
NORTHWESTERN UNIVERSITY

Study of Lasing in Random and Periodic Systems

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Physics and Astronomy

By

XIAOHUA WU

EVANSTON, ILLINOIS

June 2007



2



3

ABSTRACT

Experimental and numerical studies of lasing in multiple light scattering media with gain

are presented in this thesis. Depending on the dielectric constant spatial distribution is

random or periodic, two different kinds of lasers are discussed: the random laser and

the photonic crystal laser. This thesis, therefore, is divided into two parts with each

discussing one type of laser.

In the first part, we study on random lasers with the resonant feedback from both

weakly and strongly scattering media. We choose the colloidal laser dye solutions as

our weakly scattering systems, and experimentally demonstrate coherent random laser

emission from them. We numerically illustrate the similarity (difference) between the

quasimodes of a passive system and its lasing modes under a global (local) pumping. We

also investigate the difference in statistics of the random lasing peaks and the stochastic

amplified spontaneous emission spikes from the colloidal solutions, therefore distinguish

their distinct physical mechanisms.

For random lasing in strongly scattering media, we utilize closely packed resonant

scatterers to enhance the scattering strength and lower the lasing threshold. We synthe-

size monodispersed ZnO spheres to prepare the resonant scattering samples. We measure

the transport mean free path by coherent backscattering, and compare the experimental

data to the predicted value by Mie theory. We find that the dependent scattering occurs
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when the scatterers are close to each other and the resonance from each single scatterer

is changed. Nevertheless, we show that the resonant scattering indeed lowers the random

lasing threshold.

The second part presents our studies on ZnO photonic crystal slab (PhCS) lasers. We

design the PhCS structures with a triangular lattice by a band structure calculation. By

varying the in-plane lattice constant, the air cylinder radius, and the ZnO slab thickness,

we optimize the in-plane bandgap near ZnO maximum gain frequency. We fabricate the

structures with FIB etching technique, and realize single mode lasing at room tempera-

ture under optical excitation. Moreover, the lasing wavelength is tuned across a 30 nm

wavelength range by varying the lattice constant. The unavoidable fabrication defects

can balance the vertical and lateral energy loss and facilitate the lasing.
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CHAPTER 1

INTRODUCTION

1.1 Light Scattering

The interaction process between a light wave and matter can be simply described as

follows: the incoming electromagnetic field induces an electric polarization in the object

with some energy dissipation into the object, which is called absorption. This polarization

generates a new outgoing EM wave from the object, which is called scattering. The often

referred to terms ”transmission” or ”reflection” can be viewed as a special scattering

case where the scattering angle is 0 or 180 degrees. Light scattering is so crucial to

our everyday life that without it we cannot even see the world around us. Moreover,

scattering offers a powerful tool for studies on both light and matter.

1.1.1 Single Scattering

We start with the simplest scattering problem: the interaction of an incoming plane

wave E0(~r)e
−iωt with a single object. The incoming wave induces the charge distribution

inside the object to vary sinusoidally in time, generating a vector potential A(~r, t). The

radiative electromagnetic field caused by A(~r, t) can be expanded as multiple radiation

components leading with an electric dipole term, followed by a magnetic dipole field,



13

electric quadrupole field, magnetic quadrupole field and so on. When the object size is

much smaller than incoming wavelength, the leading dipole field term is dominant [1]:

E =
1

4πǫ0

{

k2(n × p) × n
eikr

r
+ [3n(n · p) − p]

(

1

r3
− ik

r2

)

eikr

}

H =
ck2

4π
(n × p)

eikr

r

(

1 − 1

ikr

)

(1.1)

where p is the dipole momentum, and k is the scattered wave number. In the far field

zone (kr >> 1), the first term in E and H is dominant, while in the near field zone

(kr << 1), the second term is dominant. The time-averaged power radiation per unit

solid angle by p is

dP

dΩ
=

1

2
Re[r2n · E × H∗] (1.2)

where E and H are given by Eq. 1.1. If we only consider the leading term in both E and

H, we find

dP

dΩ
=

ck4

32π2ǫ0
|(n × p) × n|2 =

ck4

32π2ǫ0
sin2θ (1.3)

where θ is angle between n and p. The total power radiated is

P =
ck4

12πǫ0
|p|2 (1.4)
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The radiated power can be viewed as ”scattered” energy from the incoming wave, so a

virtual scattering cross section with units of area can be defined as

σs =
P

|Sinc|
=

P
cǫ0
2 |Einc|2

(1.5)

where Sinc is the incident energy flux. Similar to Equ. 1.2, the differential scattering

cross section is

dσs

dΩ
=

dP
dΩ

|Sinc|
=

k4

(4πǫ0)2
|p|2

|Einc|2
sin2θ (1.6)

The k4 dependence of the differential (and total) scattering cross section on wave num-

ber (or on wavelength as λ−4) is an almost universal characteristic of the long-wavelength

limit scattering by any finite system. This dependence on frequency is known as Rayleigh’s

law, and the dipole scattering is known as Rayleigh scattering. Both σs and dσ
dΩ include

the term
|p|2

|Einc|2
, which needs a brief discussion here. We know that induced polarization

P = ǫ0χeE, where χe = ǫ/ǫ0 − 1 is called the electric susceptibility of the medium.

The term ǫ is the electric permittivity and the frequently used term dielectric constant is

ǫr = ǫ/ǫ0. Generally ǫ and χe are tensors and P and E are vectors pointing in different

directions. Only in isotropic media are ǫ and χe scalars and P and E point along the

same direction. Two things need to be noticed: first, in Eq. 1.5 and 1.6 there is an

incident wave Einc, not a local field E, thus one has to find the relation between them by

solving the recursive polarization equation; second, in Equ. 1.5 and 1.6 there is an elec-

tric dipole moment p, which is usually a volume integration over the local polarization
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P. As a very simple example of dipole scattering, we consider a small dielectric sphere

of radius a with µr = 1 and a uniform isotropic dielectric constant ǫr, the electric dipole

momentum can be calculated to be [1]

p = 4πǫ0

(

ǫr − 1

ǫr + 2

)

a3Einc (1.7)

Substituting Eq. 1.7 into Eq. 1.6 and 1.5, we get

dσs

dΩ
= k4a6

∣

∣

∣

∣

ǫr − 1

ǫr + 2

∣

∣

∣

∣

2

sin2θ

σs =
8π

3
k4a6

∣

∣

∣

∣

ǫr − 1

ǫr + 2

∣

∣

∣

∣

2
(1.8)

Though Equ. 1.8 is for the particular case of dipole scattering from a small dielectric

sphere, some general conclusions can be drawn from it: (1): the electric dipole scattering

cross section has the characteristic k4 dependence. (2): the electric dipole scattering cross

section has V 2 dependence, where V is the volume of the scatterer. (3): the differential

scattering cross section shows the sin2θ angular distribution. One has to notice that θ is

the angle between the dipole momentum p and scattering direction n, not the incoming

field Einc. Only for specific conditions are Einc and p in the same direction. In such

cases, if we define a scattering plane formed by an incoming wave vector k and scattering

direction n, then for Einc perpendicular to the scattering plane, θ = 90o, while for Einc

parallel to the scattering plane, the usual referred to scattering angle is 90o − θ.

