their interference, diminishing 

the power of wavefront shaping. Previous studies have shown that 
the focusing efficiency decreases for broadband light, as the coher-
ence time τc is inversely proportional to the spectral bandwidth Δω  
(refs. 41–45). Furthermore, the focal targets in various applications, 
such as detectors for communications and cells or tissues for photo-
thermal therapy or laser microsurgery, contain many wavelength-scale 
speckles. Simultaneously enhancing the intensities of all of the speckles 
within the target by shaping a single wavefront is more difficult than 
focusing on a single speckle19. Having to contend with both temporal 
decoherence and spatial decorrelation, broadband deposition to a large 
target is substantially more challenging than narrowband focusing on 
a wavelength-scale target.

Our aim is to deliver broadband light of τc ≪ τd to an extended 
target with dimensions much greater than λ at a depth well exceed-
ing the transport mean free path ℓt in a diffusive system. Although 
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media profoundly impacts the coherent control of wave transport47–50. 
The dissipation strength in a diffusive medium can be described by 
the dissipation time τa. We find that once the coherence time of the 
input light τc becomes shorter than τa, the dissipation effects on the 
large-area energy enhancement diminish, as the decoherence effect 
overwhelms the dissipation effect. More specifically, the decoherence 
of scattered waves becomes more detrimental to the interference 
effect than the attenuation of long scattering paths by dissipation. 
This conclusion is supported by our numerical simulations and ana-
lytic theory.

We note that all the results from this study are generalizable to 
the linear scattering of any waves, including acoustic and electron 
waves. The broadband deposition matrix introduced here provides 
the fundamental physical limit for single-wavefront energy delivery 
into diffusive media for any input bandwidth, target area and depo-
sition depth, giving a general upper bound with which to constrain 
wavefront optimization.

Results
Broadband deposition matrix
Monochromatic energy deposition can be described by the deposi-
tion matrix 𝒵𝒵𝒵ω0) that maps incident wavefronts at frequency ω0 to 
internal electric fields in a target of arbitrary shape and size40. The 
deposition matrix generalizes the concept of reflection and transmis-
sion matrices to the interior of a scattering medium, approaching 
those matrices at the medium entrance and exit, respectively. The 
eigenvector of 𝒵𝒵†𝒵ω0)𝒵𝒵𝒵ω0) with the largest eigenvalue gives the inci-
dent wavefront of monochromatic light that deposits maximum 
energy (spatially integrated intensity at ω0) in the target region. As 
the frequency of input light ω is detuned from ω0, the energy depos-
ited by the monochromatic eigenvector (of ω0) decreases rapidly, 
approaching that of random wavefront illuminations. The full-width 
at half-maximum δω of this decay curve is inversely proportional to 
the dwell time of light τd (ref. 46). Deeper into a diffusive system, τd 
is longer and δω becomes narrower.

For broadband deposition, we consider an input light of frequency 
bandwidth Δω. The nominal number of uncorrelated spectral channels 
is M = Δω/δω + 1. Each spectral channel requires a distinct wavefront for 
maximum energy delivery to the same target. To find a single wavefront 

short-range correlations of scattered waves dictate light focusing to a 
wavelength-scale target, long-range spatial correlations play an essen-
tial role in delivering light to a large target19. It has been theoretically 
shown that non-local spectral correlations facilitate the broadband 
enhancement of total transmission by wavefront shaping46. For energy 
delivery deep into a turbid medium40, however, the capabilities of wave-
front shaping for broadband energy enhancement and their underly-
ing physics are not known. Open questions include the following. Is it 
possible to deterministically find a single wavefront that maximizes 
broadband energy delivery to an extended target deep inside a diffusive 
system? What is the fundamental limit for the delivered energy and how 
does it depend on the target depth and input bandwidth?

