
Chapter 9
Lasing in Amorphous Nanophotonic Structures

Hui Cao and Heeso Noh

Abstract We review the recent experimental and numerical studies on lasing in
photonic nanostructures with short-range order in this chapter. Despite the lack of
long-range order, photonic bandgaps can be formed in such structures, and they are
isotropic. Our numerical studies show that the photonic bandgaps depends not only
on the spatial range of geometric order, but also on the structural topology. The pho-
tonic bandedge modes may be spatially localized, in contrast to those of photonic
crystals. Lasing has been realized experimentally in semiconductor nanostructures
with short-range order. The nature of lasing modes are illustrated, and the lasing
characteristic can be controlled by the short-range order.

9.1 Introduction

Over the past decade lasing has been realized in various types of nanostructures.
The most common one is the photonic crystal (PhC) with periodic modulation of
the refractive index that result in the formation of photonic bandgap (PBG) [1].
The distributed feedback PhC laser relies on the slow group velocity at a photonic
bandedge to enhance light amplification [2]. The PhC defect mode laser utilizes
light localization at a structural defect to minimize the lasing threshold [3, 4]. In
addition to PhCs, lasing action in photonic quasi-crystals with and without defects
has been reported [5–9]. Despite lack of periodicity, the quasi-crystalline photonic
structure has long-range orientational order and can possess a PBG.

The photonic amorphous structure (PAS) has neither long-range translational
order nor orientational order. However, the density of optical states (DOS) may
be depleted through coupled Mie resonances [10–15] or short-range structural or-
der [16, 17]. PBGs also exist in amorphous photonic structures that consist of
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strong Mie scatterers such as dielectric rods or spheres [10–14]. These structures
are termed photonic glasses [15], in analogy to glassy silica, which has an electronic
band gap spanning the entire visible frequency range. In the absence of Mie reso-
nance, Bragg scattering of propagating waves by local domains can produce PBGs
in structures with only short-range positional order. For example, complete PBGs
exist in photonic amorphous diamond structures—three-dimensional (3D) continu-
ous random networks with diamond-like tetrahedral-bonding between particles [16].
Recently hyper-uniform disordered materials with short-range geometric order and
uniform local topology have been shown to posses large PBGs [17]. Unique optical
features of amorphous media have also been investigated experimentally [18].

Despite these studies, little is known about the transition from PhCs to amor-
phous optical materials, e.g., how does the density of optical states (DOS) evolve
as the structural properties of the material change from ordered to amorphous? Is
there a critical size of ordered domains in polycrystalline materials below which the
system becomes optically amorphous? Our recent work aimed to answer the above
questions by mapping out the transition from photonic polycrystalline to amorphous
structures [19]. Moreover, we have performed systematic study on lasing character-
istic in polycrystalline and amorphous structures [20, 21]. It reveals what determines
the lasing frequencies as well as the nature of lasing modes. These studies provide
a physical insight to lasing mechanism in photonic structures lacking long-range
order.

In fact, nature utilizes both crystalline and amorphous photonic structures for
color generation [22–25]. Periodic structures are intrinsically anisotropic, thus the
colors they produce are iridescent (i.e., change with viewing angle). In photonic
polycrystals, the cumulative effect of a large number of randomly orientated crys-
tallites makes the color non-iridescent [26]. Photonic amorphous media can also
produce vivid non-iridescent colors via short-range structural order [27]. Although
the refractive index contrast is usually too low to form PBGs in most biological
systems, the interference of scattered light selects the color whose wavelength cor-
responds to the structural correlation length [28]. Therefore, short-range positional
order can significantly modify photonic properties [29–31], leading to unique ap-
plications [32]. Lately we have utilized the short-range order to enhance optical
confinement and improve the lasing efficiency in PAS.

9.2 Photonic Polycrystals and Amorphous Structures

9.2.1 Photonic Bandgap Effects and Enhanced Light Confinement

We start with the numerical study on PBGs and high-quality (Q) modes in two-
dimensional (2D) photonic structures with short-range positional order.

Structure Generation and Characterization

To create 2D photonic polycrystals and amorphous structures, we have developed
numerical simulation methods to generate N cylinders of circular shape in a square
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box with periodic boundaries. For the purpose of generating configurations with
varying positional order, we assume that the cylinders interact elastically via the
purely repulsive short-range linear spring potential

V (rij ) = b
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where rij is the center-to-center distance between cylinders i and j , b is the
characteristic energy scale of the interaction, θ(x) is the Heaviside function, and
dij = (di + dj )/2 is the average diameter of cylinders i and j . To vary the degree
of positional order, the cylinders are polydisperse—with a uniform distribution of
diameters between d0 and d0(1 +p), where p is the polydispersity that ranges from
0 to 0.5. The average diameter 〈d〉 = d0(1 + p/2).

Initially d0, or the packing fraction
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is set to a small value φ0 = 0.2, and we place N cylinders randomly within a
square of side length L. We then gradually increase the diameters of all cylinders
while maintaining the relative size distribution to create a jammed packing of cylin-
ders [33]. Each increment in diameter is followed by minimization of the total po-
tential energy V = ∑

i>j V (rij ) of the system. The energy minimization process
is similar to moving each cylinder along the direction of the total force on it using
overdamped dynamics. When V drops below a threshold value or the difference
in energy between successive minimization steps is less than a small tolerance, the
minimization process is terminated. If V is zero and gaps exist between cylinders,
the system is unjammed, and it is compressed with a further increase of d0. If V > 0
after the energy minimization process, a large system-spanning number of cylin-
ders are overlapped. To eliminate overlap, the system is decompressed, i.e., d0 is
uniformly decreased for all cylinders. The energy minimization process is repeated
after the decompression step to find the local potential energy minimum. If V = 0,
the system is compressed; if not, the system is decompressed again. The increment
by which the packing fraction of the cylinders is changed at each compression or
decompression step is gradually reduced to zero. Eventually when all of the cylin-
ders are just touching and the net force on each cylinder is nearly zero, the system is
considered “jammed”, and the process to increase the packing fraction is stopped.

For each polydispersity p, we generated at least 100 static, jammed packings
of cylinders from random initial configurations. The values of φ are typically in
the range between 0.82 and 0.85 with varying degrees of positional order. After
generating jammed packings, we reduce the diameters of all cylinders to the same
value D (with φ = 0.5) to eliminate the size polydispersity. Thus, in the final con-
figurations, the structural disorder exists only in the positions of the cylinders with
order decreasing monotonically with increasing p. Figure 9.1 (a) shows the typical
configurations of N = 1024 cylinders generated with p = 0.1 (left), 0.3 (middle),
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Fig. 9.1 (a) Typical configurations of two-dimensional arrays of air cylinders (white) in a dielec-
tric host (black), generated using Protocol 9.1 described in Sect. 9.2.1 with polydispersity p = 0.1
(left), 0.3 (middle), and 0.5 (right). (b) Contour plot of the ensemble-averaged density spatial au-
tocorrelation function C(�r) and (c) Power spectra |f (q)|2 from Fourier transformed density for
the same polydispersities in (a). The scale bars in (b) and (c) are 5D and 1/D, where D is the
diameter of cylinders in (a). Reprinted with permission from [19], Copyright 2008, Wiley-VCH

and 0.5 (right). For p = 0.1, the system contains several domains of cylinders with
crystalline order, but each possesses a different orientation. With increasing p, the
domains have reduced positional order and decrease in size.

To quantify the structural order, we calculate the ensemble-averaged spatial cor-
relation function of the density, the Fourier transform of the density, the radial distri-
bution function g(r), and the local and global bond orientational order parameters.
The spatial autocorrelation function of density ρ(r) = L−2 ∑N

i=1 θ(r − ri ) is given
by

C(�r) = 〈ρ(r)ρ(r + �r)〉 − 〈ρ(r)〉2

〈ρ(r)〉2
. (9.3)
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Fig. 9.2 (a) Logarithmic plot of the peak amplitudes for the ensemble- and angle-averaged den-
sity spatial autocorrelation function C(�r) for p = 0.1, 0.2, 0.3, 0.4, and 0.5. a = L/N1/2 is
the average distance between adjacent cylinders. The exponential fits of the data (solid lines) give
the decay length ξr . (b) Inset: The first peaks of the angle- and ensemble-averaged Fourier trans-
formed density |f (qa)|2 for p = 0.1 (solid line), 0.2 (dashed line), and 0.4 (short-dashed line),
whose width gives the average domain size ξq . Main panel: ξr (circles) and ξq (squares) versus p.
Reprinted with permission from [19], Copyright 2008, Wiley-VCH

C(�r) is averaged first over the spatial coordinates of the cylinders r within one
configuration, and then over at least 100 independent configurations. A contour plot
of C(�r) is displayed in Fig. 9.1 (b) as a function of increasing p (from left to right)
used to generate the configurations. For p = 0.1, C(�r) displays a large number of
concentric rings and a modulation of the amplitude within a given ring, which indi-
cates strong positional order. As p increases the system becomes more disordered
and isotropic, since the number of visible concentric rings decreases and the ampli-
tude within a given ring becomes more uniform. After integrating C(�r) over the
polar angle, we plot in Fig. 9.2 (a) the peak amplitudes of the rings as a function of
�r/a, where a = L/N1/2 is the average center-to-center distance between neigh-
boring cylinders. The peak amplitudes decay more rapidly with �r at larger p. The
decay is approximately exponential, if we exclude the first peak near �r = a. The
faster decay from the first peak to the second arises from correlations induced by the
just-touching jammed cylinders. The decay length ξr is extracted from the exponen-
tial fit exp[−�r/ξr ] of peak amplitudes after excluding the first peak. As shown in
Fig. 9.2 (b), ξr is smaller for larger p, indicating the range of spatial order becomes
shorter.

