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Abstract
The non-Markovian corrections to electric-dipole emission of hydrogen-like
atoms of large atomic number Z are studied by multipole photon field
formulation. The correlation functions are derived by the corresponding
spectra, which show how the δ-function type correlation is approached. The
decay of upper-level population is calculated by the relevant
integro-differential equation. The numerical results show that the relativistic
and finite atom-size corrections are evident; while the non-Markovian
corrections are negligible in the main period of decay, they can manifest
themselves in the far remote tail.
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1. Introduction

The famous Weisskopf–Wigner theory of atomic spontaneous
emission [1] is founded by the following two presuppositions:
first, assuming the decay rate of the upper-level population
N2 is proportional to the instantaneous value of N2, with no
reference to its past history; second, in evaluating the decay
rate, the atom is taken as a point-like electric-dipole, neglecting
its finite dimension as compared with the wavelength of
the emitted light. The first one is actually the Markovian
approximate result of the integro-differential equation which
relates the time derivative of N2 to its past values. The second
presupposition leads directly to the result that the decay rate is
just the Einstein A coefficient γA. Apart from these two points,
the effect of electron spin is not taken into account.

As is well known, a dynamic system with spectrum
bounded below could not have a purely exponential decay [2].
To find out the deviation from Weisskopf–Wigner law,
quite a few authors restudied this problem in the 1970s–
1990s [3–8]. All of these investigations applied the method
of Laplace transformation to solve the relevant integro-
differential equations, and various kinds of approximation
were made in the inverse transformation. The deviations from

the Weisskoff–Wigner law they obtained are mostly very small,
except at the very beginning of the decay within a small interval
of order 1/ω0, and, as some of them claimed, also in the far
remote tail of the decay in which N2 is extremely small.

Most of these authors take the atomic number Z equal
to unity in their investigation. We know the radius a of
the electron cloud is proportional to Z−1, and the emission
frequency ω0, which is proportional to the atomic level-energy
difference, is in direct proportion to Z2, leading to linear
increase of ω0a/c with Z . This means the point-like electric-
dipole approximation may possibly become poor for large
Z . As to the Markov approximation, the actual correlation
interval is assumed to be of order 1/ω0, while the atomic decay
time is of order 1/γA. Therefore the validity of the Markov
approximation requires their ratio γA/ω0 � 1. In the case
of the hydrogen-like atom, γA is proportional to ω3

0a2, so that
γA/ω0 varies as Z2. Hence any meaningful non-Markovian
effect can only show itself for large Z .

Recently two of us (Cao and Cao) and other co-workers
restudied this topic by totally different approaches [9, 10].
In [9], the generalized quantum stochastic trajectory
analysis [11, 12] is employed. The obtained correction due
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to the finite size of atom is calculated analytically and hence
is reliable, to the extent that the Schrödinger equation is
applicable. The corrections due to the non-Markovian effect
so obtained however suffer from two problems as described
in [10]. The first one lies in that the random number in the
interval (0, 1) used in stochastic trajectory analysis is actually
program generated; it will lead to errors when the times of
utilization become large. The second problem comes from
the simulation of the real non-Markovian correlation spectrum
by a sum of several Lorentzian spectra. These two factors,
especially the first one, make the calculated non-Markovian
correction not so reliable. However, this method has the merit
that it may take the effect of anti-rotating interactions into
account [12] and hence has its own prospect. In [10] two of us
and a co-worker first show the correlation function explicitly
and then solve the relevant integro-differential equation by
direct numerical calculation. In this way, one may get not only
a concrete picture of the correlation function but also more
accurate numerical results. However, the atomic states are
still described by non-relativistic Schrödinger wavefunctions
without spin degree of freedom, while for large Z the
relativistic correction may be important.

In this paper, we will carry out the non-Markovian
investigation of relativistic electric-dipole spontaneous
emission, in which the photon field with total angular
momentum J = 1 and parity P = −1 is used.

We note that to our knowledge this is the first time
the non-Markovian effect in relativistic formulation has been
investigated. Although [8] claims its correlation function is
relativistic, actually it just includes the spin interaction term,
still being non-relativistic.

2. General formulations

In general the multipole photon field describes a photon with
definite wavelength, total angular momentum and parity. The
corresponding vector potential will be denoted by Ak J M P(x),
the combined index (J = 1,M = ±1, 0, P = −1) refers to
electric-dipole field, (J = 1,M = ±1, 0, P = +1) refers to
magnetic-dipole field and (J = 2,M = ±2,±1, 0, P = +1)
refers to the electric-quadrupole field. If we normalize the
photon field in a large sphere of radius R0 (with the atom at
the centre), k will take discrete values. The concrete ortho-
normalization condition is as follows: write

Ak J M P(x) =
√

2πh̄c

k
Fk J M P(x), (1)

then Fk J M P(x)′s satisfy

∫
F∗

k J M P(x) · Fk′ J ′M ′ P ′(x) d3x = δkk′ δJ J ′δM M ′δP P ′ ; (2)

the above volume integration is within the normalization
sphere.

The Fk J M P are expressed by the spherical Bessel function
gL(kr) and vector spherical function YJ L M(θ, ϕ) as

Fk J M P(x) =




√
2k2

R0
gJ (kr)YJ J M(θ, ϕ),

for P = (−1)J +1;√
2k2

R0

[
−
√

J

2J + 1
gJ +1(kr)YJ J +1m(θ, ϕ)

+

√
J + 1

2J + 1
gJ −1(kr)YJ J −1M(θ, ϕ)

]
,

for P = (−1)J ,

(3)
where the vector spherical function YJ L M(θ, ϕ) is defined by

YJ L M(θ, ϕ) =
∑

µ=0,±1

C J M
L(M−µ),1µYL(M−µ)(θ, ϕ)n(µ), (4)

in which the n(µ) are spherical bases, and may be expressed by
the usual rectangular bases (n1,n2,n3) as

n(+1) = − 1√
2
(n1 + in2), (5a)

n(0) = n3, (5b)

n(−1) = 1√
2
(n1 − in2). (5c)