To address these questions, we introduce the broadband deposi-
tion matrix 𝒜𝒜, whose eigenvector with the largest eigenvalue gives the 
input wavefront that maximizes the energy (summed over all of the 
input frequencies) delivered to a target of arbitrary size and shape. 
This approach always finds the global maximum—the highest possible 
energy. A schematic of our experimental platform is illustrated in Fig. 1, 
depicting a single input wavefront that optimizes energy delivery for 
multiple frequencies. Even when the coherence time of an input light 
is ten times shorter than the dwell time of diffusive waves in the disor-
dered medium, we observe a sixfold enhancement of total energy 
(spatially and temporally integrated intensity) in a large target that 
contains approximately 1,700 speckles at a depth of 9ℓt. The long-range 
spectral correlations greatly slow down the drop of energy enhance-
ment with increasing bandwidth (decreasing coherence time τc). In 
addition, unlike the broadband enhancement of tight focusing (to a 
wavelength-scale target) that rapidly decays with the depth, the broad-
band energy enhancement over a large target increases slightly with 
the depth, and becomes nearly depth invariant when τc ≪ τd. These 
results can be explained by the distinct depth dependence of 
short-range correlations for the wavelength-scale target and long-range 
correlations for the extended target. The sustainability of energy 
enhancement for broad bandwidths and large areas at any depth illus-
trates that long-range spatial and spectral correlations are vital for 
energy delivery deep into diffusive media by wavefront shaping.

A further question is how light absorption or dissipation in 
multiple-scattering samples affects the efficiency of wavefront 
shaping. Previous studies show that optical dissipation in random 

∆ω

Fig. 1 | Illustration of the experimental platform. Broadband light is 
modulated by an SLM and delivered to an extended target (cyan box) inside a 
planar waveguide with randomly distributed scatterers. A tapered waveguide 
segment directs light into the disordered region with length L = 50 μm and width 
W = 15 μm. The transport mean free path is ℓt = 3.3 μm. A small fraction of the 
light is scattered out of the plane, allowing an interferometric measurement 

of field distribution inside the waveguide. The broadband deposition matrix is 
experimentally constructed from the frequency-resolved matrix that maps the 
incident wavefront to the field distribution within the target. Its eigenvector 
with the largest eigenvalue gives a single spatial wavefront that simultaneously 
enhances the energy in the target for all of the frequencies within the input light, 
as exemplified by three images of intensity distributions at different frequencies.
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that maximizes energy delivery over the entire bandwidth of Δω > δω, 
we introduce the following broadband deposition matrix:

𝒜𝒜𝒵Δω) = ∫
Δω

dω I𝒵ω) 𝒵𝒵†𝒵ω)𝒵𝒵𝒵ω), (1)

where I(ω) is the spectral intensity of input light, normalized to 
∫ΔωdωI(ω) = 1. The eigenvector of 𝒜𝒜𝒵Δω)  with the largest eigenvalue 
represents the single wavefront that maximizes the energy deposition 
over the spectral bandwidth Δω in a given target region. The corre-
sponding eigenvalue is the maximum energy (spectrally integrated 
intensity over Δω) on the target.

Experimentally, we study broadband optical energy delivery into 
a diffuse waveguide (Fig. 1). The planar waveguides are fabricated 
on a silicon-on-insulator wafer with reflective photonic-crystal side-
walls to confine light. Randomly arranged air holes with a diameter 
of d = 100 nm are etched into the silicon layer to serve as scatterers, 
and the transport mean free path is ℓt = 3.3 μm (ref. 51). The disor-
dered segment has a length of L = 50 μm and a width of W = 15 μm, 
supporting N = 55 guided modes in the probed wavelength range of 
1,551–1,556 nm in our experiment. Monochromatic light from a tun-
able infrared laser is shaped by a spatial light modulator (SLM) and 
then coupled into the silicon waveguide. Since L ≫ ℓt, light undergoes 
multiple scattering as it traverses the disordered region of the wave-
guide. A small amount of light is scattered out of the plane, enabling 
the direct probing of field distribution inside the waveguide in an 
interferometric measurement (Methods).