We also calculated the spatial Fourier transform of the structures, f (q) =∫
d2r exp[−iq · r]ρ(r), where q is the wavevector. Figure 9.1 (c) displays the

ensemble-averaged power spectra |f (q)|2 for p = 0.1, 0.3 and 0.5, which consist
of concentric rings. The radial width of the rings increases with p, as can be seen
clearly for the first ring (with the smallest radius). The second and third rings are
distinct for p = 0.1, which indicates the six-fold symmetry of the cylinders within
each domain. For p = 0.3 and 0.5, these rings become wider and merge together.
We integrate |f (q)|2 over all directions of q to obtain the intensity as a function of
the amplitude q . The inset of Fig. 9.2 (b) displays the intensity of the first ring versus
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Fig. 9.3 (a) Radial distribution function g(r) for p = 0.1, 0.2, 0.3, 0.4, and 0.5. (b) Local ψl
6

(downward triangles) and global ψ
g

6 (upward triangles) bond-orientational order parameters ver-
sus polydispersity p. Reprinted with permission from [19], Copyright 2008, Wiley-VCH

q for p = 0.1, 0.3 and 0.5. The center position of the peak q0 gives the dominant
spatial correlation length s = 2π/q0. The peak becomes broader at larger p. The full
width at half maximum (FWHM) of the peak �q gives the average size of ordered
domains ξq = 2π/�q . As shown in Fig. 9.2 (b), ξq decreases with increasing p,
similar to ξr .

The radial distribution function g(r), plotted in Fig. 9.3 (a) for several values
of p, gives the probability for a cylinder to be located a distance r from another
cylinder at the origin relative to that for an ideal gas. The strong first peak, splitting
of the second peak, and existence of peaks at large r for p = 0.1 indicate that the
structure possesses crystalline order. With increasing p, the peaks are broadened,
decay faster with r , and g(r) resembles that for a dense liquid [34].

In addition to the translational order, we also characterized the orientational or-
der of the configurations. The bond-orientational order parameter ψ6 measures the
hexagonal registry of nearest neighbors [35]. ψ6 can be calculated ‘locally’, which
does not include phase information, or ‘globally’, which allows phase cancella-
tions. Equations (9.4) and (9.5) provide expressions for the global and local bond-
orientational order parameters in 2D structures.

ψ
g

6 = 1

N

∣∣∣∣∣
N∑
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1
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mi∑
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∣∣∣∣∣ (9.4)
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where θij is the polar angle of the bond connecting the cylinder i to its neighbor
j , and mi denotes the number of nearest neighbors of i. Two cylinders are deemed
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nearest neighbors if their center-to-center distance rij < rmin, where rmin is the lo-
cation of the minimum between the first two peaks in g(r).

As shown in Fig. 9.3 (b), both ψl
6 and ψ

g

6 decrease as p increases. ψl
6 is larger

than ψ
g

6 , because of the different orientations of the ordered domains. The error
bars represent the standard deviations from 100 configurations. For p = 0.1, there
is a significant fluctuation of ψ

g

6 , because some configurations have only a few dis-
tinct domains while others contain many domains with different orientations. With
increasing p, the number of domains Nd increases, thus the mean and standard de-
viation of ψ

g

6 decrease. For p = 0.5, ψ
g

6 ≈ 0, the structures possess only local bond
orientational order with ψl

6 ≈ 0.55 as found in dense liquids [35].

Density of Optical States

We calculate the DOS with transverse electric (TE) polarization using the order-N
method [36]. The magnetic field is parallel to the axis of the air cylinders, and the
electric field exists in the 2D plane. Since the cylinders are generated in a square with
periodic boundary conditions, we can use it as a supercell for the DOS calculation.
For the initial conditions, we choose a superposition of Bloch waves with random
phases for the magnetic field and set the electric field to zero [37]. The temporal
evolution of electromagnetic fields is obtained by solving the Maxwell’s equations
with the finite-difference time-domain (FDTD) method. We record the time series
of fields at 400 positions which are randomly distributed across the structure, and
Fourier transform them to the frequency domain. The sum of their Fourier intensi-
ties (i.e., spectral intensities) consists of a number of peaks that correspond to the
resonant modes. Adding the contributions of many Bloch wave vectors and aver-
aging over many configurations result in a smooth function for the DOS. We have
tested our code by reproducing the DOS for two-dimensional photonic structures in
the literature [37].

In Fig. 9.4, we plot the DOS as a function of the normalized frequency ωa/2πc =
a/λ for the structures generated by the first protocol with p = 0.1, 0.2, 0.3, 0.4, and
0.5, and a triangular lattice (p = 0) with identical density and diameter air cylinders.
The refractive index of the dielectric host in which the air cylinders are embedded
is also varied with n = 3.4, 1.8, and 1.4 from left to right in Fig. 9.4. The values
of n are taken from those of commonly used semiconductors, oxides and polymers.
For n = 3.4 and p = 0, a complete depletion of the DOS from a/λ = 0.235 to
0.365 results from the full PBG between the first and second bands of the triangular
lattice. With the introduction of positional disorder, defect modes are created inside
the gap, and the frequency region of depleted DOS becomes shallower and narrower.
The higher frequency side of the gap (air band edge) is affected more than the lower
frequency side (dielectric band edge). Because the air holes are isolated and the
dielectric host is connected, the dielectric bands below the gap are more robust to
the disorder than the air bands above the gap. For n = 1.8, the PBG of the periodic
structure becomes smaller, and thus the depleted region of the DOS is narrower. For
the perfect crystal with n = 1.4, the first photonic band at the K point (K1) has the
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Fig. 9.4 Density of optical states (DOS) as a function of the normalized frequency ωa/2πc = a/λ

for the 2D structures generated by the first protocol with p = 0.1, 0.2, 0.3, 0.4, and 0.5, and a
triangular lattice (p = 0) of identical density and diameter of air cylinders. The dielectric media,
in which the air cylinders are embedded, have refractive indexes (a) 3.4, (b) 1.8, and (c) 1.4.
Reprinted with permission from [19], Copyright 2008, Wiley-VCH

same energy as the second band at the M point (M2), thus the full PBG disappears.
As a result, the DOS displays a dip, rather than a complete depletion. As shown in
Fig. 9.4, the addition of positional disorder causes the dip in the DOS to become
shallower and eventually disappear at large disorder.

To quantify the strength of the DOS depletion, we introduce the normalized
depth S, which is defined as the ratio of the maximal depth of DOS reduction to
the DOS of a random structure at the same frequency. The density and diameter
of air cylinders as well as the refractive index of the dielectric host in the random
structure are identical to those of the structures under investigation. The DOS of the
random structure increases almost linearly with frequency, similar to that of a ho-
mogeneous 2D dielectric medium. We investigated the dependence of S on various
order parameters, e.g. the local bond orientational order ψl

6. S increases gradually
with ψl

6. However, the variation depends on the refractive index contrast n, and is
therefore not universal.

To obtain universal behavior for a given degree of positional order, we must ac-
count for the effect of refractive index contrast on the DOS. The refractive index
contrast determines the strength of the PBG, which is reflected in the attenuation
length of Bragg diffraction, or the Bragg length lb. Roughly speaking, the Bragg
length gives an order of magnitude estimate for the minimal size of a periodic struc-
ture that is necessary to form a PBG via Bragg scattering. Since periodic structures
are anisotropic, lb varies with direction. However, since the DOS is a sum of optical
modes in all directions, the relevant Bragg length is an average over all directions.
To obtain the value of lb in the numerical simulations, we place a continuous dipole
source of frequency ωd in the middle of a large triangular array of air cylinders. We
then calculate the electric field intensity at a distance r from the source, and inte-
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Fig. 9.5 (a) Normalized depletion depth of the DOS S for arrays of air cylinders in a dielectric
host of refractive index n versus the ratio of the average domain size ξq to the angle-averaged
Bragg length lb . A linear fit (solid gray line) of the data on the log-log plot for ξq/ lb � 5 gives a
power-law scaling exponent of 0.52. (b) Relative width w of the frequency region where there is a
reduction in the DOS as a function of ξq/ lv , where lv is the frequency- and angle-averaged Bragg
length. The error bars are obtained from the standard deviation of ξq for different configurations
and fitting errors in the FWHM of the DOS reduction zones. Reprinted with permission from [19],
Copyright 2008, Wiley-VCH

grate it over the polar angle. The Bragg length lb is extracted from the exponential
decay of the angle-integrated field intensity I with r .

In Fig. 9.5 (a), we plot the depth S versus the average size of the ordered domains
normalized by the Bragg length, ξq/ lb . All data points for different refractive index
contrasts fall on a single curve. When ξq/ lb is above a threshold value (∼5), S is
almost unity, which implies that the depletion in the DOS is nearly complete as in
a perfect crystal. When ξq/ lb � 5, S decreases rapidly. The drop can be fit by a
straight line on a log-log plot, which reveals a power-law decay with an exponent
∼0.52. This result can be understood qualitatively as follows. If the domain size is
larger than the Bragg length, Bragg scattering in a single domain is strong enough
to form a PBG. The DOS in systems with large ξq/ lb is nearly equal to the DOS of
a perfect crystal, and these structures can be regarded as photonic polycrystals. In
addition, an average over many domains of different orientations makes the direc-
tional DOS isotropic. If the domain size is smaller than the Bragg length, individual
domains are too small to form PBGs. In this case, the effect of Bragg scattering is
reduced due to a limited number of periodic units, and the depletion of the DOS is
weakened. This is the amorphous photonic regime, where short-ranged order leads
to a partial depletion of the DOS. The well-defined threshold in ξq/ lb demonstrates
a clear transition from polycrystalline to amorphous photonic structures.

In addition to the depth of the DOS reduction, we also studied the spectral width
of the reduction region. The relative width w is defined as the ratio of the full width
at half minimum (FWHM) of the dip in the DOS δω to the frequency ω0 at the center
of the dip. Since the Bragg length varies within the spectral region of DOS reduc-
tion, we average its value over the frequency range from ω0 − δω to ω0 + δω. The
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average domain size is normalized by the average Bragg length lv . Figure 9.5 (b)
shows a plot of w versus ξq/ lv for several values of n. Although the curves for dif-
ferent n do not coincide, their trends are similar. As ξq/ lv increases, w first drops
and then rises (except for n = 1.4). The turning point is at ξq/ lv ∼ 1. To understand
this behavior, we first examine the DOS for periodic systems. At n = 3.4, the DOS
is enhanced at the photonic band edges due to the slow group velocity [Fig. 9.4 (a)].
When positional disorder is introduced to the structure, the DOS peak at the air band
edge is quickly lowered and the higher frequency part of the PBG is filled by de-
fect modes. In contrast, the peak at the dielectric band edge decreases more slowly,
because the dielectric bands are more robust against disorder as mentioned earlier.
The gap width is reduced, until the DOS peak at the dielectric band edge diminishes
at a certain degree of disorder. Then the DOS below the dielectric band edge starts
decreasing with further increases in disorder. The DOS reduction region becomes
wider. As n decreases, the strength of DOS reduction by PBGs is weakened, and
δω/ω0 is lowered. At n = 1.4, w no longer rises beyond ξq/ lv ∼ 1; instead it tends
to a plateau.