Besides being scattered, the incoming light can also be absorbed if the scatterer has
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complex refractive index ns. Similar to scattering, the energy loss from absorption can

be described by an absorption cross section σabs. We can speculate the expression of σabs

by simple unit analysis: we know that σs ∝ V 2λ−4 for small scatterers and the absorbed

energy should be proportional to the scatterer volume V for small scatterers. Then,

naturally, we would expect σabs ∝ V λ−1, which can be confirmed by a careful derivation.

The total energy loss by scattering and absorption is usually termed extinction, and as

usual it can be characterized by an extinction cross section σext, where σext = σsca+σabs

holds. People also define efficiencies for extinction, scattering, and absorption as Q =

σ/G, where G is the particle cross-section area projected onto a plane perpendicular to the

incident beam (e.g., G = πa2 for a sphere of radius a). Consequently, Qext = Qsca+Qabs.

More strictly, the conditions for Rayleigh scattering are (a) scatterer size<< λ/2π

and (b) |m| ·scatterer size<< λ/2π, where m = ns/nm is the relative refractive index,

meaning the ratio between scatterer refractive index ns and medium refractive index

nm. If the scatterer is a sphere with radius a, then these conditions can be simplified

to (a) x << 1 and (b) |m|x << 1, where x = 2πnma/λ = ka is called size parameter.

Physically, these conditions mean the scatterer size is much smaller than the wavelength

inside the scatterer. Thus the scatterer can be treated as if in a uniform field and the

induced dipole momentum follows the incoming field oscillation instantly. This condition

justifies that the dipole momentum obtained in Eq. 1.7 can be obtained by the static

electric field calculation. Similar theory can be applied to arbitrary shaped scatterers if

they satisfy the Rayleigh scattering condition, in particular, their dipole momentum p
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can be calculated by electrostatics theory and the (differential) scattering cross section

can be obtained by Eq. 1.5 and 1.6.

When the scatterer gets larger, the scattering problem gets very complicated. First,

the scatterer cannot be simplified as an electric dipole any more, because radiation from

higher ordered multipoles (magnetic dipole, electric quadrupole and so on) have to be

taken into account. Second, the relation between the induced charge distribution and the

incident field cannot be treated as in the static case, but Maxwell’s equations with bound-

ary conditions for the particular scatterer have to be solved strictly. As a consequence of

the linearity of Maxwell’s equations and the boundary conditions, the amplitude of the

scattered field is a linear function of the amplitude of the incident field. In the far-field

region, where kr >> 1, the scattered field Es can be decomposed into two components

Es|| and Es⊥, which are parallel and perpendicular to the scattering plane. The relation

between incident and scattered fields is conveniently written in matrix form as [2]









Es||

Es⊥









=
eik(r−z)

−ikr









S2, S3

S4, S1

















Ei||

Ei⊥









(1.9)

where the elements Sj (j =1,2,3,4) of the amplitude scattering matrix depend, in general,

on θ, the scattering angle, and the azimuthal angle ϕ. One can easily see that in the

general case with a non-diagonal amplitude scattering matrix, the polarization of the

incident field is changed by scattering. The scattering problem is greatly simplified if the

scatterer is a sphere, where S3 = S4 = 0 and S1 and S2 depend only on θ. Moreover,
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when θ = 0, S1 = S2 ≡ S(0), the polarization is kept in the forward direction.

In fact, the sphere is one of the few geometries whose scattered field can be analytically

obtained after solving Maxwell’s equations. Such a scattering problem is usually termed

Mie theory for his famous work in 1908. We would like to skip the lengthy mathematics

of Mie theory and directly use its results. Interested readers can refer to references such

as [2, 3] for more details. The differential scattering cross section and total scattering

cross section are given as:

dσs

dΩ
=

1

k2
(|S1(θ)|2 sin2ϕ + |S2(θ)|2 cos2ϕ)

σs =
2π

k2
Σ∞

n=1(2n + 1)(|an|2 + |bn|2)
(1.10)

where

S1(θ) = Σ∞
n=1

2n + 1

n(n + 1)
{anπn(cosθ) + bnτn(cosθ)}

S2(θ) = Σ∞
n=1

2n + 1

n(n + 1)
{bnπn(cosθ) + anτn(cosθ)}

(1.11)

It can be seen that the θ dependence of the differential scattering cross section is from

functions π and τ , while the coefficients an and bn determine the dependence on m and

x. The extinction cross section σext is also given here without proof:

σext =
4π

k2
Re {S(0)} (1.12)

To get a flavor of Mie scattering, we calculate two cases: (1) a linear polarized plane

wave (λ = 600 nm) incident on a sphere of m = 2.2 + 0.01i, whose radius a varies from
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Figure 1.1: Calculated Extinction (solid lines),scattering (dashed lines) and absorption
(dotted lines) efficiency Q [(a),(b)] and cross section σ [(c),(d)] of a sphere with m =
2.2 + 0.01i in air. (a) and (c): fixed incident wavelength λ = 600nm, varying sphere
radius 10nm < a < 1µm. (b) and (d): fixed sphere size a = 100nm, varying incident
wavelength 60nm < λ < 6µm. (a) and (b) are plotted in size parameter x = 2πa/λ.

10 nm to 1 µm; (2) a sphere of m = 2.2 + 0.01i with radius a = 100 nm with an incident

linear polarized plane wave, whose λ varies from 60 nm to 6 µm. The results are shown in

Fig. 1.1 (a) and (c) for case 1, while (b) and (d) for case 2. A few interesting points can

be seen from the results so let us explore them one by one: (1) with the log-log plot in

(c), Rayleigh scattering σsca ∝ a6 can be clearly seen for small scatterers (a < 100 nm),

while absorption σabs ∝ a3 is also shown for even smaller scatterers. (2) still in (c), for

large scatterers (a > 500 nm), σsca and σabs both scale with the geometric cross section

of scatterers as a2 as expected from geometrical optics. (3) with the log-log plot in (d),

Rayleigh scattering σsca ∝ λ−4 can be clearly seen for long wavelength (λ > 1 µm),

while absorption σabs ∝ λ−1 is also shown for even longer λ. (4) still in (d), for short
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wavelength (λ < 100 nm), σsca and σabs saturate at a certain value, which is related to

the scatterer geometry cross section πa2 as expected from geometrical optics. (5) when

we plot efficiency Q instead of σ, and replace a or λ with size parameter x = 2πa/λ

for either cases, we get exactly the same result. This means when considering efficiency,

neither a nor λ but their ratio a/λ matters. Mathematically, this originates from the

x dependence of an and bn in Equ. 1.10 and 1.12. (6) a few characteristic features

are shown in the plot of Q vs. x in (a): first, there is a series of regularly spaced

broad maxima and minima called the interference structure, which are interpreted as

the interference between the incident and forward-scattered waves. The phase difference

between them is ∆φ = 2ka(ns − nm) = 2x(m − 1). The condition for their destructive

interference is ∆φ = (2p + 1)π where p is an integer. Then the positions of the maxima

can be determined as x = (2p+1)π/2(m−1). Notice that the interference structure only

shows in Qext and Qsca, but not in Qabs; second, there is some irregular fine structure

called ripple structure, which is explained by the electromagnetic normal modes of the

sphere. They are resonant when the denominator of the scattering coefficients an and bn

are minima. Physically, a sphere has its own eigenmodes with complex frequencies, and

under resonant conditions they can be excited by the incident field. These resonances

offer the possibility to enhance scattering and absorption: with larger m, both Qsca

and Qabs can be enhanced many times, but the linewidths of such resonances get much

narrower at the same time, thus it is more difficult to hit them. (7) it seems that both

Qext and Qsca tend to saturate at certain values when x → ∞. In fact, in such a limit,
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Qext → 2, is twice as large as predicted by geometrical optics. This puzzling result

is called the extinction paradox, which can be explained by the missed consideration of

diffraction from the sphere boundary in geometrical optics.