We consider a target area with dimensions of 10 × 10 μm2 centred 
at a depth of 30 μm. The input wavelength λ is scanned from 1,551.0 to 
1,556.0 nm with a step size of 0.1 nm. At each wavelength, we measure 
the deposition matrix and computationally construct the broadband 
deposition matrix 𝒜𝒜 for a given frequency interval of width Δω centred 
at ω0. Then, we compute the eigenvector of 𝒜𝒜 with the largest eigen-
value corresponding to the maximum broadband deposition channel. 

Taking this eigenvector as the input wavefront and multiplying it by 
𝒵𝒵𝒵ω) gives the field distribution in the target region at frequency ω. 
The spatial integration of field intensity in the target provides the 
deposited energy as a function of frequency detuning ∣ω − ω0∣. The 
results are shown in Fig. 2 for different bandwidths. In the monochro-
matic case (Δω ≈ 0), the energy deposition eigenchannel is highly 
sensitive to frequency detuning, decaying quickly as ω deviates from 
ω0 (black curve). The full-width at half-maximum gives δω ≃ 381 rad ns–1, 
corresponding to δλ ≃ 0.5 nm (Supplementary Section I).

In Fig. 2, the red, green and blue curves represent the energy 
deposited by the maximum eigenvectors of 𝒜𝒜 with increasing band-
width Δω/δω = 1.5, 4.5 and 9.0, respectively. Within the designated 
frequency range, the energy enhancement remains nearly constant 
and well above 1. Even for Δω/δω = 9, the maximum eigenchannel of 𝒜𝒜 
sustains a sixfold energy enhancement over random wavefront illumi-
nations. Beyond Δω, the energy enhancement drops but still remains 
well above 1 for very large frequency detuning.

We stress that the broadband deposition eigenchannel of the 
largest eigenvalue provides the global maximum for energy delivery 
(Supplementary Section II). It fully utilizes long-range spectral correla-
tions for broadband enhancement, compared with a naïve approach 
of partitioning the controlled input spatial channels over the number 
of spectral channels M, which leads to ~M times reduction in energy 
enhancement (Supplementary Section II).

Bandwidth dependence
To further investigate the broadband energy deposition, we calculate 
the maximum eigenvalue ζmax of 𝒜𝒜𝒵Δω), which gives the largest energy 
that can be delivered to the target in the bandwidth of Δω. Since the 
mean eigenvalue 〈ζ〉 corresponds to the target energy under random 
wavefront illuminations, ζmax/〈ζ〉 is equal to the broadband energy 
enhancement in the target. Figure 3 shows that ζmax/〈ζ〉 decays with the 
normalized bandwidth Δω/δω for a 10 × 10 μm2 target region centred 
at depth z = 30 μm in the disordered waveguide (purple curve).
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Fig. 2 | Targeted broadband energy delivery. Frequency-resolved energy 
enhancement over a random input wavefront, in a 10 × 10 μm2 target region 
centred at depth z = 30 μm in the disordered waveguide, for the maximum 
deposition eigenchannel with centre frequency ω0 and bandwidth Δω. Both 
frequency detuning ∣ω − ω0∣ and input bandwidth Δω are normalized by the 
spectral correlation width δω at this depth. The normalized bandwidths are 
Δω/δω = 0 (black), 1.5 (red), 4.5 (green), 9.0 (blue). The experimental results are 
averaged over ω0 within the wavelength range of 1,551–1,556 nm and over two 
disorder realizations.
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Fig. 3 | Bandwidth dependence of targeted energy delivery. Maximum 
enhancement of energy within input bandwidth Δω normalized by δω at depth 
z = 0.6L, in a 10 × 10 μm2 target region centred at depth z = 30 μm in the 
disordered waveguide, is given by the ratio of the largest eigenvalue ζmax of the 
experimentally measured broadband deposition matrix 𝒜𝒜 to the mean 
eigenvalue 〈ζ〉 (purple line). Approximating 𝒜𝒜 by a sum of M = Δω/δω + 1 random 
matrices underestimates the energy enhancement (blue line). Reducing M to Meff, 
to account for long-range spectral correlation, recovers the maximum eigenvalue 
of 𝒜𝒜 (red symbols) and agrees with the experimental enhancement.
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To capture the impact of spectral correlations on the scaling of 
energy enhancement with bandwidth, we model 𝒜𝒜 in equation (1) as a 
sum of Meff uncorrelated matrices 𝒜𝒜 𝒜 �̃�𝒜, where