After field quantization, the operator Â(x) is expanded by

Â(x) =
∑

k J M P

[âk J M PAk J M P(x) + â†
k J M PA∗

k J M P(x)]; (6)

the âk J M P and â†
k J M P are corresponding absorption and

emission operators of photon.
As to the hydrogen-like atom, if only the two levels

concerned need to be taken into account, the interaction
Hamiltonian in the rotating-wave approximation may be
written as

Ĥint = ih̄
∑

k J M P

[gk J M P σ̂+âk J M Pe−i(ω−ω(R)0 )t

− g∗
k J M P σ̂−â†

k J M Pei(ω−ω(R)0 )t ], (7)

where σ̂+ and σ̂− are atom level upward and downward change
operators, ω(R)0 is the relativistic value of 1

h̄ (E2 − E1), ω = kc,
and gk J M P is the corresponding coupling constant, given by

gk J M P = e

h̄

∫
d3x ψ2(x)γψ1(x) · Ak J M P(x), (8)

in which ψ2(x) and ψ1(x) are the upper level and lower
level atomic wavefunctions respectively; they are now four-
component Dirac spinors. In equation (7), the anti-rotating
interaction is omitted, since according to [13] its effect is
negligibly small.

We express the state of our system as

|t〉 = C2(t)|ψ2; 0〉 +
∑

k J M P

C1,k J M P (t)|ψ1; k J M P〉 (9)

where |ψ2; 0〉 denotes the state in which the atom is in its upper
level and no photon exists; |ψ1; k J M P〉 denotes the state in
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which the atom is in its lower level with one photon in the
mode (k J M P). The initial condition is

C2(0) = 1, C1,k J M P (0) = 0.

The coupled equations for C2(t) and C1,k J M P (t) can be
readily deduced from Ĥint. We take the interaction picture in
our formulation, hence

d

dt
C1,k J M P (t) = −g∗

k J M Pei(ω−ω(R)0 )t C2(t),

d

dt
C2(t) =

∑
k J M P

gk J M Pe−i(ω−ω(R)0 )t C1,k J M P (t).
(10)

After eliminating the variable C1,k J M P (t), the resultant
integro-differential equation for C2(t) is given by

d

dt
C2(t) = −

∫ t

0
U (t − t ′)C2(t

′) dt ′. (11)

The function U (t − t ′) is the so-called correlation function
which correlates d

dt C2(t) with the past values of C2, and is
given by

U (t − t ′) =
∑

k J M P

|gk J M P |2e−i(ω−ω(R)0 )(t−t ′). (12)

The summation over (J,M, P) is actually limited in the values
allowed by conservation laws.

When the radius R0 of the normalized sphere is allowed
to tend to infinity, the summation over k will be transferred to
integration over ω according to the rule

∑
k

→ R0

π

∫ ∞

0
dk = R0

cπ

∫ ∞

0
dω.

Hence the correlation function U (t − t ′) turns out to be

U (t − t ′) =
∫ ∞

0
R(ω)e−i(ω−ω(R)0 )(t−t ′) dω, (13)

with

R(ω) =
∑
J M P

R0

cπ
|gk J M P |2, ω = kc. (14)

R(ω) is called the spectrum of the correlation function,
or for short the correlation spectrum. One main task of our
paper is to deduce this correlation function by relativistic Dirac
wavefunctions of the hydrogen-like atom.

In the case where the practical correlation time-interval,
which will be denoted by τc, is much smaller than the decay
time which is of order 1/γA, the inverse of the Einstein A
coefficient, then C2(t ′) in equation (11) may be taken as C2(t)
out of the integral, leading to

d

dt
C2(t) = −βcC2(t), (15a)

where

βc
∼=
∫ ∞

0
U (τ) dτ ≡ β (15b)

for t > τc. Equation (15a) is the Markovian approximation of
equation (11).

Substituting equation (13) into equation (15b) and change
the order of integration, we obtain

β = πR(ω(R)0 )− iP
∫ ∞

0

R(ω)

ω − ω
(R)
0

dω. (15c)

Hence,
d

dt
N2(t) =

[
d

dt
C∗

2 (t)

]
C2(t) + C∗

2 (t)

[
d

dt
C2(t)

]
∼= −(β∗ + β)N2(t) = −γ N2(t) (16)

the constant γ ≡ 2 Re β will be called the decay coefficient,
and is given by

γ = 2πR(ω(R)0 ), (17)

according to equation (15c).
We may also relate γ to the correlation function as

γ = 2
∫ ∞

0
|U (τ)| cos θU (τ) dτ, (18)

where θU (τ) is the argument of U (τ), namely U (τ) =
|U (τ)|eiθU (τ ).

We see it is evident that for t < τc the Markovian
equation (15) is totally inapplicable, as it can be seen from
equation (11) that d

dt C2(t)|t=0 = 0, but this interval (0, τc) is
actually too small to be recognized in the plotted decay curve.
We will show in the ensuing paragraph that exponential decay
is valid in the main part of the decay period even for Z = 92
(the largest real value). The remaining important thing to do is
to calculate the relativistic value of γ with finite atom-volume
effect taken into account.

3. The electric-dipole emission in atomic transition
2P3/2 to 1S1/2 and 2P1/2 to 1S1/2

For comparison with the non-relativistic results previously
calculated [10], we still consider the electric-dipole emission
in the transition of the hydrogen-like atom from 2P to 1S. Since
the coupling of electron spin with the magnetic field intensity
B in the photon field is not taken into account in hitherto non-
relativistic calculations, including [10], the results given in
all those papers are independent of the atomic total angular
momentum j . Now in the present relativistic formulation, the
electron current density ψ2(x)γψ1(x) does contain the spin
current, so we should treat the transitions 2P3/2 to 1S1/2 and
2P1/2 to 1S1/2 separately.

First, let us argue that the corresponding two spontaneous
emissions may be treated as a two-level process, thus the
formulation of the last section may be applied. Under the
rotating-wave approximation, the only other level that may be
involved as an intermediate state is 2S1/2, whose relativistic
energy is different from 2P j ( j = 1/2, 3/2). The atom may
go back and forth between 2P j and 2S1/2 for some time and
finally transit from 2P j to 1S1/2. However, the transition rate
for 2P j → 2S1/2 is small, because the corresponding Einstein
A coefficient is roughly equal to (e2/h̄c)3(1/4)[E(2P j) −
E(2S1/2)]/h̄ and the corresponding energy difference is small.