So far we have only considered the total scattering cross section σsca, next let’s see

how the scattered light distributes in angle, which is shown by the differential scattering

cross section dσsca/dΩ. From Eq. 1.10 and 1.11, we can see that the angular dependence

lies in the scattering matrix elements S1 and S2. As an example, let’s study the angular

distribution for a sphere (m = 2.2 + 0.01i) in an incident plane wave with λ = 600

nm, the same case as Fig. 1.1 (a) and (c). We checked three different sizes as shown

in Fig. 1.2 (a) to (c), which actually correspond to x = 0.4, 2.0 and 10.0 respectively.

From Eq. 1.9, S1 and S2 describe the scattered field perpendicular and parallel to the

scattering plane separately. For small size as in (a), the scattering is just like Rayleigh

scattering, Es⊥ is isotropic while Es|| becomes zero at θ = 90o. With increasing sphere

size, the angular distribution gets more complicated having a trend with the scattered

field more and more concentrated in the forward direction as shown in (b) and (c), with

more and more fine structures in their angular dependence. To characterize such a trend,

the average cosine of the scattering angle, or the asymmetry parameter g is

g = 〈cosθ〉 =

∫

4π
dσsca

dΩ cosθdΩ
∫

4π
dσsca

dΩ dΩ
(1.13)

For our dielectric sphere with three sizes shown in Fig. 1.2 (a) to (c), g is calculated to

be 0.045, 0.493, and 0.662. Clearly, with a increasing, the scattered field concentrates
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more and more in the forward direction and g gradually increases from 0 to 1.

Two particular angles need special attention, forward scattering theta = 0o and back-

ward scattering θ = 180o, where |S1| = |S2| ≡ |S|. With increasing a, it can be seen that

|S(0o)| / |S(180o)| keeps increasing from (a) to (c), which is consistent with the scattered

field concentrating in the forward direction. We calculate the backscattering cross section

σback = |S(180o)|2 /k2 and forward scattering cross section σback = |S(0o)|2 /k2, and the

results, as well as their ratio, are plotted in Fig. 1.2 (d). Interestingly, their ratio has a

resonant peak around a = 300 nm, instead of a monotonic change as one may expect.

Figure 1.2: Calculated |S1|2 (dashed lines), |S2|2 (dotted lines) and average (|S1|2 +

|S2|2)/2 (solid lines) as functions of scattering angle θ from spheres (m = 2.2 + 0.01i) of
different radius a: (a) 38.2 nm, (b) 191 nm (c) 955 nm under a linearly polarized incident
plane wave with λ = 600 nm. (d) backscattering cross section σback (dashed lines) and
forward scattering cross section σforw (solid lines), as well as their ratio for scattering
from a sphere (m = 2.2 + 0.01i, λ = 600 nm) of changing radius a.

We have to point out that though the relative refractive index m and size parameter x

are treated as independent mathematical variables in Mie theory, they are not physically
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independent because of the dispersion of m, which should be m(λ) instead. Then, though

the plots in Fig. 1.1 (a) and (b) are the same, it better be understood as the first case:

fixed λ with varying a. The particular m = 2.2 + 0.01i we chose is similar to ZnO in

the visible light frequency range, but it definitely changes when λ varies from 60 nm to

6 µm. When considering the scattering of a fixed sized scatterer with different incident

λ, dispersion has to be taken into account and the real cases of (a) and (b) are surely

different.

In fact, such a dispersion relation can have a more dramatic influence on scattering and

absorption. For example, let’s look back to Equ. 1.7, where we have the (ǫr − 1)/(ǫr +2)

expression for the polarization of a small sphere. Such polarization affects the scattering

cross section and absorption cross section as shown in Equ. 1.8. Because of the frequency

dependence of ǫr, there exists some resonance frequency where ǫr+2 vanishes, where both

σsca and σabs are greatly enhanced. For small scatterers (mx << 1), we derived that

σsca ∝ λ−4 and σabs ∝ λ−1 without considering dispersion. Now with the λ dependence

of m, such conclusions are not accurate. A good example is the scattering from metal

nanoparticles like silver or gold, whose resonance occur in the visible light frequency range

where the λ−4 dependence of σsca and λ−1 dependence of σabs are broken. The other

consequence of the strong dispersion of metal is that both scattering and absorption are

shape sensitive, even for very small scatterers. Because of the different expressions of the

polarization parameter, their resonance frequencies can be quite different, as well as the

resonant peak amplitudes.
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In summary, we mainly discussed scattering from a single scatterer in this section.

It was shown that scattering can be enhanced by resonances caused by (1) interference

structure (2) normal modes (3) polarizability, which are all determined by scatterer shape,

size, and refractive index. However, absorption is also enhanced by the latter two types

of resonance, and for small scatterers, because σsca ∝ V 2 and σabs ∝ V , absorption can

even dominate over scattering.

1.1.2 Multiple Scattering

Following the consideration for single scattering in the previous section, it’s natural to

study scattering from a collection of scatterers. In this case, every scatterer is not only

in the external incident field and its own scattered field, but also in the scattered fields

from all other scatterers in the system. Strictly speaking, such a multiple scattering

problem can also be solved by finding the solutions to Maxwell’s equations satisfying all

the boundary conditions at each scatterer. However, the number of equations increases

linearly with the number of scatterers, and for a random system including thousands

of scatterers which we encounter frequently in real life, finding such exact solutions is

impractical even with our current computation power. Only under certain conditions

(e.g. all the scatterers are the same and placed periodically in space), can the scattered

field be obtained exactly. On the other hand, in many cases, we do not need to know the

detail of the EM field inside the system, but only be concerned with the transportation

behavior such as transmission or reflection from a slab shaped random sample. Such
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behavior can be well characterized by introducing some statistical parameters of the

random system, which will be briefly discussed in this section.

A simple but important assumption is made in this section: independent scattering

occurs, which means the density of scatterers is so dilute that the incident light is only

scattered once by each scatterer before leaving the system. In other words, the total

scattered field is the sum of all the scattered fields from each scatterer. Since the scat-

terers are randomly distributed in space, the phase relation between all the scattered

fields is also randomized, then the scattering cross section of the system is the sum of

scattering cross sections σs from each scatterer. Now we introduce the important concept

of mean free path in multiple scattering. A mean free path is a characteristic length scale

describing the scattering process. For instance, the scattering mean free path ls is defined

as the average distance between two successive scattering events. For a random system

composed of monodisperse scatterers with density ρ, the scattering mean free path is

ls =
1

ρσs
(1.14)

where σs is the scattering cross section of each scatterer. Another important mean free

path is the transport mean free path lt, which is defined as the average distance after

which the momentum of incident wave is randomized, which is given by:

lt =
ls

1 − 〈cosθ〉 =
1

ρσs(1 − 〈cosθ〉) (1.15)
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where 〈cosθ〉 is the asymmetry parameter of each scatterer as we introduced in the single

scattering section. The characteristic length scale relevant for absorption is the inelastic

mean free path li, which is defined as the traveled length over which the intensity is

reduced by a factor e−1 due to absorption by scatterers.