�̃�𝒜 = 1
Meff

Meff

∑
m=1

̃𝒵𝒵†
m

̃𝒵𝒵m. (2)

Each random matrix ̃𝒵𝒵m represents an independent spectral channel, 
numerically generated with the same eigenvalue statistics as the meas-
ured 𝒵𝒵𝒵ω) (Supplementary Section III). We plot the energy enhance-
ment of the maximum eigenvector of �̃�𝒜 in Fig. 3 for Meff = M = Δω/δω + 1 
(cyan curve). The result is notably smaller than the experimental one 
(purple curve). For a bandwidth of Δω/δω = 10, the actual energy 
enhancement is more than twice that calculated from the random 
matrix model.

Such dramatic discrepancy results from the lack of correlations 
between the M random matrices ̃𝒵𝒵m used to generate �̃�𝒜. Correlations 
between matrices 𝒵𝒵𝒵ω) in 𝒜𝒜 originate from long-range spectral cor-
relations of multiply scattered waves in a diffusive system52,53.  
To account for this, we rescale the number of independent spectral 
channels M within Δω to Meff < M (refs. 16,46).

Meff is explicitly determined by the long-range spectral correlation 
function C2(z, ∣ω1 − ω2∣) at depth z (ref. 46):

1
Meff

= C̄2𝒵z,Δω)
C̄2𝒵z,0)

, (3)

where C̄2𝒵z,Δω) = ∬Δωdω1dω2C2𝒵z, |ω1 − ω2|)/Δω2. In Supplementary 
Section IV, we present an analytic expression for C2(z, ∣ω1 − ω2∣),  
thereby providing an explicit equation to compute Meff. Using this 
expression without any free parameter, we obtain the enhancement 
(Fig. 3, circles) and recover the experimental result for broadband 
enhancement to a remarkable degree. Such agreement confirms the 
importance of long-range spectral correlations for delivering energy 
over large bandwidths. In the broadband limit Δω ≫ δω, we find 
Meff ∝ √Δω/δω𝒵z) 𝒜 √M  (Supplementary Section IV). The reduced 
number of independent channels (Meff ≪ M) enables a much greater 
improvement in the maximum energy deposition using a single wave-
front than expected for M uncorrelated channels.

Depth dependence of energy deposition
In the previous section, the depth of the target is fixed. The depth 
dependence of energy deposition is of great importance for accessing 
deep inside scattering media. Here we vary the depth z while fixing 
the input bandwidth Δω. From the experimental data, we plot the 
maximum eigenvalue of 𝒜𝒜 versus z for Δω/δω = 0, 4.5 and 9.0 (Fig. 4a). 
Surprisingly, the energy enhancement increases with z, and the depth 
dependence nearly vanishes when Δω ≫ δω. To confirm the experi-
mental results, we conduct numerical simulations using Kwant, a 
Python package for wave-transport simulations54 (Methods provides 
additional details). The simulation results (Fig. 4a, solid lines) have 
good agreement with the experimental data (symbols), especially  
at large Δω.