Now we consider the process 2P3/2 to 1S1/2. The Dirac
wavefunction 1S1/2 is denoted by

ψ1(x) =
( 1

r G1(r)� 1
2 0m(θ, ϕ)

1
r F1(r)� 1

2 1m(θ, ϕ)

)
(19)
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in which � j lm (θ, ϕ) represents the spherical spinor function
with total angular momentum ( j,m) and space parity (−1)l ,
given by

� j lm(θ, ϕ) = i l

(
C jm

l(m− 1
2 ),

1
2

1
2
Yl(m− 1

2 )
(θ, ϕ)

C jm
l(m+ 1

2 ),
1
2 (− 1

2 )
Yl(m+ 1

2 )
(θ, ϕ)

)
. (20)

The total parity of ψ1 is (+1), since the lower Pauli spinor
in ψ is of opposite intrinsic parity with respect to the upper
Pauli spinor (as can be seen from the fact that intrinsic parity
operator for Dirac wavefunction is γ4).

The radial functions G1(r) and F1(r) can be found in
many textbooks on quantum mechanics or relativistic quantum
mechanics.

The Dirac wavefunction for 2P3/2 is similarly given by

ψ2(x) =
( 1

r G2(r)� 3
2 1m′(θ, ϕ)

1
r F2(r)� 3

2 2m′(θ, ϕ)

)
. (21)

The emission frequency of this atomic transition is given
by

ω
(R)
0 = 1

h̄
(E2 − E1) = m0c2

h̄

(
1

2
s2 − s1

)
(22)

where

s1 =
√

1 − Z2α2, s2 =
√

4 − Z2α2. (23)

Numerically we have

ω
(R)
0 =




0.201
m0c2

h̄
, for Z = 92,

0.052
m0c2

h̄
, for Z = 50,

(24)

as compared with the non-relativistic values

ω0 = 3

8
Z2α2 m0c2

h̄
=




0.169
m0c2

h̄
, for Z = 92,

0.050
m0c2

h̄
, for Z = 50.

(25)
We see that the difference between ω(R)0 and ω0 is quite

large, and according to equation (17) the value of ω(R)0 is an
important factor in determination of γ .

The photon emitted by this atomic transition may have two
possible values of the combined index (J, P), namely (1,−1)
and (2,−1), corresponding to electric-dipole and magnetic-
quadrupole emission respectively.

Here we just consider the former; the latter must have an
extremely small rate.

According to equation (14), the correlation spectrum for
electric-dipole emission is given by

R(ω) =
∑

M

R0

cπ
|gk1M(−1)|2, M = 0,±1, (26)

and from equations (8), (1), and (3)

gk1M(−1) = 2e

√
πω

3h̄ R0

∫
ψ2(x)γψ1(x)[

√
2g0(kr)Y10M(θ, ϕ)

− g2(kr)Y12M (θ, ϕ)] d3x . (27)

From the conservation of the third component of angular
momentum, we have

M = m ′ − m. (28)

The symmetry of space rotation implies that the final result
should be independent of the third component of the total
angular momentum of the whole system, which in our case
is just m ′. Hence we may choose m ′ = 3

2 by will to make the
allowed value of (M,m) just be (1, 1

2 ). This means that among
the three gk1M(−1) only gk11(−1) is non-zero, and hence

R(ω) = R0

cπ
|gk11(−1)|2. (29)

The value of gk11(−1) can be evaluated directly according
to the formula given above. After carrying out the integration
over space coordinates we get

R(ω) = |B0 B ′
0|2 Z2α3 2ω

9π

×
∣∣∣∣ 1

1 + s1
S0(ω) +

1

4

(
1

1 + s1
− 3

2 + s2

)
S2(ω)

∣∣∣∣
2

, (30)

in which

S0(ω) = 1

ik

(
2

3

)s1
(

1

3

)s2


(s1 + s2)

×
[

1

(1 − ika)s1+s2
− c.c.

]
, (31a)

S2(ω) = −S0(ω) +
3

k2a

(
2

3

)s1
(

1

3

)s2

×
[

1

ika


(s1 + s2 − 2)

(1 − ika)s1+s2−2
− 
(s1 + s2 − 1)

(1 − ika)s1+s2−1
+ c.c.

]
(31b)

with

a = 2aB

3Z
. (32)

This parameter a is just equal to the non-relativistic transition
radius of 2P to 1S.

Next, consider the process 2P1/2 to 1S1/2. The Dirac
wavefunction for atomic initial state 2P1/2 is expressed by

ψ2(x) =
( 1

r G2(r)� 1
2 1m′(θ, ϕ)

− 1
r F2(r)� 3

2 1m′(θ, ϕ)

)
. (33)

The energy of the 2P1/2 state is

E2 = m0c2
√

1
2 (1 + s1), s1 =

√
1 − Z2α2, (34)

thus the emission frequency of the atomic transition 2P1/2 to
1S1/2 is given by

ω
(R)
0 = 1

h̄
(E2 − E1) = m0c2

h̄

[√
1

2
(1 + s1)− s1

]
. (35)

We choose by will m ′ = 1
2 ; the possible (M,m) has two

sets of values: (M = 0,m = 1
2 ) and (M = 1,m = − 1

2 ).
The corresponding two coupling constants are calculated by
equation (27) and are actually proportional to each other:

gk11(−1) = −√
2gk10(−1). (36)
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The resultant correlation spectrum may be shown as

R(ω) = |B0 B ′
0|2 Z2α3 ω

2π

∣∣∣∣S0(ω) +
1

3
S ′

0(ω)−
2

3
S ′

2(ω)

∣∣∣∣
2

(37)

in which

S0(ω) = 1

ik

[
1 +

Zα√
1
2 (1 − s1)

]−s1

1 +

√
1
2 (1 − s1)

Zα




−s1

×
{

1

1 − s1


(2s1)

(1 − ika)2s1
+

√
1
2 (1 − s1)

Zα(1 − s1)(1 + 2s1)

×
√

2(1 − s1)− 2Zα√
1
2 (1 − s1) + Zα


(2s1 + 1)

(1 − ika)2s1+1
− c.c.