There are two other relevant length scales: the size of the system L and the wavelength

λ. Typically, L >> λ is satisfied when dealing with multiple scattering problems. By

comparing lt with λ and L, we can divide the random system into a few different regimes:

(1) L << lt: the system is optically thin is this region and the interaction with light

is small, such a system is sometimes referred to as being in the ballistic regime. (2)

λ << lt << L: light propagation in such a system is diffusive and the transport can

be considered as a random walk of photons with a step length equal to the scattering

mean free path. This region is called the diffusive regime. (3) lt < λ: light interacts with

scatterers within one wavelength of propagation and the transport behavior is completely

changed. It is believed that the interference between the scattered waves could make the

propagation stop and light is localized spatially. This region is called the localization

regime.

Multiple light scattering mainly occurs in regimes (2) and (3). In this section we

will consider regime (2), leaving regime (3) to a later section. In the diffusive regime,

the electromagnetic wave propagation is modeled by the random walk of photons, and

interference is neglected due to the low probability for scattered light to return to its

starting coherent volume. Thus, photon propagation can be described by the diffusion
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equation for the photon density, n(r, t),

∂n(r, t)

∂t
= D∇2n(r, t) − v

li
n(r, t) (1.16)

where D = ltv/3 is the diffusion coefficient and v is the transport velocity for the light

inside the medium. Here we consider the case without any source term, otherwise,

a source term needs to be added to the right hand side of the equation. The diffusion

equation is a second order partial differential equation and accordingly it needs boundary

conditions before it can be solved. As an example, a slab shaped sample with thickness L

is treated following Ref. [4]: For a thick slab with L >> lt, the maximum diffuse photon

density, n′, due to a collimated beam of photon flux jin incident normal to the surface at

x = 0, occurs within a few mean free paths of the surface and has a magnitude calculated

from transport theory of n′ = 5jin/v. With the boundary conditions n(0) = n′ and

n(L) = 0, the steady-state solution for Equ. 1.16 is n(x) = n′sinh [α(L − x)] /sinh(αL)

with α = (Dli/v)−1/2. The photon current density is given by

j(x, t) = −D
∂n(x, t)

∂x
, (1.17)

and thus, the the current density at the exit plane is j(L) = n′sinh(αD)/sinh(αL). The

normalized transmission, T (L) = j(L)/jin, can therefore be written as

T (L) =
10αD/v

eαL − e−αL
(1.18)
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Let’s consider two limiting cases: (1) αL << 1, then T (L) = 5D/vL (2) αL >> 1, then

T (L) = (10αD/v)exp(−αL). Using the relation D = vlt/3 in case (1), we get

T (L) = 5lt/3L. (1.19)

The average distance between begining and ending points of a trajectory traveled in time

t is
√

Dt, while the length of such a trajectory is vt. Thus, the diffusive absorption

length La (the RMS average of li) which describes the penetration depth of light in an

absorbing multiple scattering medium is
√

Dta =
√

vlt/3 × li/v =
√

ltli/3. So it is

clear that α = 1/La and αL << 1 means the system size L is much smaller than the

diffusive absorption length La. In such conditions, the absorption can be neglected and

the diffusive total transmission is T ∝ lt/L. And for case (2), where L >> La, absorption

cannot be neglected. In fact, for a large system the transmission exponentially decreases

with system size L due to absorption.

In summary, we introduced three important length scales in a multiple light scattering

system: scattering mean free path ls, transport mean free path lt and diffusive absorption

length La. By comparing wavelength λ, transport mean free path lt and system size L,

we introduced the diffusive region where multiple light scattering is described by the

diffusion equation and the important relation between total transmission and lt as well

as L is given: T ∝ lt/L. The scattering strength of a random system can be described by

either lt or the diffusion coefficient D. The smaller lt is, the stronger the system scatters.

Though not explicitly shown, ls and lt are obviously frequency dependent. One point we
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need to mention: the independent scattering approximation can only be justified with

very dilute scatterer densities, because with a high scatterer density, their scattering

cross sections start to overlap and the total scattering will decrease. In particular, Eq.

1.14 and 1.15 hold only for low scatterer densities with a filling fraction f ≤ 0.1. [5]

For higher densities 0.1 ≤ f ≤ 0.6, the scattering cross section σs must be rescaled as

σs → σs(1 − f) [6], while for f ≥ 0.6, a more complicated rescaling parameter needs

to be used [7]. Though determining lt theoretically is not very easy for high scatterer

densities, coherent backscattering offers us a simple way to get lt experimentally, as we

will discuss in next section.

1.1.3 Coherent Backscattering

In the last section, multiple light scattering was described by the photon density (or light

intensity)diffusion equation (Equ. 1.16) when λ << lt << L. This diffusion model,

though describing many experimental phenomena well(e.g. transmission), ignored the

interference effect. However, interference can definitely survive multiple scattering, one

good example is the speckle pattern we often observe in the transmission or reflection of

a coherent laser light beam from random media. If the scatterers are allowed to move

over distances on the order of the wavelength of the light or more at the time scale of the

measurement, the spatial distribution of the scattered intensity will be the average of a

rapidly changing speckle pattern and therefore essentially flat. Liquid random samples

in which the scatterers are subject to Brownian motion, or rigid random samples that
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are spun, yield scattered flat intensity patterns as if interference between light paths did

not exist. One type of interference, however, survives. In the exact backward direction

of the incident light, the waves that travel along the same light path in opposite direc-

tions (time-reversed paths) will always have the same phase and interfere constructively.

Moving away from this direction, a difference in phase develops, and the summation of

scattered waves from different paths eventually get incoherent. As a measurable conse-

quence, the intensity of scattered light in the backwards direction would be twice that

of the intensity in other directions. This phenomenon is called coherent backscattering

(CBS). A more quantitative picture of CBS in real space is quoted from Ref. [8]: Consider

Figure 1.3: Geometry used for the calculation of the coherent albedo, showing two inter-
fering light paths. Cited from Ref. [8].

a plane wave of wave vector ki (wavelength λ) experiencing a series of elastic scattering

events characterized by the wave vectors ki,k1, ...,kn = kf , where kj is the wave vec-

tor after the jth scattering event and kf stands for the final wave vector. In classical
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transport theory all n-order sequences are assumed to be uncorrelated as a result of the

random nature of the distribution of scatterers. However, any given sequence and its

time reversed counterpart ki,−kn−1,−kn−2...,−k1,kf , where the light is scattered by

the same centers but in opposite order, can interfere constructively for a special choice of

kf relative to ki. The total phase shift ∆φ between the two corresponding partial waves

is

∆φ = (kf ·r1−ki·rn)−(kf ·rn−ki·r1) = (ki+kf )·(r1−rn) =
4π

λ
sin(

θ

2
) |r1 − rn| , (1.20)

where r1 and rn are the positions of the first and last scattering centers, and θ is the

angle between ki and kf as shown in Fig. 1.3. With increasing θ, the interference for

an individual light path will oscillate with the period determined by |r1 − rn|. With

increasing |r1 − rn|, the oscillation period gets smaller and smaller. The total scattered

field is the sum of all the partial waves from time reversed pairs like r1 and rn. Thus,

at backscattering direction (θ = 0), all pairs interfere constructively, and at large θ, the

interference is averaged out by different pairs and the summation is incoherent. Thus,

within a certain solid angle around the direction of exact backscattering there will be

an enhanced intensity cone. Since the average value of |r1 − rn| is
√

Dτ , where τ is the

time period the photon stays inside the sample and D = ltv/3 is the diffusion coefficient.