To explain the depth dependence, we analytically compute the 
broadband energy deposition using filtered random matrix theory46,55. 
A complete derivation (Supplementary Sections III and IV) reveals that 
for extended-area deposition in the broadband limit, the energy 
enhancement depends only on C̄2𝒵z,Δω):

⟨ζmax⟩
⟨ζ ⟩ 𝒜 γ + 3(π2 )

2/3
γ1/3 − 2, (4)

where γ = 3NC̄2𝒵z,Δω)/2. The theoretical predictions (Fig. 4a, dashed 
lines) match the experimental and numerical results, particularly pre-
dicting that the depth dependence nearly vanishes at a large bandwidth. 
In the limit of Δω ≫ δω, we prove that γ ≃ (16/π)LΔω/ℓt, where the coher-
ence length LΔω = √D/2Δω = √Dτc/2  is equal to the diffusion distance 
that broadband light travels over the coherence time τc and D is the 
diffusion coefficient.

The coherence length sets the range in which long-range correla-
tions can build up, as the latter arise from the crossing of broadband 
diffusive paths. In the monochromatic limit where LΔω ≫ L, long-range 
correlations can be generated anywhere in the sample, so their weight 
and energy enhancement increase with the deposition depth. In the 
opposite broadband limit, they are generated in a layer of thickness 
LΔω, beyond which their weight saturates and 〈ζmax〉/〈ζ〉 becomes inde-
pendent of the depth z.

The depth dependence stands in sharp contrast to broadband focus-
ing to a single speckle of wavelength scale. Figure 4b shows the focusing 
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Fig. 4 | Depth dependence of broadband energy delivery. a, Maximum 
enhancement of energy 〈ζmax〉/〈ζ〉, delivered to a 10 × 10 μm2 target region, as a 
function of depth z (normalized by the length of disordered waveguide L).  
Input (normalized) bandwidth Δω/δω is fixed to 0 (black), 4.5 (green) and 9.0 
(blue), where δω is the spectral correlation width at depth z/L = 0.6. Experimental 
data (symbols) are compared with numerical results (solid line) and analytical 
prediction (dashed line). For Δω/δω ≫ 1, the energy enhancement is nearly  
depth independent. The error bars represent one standard error about the  

mean with sample size n = 102α (black), n = 58α (green) and n = 14α (blue), 
respectively, where α = 0.1 nm/δλ ≃ 0.2 accounts for spectral correlations.  
b, Enhancement of broadband focusing to a wavelength-scale target as a function 
of normalized depth z/L, for fixed bandwidths Δω/δω of 0 (black), 4.5 (green) 
and 9.0 (blue). When Δω/δω ≪ 1, focusing enhancement is independent of depth, 
and determined by the degree of control over the input wavefront, which is equal 
to the number of waveguide modes N = 55. As Δω/δω increases, the focusing 
enhancement decays with the depth for z < L/2.
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enhancement (ratio of maximum energy within the focal spot over the 
mean value), obtained from numerical simulations, for different input 
bandwidths. As Δω increases, the depth dependence becomes more 
pronounced. For Δω/δω = 9, the focusing enhancement rapidly decays 
with the normalized depth z/L. Such a variation originates from the fact 
that the broadband focusing is determined by the short-range correlation 
function C1(z, ∣ω1 − ω2∣), which has a distinct depth dependence from 
C2(z, ∣ω1 − ω2∣). In Supplementary Section V, we analytically compute the 
focusing enhancement from the expression of C1(z, ∣ω1 − ω2∣). In Fig. 4b, 
the analytical results (dashed line) agree well with the numerical results 
(solid line). In the limit of thick samples (L ≫ LΔω, z), the focusing enhance-
ment to a single speckle reduces to NC̄1𝒵z,Δω) 𝒜 N𝒵2LΔω/z)

2.
In general, the energy enhancement for any target size and depth is 

determined by C̄1𝒵z,Δω)/Ns + C̄2𝒵z,Δω), where Ns is the number of speckle 
grains in the target region. The transition from short- to long-range cor-
relation dominance occurs at a critical target size Ns = C̄1𝒵z,Δω)/C̄2𝒵z,Δω), 
below (above) which the energy enhancement decreases (increases) 
monotonically with depth (Supplementary Section VI).