}
, (38a)

S ′
0(ω) = − 1

ik


1 +

Zα√
1
2 (1 − s1)




−s1

1 +

√
1
2 (1 − s1)

Zα




−s1

×
{

1

1 + s1


(2s1)

(1 − ika)2s1
+

s1
√

2(1 − s1) + Zα√
1
2 (1 − s1) + Zα

× 1

Z2α2(1 + 2s1)


(2s1 + 1)

(1 − ika)2s1+1
− c.c.

}
, (38b)

S ′
2(ω) = −S ′

0(ω) +
3

k

1

1 + s1

1

(ka)2


1 +

Zα√
1
2 (1 − s1)




−s1

×

1 +

√
1
2 (1 − s1)

Zα




−s1 {
i
(2s1 − 2)

(1 − ika)2s1−2

+


i

s1
√

2(1 − s1) + Zα√
1
2 (1 − s1) + Zα

1

(1 − s1)(1 + 2s1)
+ ka




× 
(2s1 − 1)

(1 − ika)2s1−1
+ ka

s1
√

2(1 − s1) + Zα√
1
2 (1 − s1) + Zα

× 1

(1 − s1)(1 + 2s1)


(2s1)

(1 − ika)2s1
+ c.c.

}
(38c)

with

a = aB/Z

1 +
√

1
2 (1−s1)

Zα

, (39)

which is different from the non-relativistic transition radius of
2P to 1S. Only when Zα � 1 does equation (39) approach
equation (32).

Before we go a further step, we make a check on the above
derived R(ω) by investigation of their non-relativistic limit and
compare them with those given in [9] and [10].

If Z is small so that Z2α2 can be neglected as compared
with unity, equations (30) and (37) should go over to the
corresponding non-relativistic results.

For the atomic transition 2P3/2 to 1S1/2, when
√

1 − Z2α2

and
√

4 − Z2α2 are approximated by one and two respectively,

we get from equation (30)

S0(ω) = 8

27

a(3 − k2a2)

(1 + k2a2)3
,

S2(ω) = 32

27

k2a3

(1 + k2a2)3
,

(40)

hence

R(ω) = 210

39
Z2α3 ω

π(1 + ω2a2

c2 )4

[
1 − 3ω

2 a2

c2

2(1 + ω2a2

c2 )

]2

, (41)

while the ‘usual’ non-relativistic result is (see, for
example [6, 7, 10, 11])

R(ω) = γA

2πω0

ω

(1 + ω2a2

c2 )4
= 210

39
Z2α3 ω

π(1 + ω2a2

c2 )4
, (42a)

in which γA is the Einstein A coefficient, given by

γA =
(

4

9

)4

Z4α5 m0c2

h̄
. (42b)

We see there is an additional correction factor [1 −
3ω

2a2

c2 /2(1 + ω2a2

c2 )]2 in equation (41) as compared with
equation (42a), which makes R(ω) have a zero point at
ωa/c = √

2. We will see that this additional factor comes from
the interaction of the electron spin-magnet with the magnetic
field B of the emitted light. This interaction is not included
in the non-relativistic electric-dipole emission, while it does
contribute in the present formulation. The reason lies in the
fact that in the ‘usual’ non-relativistic theory the electric-dipole
emission is connected to the atomic electric-dipole moment,
while in the present formulation it is defined by the angular
momentum and parity of the emitted photon to be (1,−1).
The electron spin has no contribution to the former, but does
contribute in the latter.

The situation for atomic 2P1/2 to 1S1/2 is similar. In this
case, the non-relativistic limits of 1 − s1 and Zα√

1
2 (1−s1)

are

1
2 Z2α2 and 2 respectively, hence to the leading power of Zα,
S0(ω), S ′

0(ω) and S ′
2(ω) are given by

S0(ω) = 32

81

1

Z2α2

a(3 + 5k2a2)

(1 + k2a2)3
,

S ′
0(ω) = −32

81

1

Z2α2

a(3 − k2a2)

(1 + k2a2)3
,

S ′
2(ω) = −128

81

a

Z2α2

k2a2

(1 + k2a2)3
,

(43)

in which a is reduced to that given by equation (32), so its
value becomes the same as in 2P3/2 to 1S1/2. The coefficient
|B0 B ′

0|2 is reduced to (4 Z
aB
)( 3

32 Z4α4 Z
aB
), hence the resultant

correlation spectrum is approximated by

R(ω) = 210

39
Z2α3ω

π

(1 + 4k2a2)2

(1 + k2a2)6

= 210

39
Z2α3ω

π

1

(1 + ω2a2

c2 )4

(
1 +

3ω
2a2

c2

1 + ω2a2

c2

)2

. (44)
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Compared with the ‘usual’ non-relativistic result equation (42),
the present additional correction factor is [1+3ω

2 a2

c2 /(1+ ω2a2

c2 )]2.
Equations (44) and (41) show explicitly the large

differences between these two correlation spectra in the high
frequency region: the latter has a zero point at ω

2a2

c2 = 2 and is

1/64 of the former for ω2a2

c2 
 1.
Now we come to show that these additional correction

factors indeed stem from spin–B coupling.
The corresponding non-relativistic interaction Hamilto-

nian for this coupling is given by

Ĥ ′
int = eh̄

2mc

∫
ϕ̂+(x)σ ϕ̂(x) · B̂(x) dτ (45)

which will contribute an extra coupling constant g′
k1M(−1) given

by

g′
k1M(−1) = 1

ih̄

∫
ϕ+

2 (x)σϕ1(x) · Bk1M(−1)(x) dτ. (46)

We note in passing that eh̄
2m0cσ ·B coupling also belongs to

the − 1
c j · A type of interaction even in non-relativistic theory,

because j actually consists of two parts: the translational
current and spin-magnetic current. The translational current
density ̂T = ih̄e

m0
ϕ̂∇ϕ̂, and the spin-magnetic current density

̂M = − eh̄
2m0

∇×(ϕ̂σ ϕ̂). The former leads to e
m0c P·A coupling;

the latter contributes a term − 1
c

∫
̂M · Â d3x , which after

integration by parts just transforms to equation (45).
Since in some literature [8] the factor [1+3ω

2 a2

c2 /(1 + ω2a2

c2 )]2

= [(1 + 4ω
2a2

c2 )/(1 + ω2a2

c2 )]2 in equation (44) is referred to
relativistic correction, we will derive the non-relativistic
g′

k1M(−1) to verify our assertion stated before (equations (45)
and (46)).