Enhanced Scattering and Mode Confinement by Short-Range Order

In nature, the refractive index contrast is typically low, nevertheless photonic amor-
phous structures are used to manipulate light scattering and color generation. In
this section, we investigate the effects of short-range order on light scattering and
mode confinement in amorphous structures with low index contrast. We consider the
structures generated by the first protocol with p = 0.5. When we set n = 1.4, the
DOS possesses an extremely shallow dip as shown in Fig. 9.6 (a). For n = 1.2, the
DOS in Fig. 9.6 (e) is nearly featureless. We calculate the resonant modes in these
structures using the finite element method. Instead of periodic boundary conditions,
the structures have finite size and open boundaries. Each structure contains 1024
air cylinders in a dielectric medium. The open boundaries are terminated by per-
fectly matched layers that absorb all outgoing waves. Because of light leakage from
the finite-sized structure, the resonant modes have finite lifetimes. We calculate the
complex frequencies of all resonances ωr + iωi . The amplitude of ωi is inversely
proportional to the lifetime. The quality factor is defined as Q = ωr/2|ωi |. We ob-
tain the maximal quality factors Qm of modes within small frequency intervals, and
plot them in Fig. 9.6 (b, f). Although the dip in the DOS is barely visible at n = 1.4,
Qm is enhanced by a factor of three at a frequency near the center of the dip. Further,
even though there is essentially no dip in the DOS for n = 1.2, Qm displays a peak.
Figure 9.6 (d, h) shows the spatial distributions of electric field intensities |E(x,y)|2
for the modes with maximal Qm (marked by the arrows in Fig. 9.6 (b, f)). It is ev-
ident that the mode of maximal Qm at n = 1.4 is localized within the structure.
For n = 1.2 the mode is more delocalized, but the field intensity near the boundary
(marked by white dashed line) is still weaker than that in the interior. To determine
the degree of localization, we calculate the mode size which is inverse of the inverse
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Fig. 9.6 The DOS (a, e) and maximal quality factors Qm of resonant modes (b, f) for the amor-
phous photonic structures with low refractive index contrast n = 1.4 for (a–d) and 1.2 for (e–h).
Grey backgrounds in (a, e) represent the DOS for 2D homogeneous media. (d, h) Spatial distri-
bution of electric field intensities for the modes of maximal Qm [marked by arrows in (b, f)].
(c, g) Transport mean free path lt (solid line), total scattering cross sections of a single scatterer σt

(dashed line), and the structure factor S(q) at q = 2k (dotted line), where k is the wavevector of
light. Reprinted with permission from [19], Copyright 2008, Wiley-VCH

participation ratio,

s ≡ 1

L2

(
∫ |E(x,y)|2 dx dy)2∫ |E(x,y)|4 dx dy

, (9.6)

where a mode uniformly distributed over the sample gives s = 1. We find that the
mode in Fig. 9.6 (d) has s = 0.18 and is thus highly localized, while the one in
Fig. 9.6 (f) has s = 0.44 and is only partially localized.

To illustrate the physical mechanism that leads to mode confinement, we calcu-
late the transport mean free path

1

lt
= π

k6

∫ 2k

0
ρF(q)S(q)q3 dq, (9.7)

where k is the wavevector of light, ρ is the number density of air cylinders, S(q)

is the structure factor, F(q) is the form factor, and q is the spatial frequency. F(q)
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is given by the differential scattering cross section of a single air cylinder in the
dielectric medium. The structure factor is given by

S(q) ≡ 1

N

N∑
i,j=1

eiq·(ri−rj ), (9.8)

where ri denotes the center position of the ith cylinder. Since the structures are
isotropic, S(q) is invariant with the direction of q and is only a function of the mag-
nitude q . In Fig. 9.6 (c, g), we show that lt displays a significant drop at a frequency
that coincides with the peak in Qm. This indicates that the enhancement of scattering
strength improves mode confinement. In Fig. 9.6 (c, g) we also plot the total scat-
tering cross section σt of a single air cylinder, which increases monotonically with
frequency and does not exhibit any resonant behavior within the frequency range
studied. This behavior suggests that the dip in lt is not caused by Mie resonance of
individual scatterers. Instead, we contend that the short-range order enhances Bragg
backscattering at certain wavelengths and shortens lt . To prove this, we also plot
S(q) for the backscattering q = 2k in Fig. 9.6 (c) and (g). S(q) is peaked near the
dip of lt , which confirms that collective backscattering from local domains of or-
dered cylinders causes a dramatic decrease in lt . Therefore, the spatial confinement
of resonant modes is enhanced by short-range order through constructive interfer-
ence of scattered light that occurs at specific frequencies.

9.2.2 Lasing in Photonic Polycrystalline and Amorphous
Structures

Next we present the experimental study on lasing characteristics in photonic poly-
crystalline and amorphous structures.

Sample Fabrication and Lasing Experiment

The computer generated patterns of polycrystalline and amorphous arrays of circu-
lar holes were transferred to a GaAs membrane. A 190-nm-thick GaAs layer and a
1000-nm thick Al0.75Ga0.25As layer were grown on a GaAs substrate by molecu-
lar beam epitaxy. Inside the GaAs layer there were three uncoupled layers of InAs
QDs equally spaced by 25 nm GaAs barriers. 2D arrays of cylinders were written
on a 300-nm-thick ZEP layer with the electron-beam lithography. The patterns were
transferred to the GaAs layer by chlorine-based inductive-coupled-plasma reactive-
ion-etching with the ZEP layer as a mask. The ZEP layer was subsequently re-
moved in an oxygen plasma cleaning process. Finally the Al0.75Ga0.25As layer was
selectively removed by a dilute HF solution. Figure 9.7 (a, b) shows the top-view
scanning electron microscope (SEM) images of two fabricated patterns. The lateral
dimension of a pattern is 9.3 µm, and it has 1024 air holes. The radius of air holes r
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Fig. 9.7 (a, b) Top-view SEM images of fabricated arrays of air holes in a GaAs membrane. The
scale bar is 2 µm. Ordered domains of different orientations can be seen in (a), but barely in (b).
(c) 2D spatial correlation function C(�r) averaged over five configurations including the pattern
in (b) and equivalent ones. Scale bar = 300 nm. (d) Log-linear plot of the peak amplitude of
azimuthal-averaged spatial correlation function C(�r), squares for the pattern in (a), and circles
for (b). The straight lines are exponential fit, giving the decay length ξ = 2.3a for (a) and 1.4a
for (b). Reprinted with permission from [21], Copyright 2008, Wiley-VCH

is 100 nm. In the pattern of Fig. 9.7 (a), we can clearly see domains of the triangular
lattice of holes, each domain has a different orientation. In Fig. 9.7 (b), the domains
are so small that barely visible.

For qualitative understanding of the short-range order, the 2D spatial correlation
function C(�r) for these patterns were calculated. A typical ensemble-averaged
C(�r) is presented in Fig. 9.7 (c). It consists of rings whose amplitudes decrease
with increasing spatial separation �r ≡ |�r|. Since C(�r) is isotropic, we calcu-
lated the azimuthal-averaged C(�r) for the two patterns in (a, b) and plotted the
peak amplitudes in Fig. 9.7 (d). The first peak away from �r = 0 is produced by the
nearest cylinder, thus its position corresponds to the average spacing a of the nearest
neighbors. The two patterns in Fig. 9.7 (a, b) have a = 290 nm. The faster damping
of C(�r) for the pattern in Fig. 9.7 (b) reflects the spatial correlation is shorter-
ranged. They both fall on straight lines in a log-linear plot, indicating exponential
decays. The decay length ξ = 2.3a, and 1.4a for the patterns in Fig. 9.7 (a, b). Ac-
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Fig. 9.8 (a) Measured spectrum of emission from a pattern of ξ = 4.4a and a = 290 nm at the
incident pump power P = 30 µW. The inset is an optical image of the lasing mode corresponding
to the sharp peak in the emission spectrum. Black dashed square marks the pattern boundary.
(b) Intensity I (black square) and width �λ (blue circle) of the lasing peak in (a) versus the
incident pump power P in a logarithmic plot. The red dotted lines represent linear fit of log I vs.
logP in three regimes, and the numbers next to them are those slopes. Reprinted with permission
from [21], Copyright 2008, Wiley-VCH

cording to our previous study [19] and the calculation results in the next section, the
pattern in Fig. 9.7 (a) is polycrystalline and (b) amorphous.

In the lasing experiments, the samples were cooled to 10 K in a continuous-
flow liquid Helium cryostat, and optically pumped by a mode-locked Ti:Sapphire
laser (pulse width ∼200 fs, center wavelength ∼790 nm, and pulse repetition rate
∼76 MHz). A long working distance objective lens (numerical aperture =0.4) fo-
cused the pump light to a pattern at normal incidence. The diameter of pump spot
on the sample surface was about 2 µm. The emission from the sample was collected
by the same objective lens. The emission spectrum was measured by a high res-
olution spectrometer with a liquid-nitrogen-cooled coupled-charged-device (CCD)
array detector. Simultaneously the spatial distribution of emission intensity across
the sample surface was projected onto a thermoelectric-cooled CCD camera.