Effect of dissipation
Finally, we investigate how dissipation affects broadband energy deliv-
ery. In our experiment, energy loss due to out-of-plane scattering can 
be described by a diffusive dissipation length ξa = √ℓtℓa/2 = 28μm, 
where ℓa is the ballistic dissipation length56. Since L ≳ ξa, the dissipation 
is not negligible. The dissipation time τa = ℓa/v is comparable with the 
diffusion dwell time of light at the output of the waveguide, τd = L2/π2D. 
To compare a system with dissipation to one without dissipation, we 
conduct numerical simulations where dissipation can be switched off.

In Fig. 5, we plot the numerical results of energy enhancement 
with and without dissipation as a function of input bandwidth Δω 
for a 10 × 10 μm2 target at depth z = 0.6L. For monochromatic light, 
dissipation lowers the energy enhancement, in accordance with the 
previously demonstrated reduction in transmission enhancement in 
the presence of weak and moderate dissipation50. As Δω increases, how-
ever, the broadband energy enhancement with dissipation approaches 
that without dissipation. For confirmation, we calculate the energy 
enhancement from random matrices by rescaling the number of inde-
pendent spectral channels by Meff. Regardless of absorption, Meff calcu-
lated from C2 gives the energy enhancement in good agreement with 
the numerical results (Fig. 5).

The convergence of enhancement with and without absorption 
at large bandwidths indicates that dissipation has little impact on the 
maximum energy delivery achievable by wavefront shaping. We find 
that this is because the long-range correlation C2 loses its dependence 
on ξa in the broadband limit. A physical explanation is given in terms of 
the coherence time of light τc = 1/Δω. For narrowband input (τc ≫ τa), 
dissipation weakens the interference effect responsible for C2 by attenu-
ating the scattered waves of long paths. More precisely, it reduces the 
probability of two diffusive paths crossing inside the sample—an effect 
at the origin of C2 correlations. The energy enhancement induced by 
this constructive interference is, therefore, reduced. As Δω increases, 
τc becomes shorter. Once τc < τa, the interference effect is limited by 
decoherence rather than dissipation: the exchange of field partners 
occurs inside a volume of thickness LΔω < ξa, and the C2 contribution 
saturates to C̄2𝒵z,Δω) 𝒜 𝒵32/3πN)LΔω/ℓt. Consequently, the depend-
ence of energy enhancement on dissipation vanishes. This result also 
contrasts sharply with what is obtained for broadband focusing, which 
preserves a non-negligible dissipation dependence even in the τc < τa 
regime (Supplementary Section V).

Discussion
We have introduced the broadband deposition matrix 𝒜𝒜, which identi-
fies a single wavefront that delivers the maximum energy from a broad-
band source deep into a diffusive system. For a target of size much larger 
than the wavelength, long-range spatial and spectral correlations 

enhance the energy delivery. The dependence on target depth and on 
(uniform) dissipation in the sample vanish in the broadband (fast deco-
herence) limit. These results contrast those for broadband focusing to 
a wavelength-scale target, which is dictated by short-range correlations, 
leading to a quick decay of focusing enhancement with depth. This 
difference highlights that contributions of long-range correlations to 
broadband energy deposition will dominate at large depths—a result 
that is not necessarily true for monochromatic energy delivery.