For the shortest sequence (n = 2) the mean distance between two scattering events is the

scattering mean free path ls, thus the CBS cone width is expected to be proportional to

λ/
√

ltls. Since lt and ls are proportional, it is usually said that the CBS cone width is
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expected to be proportional to λ/l where l is the mean free path.

The above discussion is surely a coarse estimation with many approximations. First,

the vector property of the EM wave is ignored and the field is treated as a scalar. Ex-

periments have been performed to study CBS in both the polarization conserved and

polarization crossed channels. For linearly polarized incident light, this is realized by

detecting the scattered field after it passes through a linear polarizer either parallel or

perpendicular to that of the incident light. It is shown that a CBS cone with a peak

height close to 2 is only observed in the parallel channel, while in the perpendicular chan-

nel, a much smaller peak is observed. This is explained as following: the polarization of

the scattered field is, in general, different from the polarization of the incident field. For

the two inverse scattering loop drawn in Fig. 1.3, however, the polarization component

parallel to the incident polarization is the same. Thus, full coherence between both loops

is maintained in the parallel channel and a CBS cone is seen. In the other channel, the

polarization component is different for the two loops and coherence is lost so no strong

CBS cone should be observed. This discussion also justifies the scalar theory for the CBS

in the parallel channel.

The predicted factor of 2 is difficult to obtain experimentally for a few reasons. The

first reason is the single scattering events at the sample surface, which are ignored in the

theoretical consideration. The sum of all the single scattering events does not provide the

enhanced backscattering cone, therefore it reduces the enhancement factor. This draw-

back can be fixed by using a circular-polarized incident field in stead of a linearly polarized
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one, so the scattered field measurement is only for the helicity conserved component. Be-

cause single scattering of a circular-polarized wave changes its helicity, its contribution

to the scattered field is removed automatically. Indeed, for a circular-polarized incident

field, a CBS cone closer to 2 was obtained in the helicity conserved channel, and in the

helicity reversed channel the scattered light was more isotropic and the CBS cone was

closer to 1. The other ignored factor is the recurrent scattering, where rn = r1. In

such closed scattering loops, the two reversed scattering sequences will give constructive

interference in any ki and kf , thus there is no CBS cone in such cases. However, the

probability for occurrence of recurrent scattering is quite small when λ << ls, thus this

effect is not as strong as single scattering events. But when scattering gets stronger, the

recurrent scattering events cannot be ignored, which we will discuss in the next section.

The detailed derivation of the CBS albedo was given in Ref. [9] which we will not

discuss here. However, to understand the physical meaning of such an albedo, we cite

Equation (1) in Ref. [9]:

α(k0,k, t, t′) ∝
∑

i,j,l,m

A(ri, t; rj, t
′) × A∗(rl, t; rm, t′)eik0·(ri−rl)+ik·(rm−rj) (1.21)

The definition of all the variables are as follows: A(ri, t; rj, t
′) is the complex amplitude

of the field at (rj, t’) from an impulse point source at (ri, t); k0 and k are the incident

and scattered wave vectors. The scattered intensity α from the medium is obtained

from the product of A and A∗, weighted by the external phase factors of the incoming

and outgoing waves summed over the coordinates of the initial and final points of the
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scattering sequences. For coherent backscattering, we only need to consider the coherent

part of AA∗, where ri = rl and rj = rm. It can be seen that the scattered albedo is

nothing but the Fourier transform of the product of A and A∗, which can be viewed as

the intensity of the light scattered from ri to rj. Therefore, a smaller angle θ corresponds

to a longer path from ri to rj. In other words, closer to the backscattering direction, the

more contribution there is from the longer paths inside the sample.

The above idea can be experimentally tested by studying the CBS albedo change as

we control the contribution from different path lengths inside the sample. The first way

to change the contribution is via the geometry confinement, in particular, by gradually

reducing the sample thickness so that more and more long paths will be terminated. It

was shown that thinner samples did show the decrease of the cone height, which confirmed

the idea that enhancement near the backscattering direction is mainly from long light

paths inside the sample [10, 11]. An alternative way to reduce the contribution of long

paths is by introducing absorption into the sample. Due to the exponential decrease of the

scattered light intensity with path length induced by absorption, the contributions from

long paths are reduced to the CBS albedo outside the sample. This idea was also tested

experimentally and indeed the albedo peak decreased when absorption was introduced

into the sample [11]. A subtle difference exists in the results of these two methods:

geometry confinement only truncates the longer paths without affecting the short paths

while absorption reduces both long and short paths. Such a difference causes different

changes to the CBS albedo: in the former case the wings of the backscattering peak are
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completely unaffected, whereas in the latter case there is a slight decrease of the albedo

even in the wing part [11]. Instead of reducing the contribution from the longer paths,

one can also enhance it by introducing gain into the sample. Because the scattered field

is exponentially amplified with path length, longer paths dominate over the short ones

in their contribution to the scattered field and a narrowing of the CBS cone would be

expected. Such an idea was proposed in theory [12] and realized in experiment [13].

With the development of measurement techniques, high angular resolution has been

obtained which facilitates the better study of coherent backscattering phenomenon. Using

circular-polarized incident light, a CBS albedo with an enhancement factor very close to

2 has been realized in the helicity conserved channel. With good fitting to theory, the

transport mean free path lt can be derived very precisely. We know that lt is a very

important parameter to describe a random system, so experimental determination of lt is

crucial. Besides coherent backscattering, dynamic transmission measurement is also used

frequently to determine the diffusion coefficient D, from which lt is derived. However, in

the latter cases, the scattered light propagation speed v has to be carefully determined

before a reliable lt can be obtained.

1.1.4 Photon Localization

In the last section, we discussed the coherent backscattering of light in random samples,

which is actually also termed weak localization of light. It is often referred to as the pre-

cursor of strong localization of light. The backscattered intensity is enhanced within the
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CBS cone, whose width is proportional to λ/lt. When scattering gets stronger inside the

sample, lt gets smaller and the CBS cone gets wider, thus more light is scattered back-

wards. The increase of backscattered light means the decrease of transmission, and hence

of the optical diffusion coefficient D. For sufficiently strong scattering, D approaches zero

and the diffusive propagation stops, which is called strong localization of light.

The idea of localization was first brought up by Anderson when he originally consid-

ered electron transportation in a random potential [14]. Later a scaling theory of localiza-

tion was developed by Edwards and Thouless, who proposed a criterion for localization

basing on the sensitivity of electrons to the boundary of the sample [15]. Physically, it

predicted localization may happen when the ”boundary leakage induced energy shift”

∆E is less than the average energy level spacing between states of the sample dE/dN .