Figure 9.8 (a) is part of a time-integrated spectrum of emission from a polycrys-
talline pattern (ξ/a = 4.4, a = 290 nm). It features a sharp peak on top of a broad
QD emission band. Figure 9.8 (b) plots the intensity I and linewidth �λ of this
peak as a function of the incident pump power P . The variation of log I with logP

exhibits a S-shape with two kinks. The slopes in the three regimes separated by the
two kinks were obtained from curve fitting and written on the graph. In the first
and last regimes, the slopes of log I over logP are very close to unity, indicating
a linear growth of I with P . The second regime has a slope of 5.44, meaning I

scales as P 5.44. The first regime corresponds to spontaneous emission of QDs to
a resonant mode, thus the intensity increases linearly with the pump power. When
the pump is high enough, the emission peak grows superlinearly as a result of light
amplification by stimulated emission. This is the second regime. In the third regime,
lasing occurs in this mode, and the gain saturation reduces the slope to one. Also
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Fig. 9.9 (a) Evolution of emission spectra of a pattern with ξ/a = 1.4 and a = 270 nm as the pump
power increases (from bottom to top). Inset is an optical image of the lasing mode at λ = 970 nm.
(b) Intensity and width of the emission peak at λ = 970 nm as a function of the pump power.
Reprinted with permission from [21], Copyright 2008, Wiley-VCH

seen in Fig. 9.8 (b), the spectral width �λ of the peak first drops quickly with in-
creasing P , then levels off and increases slightly at higher P . The rapid decrease
of �λ is expected at the onset of lasing oscillation. The gradual increase above the
lasing threshold results from the hot carrier effect. Due to the short pulse pumping,
the carrier density keeps changing in time. It causes a temporal change of the re-
fractive index, and consequently a continuous red-shift of lasing frequency [38, 39].
In our time-integrated measurement of lasing spectrum, the transient frequency shift
results in a broadening of the lasing line. Such broadening increases with the hot car-
rier density and becomes dominant at high pumping level. The inset of Fig. 9.8 (a)
is an optical image of the lasing mode, revealing its strong localization inside the
pattern whose boundary is marked by the black dashed line.

We also realized lasing in photonic amorphous structures. As seen in Fig. 9.9 (a),
there are many peaks of comparable height in the emission spectra of a pattern with
ξ = 1.4a. Figure 9.9 (b) is a plot of the intensity and width of an emission peak
at λ = 970 nm versus the pump power. The rapid increase of peak intensity and
dramatic reduction of the peak width illustrates the onset of lasing action. A tun-
able interference filter was placed in front of the CCD camera to select this lasing
mode for imaging. Inset of Fig. 9.9 (a) are the optical images of two lasing modes.
The left one is spatially localized inside the pattern whose boundary was drawn by
the dashed line. The double-peaked intensity distribution of the mode on the right
is similar to that of a 2D necklace state in [40], suggesting it is a hybrid of two
localized states. Further study is needed to confirm it is a necklace state [40, 41].

As we moved the pump beam spot across a pattern, new lasing peaks replaced
the existing ones, and they have distinct frequencies. This phenomena indicate that
resonant modes are localized in different positions of the samples, and brought to
lasing when overlapped with the pump spot. We repeated the lasing experiment on
several patterns with different arrangement of air holes but same ξ/a, and found the
lasing peaks varied from pattern to pattern. We measured the patterns of different
ξ/a and recorded the lasing wavelengths. Figure 9.10 plots the wavelengths of las-
ing peaks for five values of ξ/a. For a fixed ξ/a, there is a wide spread of lasing
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Fig. 9.10 Measured
wavelengths of lasing peaks
for patterns of different
domain size ξ . The average
spacing of
nearest-neighboring air holes
is a = 290 nm. Reprinted
with permission from [21],
Copyright 2008, Wiley-VCH

wavelengths due to the broad QD gain spectra. Nevertheless, it is evident that the
lasing peaks shift to shorter wavelength as the average domain size ξ decreases.

Numerical Simulation of Lasing Modes

To explore the nature of lasing modes in photonic polycrystalline and amorphous
structures, we performed numerical simulation. The perforated GaAs membrane is
approximated as a 2D array of infinitely long air cylinders embedded in a uniform
dielectric host with an effective index of refraction nw . The value of nw was ob-
tained in the following steps. First we calculated the photonic band structure of a
triangle lattice of air holes in a free-standing GaAs membrane of thickness 190 nm
using the plane wave expansion method [42]. The density and size of air holes were
identical to those of the fabricated samples. Next we calculated the photonic band
structure of the approximate 2D system with nw as a parameter. By adjusting the
value of nw , we matched the center frequency of the fundamental PBG obtained in
the above two cases. In our calculation, we considered only the transverse-electric
(TE) polarization (electric field perpendicular to the air cylinder axis), because ex-
perimentally the laser emission is TE polarized due to stronger gain of the InAs QDs
for the TE polarized light.

Using the finite-difference frequency-domain (FDFD) method, we calculated the
resonant modes with long lifetime in the passive structures. Due to the finite size of a
pattern, light may escape through the open boundary. The outgoing wave is absorbed
by the perfectly matched layer that surrounds the pattern. The resonant modes have
finite lifetime, and their frequencies are complex numbers ωr + iωi . The magnitude
of ωi is inversely proportional to the mode lifetime. The quality factor is defined as
Q = ωr/2|ωi |. We calculated the complex frequencies of TE modes, and found the
highest quality factor Qm within small frequency bins. Figure 9.11 (a) plots Qm ver-
sus the normalized frequency a/λ for ξ/a = 2.3 and 1.4. Qm drops quickly as ξ/a

decreases. Nevertheless, it reaches the maximum at the same frequency a/λ = 0.3
for different ξ/a. This result can be explained by the DOS shown in Fig. 9.11 (b).
For ξ/a = 2.3, there is a significant depletion of DOS, almost comparable to that of
a PhC. The system can be regarded as a photonic polycrystal, as individual domains
are large enough to form the PBG via Bragg scattering. Defect modes are formed
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Fig. 9.11 (a) FDFD calculation of approximate 2D structures (nw = 2.73) giving the maximal
quality factor Qm versus the normalized frequency a/λ for ξ/a = 2.3 (blue circle) and 1.4 (black
square). (b) Calculated DOS for ξ/a = 2.3 (top) and 1.4 (bottom). The curves are shift vertically
for clarification. Calculated spatial intensity distribution of the highest-Qm mode for ξ/a = 2.3 (c)
and 1.4 (d). They are marked with circles in (a). Reprinted with permission from [21], Copyright
2008, Wiley-VCH

inside the PBG. The closer their frequencies to the center of PBG, the higher their
quality factors. Therefore, the highest-Q resonances in the photonic polycrystal are
defect modes. They are strongly localized in space, as can be seen from a typical
mode profile in Fig. 9.11 (c). The mode size, computed from the inverse partici-
pation ratio of the field distribution, is about 0.6 µm. When ξ/a is reduced to 1.4,
Bragg scattering from each domain is not enough to produce a PBG. Consequently,
the DOS has a dip instead of a gap. In this photonic amorphous structure, the peak
of Qm coincides with the dip of DOS. The reduction in DOS results from the short-
range order, which enhances optical confinement and produces the maximum of
Qm [19, 20]. It leads to the maximum of Qm. The spatial profile of a typical high-Q
resonance is shown in Fig. 9.11 (d). The mode size is about 1.0 µm, much smaller
than the lateral size of the structure (9.3 µm). This means the mode is still localized
spatially, but the degree of localization is less than the defect mode in a polycrys-
tal [Fig. 9.11 (c)]. The maximal Qm drops quickly as the average domain size ξ

decreases.
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In our experiment the optical gain is distributed nonuniformly across the sample,
because the pump spot diameter (∼2 µm) is smaller than the lateral dimension of
the pattern (9.2 µm). Only the QDs inside the pump area are excited and provide
optical gain. When light scattering is weak, the lasing modes may be very different
from the resonant modes of the passive systems [43–45]. However, our samples have
strong scattering, the transport mean free path is estimated [46] at a/λ = 0.30 to be
0.36 µm in the polycrstalline sample (ξ/a = 2.3) and 0.53 µm in the amorphous
structure (ξ/a = 1.4). We extracted the localization length ξL in these structures
by placing a monochromatic source at the center and calculating the steady-state
field distribution. From the decay of the field intensity away from the source, we get
ξL = 0.38 µm at a/λ = 0.30 in the sample of ξ/a = 2.3, and 0.46 µm in the sample
of ξ/a = 1.4. Since the localization length is much smaller than the system size,
the resonant modes are strongly confined within the structures. The typical size of
high-Q modes is smaller than or comparable to the pump spot size, thus the lasing
modes correspond to the high-Q modes inside the pump area.

According to the 2D calculation results, the frequencies of the highest-Q modes
are the same for polycrystalline and amorphous structures, thus the lasing modes
should not shift in frequency as ξ changes. This prediction contradicts the exper-
imental data in Fig. 9.10, because light leakage in the third dimension is ignored
in the calculation of 2D structures. Although light is confined in the free-standing
GaAs membrane by index guiding, it can escape from the top or bottom surfaces
of the membrane to the surrounding air. To account for this leakage, we performed
the three-dimensional (3D) finite-difference time-domain (FDTD) calculation. The
structural parameters used in the calculation are identical to those of the fabricated
samples.

We calculated the high-Q resonances of TE polarization in the absence of gain
or absorption. The quality factors Qt of all modes within the frequency range of
interest were found and plotted versus the normalized frequency a/λ in Fig. 9.12
for ξ/a = 2.3 and 1.4. The values of Qt are orders of magnitude lower than those
in Fig. 9.11 (c) for the same value of ξ/a. This result illustrates that the vertical
leakage of light is much larger than the lateral leakage for the high-Q resonances.
Such strong vertical leakage results from tight confinement in the lateral dimension.
Namely, spatial localization of a mode in the xy-plane (parallel to the membrane)
results in a broad distribution of in-plane wavevector k|| (projection of k vector to
the xy-plane). The k|| components within the light cone (|k||| ≤ ω/c) can escape
from the membrane in the ±z directions (normal to the membrane). The vertical
leakage rate is characterized by the out-of-plane energy loss per optical cycle Q−1

v ,
and the lateral by Q−1

h . The total loss is described by Q−1
t = Q−1

h + Q−1
v .