Although this study is performed on two-dimensional diffusive 
systems, the general conclusion and theoretical model are applicable 
to three-dimensional systems (Supplementary Section VII). Although 
it is very difficult to measure the deposition matrix inside a 
three-dimensional system57, our theoretical model can still predict the 
fundamental limit for broadband energy delivery to a large target 
located at any depth, proportional to NC̄2𝒵z,Δω)  at leading order, 
thereby providing an upper bound with which to constrain wavefront 
optimization. For open-slab geometries where lateral diffusion of light 
is important, incomplete channel control16,19 must be accounted for in 
the evaluation of C̄2𝒵z,Δω). Nevertheless, the maximum eigenvalue of 
the partial broadband deposition matrix still sets the highest possible 
energy delivered to a target, and the corresponding eigenvector pro-
vides the input wavefront. Our approach may also be applied to systems 
with tailored disorder or scattering, such as photonic crystals58. Finally, 
our methods and results apply more generally to other types of waves, 
including acoustic waves, microwaves and electron waves, which pos-
sess long-range spatial and temporal correlations. Overcoming the 
hurdle of fast temporal decoherence of these waves would have impli-
cations for practical applications, including deep-tissue imaging59,60, 
optogenetic control of neurons61–64, laser microsurgery59,65 and photo-
thermal therapy66 deep inside complex media.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
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Fig. 5 | Effect of dissipation on energy delivery. Comparison of numerical results 
with (solid lines) and without (dashed lines) dissipation for maximum energy 
enhancement 〈ζmax〉/〈ζ〉, in a 10 × 10 μm2 target region centred at the normalized 
depth z = 0.6L. The diffusive dissipation length ξa = 28 μm is equal to the 
experimental value. For Δω/δω ≪ 1, dissipation lowers the energy enhancement. 
However, for Δω/δω ≫ 1, the energy enhancement becomes insensitive to 
dissipation. Meff successfully predicts the energy enhancement from the random 
matrix model, both with (solid circles) and without (open circles) absorption.
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Methods
Sample fabrication
The waveguiding structures used in our experiment are fabricated 
on a silicon-on-insulator wafer using a combination of electron-beam 
lithography and reactive ion etching40,67. Each structure consists 
of four sections: a ridge waveguide with a width of 300 μm and a 
length of 15 mm, an adiabatic taper (15° angle) where the waveguide 
width gradually decreases from 300 to 15 μm, a weak-scattering 
buffer region with a width of 15 μm and a length of 25 μm, and a 
strong-scattering region with a width of 15 μm and a length of 50 μm. 
The last two segments have randomly distributed air holes with a 
diameter of 100 nm, and air-filling fractions of 0.55% and 5.50%, 
respectively. Both regions support 55 spatial modes around the 
wavelength λ = 1,550 nm. Light is confined by a photonic-crystal 
triangle-lattice boundary in the last three sections of the structure. 
The photonic-crystal boundary consists of 16 layers of air holes 
with a radius of 155 nm and a lattice constant of 440 nm. The bound-
ary provides a complete two-dimensional photonic bandgap for 
transverse-electric-polarized light of wavelength ranging from 1,120 
to 1,580 nm. The tapered and buffer regions facilitate mode mixing 
and excitation of high-order modes in the waveguide27.

The relevant parameters for light transport in the disordered 
waveguides are the transport mean free path ℓt and diffusive dissipation 
length ξa. Their values are extracted from fitting the mean and variance 
of experimentally measured cross-section-averaged intensity with 
numerical results, as detailed in the supplementary information of 
ref. 51. In the buffer region, ℓt = 33.0 μm and ξa = 280.0 μm, whereas in 
the strong-scattering region, ℓt = 3.3 μm and ξa = 28.0 μm (refs. 40,67).

Optical setup
A detailed schematic of our experimental setup is provided else-
where40,67. The monochromatic light (linewidth, 100 kHz) from a 
wavelength-tunable laser (Keysight 81960A) is split into two beams. 
One beam is modulated by a phase-only SLM (Hamamatsu LCOS 
X10468) and then injected into one of the waveguides via the edge of 
the wafer. The other beam is used as a reference beam that is spatially 
overlapped with the out-of-plane scattered light from the diffusive 
waveguide. A charge-coupled device camera (Allied Vision Goldeye 
G-032 Cool) records the resulting interference pattern, from which 
the complex field profile across the diffusive waveguide is obtained.