Furthermore, it was argued that the parameter, ∆E/(dE/dN), is directly related to

electronic transport in the sample, since it can be identified with the dimensionless con-

ductance g. Abrahams and co-workers further developed a scaling theory and concluded

that for infinite one and two dimensional systems, an arbitrary small disorder can make

all the states be localized; while for systems of higher dimension, there exists a mobility

edge separating extended and localized states [16]. The mobility edge was believed to

be the Ioffe-Regel criterion kl ≈ 1 where k is the electron wave number and l is the

mean free path in the random system [17]. However, an unequivocal experimental test of

the scaling theory was hampered by the nearly inescapable presence of electron-electron

interactions and electron-phonon scatterings in real materials. The request to avoid such
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drawbacks urged people to look for localization of electromagnetic waves propagating

in strongly scattering dielectric structures [18, 19]. It is interesting that, even though

the wave behavior of photons was known much earlier than electrons, the localization

behavior, which is regarded as a general interference consequence for any wave in random

media, was proposed for light later than for electrons.

There are interesting similarities between the propagation of light in a disordered

dielectric and electrons in, for example, a disordered semiconductor or metal. If we write

the wave equation of light in the format of the Schrödinger equation for an electron, we

get the frequency dependent potential for light

V (r, ω) = −ω2

c2
(ǫ(r − 1) (1.22)

with ǫ(r) being the dielectric constant of the medium. This frequency dependent potential

makes light scattering different from electron-impurity scattering. Though Anderson

localization of electrons was expected to occur at low energy, this is not true for photons.

A generally accepted condition for Anderson localization of light in three dimensional

systems is the Ioffe-Regel criterion kels ≤ 1. This criterion was original put forward in

1960 by Ioffe and Regel who argued that kwls must necessarily be greater than unity (in

fact 2π in their original paper) since a mean free path less than wavelength is no longer

compatible with the idea of a traveling wave. The ω2 dependence of the potential in

the Rayleigh scattering regime (i.e. in the limit ω → 0), leads to the ω4 dependence of

the scattering cross section. Consequently ls ∝ ω−4 at small frequencies, which causes



38

kls ∝ ω−3 → ∞ as ω → 0. For the other limit ω → ∞, one enters the geometrical

optics regime where the scattering cross section equals twice that of the geometrical

cross section for non absorbing scatterers, then ls is independent of ω, which causes

kls ∝ ω → ∞ as ω → ∞. So the Ioffe-Regel criterion cannot be satisfied in both low and

high frequency limits. As a result, localization of light, if possible, can only be obtained

at the intermediate frequencies.

The intermediate frequency regime is the resonant scattering regime, where the scat-

tering cross section is indeed large at resonances, and the mean free path ls is expected

to be small. The existence of such a frequency window has been predicted and the

localization length has been calculated [20]. It was concluded that localization should

occur in a two-component composite when the refractive index contrast exceeds a certain

minimum value that is in the range of 2.1-2.5. Moreover, the optimal filling fraction of

the high index component for the observation of localization was found to be 0.35-0.45.

However, this optimistic calculation is based upon the extrapolation of results obtained

in the low-density limit, and such an extrapolation might not be justified. In particu-

lar, we made use of the independent scattering approximation to get ls = 1/ρσs, which

does not hold for a higher density ρ. At higher ρ, the scattering cross section from each

scatterer starts to overlap and dependent scattering happens, which tends to decrease

the collective scattering efficiency, thereby make it more difficult to realize localization of

light. An alternative way to realize light localization was proposed by John [21] to utilize

the low density of states in the photonic band gap. He showed that the wavenumber
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in the Ioffe-Regel criterion is replaced by the crystal momentum, which vanishes at the

Brillouin-zone boundary to make kcrysls ≤ 1. Thus, localization might be achieved with

relative ease near a (pseudo-) gap of such a crystal.

After discussion of the possibility for existence of strong localization of light, the

question comes: how can we deduce the existence of Anderson localization experimen-

tally? The scaling theory of localization [16] is an attempt to answer this question.

According to the scaling theory of localization, the energy leakage of a localized state

from the boundary can be expressed by a scale-dependent transport mean free path

lt(L) ∝ L−1. Therefore, the transmission is expected to behave as T ∝ L−2 rather than

T ∝ L−1 as in the diffusive regime. Such rescaling phenomenon was indeed observed

for microwaves within a particular frequency window around ν = 19 GHz for strong

scattering metallic spheres [22]. In 1997, Wiersma and co-workers showed the similar

super linear dependence of transmission on sample length in GaAs powders samples for

light with λ = 1064 nm [23]. However, their results were questioned for the absorption

effect in their samples [24,25]. In 1999, Schuurmans and co-workers studied the coherent

backscattering from strong scattering GaP samples, they attributed the rounding of the

CBS cone to the onset of Anderson localization by excluding both finite sample size and

absorption effects [26]. Chabanov and co-workers proposed a different way to characterize

photon localization by measuring the relative fluctuation of a certain transmission quan-

tity var(sa) [27], and they experimentally demonstrated the localization of microwaves

by resonant scatterers under such criterion [28]. Very recently, Storzer and co-workers
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showed the time resolved transmission of 590 nm light through strongly scattering TiO2

samples, and observed deviation from diffusion which cannot be explained by absorp-

tion, sample geometry, or reduction in transport velocity [29]. Following the proposal

by John [21], some experiments also have been conducted to explore light localization in

photonic crystals with certain disorder [30,31].

1.2 Lasing in Multiple Light Scattering Systems

As the main purpose of this thesis, lasing phenomena are studied in multiple light scat-

tering systems. Depending on the amount of randomness, all systems can be divided into

three different regimes: (i) strongly periodic structures, (ii) strongly random structures,

(iii) partial-periodic and partial-random structures. In the first regime, periodic struc-

tures are often called photonic crystals, whose density of states distribution is strongly

modulated by the spatial periodicity of the dielectric constant. Partial or complete

gaps can be formed in their dispersion and lasing from both defect states in the gap

and bandedge states outside the gap have been extensively studied both theoretically

and experimentally. In the second regime, strong dielectric constant fluctuation scatters

light severely and the dwell time of photons inside the sample is enhanced dramatically.

As we discussed in previous sections, photons go through diffusive propagation when

λ << lt << L with small probability for the occurrence of recurrent scattering events.

With scattering strength increased, lt is decreased and recurrent scattering becomes more

frequent. Eventually, when klt → 1, diffusion is completely stopped and photon localiza-
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tion is achieved by interference between all the recurrent scattered partial waves. In other

words, localized modes are formed whose wave function exponentially decays spatially.

With gain introduced into the system, those localized modes can start to lase when their

loss is compensated by amplification. This phenomenon is called random lasing to dif-

ferentiate from the conventional laser cavity with mirrors. In this sense, random lasing is

closely related to photon localization and provides an important tool to experimentally

study those localized modes. The third regime is the intermediate regime between the

first two, and it can be treated as either periodic structures with random defects (disor-

dered photonic crystal) or random structures with short or long range orders (correlated

random structure). Lasing in this regime is thus often extrapolated from either photonic

crystal lasers or random lasers study.

1.2.1 Random Lasers

In order to facilitate a comparison between the laser systems analyzed in this thesis, we

first present a succinct overview of the physical principles behind conventional lasers.