For the amorphous structure of ξ/a = 1.4, the mode of maximal Qt at a/λ �
0.32 has Qh = 4.88 × 104, and Qv = 1.62 × 103. Thus, the vertical leakage rate
is an order of magnitude larger than the lateral one. In a polycrystalline structure,
the tighter in-plane confinement of defect modes within the PBG makes the vertical
leakage even stronger. Consequently, the modes at the center of PBG no longer have
the highest Qt , even though their Qh is maximal. The highest Qt modes are away
from the PBG center, as shown in Fig. 9.12 for ξ/a = 2.3. These modes are less
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Fig. 9.12 3D FDTD calculation of resonances in the perforated GaAs membrane giving their
quality factor Qt as a function of the normalized frequency a/λ for ξ/a = 2.3 (a) and 1.4 (b).
Reprinted with permission from [21], Copyright 2008, Wiley-VCH

confined in-plane, meaning their Qh is lower. The larger spread in the xy-plane
narrows the k|| distribution. The k|| components within the light cone is reduced, so
is the out-of-plane leakage. The maximal-Qt mode at a/λ = 0.3 has Qh = 7.55 ×
104, and Qv = 3.87 × 103. Although its Qh is lower than that of the defect modes
at a/λ = 0.32 (PBG center), the Qv is higher, so is the Qt . Intuitively, the mode
at the higher frequency side of the PBG center, i.e., at a/λ = 0.34, should have
comparable Qt to the maximal-Qt mode at the lower frequency side (a/λ = 0.30),
as their spectral distance to the PBG center is the same. However, the Qt is lower
at a/λ = 0.34, as seen in Fig. 9.12. This is because the air holes are isolated and
the dielectric medium is connected in the membrane. The dielectric band edge at
the lower frequency side of PBG is more robust to disorder, as evident in the DOS
shown in Fig. 9.11 (b). Consequently, light confinement is stronger in the lower
frequency part of the PBG, giving higher Qt at a/λ = 0.3.

The 3D numerical simulation reveals that the maximal-Qt modes shift to higher
frequency as ξ decreases. This prediction agrees with the experimental observation
that the wavelengths of lasing modes decreases from polycrystalline to amorphous
patterns.

Control of Lasing with Short-Range Order

To characterize the effect of short-range structural order on lasing, we can either
measure the threshold of individual lasing modes at different wavelength, or com-
pare the intensity of different lasing modes at the same pumping level. In principle,
the spectral variation of gain coefficient and mode competition for gain would in-
fluence the lasing threshold and emission intensity. However, the gain spectrum of
InAs QDs is very broad, and the gain coefficient has little variation over a wide spec-
tral range. More importantly, the gain spectrum is dominated by inhomogeneous
broadening, which significantly weakens mode competition. Hence, the interaction
of lasing modes at different wavelength or spatial location is negligible. To increase
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Fig. 9.13 Measured intensities of lasing peaks from three PAS of a = 235 nm, 255 nm and
275 nm. The air filling fraction f = 0.33 in (a) and 0.28 in (b). Laser emission intensity reaches
the maximum at the normalized frequency a/λ = 0.26 in (a) and 0.24 in (b). Reprinted with per-
mission from [20], Copyright 2008, Wiley-VCH

the range of normalized frequency ωa/2πc = a/λ, we probe lasing in multiple ar-
rays of distinct a. The ratio of r over a is kept constant, so that the filling fraction
f of air does not change. Figure 9.13 (a) plots the intensities of numerous lasing
modes collected from three arrays of a = 235 nm, 255 nm and 275 nm. The inci-
dent pump power is fixed at 16 µW. The pump spot is scanned across the interior
of each array to probe lasing modes at different locations. The size of pump spot
is kept at 1.2 µm. The range of a/λ, covered by the three patterns, is from 0.23 to
0.29. As a/λ increases, the lasing mode intensity first increases and then decreases.
It reaches the maximum at a/λ = 0.26. Thus lasing becomes the strongest, or equiv-
alently the lasing threshold is the lowest at a/λ = 0.26. Next we change the air
filling fraction f from 0.33 to 0.28 by varying r/a, and measure three samples of
a = 235 nm, 255 nm and 275 nm. As shown in Fig. 9.13 (b), the maximum intensity
of lasing modes is shifted to a/λ = 0.24. These results confirm that there exists an
optimal frequency for lasing in the PAS, and its value can be tuned by the structural
parameters.

To interpret the experimental data, we calculate the quality (Q) factor of resonant
modes in the samples. The higher the Q factor, the longer the photon lifetime in the
PAS, the stronger the amplification of light. We use the finite-difference frequency-
domain (FDFD) method in the numerical simulation. Since the 3D FDFD calcula-
tion is computationally expensive, we calculate the resonant modes in the approxi-
mate 2D structures. More specifically, we first compute the effective refractive index
nw of the waveguided mode in the GaAs layer free standing in air. We consider only
the transverse-electric (TE) polarization (electric field parallel to the GaAs layer),
because the laser emission is TE polarized. Then the value of nw as a function of
λ is assigned to the refractive index of the dielectric host in which the air cylinders
are embedded. The air cylinders are assumed to be infinitely long in the 2D FDFD
calculation. Figure 9.14 (a) plots Q vs. a/λ for three PAS of f = 0.33. The values
of a and r are equal to those of the fabricated samples. The Q factor is peaked at
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Fig. 9.14 Calculated Q factor of resonant modes in the PAS whose structural parameters are
identical to those in Fig. 9.13 (a) and (b). As the air filling fraction f changes from 0.33 (a) to
0.28 (b), the maximum of Q factor shifts to lower normalized frequency a/λ. Reprinted with
permission from [20], Copyright 2008, Wiley-VCH

a/λ = 0.24. When the air filling fraction f is changed to 0.28, the maximum of Q

factor shifts to a lower frequency (Fig. 9.14 (b)). These trends agree qualitatively to
those of laser emission intensity measured experimentally (Fig. 9.13). The maxima
occur at slightly different frequencies, due to 2D approximation in the numerical
simulation and uncertainty in determining the refractive index of GaAs at low tem-
perature. Note that the 2D simulation only takes into account light leakage through
the edges of an array. Experimentally, light can also escape through the top or bot-
tom surface of the GaAs membrane to air. The vertical leakage is included in our
finite-difference time-domain (FDTD) simulation of a free-standing GaAs mem-
brane. For the PAS, the total Q factor (including both lateral and vertical leakage)
displays a similar trend to that in Fig. 9.13. However, the actual Q value is notably
lower than that in Fig. 9.14 as a result of the vertical leakage. Hence, the variation
of Q with a/λ is determined by the lateral leakage. The existence of Q maximum
indicates light confinement is the strongest at specific wavelength λ that scales with
the characteristic length scale a of the structure. Thus the Q enhancement originates
from the short-range order. Since stronger optical confinement increases the dwell
time of light in the structure, light experiences more amplification and the lasing
threshold is reduced. In other words, the maximum of the Q factor leads to a mini-
mum of the lasing threshold, or equivalently, a maximum of laser emission intensity
at a fixed pump power above the threshold.

To confirm the origin of Q enhancement, we estimate the transport mean free path
lt , which is a measure of the scattering strength. For the approximate 2D structure,

lt (λ) =
(

π

k6

∫ 2k

0
ρF(q)S(q)q3 dq

)−1

, (9.9)

where q is the spatial frequency of the structure, F(q) is the form factor, S(q) is
the structure factor, ρ is the density of scatterers, and k is the wave vector [47].
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Fig. 9.15 (a) Estimated transport mean free path lt (black solid curve) as a function of the normal-
ized frequency a/λ in the PAS of air filling fraction f = 0.33 (a) and 0.28 (b). Red dashed curve
is the structure factor S(q = 2k) of PAS, and the blue dotted curve the total scattering cross section
σt of a single air cylinder embedded in a dielectric host. σt does not exhibit any Mie resonance.
The dip in lt almost coincides with the peak in S(q), confirming the enhanced light scattering is
caused by short-range order

k = 2πne/λ, where λ is the wavelength in vacuum, and ne is the effective index
of refraction of the 2D structure. If the structure is completely random, S(q) be-
comes 1. For the PAS, we compute the structure factor from the center positions
of air holes. Since the structure is isotropic, S depends only on the magnitude of q.
F(q) is obtained from the differential scattering cross section of a single air cylinder
(infinitely long) embedded in a dielectric host of refractive index nw . ne is estimated
by the Maxwell-Garnett formula with the air filling fraction f .

Figure 9.15 (a) plots lt (black solid curve) as a function of a/λ for the PAS of
f = 0.33. It has a significant dip at a/λ = 0.24, where light scattering becomes
the strongest. The minimum of lt almost coincides with the maximum of Q in
Fig. 9.14 (a), indicating the optimal light confinement is caused by the strongest
scattering. To find the origin of enhanced light scattering, we plot the total scatter-
ing cross section σt of a single air cylinder (blue dotted curve) in Fig. 9.15 (a). It in-
creases monotonically with a/λ, and does not exhibit any resonant behavior within
the frequency range of study. Hence, the dip in lt is not caused by any Mie resonance
of individual scatterers. In the same figure we also plot S(q) for the backscattering
q = 2k. Its value is peaked near the dip of lt , confirming the short-range order en-
hances backscattering and shortens lt [29]. Similar results are obtained for the PAS
of f = 0.28 [Fig. 9.15 (b)]. The dip of lt moves to lower frequency, consistent with
the shift of Q maximum [Fig. 9.14 (b)] and the strongest laser emission intensity
[Fig. 9.13 (b)]. Note that in the estimation of lt with (9.1), the near-field coupling
of adjacent scatterers is neglected. Within the frequency range of interest, there is
no scattering resonance of individual air cylinders, thus the coupling of neighboring
cylinders via evanescent wave is weak.



9 Lasing in Amorphous Nanophotonic Structures 249

9.3 Photonic Network Structures and Lasers

The photonic amorphous structures have two types of topology: (i) an aggregate
of dielectric spheres/cylinders, (ii) a continuous network of dielectric material.
The photonic bandgaps can be formed in (i) via evanescent coupling of Mie res-
onances of individual scatterers [10–14, 18]. However, two-dimensional and three-
dimensional (3D) realizations of (ii) can possess larger PBGs [16, 17, 48] For ex-
ample, a photonic amorphous diamond structure formed by a 3D network of silicon
has a 18 % PBG [16, 48]. Since the PAS is isotropic, the PBG is identical in all
directions. The photonic bandedge (BE) modes can be strongly localized without
introducing any defect in a PAS [17, 18, 48]. It is dramatically different from a
periodic structure where the PBG is anisotropic and the BE modes are spatially
extended.