(i) Transition 2P3/2 to 1S1/2. The initial state of the atom
is still ( j ′,m ′) = ( 3

2 ,
3
2 ). As mentioned below equation (28),

the allowed value of (M,m), the third component of the total
angular momentum of the photon and final state of the atom
respectively, is just (1, 1

2 ). This means only g′
k11(−1) is nonzero.

Substituting the non-relativistic atomic wavefunctions

ϕ2(x) =
(

R2(r)Y11(θ, ϕ)

0

)
, (47a)

ϕ1(x) =
(

R1(r)Y10(θ, ϕ)

0

)
, (47b)

and magnetic field intensity

Bk11(−1) = i

√
2πh̄ω3

c2 R0
g1(kr)[Y10(θ, ϕ)n(+1) − Y11(θ, ϕ)n(0)]

(48)
into equation (50), and carrying out the space integration, we
get

g′
k11(−1) = −eZα

(
2

3

)4
√

3ω

h̄ R0

ω2a2

c2

(1 + ω2a2

c2 )3
. (49)

The original non-relativistic coupling constant gk11(−1) can
be shown as

gk11(−1) = eZα

(
2

3

)5
√

3ω

h̄ R0

1

(1 + ω2a2

c2 )2
. (50)

We see g′
k11(−1) is of order [ω

2 a2

c2 /(1 + ω2a2

c2 )]gk11(−1), hence
is small in the low frequency range.

The total coupling constant for the transition 2P3/2 to 1S1/2

with the emitted photon of mode (k11(−1)) is then given by

gk11(−1) + g′
k11(−1) = eZα

(
2

3

)5
√

3ω

h̄ R0

1 − 1
2
ω2a2

c2

(1 + ω2a2

c2 )3
, (51)

and the corresponding correlation spectrum is

R(ω) = R0

cπ
|gk11(−1) + g′

k11(−1)|2

= 210

39
Z2α3 ω

π(1 + ω2a2

c2 )
4

[
1 − 3ω

2a2

c2

2(1 + ω2a2

c2 )

]2

, (52)

identical to that of equation (41).
(ii) Transition 2P1/2 to 1S1/2. The quantum number

( j ′,m ′) for the initial atomic state is taken as before: ( 1
2 ,

1
2 ).

Now there are two possible final atomic states: ( j,m) = ( 1
2 ,

1
2 )

and ( 1
2 ,− 1

2 ), with corresponding photon quantum numbers
(k10(−1)) and (k11(−1)) respectively.

The non-relativistic wavefunction of the initial atomic
state is

ϕ2(x) = R2(r)

(− 1√
3
Y10(θ, ϕ)√

2
3 Y11(θ, ϕ)

)
, (53)

and the two possible final states are given by

ϕ1(x) =
(

R1(r)Y00(θ, ϕ)

0

)
,

(
0

R1(r)Y00(θ, ϕ)

)
.

(54)
The relevant magnetic field intensities are Bk10(−1) and

Bk11(−1) respectively. The expression for the latter has already
been given by equation (48); the former has the expression

Bk10(−1) = i

√
2πh̄ω3

c2 R0
g1(kr)[Y1−1(θ, ϕ)n(+1)

− Y11(θ, ϕ)n(−1)]. (55)

The two magnetic coupling constants can be calculated
according to equation (46) with the result

g′
k10(−1) = −eZα

(
2

3

)5√
ω

h̄ R0

3ω
2a2

c2

(1 + ω2a2

c2 )
3
,

g′
k11(−1) = eZα

(
2

3

)4
√

8ω

h̄ R0

ω2a2

c2

(1 + ω2a2

c2 )3
.

(56)

We should add them to the gk10(−1) and gk11(−1) respectively.
But from the ‘usual’ non-relativistic spectrum equation (42),
which also applies to the case 2P1/2 to 1S1/2, we cannot derive
the individual values of gk10(−1) and gk11(−1). Their values
should be calculated by the non-relativistic P · A interaction
Hamiltonian. The corresponding formulae are

gk J M P = − e

m0c

∫
ϕ+

2 (x)∇ϕ1(x) · Ak J M P(x) d3x . (57)

The results so obtained are given by

gk10(−1) = −eZα

(
2

3

)5√
ω

h̄ R0

1

(1 + ω2a2

c2 )2
,

gk11(−1) = eZα

(
2

3

)5
√

2ω

h̄ R0

1

(1 + ω2a2

c2 )2
.

(58)
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Figure 1. The relativistic correlation spectra R(ω) of electric-dipole
emission. (I) For transition 2P1/2 to 1S1/2, Z = 92. (II) For
transition 2P3/2 to 1S1/2, Z = 92. Dashed curve—the ‘usual’
non-relativistic correlation spectrum 2P to 1S, Z = 92.

It is easy to check that R0
cπ [|gk10(−1)|2 + |gk11(−1)|2] indeed leads

to equation (42a).
The two total coupling constants are the sum of

equations (56) and (58), with the result

gk10(−1) + g′
k10(−1)

= − eZα

(
2

3

)5√
ω

h̄ R0

1

(1 + ω2a2

c2 )2

(
1 +

3ω
2a2

c2

1 + ω2a2

c2

)
,

gk11(−1) + g′
k11(−1)

= eZα

(
2

3

)5
√

2ω

h̄ R0

1

(1 + ω2a2

c2 )
2

(
1 +

3ω
2a2

c2

1 + ω2a2

c2

)
.

(59)

Therefore, we arrive at

R(ω) = R0

cπ
[|gk10(−1) + g′

k10(−1)|2 + |gk11(−1) + g′
k11(−1)|2]

= 210

39
Z2α3ω

π

1

(1 + ω2a2

c2 )4

(
1 +

3ω
2a2

c2

1 + ω2a2

c2

)2

, (60)

identical to equation (44).
The above investigation justifies our assertion that the

two additional correction factors indeed come from the spin
interaction term in the non-relativistic Ĥint. It is not the
relativistic correction claimed by Seke [8]. The true relativistic
corrections are higher order terms of α (or Zα), which are
neglected by Seke.