The word laser stands for Light Amplification by Stimulated Emission of Radiation

(LASER). A laser system includes two parts: an oscillator, which supplies optical feed-

back, and an amplifier which coherently amplifies the light. The oscillator and amplifier

can be separated or combined into one resonator cavity. The amplification is achieved by

the gain medium, which is placed inside the cavity. Three kinds of interactions between

light and gain material happen during lasing: spontaneous emission, stimulated emission
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and absorption. In the spontaneous emission process, there is no definite phase relation

among all the photons emitted from different atoms and they can be emitted into any

direction. In the stimulated emission process, an incident photon triggers the emission of

many identical photons, which combine coherently with the incident photon. By absorp-

tion process, we only mean the absorption of pump light by the gain medium to excite

it to higher energy levels. In a laser resonator, the photons spontaneously emitted along

the cavity axis are reflected back into the gain medium by mirrors and amplified through

stimulated emission on each passage through the gain medium. Lasing occurs when the

gain in a round trip exceeds the loss for the frequencies satisfying the phase condition

of oscillation. The loss can be output coupling loss, scattering loss during the passage

inside the cavity, or reabsorption loss inside the cavity.

In a conventional laser cavity, scattering is detrimental since it increases the loss and

hence the threshold gain. However, in a strongly scattering gain medium, light scattering

plays a positive role: (i) multiple scattering increases the path length or dwell time of

light in the gain medium, thus enhancing light amplification by stimulated emission; (ii)

recurrent light scattering provides coherent feedback for lasing oscillation. Therefore,

under suitable conditions, the combination of optical coherent amplification and multiple

light scattering in active random media leads to random laser action. In other words, the

random laser represents the process of light amplification by stimulated emission with

feedback provided by disorder-induced scattering. There are two kinds of feedback: one

is intensity or energy feedback; the other is field or amplitude feedback. The former
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feedback is incoherent and non-resonant, the latter is coherent and resonant. Based on

the feedback mechanisms, random lasers are classified into two categories: (1) random

lasers with incoherent (or non-resonant) feedback, also called incoherent random lasers,

(2) random lasers with coherent (or resonant) feedback, also called coherent random

lasers.

There has been tremendous interest in various types of random lasers since the in-

vention of cavity lasers. For a good review of both experimental and theoretical work on

random lasers, readers can refer to Ref. [32,33]. Here, we will only give a brief historical

introduction. In 1968, Letokhov proposed self-generation of light in an active medium

filled with scatterers [34]. From the discussion in previous sections, we know that when

λ << lt << L, the propagation of photons is diffusive with a diffusion coefficient D.

From the second limit αL >> 1 of Eq. 1.18, the transmission T decays exponentially

with system size L having a coefficient α = L−1
a = (ltli/3)−1/2. La is the diffusive ab-

sorption length and li is the inelastic mean free path. Now considering an active system

with gain instead of absorption, we can define the gain length lg similarly as li, over

which the intensity is increased by a factor of e. Similarly, diffusive gain length can be

defined as Lg = (ltlg/3)1/2. Then, from Eq. 1.18, T will exponentially increase with L

when L >> Lg. In other words, the total transmission will diverge by increasing the sys-

tem size. The critical criterion is L = Lg, at which the total transmission is equal to the

total incidence. Physically, this means on average every photon generates another photon

before escaping the medium. When L ≥ Lg, more than one photon is generated by each
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incident photon before its exit from the system thus the photon number increases with

time. In reality the light intensity will not diverge because gain depletion quickly sets in

and lg increases. Since in this model the interference is ignored, it is called incoherent

random lasing with energy or intensity feedback.

Experimental study of random lasers started in the 1980’s with samples made from

laser crystal powders [35]. They reported intense stimulated radiation over a wide range of

Na3+-activated scattering media. Because in such a system gain and scattering are both

from the powder, the effect of multiple light scattering on emission mechanism was not

clear. It would be better to separate gain and scattering and study both independently.

This idea was realized experimentally in 1994 [36], with TiO2 micro particle suspensions

with laser dye rhodamine 640 perchlorate as gain material, scattering and gain were

controlled separately by varying particle concentration and dye molarity. A threshold

was found for emission intensity increasing and emission linewidth narrowing from the

solutions and the threshold depended on particle concentration, which clearly showed the

feedback was provided by light scattering. These were the characteristic behaviors of a

random laser with intensity feedback.

The discovery of Lawandy et al triggered many experimental and theoretical studies

of such colloidal dye suspensions, and the incoherent random lasers were realized un-

der various conditions. Detailed experimental studies on lasing threshold dependence,

emission spectral shape, emission dynamics, β factor and many other properties were

performed by many groups. Theoretical simulations based on the light diffusion model
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were proposed to explain all the observed experimental results. Here we will only dis-

cuss one point which was ignored sometimes in these studies: the reabsorption of the

emission in the solution outside of the excited region. Besides the often checked criterion

λ << lt << L, there is a hidden requirement for applying the diffusion model: lt << li,

which means that light diffusion can only occur when absorption is very weak. Oth-

erwise, after the emitted photon exits the excitation region, it will be quickly absorbed

even before being scattered. So we should divide the typical experimental conditions into

a few different regimes: (1) the characteristic size of excitation region (or gain volume)

Le is much larger than lt, and there is weak reabsorption outside lt << li. In this case,

emitted light will diffusively propagate both inside and outside the gain volume with an

extended length La = (ltli/3)1/2, and the diffusion model can be applied to this total

system with a size of Le + La. (2) Le >> lt but lt ≥ li, then the emitted light will be

strongly absorbed outside the gain volume and cannot return to it, so the diffusion model

can only be applied to the gain volume of size Le. (3) Le ≤ lt and lt << li, in this case

the diffusion model can only be applied to the total size Le + li, not just Le. (4) Le ≤ lt

and lt ≥ li, in this case the diffusion model cannot be used since light will be absorbed

before diffusion occurs. In all of these cases, one has to consider the relation between

these different length scales: lt, li, Le and the total system size L when analyzing the

experimental results.

The random laser with incoherent feedback, where the interference effect has been

ignored, only requires that light return to the gain volume instead of to its original



46

scattering coherent volume. As a consequence, the characteristic of such random lasers

is the smooth and narrow emission spectrum close to the frequency of maximum gain.

This behavior is very similar to another well known phenomenon: amplified spontaneous

emission (ASE). However, ASE can even be observed in pure gain material without

scattering as long as the excitation region is large and the excitation is strong enough,

while in the incoherent random laser process feedback from scattering is necessary.

The random laser with field feedback is formed by the interference of scattered waves

which return to the same coherence volume via different closed paths. Thus scattering

provides coherent (phase-sensitive) and resonant (frequency-dependent) feedback for las-

ing, leading to the selection of discrete lasing frequencies. The coherent random laser

was first demonstrated in disordered ZnO powders and polycrystalline films by Cao in

1998 [37, 38]. When the excitation pulse energy exceeded a certain threshold, discrete

narrow peaks emerged in the emission spectrum. The linewidth of these peaks was sub

nanometer, which was much narrower than the typical incoherent random laser emission

linewidth. The frequencies of the sharp peaks depended on the local dielectric con-

figuration at the pumped region. The mean free path lt was found to be close to λ,

which indicated very strong scattering close to the localization regime in their samples.