Most studies on amorphous network structures have focused on passive systems
that have no gain or nonlinearity. What happens if we introduce optical gain to
the 2D amorphous network structures? Can we achieve lasing? What are the lasing
modes? These questions will be addressed in the section.

9.3.1 2D Photonic Network Laser

To generate a 2D trivalent network structure (each junction having three bonds),
we first created a jammed packing of polydisperse cylinders in a computer sim-
ulation [19]. The center positions of cylinders are marked by black solid circles
in Fig. 9.16 (a). Then we performed a Delaunay tessellation that provides triangu-
lar partitioning (blue thin lines) [17]. Associated with each triangle is a centroidal
point. We connected the centroids of neighboring triangles with line segments. The
resulting structure is a trivalent network shown in red thick lines. The spatial Fourier
spectra of the structure [inset of Fig. 9.16 (b)] exhibits a circular ring pattern, indi-
cating the structure is isotropic and there exits a dominant spatial frequency that
corresponds to the radius of the ring. We also calculated the 2D spatial correlation
function C(�r), which is plotted in Fig. 9.16 (b). The characteristic length scale
of the structure a is obtained from the first peak of the correlation function. The
rapid decay of the amplitude of C(�r) with �r reveals the structural correlation is
short-ranged.

As to be detailed later, we fabricated 2D trivalent network structures in a GaAs
membrane that was 190 nm thick and free-standing in air. To obtain the effective
index of refraction ne of the GaAs segments for the 2D simulation, we computed
the fundamental PBG in a triangle lattice of air holes in a free-standing GaAs mem-
brane (using the plane wave expansion method), then adjusted ne of an approximate
2D structure to get a similar PBG. The value of ne depends on the filling fraction
of air in the GaAs membrane f , which is chosen to be 0.53 to have the maximal
PBG. The 2D network structure was assigned the same f = 0.53 and ne = 2.68.
We calculated the 2D density of optical states (DOS) using the order N method in
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Fig. 9.16 (a) Black solid circles are the center positions of polydisperse cylinders produced by
jammed packing in a computer simulation. Blue thin lines represent the Delaunay tessellation,
that leads to the formation of a trivalent network structure shown in red thick lines. (b) Spatial
Fourier spectra (inset) and spatial correlation function C(�r) (main panel) of the trivalent network
structure. (scale bar: 2π/a) (c) Calculated density of optical states for a trivalent network structure
(blue dashed line) and an amorphous array of air cylinders (black solid line) with the same air
filling fraction f = 0.53 and dielectric refractive index ne = 2.68. (d) Calculated Q factor of the
resonant modes in the trivalent network structure as a function of the normalized frequency a/λ.
(e) and (f) are calculated intensity distributions of two modes [circled in (d)] at the low and high
frequency sides of the bandgap. Reprinted with permission from [49], Copyright 2008, Wiley-VCH
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a finite-difference time-domain (FDTD) simulation [36]. The boundary condition is
periodic, and the supercell contains 2048 vertices. Only TE modes are considered,
as the lasing modes in the GaAs membrane are TE polarized due to stronger ampli-
fication by QDs. Figure 9.16 (c) displays a significant depletion of DOS in the 2D
trivalent network. For comparison, we calculated the DOS for an amorphous array
of monodisperse air cylinders in GaAs. This structure was derived from the jammed
packing of polydisperse cylinders (from which the network structure was created)
by reducing the radii of all cylinders to a constant value. The air filling fraction f

is identical to that in the network structure. As seen in Fig. 9.16 (c), the DOS has
only a shallow dip in the amorphous array of air cylinders. Hence, the PBG effect is
greatly enhanced in the trivalent network structure. This is attributed to the uniform
topology of each junction.

Next we calculated the quality factor (Q ≡ ωτ , ω is the frequency, τ is the life-
time) of the resonant modes in the 2D structure with the finite-element method (us-
ing the commercial software Comsol) in 2D. The network has 2048 vertices and
open boundary. As shown in Fig. 9.16 (d), there are no guided modes with TE polar-
ization in the frequency range a/λ = 0.32 and 0.38, as a result of the complete PBG
for TE guided modes. The highest-Q modes are located at the BEs. They are tightly
confined within the structure, as seen in Fig. 9.16 (e, f). The spatial localization
of BE modes reduces light leakage through the boundary of the structure, result-
ing in high Q factor. This is distinct from the periodic structure whose BE modes
are extended. Figure 9.16 (e)/(f) also reveals that the intensity of the BE mode at
the low/high frequency side of the PBG is mostly concentrated in the dielectric/air.
Thus it can be labeled as the dielectric/air BE mode.

The computer generated patterns of 2D trivalent network were transfered to a
GaAs membrane containing InAs quantum dots (QDs). Figure 9.17 (a) is a top-
view scanning electron microscope (SEM) image of one pattern with a = 315 nm.
The lateral dimension of each pattern is 9.7 µm × 9.7 µm. A series of patterns with
different a were fabricated. The lasing experimental setup is the same as that in the
previous Sect. 9.2.2. We realized lasing in a network structure of a = 315 nm with
optical excitation of InAs QDs. The emission spectrum consists of a few narrow
peaks on top of a broad background [top curve in Fig. 9.18 (a)]. The background
originates from the broad-band amplified spontaneous emission, while the narrow
peaks correspond to the resonant modes. Figure 9.17 (b) plots the intensity of one
emission peak at wavelength λ = 1000 nm versus the incident pump power P . It
displays a threshold behavior. When P exceeds 9.8 µW, the emission intensity in-
creases much more rapidly with P . The full width at half maximum (FWHM) of
the peak also decreases dramatically with increasing P and reaches the value of
0.28 nm at P = 16 µW. Such behaviors indicate the onset of lasing action. The op-
tical image of the lasing mode, shown in Fig. 9.19 (a), reveals the mode is located
in the interior of the pattern. Its lateral size was approximately 2.4 µm, significantly
smaller than the pattern size (9.7 µm). With a further increase of pump power, we
observed lasing in multiple modes.

We repeated the lasing experiment on different network configurations with the
same a. They were generated from different jammed packings of polydisperse cylin-
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Fig. 9.17 (a) A plane-view scanning electron microscope image of the fabricated trivalent network
structure in a GaAs membrane with a = 315 nm. The scale bar is 2 µm. (b) Measured intensity
(black circle) and spectral width (blue square) of one emission peak at λ = 1000 nm as a function
of the incident pump power P . Reprinted with permission from [49], Copyright 2008, Wiley-VCH

Fig. 9.18 Measured emission spectra for the trivalent network structures of a = 315 nm in (a),
and 275 nm in (b). The two spectra in each panel are taken from different configurations. With
decreasing a, the lasing modes blue shift. Reprinted with permission from [49], Copyright 2008,
Wiley-VCH

ders. Their spatial Fourier spectra and spatial correlation functions are nearly iden-
tical, indicating these configurations are statistically equivalent. Lasing was realized
in these patterns within the same spectral range, although the frequencies of indi-
vidual lasing modes varied from pattern to pattern [Fig. 9.18 (a)].

We performed 3D FDTD simulation of the real structures that were extracted
from the digitized SEM images. The results illustrated that the lasing modes are
located near the dielectric BE of the PBG. The air BE is located at much shorter
wavelength λ � 720 nm. The air BE modes could not lase as they are beyond the
gain spectrum of InAs QDs. Although they can be tuned into the gain spectrum by
increasing a, the dielectric BE modes are preferred for lasing as they are concen-
trated in the GaAs and experience more gain from the InAs QDs. We calculated
a dielectric BE mode in the 3D FDTD simulation. As shown in Fig. 9.19 (b), the
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Fig. 9.19 (a) Optical image of the lasing mode in Fig. 9.17 (b). (b) Spatial intensity distribution
of the dielectric BE mode calculated in a 3D FDTD simulation of the real structure

mode is spatially localized and has a size is similar to the measured one Fig. 9.19 (a).
However, the fine features, e.g., closely-spaced intensity maxima, were smeared out
in the optical image due to a finite resolution of our imaging system. The Q factor
of this mode is about 6000, which is limited by the out-of-plane leakage of light.

Finally we probed lasing in trivalent network structures of different a. Fig-
ure 9.18 (b) displays the emission spectra taken from two configurations of a =
275 nm. Lasing peaks shift to shorter wavelength. This move is consistent with the
blue shift of the dielectric BE as a decreases. However, the 3D FDTD calculation
predicted that the dielectric BE shift to λ ∼ 900 nm, but the lasing peaks were seen
around 975 nm. Although the dielectric BE modes at 900 nm have higher Q, they
are far from the peak of gain spectrum and experience much lower gain than the
modes at 975 nm. Thus the latter have lower lasing threshold and dominated the
lasing spectra.

9.3.2 3D Photonic Network Structures

Although many studies have demonstrated that PBGs can be formed in 2D and 3D
PAS with short-range order [10, 14, 16–18, 48, 50], the exact physical mechanism
or condition for the PBG formation in PAS is not well understood. Our recent nu-
merical study aims to improve the fundamental understanding of PBG formation in
PAS, which would allow researchers to design photonic amorphous materials with
optimized and tunable PBGs.

In addition to geometric order, structural topology plays an important role in
forming a PBG. For the composite dielectric materials consisting of two compo-
nents with different refractive indices, there are two cases regarding the topology
of the high-index component. (i) Cermet topology: the high-index material consists
of isolated inclusions, each of which is completely surrounded by the low-index
material. (ii) Network topology: the high-index material is connected and forms a
continuous network running through the whole composite. Previous studies of pe-
riodic structures have indicated that the cermet topology is more favorable for the
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PBG formation of a scalar wave, while the network topology for a vector field [51].
Such conclusions also apply to PAS. For example, in 2D PAS, PBGs for the trans-
verse magnetic (TM) polarization (electric field out of plane) are easily obtained
with isolated islands of high-index materials, because the electric field has same
polarization direction everywhere and can be regarded as a scalar wave. For the
transverse electric (TE) polarization (electric field in plane), the electric field has
varying polarization direction and behaves like a vector field, thus it is easier to pro-
duce PBGs in connected dielectric networks [52]. It has been proposed that a hybrid
structure with a mixture of both topologies can possess a full PBG for both TE and
TM polarizations [17].