4. The numerical results of electric-dipole emission

The largest value of Z for stable nuclei is 92. In figure 1 we plot
the relativistic correlation spectra R(ω) for transitions 2P3/2 to
1S1/2 and 2P1/2 to 1S1/2 of a hydrogen-like atom with this
value of Z , and compare them with the ‘usual’ non-relativistic
correlation spectrum. The abscissa is taken as ω/ω0, with ω0

denoting the corresponding non-relativistic value which is the
same for both 2P3/2 to 1S1/2 and 2P1/2 to 1S1/2 transitions:

ω0 = 3

8
Z2α

(
c

aB

)
. (61)

The ordinate is taken as R(ω)/( Zc
aB
), which is also

dimensionless. We note that ω(R)0 is different from ω0 quite
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Figure 2. The non-relativistic correlation spectra R(ω) of
electric-dipole emission with spin magnet–B coupling included.
(I) For transition 2P1/2 to 1S1/2, Z = 1. (II) For transition 2P3/2 to
1S1/2, Z = 1. Dashed curve—the ‘usual’ non-relativistic correlation
spectrum 2P to 1S, Z = 1.

obviously for large Z . For Z = 92,

ω
(R)
0 (2P3/2 → 1S1/2) � 1.19ω0,

ω
(R)
0 (2P1/2 → 1S1/2) � 1.14ω0.

(62)

It can be shown that R(ω) spreads over a range of
several hundred ω0 for Z = 1 (cf figure 2) and shrinks to
several or a dozen ω0 for Z = 92. For non-relativistic
spectra, this shrinking effect can be shown quantitatively by
equations (41), (42a) and (44) and by

ωa

c
= 1

4
Zα

(
ω

ω0

)
,

since these spectra are of the form

R(ω) = 29

38

c

πaB
Z3α3 f

(
1

4
Zα

ω

ω0

)
,

which means the spread range of R(ω) on the abscissa ω
ω0

is
inversely proportional to Z .

We have pointed out that there is a zero point ω =√
2c/a = 4

√
2

Zα ω0 in the tail-part of the non-relativistic
correlation spectrum for the 2P3/2 to 1S1/2 transition. This
zero point still exists in the relativistic R(ω), but its position
moves to (∼ 8

Zαω0). This means it is not necessary for R(ω)
to have just one peak (however, the second peak is too small
to be seen in figure 1).

In figure 2, we compare the ‘usual’ non-relativistic R(ω)
given by equation (42a) with those in which the spin magnet–
B coupling is included (namely equations (41) and (44)).
The value of Z is taken as unity, hence corresponding to the
hydrogen atom. We see even in this smallest value of Z , the
magnetic interaction contributes significantly to R(ω) in the
high frequency region. We note in passing that for Z = 1
equations (41) and (44) almost coincide with the corresponding
relativistic spectra.

The situation for Z = 50 is similar to the case of Z = 92
but the coincident part of the three curves in the low frequency
region becomes larger (see figure 3). Figure 3 also shows
explicitly how the spread range of R(ω) over ω/ω0 changes as
compared with that of Z = 92.

The correlation function U (τ) may be expressed by

U (τ) = F(τ)eiω(R)0 τ , (63)
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Figure 3. The relativistic correlation spectra R(ω) of electric-dipole
emission. (I) For transition 2P1/2 to 1S1/2, Z = 50. (II) For
transition 2P3/2 to 1S1/2, Z = 50. Dashed curve—the ‘usual’
non-relativistic correlation spectrum 2P to 1S, Z = 50.

Figure 4. The relativistic correlation function U(τ ) of
electric-dipole emission: the absolute value. (I) For transition 2P3/2

to 1S1/2, Z = 92, U(0) = 1.80 × 10−4ω2
0. (II) For transition

2P1/2 to 1S1/2, Z = 92, U(0) = 2.08 × 10−3ω2
0. Dashed curve—the

‘usual’ non-relativistic correlation spectrum 2P to 1S, Z = 92,
U(0) = 3.22 × 10−4ω2

0.

in which F(τ) is the conventional Fourier transform of R(ω):

F(τ) =
∫ ∞

0
R(ω)eiωτ dω. (64)

The numerically calculated results of correlation function
are shown in figures 4–7. Figure 4 shows the absolute value of
U (τ)/U (0) for Z = 92. We see that the differences between
the relativistic curves and the ‘usual’ non-relativistic curves,
as well as the differences between the corresponding U (0), are
quite significant. The widths τ W at half height of |U (τ)|/U (0)
for 2P3/2 to 1S1/2 and 2P1/2 to 1S1/2 are 0.885/ω0 = 1.05/ω(R)0

and 0.321/ω0 = 0.364/ω(R)0 respectively. The corresponding
ratios of τW to τA (where τA = 1/γA is the Weisskopf–Wigner
decay time) are equal to 3.03 × 10−4 and 1.10 × 10−4, being
quite small quantities.

The curves of θU (τ), the arg U (τ), are shown in figure 5
for Z = 92. The curve for 2P3/2 to 1S1/2 is flatter than that
for 2P1/2 to 1S1/2. They become straight lines when ω0τ � 2.
For comparison, the argument of the ‘usual’ non-relativistic
correlation function is also plotted.

Figure 6 shows |U (τ)|/U (0) for Z = 50. The widths at
half height τW measured by 1/ω0 become smaller than those for
Z = 92. Their values are reduced to 0.539/ω0 and 0.237/ω0

respectively. Hence the usual saying that τW is about 1/ω0 is
not so precise.

Figure 7 expresses the corresponding θU (τ) for Z = 50.

Figure 5. The relativistic correlation function U(τ ) of
electric-dipole emission: θU (the argument of U ). (I) For transition
2P3/2 to 1S1/2, Z = 92. (II) For transition 2P1/2 to 1S1/2, Z = 92.
Dashed curve—the ‘usual’ non-relativistic correlation spectrum 2P
to 1S, Z = 92.