Deposition matrix measurement
The deposition matrix relates an orthonormal set of input wavefronts 
to the corresponding spatial field distributions within the target 
region40. By sequentially applying an orthogonal set of one-dimensional 
phase patterns to the 128 SLM macropixels and measuring the field 
within the sample, we acquire a matrix that maps the field from the 
SLM to the field inside the disordered waveguide 𝒵𝒵slm→int. This matrix 
encompasses information about both light transport inside the wave-
guide and light propagation from the SLM to the waveguide. To sepa-
rate these, we add an auxiliary weakly scattering region in front of the 
diffusive region called the ‘buffer’ region. We recover the field right in 
front of the strongly scattering region by imaging the light scattered 
out of plane from the buffer. The length of the buffer region is 25 μm, 
which is shorter than its 32-μm-length transport mean free path. As a 
result, light only experiences single scattering in the buffer; therefore, 
the diffusive wave transport in the original disordered region is not 
appreciably altered.

With access to the field inside the buffer, we can construct the 
matrix relating the field on the SLM to the buffer, 𝒵𝒵slm→buff. From 𝒵𝒵slm→int, 
we can also construct the deposition matrix to a selected target region, 
𝒵𝒵slm→tar, which maps the field from the SLM to a region inside the dif-
fusive waveguide. With these, we calculate the matrix that maps the 
field from the buffer to the target, 𝒵𝒵buff→tar = 𝒵𝒵slm→tar 𝒵𝒵−1

slm→buff , using 
Moore–Penrose matrix inversion. We keep only the top N = 55 singular 

vectors with large singular values (N is the number of waveguide 
modes), to suppress the experimental noise that primarily lies in the 
singular vectors with small singular values. This procedure is repeated 
for 50 wavelengths in the 1,551.0–1,556.0 nm range with a step size of 
0.1 nm, to obtain the frequency-resolved deposition matrix 𝒵𝒵buff→tar𝒵ω).

In the sequential measurement of 𝒵𝒵buff→tar𝒵ω), the N = 55 dimen-
sional subspace kept in the matrix inversion will not be the same for all 
the measured frequencies due to both experimental noise and wave-
guide dispersion, making it very difficult to construct the broadband 
deposition matrix 𝒜𝒜buff→tar𝒵Δω). To obtain a common subspace of all 
the frequencies, we calculate the extrinsic mean for vector subspaces 
defined as the average of the projection matrices for each subspace68. 
This is valid as long as dispersion is relatively weak inside the buffer. 
When we perform the Moore–Penrose pseudo-inverse for the deposi-
tion matrix for each frequency, we project onto the extrinsic subspace 
mean such that all the deposition matrices share the same 
N-dimensional space in the buffer region. This procedure allows us to 
not only build the broadband deposition matrix but also to compute 
the field distribution at frequency ω2 for the input wavefront given by 
the deposition eigenchannel at ω1.

The broadband matrix 𝒜𝒜 is constructed with constant intensity 
I(ω) within Δω. The average intensity in the target region is recorded 
during the experiment before matrix inversion. It is integrated both 
spatially and spectrally to give the broadband energy within the target 
region under random wavefront illumination.

We measure the deposition matrices in two disorder realiza-
tions. The effective number of uncorrelated realizations is further 
increased by scanning the probed wavelength over the 1,551–1,556 nm 
range. For each disorder realization, we perform 51 measurements at 
wavelengths separated by 0.1 nm. With a correlation width of 0.5 nm, 
effectively ten uncorrelated realizations are obtained for each disor-
dered waveguide.

Numerical simulations
We perform numerical simulations of wave propagation in planar 
waveguides using Kwant54,56. The simulated waveguides have the 
same dimensions and parameters as in the experiment: width W, 
length L, refractive index and number of waveguide modes N. The 
transport mean free path ℓt = 3.3 μm and the diffusive dissipation 
length ξa = 28 μm are identical to the experimental values. In the 
numerical simulations, we can turn off the dissipation by setting 
ξa = ∞. To be consistent with our experiment, the deposition matri-
ces map the fields from a buffer region to 10 × 10 μm2 target regions 
at varying depths. All the numerical results are averaged over 200 
disorder realizations.

Data availability
Source data are provided with this paper. All other data supporting 
the findings in this study are available from the corresponding author 
upon reasonable request.
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