It is much more difficult to form complete PBGs in 3D structures. Substantial
reductions in the density of optical states (DOS) have been demonstrated in PAS
composed of randomly packed dielectric spheres of uniform size [14], as a re-
sult of evanescent coupling of the Mie resonances of individual spheres. Dielectric
network structures, for example, the photonic amorphous diamond (PAD), exhibit
much stronger depletion of the DOS [16, 48]. It was conjectured that the tetrahe-
dral bonding configuration in the PAD plays an important role in the formation
of isotropic PBG. However, the PAD is constructed from a “continuous-random-
network” (CRN) originally developed for modeling of amorphous Si or Ge [53],
thus it is difficult to separate the relative contributions of tetrahedral bonding and
local geometric order to the PBG formation. Identifying the key parameters that de-
termine when a PBG will form in PAS is important not only for developing novel
photonic glasses [54], but also for understanding color generation in nature [24].
Both cermet and network topologies have been found in color-producing PAS of
many animal species [27, 28]. It is also conjectured that pseudo PBGs may be
formed and responsible for non-iridescent coloration of many PAS [55].

This section presents a detailed numerical study of the DOS and PBGs in 3D
PAS. We vary the topology, short-range geometric order, refractive index contrast,
and filling fraction to maximize the depletion of DOS and the strength of PBG in the
absence of long-range structural order. This study allows us to identify the essential
elements for the formation of PBGs in PAS.

Network Generation and Characterization

We first study dielectric composites with the cermet topology—high-index dielec-
tric spheres embedded within a low-index host material (air). We employ a two-
stage numerical protocol to generate ‘just-touching’, jammed sphere packings in a
cubic simulation cell with varying positional order [33, 56]. First, liquid states of
monodisperse spheres are cooled at fixed packing fraction φ = 0.60 from an ini-
tial high temperature T0 to zero temperature at different rates. In the second step,
each zero-temperature configuration is compressed in steps of �φ = 10−3 followed
by minimization of the total energy until a static packing with infinitesimal parti-
cle overlaps is obtained. By varying the cooling rate, we are able to create static
packings with a range of positional order and packing fractions from random close
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Fig. 9.20 Three examples of photonic amorphous structures: (a) jammed packing of dielectric
spheres at φ = 0.64, (b) inverse structure of (a) with air fraction γ = 0.8, and (c) tetrahedral
network of dielectric rods with γ = 0.8 obtained from the Delaunay tessellation of (a). Reprinted
with permission from [58], Copyright 2008, Wiley-VCH

packing at φ = 0.64 to the face centered cubic (FCC) structure at φ = 0.74. In
general, the slowly cooled samples can be compressed to higher packing fractions.
Figure 9.20 (a) shows a cluster of 50 spheres from the interior of a jammed sphere
packing containing 1000 spheres at φ = 0.64. For comparison, we generate com-
pletely disordered configurations by placing spheres randomly in the cubic box with
no overlaps at φ = 0.35.

We also generate structures with network topologies, where the high-index di-
electric material forms the continuous network, using two methods. For the first
method, we invert the cermet structure of jammed dielectric spheres in air. The in-
verse structure consists of low-index (air) spherical inclusions in a continuous high-
index dielectric network. By adjusting the radius R of the spheres (but fixing their
positions), we can vary the air fraction γ in the inverse structure. An inverse struc-
ture with γ = 0.8 is shown in Fig. 9.20 (b). At this γ , adjacent air spheres begin to
overlap and the dielectric material exhibits an irregular topology.

The second method, which is based on an algorithm described in Refs. [17, 57],
produces more uniform network topologies than those from the first method. In
this method, a 3D Delaunay tessellation is performed on the sphere centers from
the cermet structures. Each tetrahedron of the tessellation has four facets shared
with four neighbors. We then calculate the center of mass of each tetrahedron, and
connect the centers of mass of nearest neighbors by a dielectric rod. This creates
a tetrahedrally connected dielectric network, where each junction (vertex) has four
dielectric bonds. All dielectric rods have same radius W , but different lengths d . By
changing W , we can vary the air fraction γ . A tetrahedral network with γ = 0.8 is
shown in Fig. 9.20 (c).

We now calculate the density autocorrelation function and spatial Fourier spectra
of the cermet and network structures described above. Since the dielectric spheres
embedded in air and the corresponding inverted structure possess identical geomet-
rical properties, we focus only on the air spheres and tetrahedral network structures
below.

As shown in the inset to Fig. 9.21 (a), the 3D spatial Fourier transform of the
tetrahedral network structures displays concentric spherical shells without discrete
Bragg peaks, which reflects structural isotropy and a lack of long-range order. The
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Fig. 9.21 Structural characterization of photonic amorphous structures. (a) Angle-averaged power
spectra of the spatially Fourier transformed density for jammed sphere packings (dashed line)
and tetrahedral networks (solid line) versus qa/2π , where q is the spatial frequency and a is
the mean spacing between spheres. The inset shows a cross-section of the 3D power spectrum
for the tetrahedral network. (b) Angle-averaged density autocorrelation for the sphere packing
and network structures. The inset shows the amplitudes of the oscillatory peaks of C(�r) for
sphere packings (circles) and tetrahedral networks (crosses). Reprinted with permission from [58],
Copyright 2008, Wiley-VCH

radii of the shells provides the characteristic spatial modulation frequencies of the
structures. Similar results are obtained for the tetrahedral networks generated from
the jammed sphere packings. The angle-averaged power spectra for both sphere
and network structures are plotted in Fig. 9.21 (a). The main peak represents the
dominant spatial frequency, and its width is inversely proportional to the average
size of ordered domains [19]. The sphere and network structures have similar peak
widths, and thus comparable domain sizes.

We also calculated the real-space density autocorrelation function C(�r) av-
eraged over all angles for the sphere and network structures [19]. As shown in
Fig. 9.21 (b), both structures display highly damped oscillations of C(�r). The
first peak away from �r = 0 is located at the average spacing a between nearest
neighbors. We find that the amplitudes of the oscillatory peaks decay exponentially
[inset to Fig. 9.21 (b)] with a decay length (excluding the first peak) ξr ≈ 0.9a for
the sphere packings and 1.1a for the tetrahedral networks. Hence, there are weak
spatial correlations and short-range order in these PAS.

DOS of PAS with Cermet and Network Topologies

In this section, we compare the DOS for jammed dielectric spheres in air, the in-
verse structure, and the tetrahedral networks of dielectric rods using the order-N
method [36]. We choose a cubic supercell with size 8.7a containing 1000 spheres
and refractive indices n = 3.6 and 1 for the high- and low-index materials, respec-
tively. We find that the optimal air fraction that yields the largest reduction of the
DOS is γ = 0.75 for the dielectric sphere packings and 0.80 for both the inverse
structure and tetrahedral network. The DOS was ensemble-averaged over five dis-
tinct configurations at the optimal γ for each topology, and then normalized by the
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Fig. 9.22 DOS for
(a) jammed dielectric spheres
in air with γ = 0.75,
(b) inverted structures with
γ = 0.8, and (c) tetrahedral
networks with γ = 0.8. The
wavelength λ is normalized
by the mean spacing between
spheres a (average bond
length d) on the top (bottom)
scale. Reprinted with
permission from [58],
Copyright 2008, Wiley-VCH

DOS of a “homogeneous” medium with the same γ . The latter structure is gen-
erated by placing cubic dielectric voxels (with lateral dimension 0.043a, which is
much smaller than the wavelength of light λ) randomly in the supercell.

As shown in Fig. 9.22, the maximal DOS reduction occurs in the tetrahedral net-
work structure, which is two orders of magnitude larger than that for the dielectric
spheres and inverse structures. For the tetrahedral networks, the PBG is formed at
normalized frequency d/λ ≈ 0.22, where d is the average length of dielectric rods
and d/a = 0.39. The width of the PBG normalized by the gap center frequency is
∼5.5 %. The modest reduction in the DOS at a/λ ≈ 0.41 for the dielectric spheres
stems from Mie resonances of individual spheres [14]. The uniformity of the dielec-
tric spheres allows the coupling of their Mie resonances, which of the lowest order
for isolated dielectric spheres in air occurs at a/λ ≈ 0.41. In contrast, the air sphere
structures have only a small reduction of the DOS in the frequency range where the
tetrahedral networks show a pronounced PBG, despite the fact that both structures
have dielectric network topology and similar degree of spatial correlation. It is clear
that the dramatic difference in the DOS cannot be explained by the small differences
in spatial correlations.

Our studies of jammed dielectric sphere packings show that uniformity in the
size of dielectric spheres leads to strong coupling of Mie resonances that result in
a depletion of the DOS. In the inverse structure of air spheres, the basic scattering
unit is the dielectric filling between air spheres. For the tetrahedral network struc-
ture, the basic scattering unit is centered at each junction where four dielectric rods
meet. Note that in the network topology, the adjacent scattering units are connected,
in contrast with the cermet topology. To compare the uniformity of local scatter-
ing units in dielectric networks, we calculate the average refractive index near the
center of each unit. For the tetrahedral network structure, we calculate the mean re-
fractive index n̄ within a sphere of radius r whose center coincides with the center
of each junction. We then compute the average 〈n̄(r)〉 and its variance V (r) over
all junctions. For the air spheres, the dielectric junction center is set at the center of
refractive index distribution within each tetrahedron obtained from the 3D Delaunay
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Fig. 9.23 Uniformity of the local scattering environment for the dielectric networks of tetrahe-
dral bonding (solid line) and air spheres (dashed line). (a) Mean index of refraction 〈n̄(r)〉 and
(b) variance V (r) within a distance r from the dielectric junction center. r is normalized by the
mean spacing of spheres a (average bond length d) on the top (bottom) scales. Reprinted with
permission from [58], Copyright 2008, Wiley-VCH

tessellation of the sphere centers. Similarly, we calculate the mean refractive index
n̄ around each junction center, 〈n̄(r)〉, and V (r) averaged over all junctions.