Figure 6. The relativistic correlation function U(τ ) of
electric-dipole emission: the absolute value. (I) For transition 2P3/2

to 1S1/2, Z = 50, U(0) = 1.60 × 10−4ω2
0. (II) For transition

2P1/2 to 1S1/2, Z = 50, U(0) = 1.28 × 10−3ω2
0. Dashed curve—the

‘usual’ non-relativistic correlation spectrum 2P to 1S, Z = 50,
U(0) = 3.22 × 10−4ω2

0.

Figure 7. The relativistic correlation function U(τ ) of
electric-dipole emission: θU (the argument of U ). (I) For transition
2P3/2 to 1S1/2, Z = 50. (II) For transition 2P1/2 to 1S1/2, Z = 50.
Dashed curve—the ‘usual’ non-relativistic correlation spectrum 2P
to 1S, Z = 50.

Having obtained the correlation function U (τ), we
proceed to solve the integro-differential equation equation (11)
numerically as in [10], but with higher accuracy (the average
error is less than 0.1%), and hence the present results will
be more reliable. The obtained results on the evolution of the
upper level population N2(t)will be compared with the ‘usual’
non-relativistic results (calculated also by equations (11)
and (13) but making use of equation (42a)) as well as with
Weisskopf–Wigner results.

We plot the decay curves of N2 for both 2P3/2 to 1S1/2 and
2P1/2 to 1S1/2 processes for Z = 92 in figure 8. The abscissa is
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Figure 8. The decay of upper level population N2. (I) For transition
2P3/2 to 1S1/2, Z = 92. (II) For transition 2P1/2 to 1S1/2, Z = 92.
Dashed curve—the ‘usual’ non-relativistic result for 2P to 1S,
Z = 92. Dotted curve—the Wigner–Weisskopf result for 2P to 1S
(non-relativistic, neglecting the finite dimension of the atom as
compared with the photon wavelength), Z = 92.

taken as γAτ , where γA is given by equation (42b). We see that
the former is slightly above the ‘usual’ non-relativistic curve,
while the latter is somewhat below the Weisskopf–Wigner
result.

We have noted [9, 10] that the difference between the
‘usual’ non-relativistic result and the Weisskopf–Wigner result
lies in the fact that the latter has neglected the finite size
of the electric dipole as compared with the emitted photon
wavelength and has made the Markovian approximation.
Actually, the first factor makes the main effect. Figure 8 shows
that the difference between these two curves is quite large. But
the difference between the curves of relativistic 2P3/2 to 1S1/2

and 2P1/2 to 1S1/2 is even larger.
The relativistic decay curves under the Markovian

approximation are also calculated, which are expressed by

N2(t) = e−γ t (65a)

with the relativistic decay rate γ given by equation (17). For
Z = 92, its value is given by

γ =
{

0.873γA, for 2P3/2 to 1S1/2,

1.052γA, for 2P1/2 to 1S1/2.
(65b)

It may be compared with the non-relativistic values given by
equations (41) and (44) for Z = 92:

γ =
{

0.823γA, for 2P3/2 to 1S1/2,

1.048γA, for 2P1/2 to 1S1/2.
(65c)

We see the relativistic corrections are about 6% and 0.4%.
The Z dependence of the relativistic γ is rather

complicated, but for the ‘usual’ non-relativistic γ its Z
dependence is rather simple, since according to equation (42a)
and ω0a

c = 1
4 Zα with ω0 = 3

8
c

aB
Z2α, it is equal

to ( 2
3 )

8 c
aB

[Z4α4/(1 + 1
16 Z2α2)4]. We see that it basically

increases with Z as Z4.
We note in passing that the two transitions (2P3/2 to 1S1/2

and 2P1/2 to 1S1/2) not only have different spectrum functions
R(ω), but also have different ω(R)0 , as shown in equation (62).
The value of γ is determined by both factors.
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Figure 9. The decay of upper level population N2. (I) For transition
2P3/2 to 1S1/2, Z = 50. (II) For transition 2P1/2 to 1S1/2, Z = 50.
Dashed curve—the ‘usual’ non-relativistic result for 2P to 1S,
Z = 50. Dotted curve—the Wigner–Weisskopf result for 2P to 1S
(non-relativistic, neglecting the finite dimension of the atom as
compared with the photon wavelength), Z = 50 (this curve almost
coincides with curve I).

When we compare the Markovian curves with γ of
equation (65b) for Z = 92 with those relativistic (non-
Markovian) curves plotted in figure 8, we find that their
differences are very small, even undifferentiated when plotted
in the same figure. This means the Markovian approximation
works quite well in the main period of decay even for the largest
realistic atomic number Z .

The above results are not out of expectation. It is known
that δ(τ) can be expressed by alternative limiting forms such
as 1

π
limε→0

ε
τ 2+ε2 and 1

π
limω→∞ sinωτ

τ
. The former has typical

peaked form with infinitesimal width ε, and the latter oscillates
with infinite frequency for τ > 0. Now the relativistic
correlation functions U (τ) calculated above have both the
peaked form and oscillating behaviour outside the peak region.
The oscillation frequencies are ω(R)0 , and the peak widths τW

are of order 1/ω(R)0 or even smaller as shown before. Since
1/ω(R)0 compared with the decay time 1/γ is of order 10−4, it
is reasonable that Markovian approximation turns out to be a
quite good approximation in practical use.

The calculated results for Z = 50 are plotted in figure 9.
The relativistic curve for 2P3/2 to 1S1/2 is just below the ‘usual’
non-relativistic curve and almost undifferentiated with it. The
difference between the relativistic curve for 2P1/2 to 1S1/2 and
Weisskopf–Wigner curve also becomes smaller than that of
Z = 92.

We show in passing the effect of spin magnet–B interaction
on the non-relativistic atom decay behaviour, which is
neglected in the ‘usual’ non-relativistic theory. In the case up to
Z = 10 this correction can be neglected, but when Z increases
to 50 the correction becomes perceivable (see figure 10); the
curve with spin magnet–B interaction almost coincides with
the relativistic curve for the transition 2P1/2 to 1S1/2, and in
the case of 2P3/2 to 1S1/2 transition, the difference between it
and the ‘usual’ non-relativistic result even becomes larger than
the relativistic correction.

The situation for Z = 92 is similar, but the differences
increase as can be seen from figure 11.

5. Brief summary and discussion

The multipole em field formulation is used to study
the relativistic correction and non-Markovian correction
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Figure 10. The non-relativistic decay of upper level population N2

with spin magnet–B coupling included. (I) For transition 2P3/2 to
1S1/2, Z = 50. (II) For transition 2P1/2 to 1S1/2, Z = 50. Dashed
curve—the ‘usual’ non-relativistic result for 2P to 1S (without spin
interaction), Z = 50. Dotted curve—the Wigner–Weisskopf result
(non-relativistic, neglecting the finite dimension of the atom as
compared with the photon wavelength) without spin interaction,
Z = 50.

of electric-dipole emission. The difference between this
formulation (when used in the non-relativistic case) and the
‘usual’ non-relativistic formulation lies in the fact that the
electron spin current contribution is fully included.

The relativistic correlation spectra R(ω) are first
analytically derived, then the corresponding correlation
functions U (τ) are numerically calculated. The absolute value
of U (τ) is peaked at τ = 0 and has a width of the order
of 1/ω(R)0 or somewhat smaller. Outside the peak region,
U (τ) oscillates with the frequency ω(R)0 , which will further
cause the U (τ) outside the peak region effectively to die away.
These two factors together make U (τ) approximate the δ-
function when it is applied to functions with variation rate much
smaller than ω(R)0 . In our investigated problems the condition
of Markovian approximation for the main period of decay may
be given roughly by

γ

ω
(R)
0

� 1

where γ is the relativistic decay coefficient, defined by the
relativistic correlation spectrum R(ω(R)) as

γ = 2πR(ω(R)0 ).

The present calculation shows that the non-Markovian
correction is almost negligible in the main period of hydrogen-
like atom spontaneous decay up to Z = 92, the largest value
for stable nuclei. But the relativistic correction and finite atom-
size correction to decay rate are quite evident for large Z .

We note that the corrections are j -dependent; when the
initial atomic state changes from 2P3/2 to 2P1/2, the correction
even changes sign.

Our numerical calculation is limited in the main period
of decay. Besides the very beginning period t < τc, which is
negligibly small, in the remote tail of decay equation (15) may
be also invalid; d

dt C2(t)may become not proportional to C2(t).
If we write equation (11) as

d

dt
C2(t) = −

∫ t

t−τc

U (t − t ′)C2(t
′) dt ′

−
∫ t−τc

0
U (t − t ′)C2(t

′) dt ′ (66)
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Figure 11. The non-relativistic decay of upper level population N2

with spin magnet–B coupling included. (I) For transition 2P3/2 to
1S1/2, Z = 92. (II) For transition 2P1/2 to 1S1/2, Z = 92. Dashed
curve—the ‘usual’ non-relativistic result for 2P to 1S (without spin
interaction), Z = 92. Dotted curve—the Wigner–Weisskopf result
(non-relativistic, neglecting the finite dimension of the atom as
compared with the photon wavelength) without spin interaction,
Z = 92.

where τc is the correlation interval of order 1/ω0, the first
part on the right-hand side gives the Markovian result, and
the second term represents the non-Markovian correction. For
very large values of t , the second term may become notable,
because its integration interval becomes large while the value
of C2(t ′) in the first term becomes small. To give a rough
estimate of the non-Markovian correction, we approximate the
C2(t ′) in the second term on the right-hand side by e−βct , so
equation (66) turns out to be

d

dt
C2(t) = −βcC2(t) − F(t), (67)

in which

F(t) ≡
∫ t−τc

0
U (t − t ′)e−βct ′

dt ′

=
∫ ∞

0

R(ω)

i(ω − ω
(R)
0 )− βc

× [e−i(ω−ω(R)0 )τc+βc(τc−t) − e−i(ω−ω(R)0 )t ] dω. (68)

The equation (67) is easily solved, with the result

C2(t) = e−βct S(t), (69)

S(t) = 1 −
∫ t

0
eβct ′

F(t ′) dt ′. (70)

Substituting equation (70) into (69), we finally get

C2(t) = e−βct [1 −�(t)], (71)

with

�(t) =
∫ ∞

0

R(ω)

i(ω − ω
(R)
0 )− βc

[
e−i(ω−ω(R)0 )τc+βcτc t

+
1

i(ω − ω
(R)
0 )− βc

(e−i(ω−ω(R)0 )t+βct − 1)

]
dω, (72)

which is supposed to measure the percentage of the non-
Markovian correction.

We have calculated �(t) in the range from t = 0 (except
the very beginning) to t = 5/γA for Z = 92. The value
of βc is taken as (0.436–0.207i)γA for 2P3/2 → 1S1/2, and
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Figure 12. (a) The non-Markovian correction�(t) for process
2P3/2 → 1S1/2, Z = 92. (b) The non-Markovian correction�(t) for
process 2P1/2 → 1S1/2, Z = 92.

(0.524–1.65i)γA for 2P1/2 → 1S1/2. The numerical values of
�(t) so obtained are roughly represented by figure 12. From
these figures we see that�(t), the non-Markovian correction, is
small but non-zero, and is nearly proportional to t in this range.
Since �(t) is small, when it is expressed by �βct , 1 − �(t)
may be approximated by e−(�βc)t to give C2(t) � e−(βc+�βc)t

up to t = 5/γA, keeping the exponential decay behaviour. But
for much larger t , C2(t) will show different behaviour.

Finally we briefly discuss the possible applications of
our findings in this paper. In the study of laser–plasma
interaction, the spontaneous emission rates of ions are widely
used for the absolute intensity measurements of spectral lines
in the vacuum ultraviolet wavelength region (the branching-

ratio technique) [14, 15]. We have shown that the relativistic
correction and finite atom-size correction to the spontaneous
emission rate can be quite large for ions of large Z . Inclusion
of such corrections can improve the accuracy of the absolute
intensity measurements. More recently, trapped ions have been
proven to constitute a model system for storing and processing
quantum information. The transport of this information within
distributed quantum networks requires an interface between
trapped ions and photons operating as moving quantum bits.
Such an interface could be based on the deterministic coupling
of a single ion to a high finesse optical cavity, which requires
a precise control of the spontaneous emission properties of the
ion [16, 17]. Our result on the spontaneous emission rate of
ions may be helpful to the study of spontaneous emission of
single trapped ions.
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