In Fig. 9.23 (a) we show that on average the tetrahedral network and air spheres
structure have similar distributions of the mean refractive index 〈n̄(r)〉 around each
dielectric junction. In addition, the average refractive index for both networks ap-
proaches the same value at large r since the air fraction γ is the same for both
structures. However, the variance V (r) of n̄ for the two network structures shows
marked differences for all r as shown in Fig. 9.23 (b). The tetrahedral network pos-
sesses much smaller fluctuations in n̄ from one junction to another. Thus, the scat-
tering units are much more uniform for the tetrahedral network than those in the air
spheres. The uniformity of local refractive index distribution ensures similar scat-
tering characteristic of individual dielectric junctions and facilitates their coupling
which leads to a dramatic depletion of the DOS.

The formation of a PBG in the tetrahedral network structure also depends on the
air fraction γ and the refractive index of the dielectric material n. In Fig. 9.24 (a),
we show the variation of the PBG for different values of γ while keeping n at 3.6.
Reducing the air fraction below 0.8 leads to a decrease in the PBG. A reduction in
γ increases the average refractive index of the structure, thus reducing the ratio of
the index difference (n − 1) to the average refractive index. It leads to a decrease of
the overall scattering strength, and a weakening of the PBG. In contrast, if γ is in-
creased to above 0.8, there is an insufficient amount of high-index material to scatter
light. Thus, there exists an optimal air fraction γ at which the scattering strength is
maximal and the PBG is the largest. The optimal value of γ varies with the refrac-
tive index contrast. As shown in Fig. 9.24 (b), as n decreases, the maximal DOS
reduction shifts to smaller γ value. In addition, the DOS dip becomes shallower,
reflecting the PBG effect is weaker at lower refractive index contrast. While the
depth of DOS reduction changes slightly when n varies from 3.6 to 3.2, it drops by
nearly two orders of magnitude with a further reduction of n from 3.2 to 2.8. This
threshold behavior indicates there is a cut-off value of n for the PBG formation in
the tetrahedral network structure.
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Fig. 9.24 DOS of tetrahedral networks for different values of the air fraction γ and refractive
index n. (a) n = 3.6, (i) γ = 0.85, (ii) γ = 0.72, and (iii) γ = 0.6. (b) (i) n = 3.2, γ = 0.77,
(ii) n = 3.0, γ = 0.74 and (iii) n = 2.8, γ = 0.72. Reprinted with permission from [58], Copyright
2008, Wiley-VCH

Effects of Short-Range Order

In addition to the factors studied above, short-range positional order and tetrahedral
bond order play important roles in the formation of PBGs in PAS. In this section,
we focus on the dielectric network of tetrahedral bonding, which yields the largest
PBGs, and vary the amount of positional and tetrahedral bond order. In particular,
we tune the positional order of the original sphere packings from which the tetrahe-
dral networks are formed. The degree of positional order increases with the volume
fraction of spheres φ, which varies from 0.35 to 0.69. We label the tetrahedral net-
works (Fig. 9.25 (a)–(c)) generated from the sphere packings at φ = 0.35, 0.64, and
0.69 as A, B , and C. 2D cross-sections of the 3D spatial Fourier spectra for these
structures are presented in Fig. 9.25 (d)–(f). The power spectra of networks A and
B consist of concentric shells, but the shell width is notably larger for A. Thus both
A and B are isotropic structures, but B possesses more positional order than A. In
contrast to A and B , network C features discrete diffraction peaks in the Fourier
spectrum, and the structure is no longer isotropic.

In Fig. 9.26, we compare the DOS of the tetrahedral networks A, B , and C,
with the refractive index of the dielectric rods set to n = 3.6. By adjusting the di-
electric rod radius W , we find that the optimal air fraction for all three structures
is γ = 0.8. As expected, network A, with the least positional order, possesses the
smallest depletion in the DOS. However, network C with the strongest degree of
positional order has a smaller DOS depletion than network B . This result contrasts
with recent findings for 2D PAS with air cylinders embedded in dielectric materi-
als that show increasing positional order leads to stronger DOS depletion [19]. To
understand these results, we must also compare the uniformity of the local refrac-
tive index distribution and the structural topology of the three network structures at
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Fig. 9.25 Tetrahedral dielectric networks generated from sphere packings with packing fraction
(a) φ = 0.35, (b) 0.64, and (c) 0.69. 2D cross-sections of the 3D spatial Fourier spectra of the corre-
sponding tetrahedral networks are shown in (d), (e), and (f). Reprinted with permission from [58],
Copyright 2008, Wiley-VCH

Fig. 9.26 The DOS for three
tetrahedral dielectric
networks (a) A, (b) B , and
(c) C with positional order
increasing from A to C.
Reprinted with permission
from [58], Copyright 2008,
Wiley-VCH

fixed radius W of the dielectric rods. We find that networks B and C have compara-
ble fluctuations in n̄ over all the junctions. Thus, local uniformity does not explain
the difference in the depletion of the DOS for networks B and C.

To investigate the effects of local topology on the depletion of the DOS, we
compute the tetrahedral order parameter [17, 48]

ζ = 1 − 3

8

3∑
j=1

4∑
k=j+1

(
cosψjk + 1

3

)2

, (9.10)

where ψjk is the angle between two dielectric rods joined at a junction in the tetra-
hedral network [59]. For a periodic diamond network, ψjk = 109.5◦, cos(ψjk) =
−1/3 for all j and k, and thus ζ = 1 at each junction. If the dielectric rods are ran-
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Fig. 9.27 Characterization of the local topology for networks A, B and C. (a) The distribution
of angles ψjk between dielectric rods j and k at each tetrahedral junction. The vertical dashed
line indicates the angle for the periodic diamond structure, ψjk = 109.5◦. (b) Distribution of the
tetrahedral order parameters ζ at each junction. The average ψ̄jk and ζ̄ and standard deviations sψ
and sζ are also provided. Reprinted with permission from [58], Copyright 2008, Wiley-VCH

domly orientated, 〈ζ 〉 = 0. In Fig. 9.27, we plot the distributions of ψjk and ζ for
the A, B , and C networks, and provide the mean values (ψ̄jk or ζ̄ ), and standard
deviations sψ and sζ .

Network A possesses the widest distributions for both ψjk and ζ , which indi-
cates that the local topology varies significantly from one junction to another and
the bond angles within each junction are not uniform. The distributions of ψjk and
ζ are narrower for network B, and are peaked at ψjk = 114◦ and ζ = 0.95, which
indicates that most of the junctions have a similar topology to that in a diamond
lattice. In contrast, network C displays multi-modal distributions for ψjk and ζ . For
example, the ζ distribution possesses peaks at ζ = 0.95, 0.72, and 0.5. The first peak
reveals that there are many junctions with strong tetrahedral order, while the second
and third peaks reflect the existence of many “defect” junctions with low ζ . Such
defect junctions are likely located at domain boundaries, and introduce irregularity
in the local configuration of scattering units. Figures 9.26 and 9.27 show that pho-
tonic amorphous networks with strong tetrahedral order and few defect junctions
have broad PBGs.

9.4 Conclusion

In our numerical study on the density of optical states (DOS) in 2D photonic struc-
tures with short-range positional order, we observe a transition from polycrystalline
to amorphous photonic systems. In polycrystals, photonic band gaps (PBGs) are
formed within individual domains, which leads to a depletion of the DOS similar to
that in periodic structures. In amorphous photonic media, the domain sizes are too
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small to form PBGs, thus the depletion of the DOS is weakened significantly. The
critical domain size that separates the polycrystalline and amorphous regimes is de-
termined by the attenuation length of Bragg scattering, which depends not only on
the degree of positional order but also the refractive index contrast of the photonic
material. Even with relatively low refractive index contrast, we find that modest
short-range positional order in photonic structures enhances light confinement via
collective scattering and interference.

Experimentally we have demonstrated lasing in photonic polycrystals and amor-
phous structures. 2D arrays of air holes were fabricated in a free-standing GaAs
membrane, and the average size of ordered domains was gradually varied. InAs
QDs embedded in the GaAs membrane provide gain under optical pumping. In
a photonic polycrystal, defect modes at the center frequency of PBG are tightly
confined in-plane, causing strong light leakage out of the plane. The lasing modes
shift away from the PBG center to reduce the out-of-plane leakage. In a photonic
amorphous structure, the depletion of DOS is significantly weakened, and the las-
ing modes have less in-plane confinement. Nevertheless, the short-range structural
order improves optical confinement and enhances the Q factor at certain frequency.
Consequently, lasing becomes the most efficient, i.e., the laser emission becomes
the strongest, at such frequency. The optimal lasing frequency can be tuned by the
structure factor. The photonic polycrystal laser and amorphous laser are in between
the photonic crystal laser and random laser. Our study demonstrates that lasing can
be manipulated by varying the short-range order of the nanostructures.

In addition, we compare the DOS in 3D photonic amorphous structures with
cermet and network topologies. We find that interconnected networks of high-index
material with uniform dielectric junctions and tetrahedral bonding give rise to large
isotropic PBGs. Further, reduced fluctuations in the refractive index around each
junction and strong tetrahedral order for the angles between the dielectric rods that
form the junctions enhance isotropic PBGs. High refractive index contrast and a low
fraction of high-index material are also important to PBG formation. We have thus
identified several parameters that can be tuned to create broad isotropic PBGs in
photonic amorphous structures in the absence of long-range structural order.

We also fabricate 2D trivalent network structures with short-range order in a
free-standing GaAs membrane. Such structures display wide isotropic photonic
bandgaps. We have realized lasing in the dielectric bandedge modes with optical
pumping. The bandedge modes are spatially localized, different from the extended
bandedge modes in photonic crystals. By varying the characteristic length scale of
the network structure, we can tune the lasing frequency within the gain spectrum of
InAs quantum dots.

The future work includes fabrication of 3D photonic network structures, which is
more difficult than fabricating 2D structures. Since such structures have only short-
range order, they may be fabricated by self-assembly, which is much easier than the
fabrication of 3D periodic structures. In fact, 3D photonic network structures have
already been produced routinely in nature, and our preliminary studies suggest they
are formed by phase separation, e.g., spinodal decomposition [27]. We can mimic
nature to make photonic amorphous structures in mass quantity at room tempera-
ture [60]. Furthermore we can outperform the natural structures by using inorganic



9 Lasing in Amorphous Nanophotonic Structures 263

materials with large refractive index contrast to enhance the interaction with light,
or incorporating active materials with gain or nonlinearity to achieve new function-
alities.
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