The coherence of random lasing peaks was confirmed by photon statistics measurement,

which indeed showed the Poisson distribution above threshold pumping for a single lasing

mode [39].

The dependence of the lasing threshold on the transport mean free path lt, pump area
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size Le and gain length lg for the coherent random laser was studied in detail [40]. The

decrease of the lasing threshold with lt confirmed the contribution of multiple scattering

to this random laser action. Moreover, the transition from an incoherent random laser

to a coherent random laser with increasing scattering was observed experimentally [41].

Such a transition can be understood by considering lasing from eigenmodes of Maxwell’s

equations for a random medium. Owing to the finite size of the random medium, the

eigenenergies are complex numbers, whose imaginary parts represent the decay rates.

Through the coupling to the outside reservoir (i.e., to the EM modes outside the random

medium), the eigenmodes interact with each other. In the diffusion regime, the average

decay rate of an eigenmode is larger than the mean frequency spacing of adjacent modes.

Hence, the eigenmodes are spectrally overlapped, giving a continuous emission spectrum

for lasing with incoherent (or non-resonant) feedback. When scattering increases, the

dwell time of light in the random medium increases. The decrease of their coupling to

the outside reservoir weakens the interaction among the modes. When the eigenmodes

are spectrally separated, laser emission from them gives discrete peaks in the emission

spectrum, which is the random laser with coherent (or resonant) feedback.

So far we discussed two types of random lasers: the incoherent random laser in the

diffusion regime and the coherent random laser in the near localization regime, and

the transition between them by increasing scattering has been shown. One interesting

observation is that a coherent random laser can be realized in the diffusion regime with

klt >> 1 [40, 41]. Similar phenomena were also observed by Vardeny and co-workers
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with a series of experiments in many different weak scattering systems: π-conjugated

polymer films [42, 43], organic-dye-doped gel films [44], synthetic opals infiltrated with

π-conjugated polymers and dyes [44, 46, 47], biological tissues [48, 49]. The physical

mechanism of these observations have not been clearly and different models have been

proposed trying to explain such observations [50, 51]. In Chapter 2, we will discuss our

study on random lasing with resonant feedback from weakly scattering colloidal solutions

in detail both experimentally and theoretically.

1.2.2 Photonic Crystal Lasers

Photonic crystals are periodic dielectric structures which exhibit strong Bragg-scattering

as well as microscopic resonance scattering of electromagnetic waves. One good example

is the opal structure assembled by micro spheres in an fcc lattice. Under suitable circum-

stances, e.g., the refractive index contrast between spheres is higher than a certain value,

a forbidden frequency range, know as the photonic band gap (PBG), can develop in some

direction. Within the PBG, propagation of electromagnetic radiation is forbidden along

this direction. The concept of a complete PBG in photonic crystal was proposed indepen-

dently by Yablonovitch for controlling spontaneous emission [52], and John for achieving

photon localization [21] in 1987. The ability to tailor electromagnetic dispersion rela-

tions and the associated photonic mode structures in photonic crystals facilitates new

approaches to low threshold micro-lasers [53,54]. Actually, the study of electromagnetic

wave propagation in periodic structures was studied a long time ago in one dimensional
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systems, and mirrorless lasing with distributed feedback in such structures was proposed

in the early 1970s [55,56].

There has been tremendous study done on photonic crystals both experimentally

and theoretically for the past two decades. Low threshold micro lasers made from such

structures with gain has been a field of intense interest and effort. In general, there are

two types of lasers associated with photonic crystals. The first is the bandedge state laser,

in which the light emission occurs at the photonic band edge. The second is the defect

mode laser, which utilizes a localized defect mode as a laser cavity. At a photonic band

edge, strong coupling between light emitters and electromagnetic modes arises from small

group velocity and high density of states. The slow group velocity makes the coupling

time much longer and the high density of states makes the coupling more efficient. Mirror-

less, low-threshold laser action at photonic band edges has been demonstrated for one-

dimensional [57], two-dimensional [58], and three dimensional photonic crystals.

While the threshold can be low, bandedge state lasers are typically not confined

spatially due to the feedback from all the photonic lattices. To achieve both low threshold

and small mode volume, defect mode lasers are proposed. The spontaneous emission can

be suppressed when the emission frequency falls within the photonic band gap. Thus, if a

small defect is introduced in the photonic crystal (by adding extra material, or removing

some of the dielectric material), a localized electromagnetic mode can be created within

the structure at a frequency inside the gap. In this case, the spontaneous emission occurs

preferentially into this localized mode, making it act as a micro-cavity with a very high
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quality factor. Such single defect cavities are expected to realize nearly thresholdless

lasers, and its volume is confined in the structure defect, which can be on the scale of λ3.

Laser action in a micro-cavity formed from a single defect in two dimensional photonic

crystals has already been demonstrated [59].

The photonic crystal laser cavity with the highest quality factor is expected to be

the defect mode laser in three dimensional photonic crystals where light is confined in all

directions. However, the fabrication of three dimensional structures is very complicated,

and introducing a well controlled defect into such a structure is very challenging as well.

To meet the fabrication challenge, a hybrid structure, the photonic crystal slab (PhCS)

is introduced. A photonic crystal slab is a slab with photonic crystal structures in plane,

thus the light is confined in plane by PBG effect, while confinement in the vertical

direction is realized by index guiding. Such structures can be fabricated easily due to

the mature 2D fabrication techniques and both bandedge state lasers and defect mode

lasers have been demonstrated in such structures.

1.3 Outline of This Thesis

This thesis includes experimental and numerical studies on lasing in random and periodic

structures.

In Chapter 2, we study random lasing with resonant feedback from the weakly scat-

tering colloidal laser dye solutions in detail. With a special cone shaped excitation

geometry, we illustrate the difference between the quasimodes of the passive system and
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lasing modes under spatially inhomogeneous gain. The study is extended to investigate

the relation between quasimodes of a random structure and its lasing modes under both

global and local excitations, which is performed numerically in two dimensional systems

by using the finite difference time domain method and one dimensional systems by using

the transfer matrix method. Both experimental and numerical studies reveal the sim-

ilarity and difference between quasimodes and lasing modes, which successfully answer

many important questions people have for random lasers in weakly scattering systems.

Moreover, based on the same experiment, a systematic study on statistical properties of

the random lasing peaks is conducted. Compared with the same measurement for am-

plified spontaneous emission spikes, we clarify the two distinct physical processes which

share a similar discrete spiky single shot emission spectrum.

In Chapter 3, we utilize closely packed resonant scatterers to study lasing in strongly

scattering random media. The active, monodisperse, resonant spherical scatterers are

successfully synthesized by a two step chemical reaction process developed by us, and

the multiple scattering random samples are prepared by closely packing the spheres

with a cold press method. Scattering from a single sphere is calculated using Mie’s

theory, where the refractive index of the sphere is determined by the photonic band gap

effect measurement on self-assembled opal structures. The scattering strength of the

random samples is calibrated by coherent backscattering measurement, from which the

transport mean free path is derived. The experimental result deviates from that predicted

by Mie theory under the independent scattering approximation, and the discrepancy is
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successfully explained by a dependent multiple Mie scattering simulation. Lasing from

the random samples under optical excitation is measured, and the threshold is found to

be closely related to the mean free path. The fluctuation of the lasing threshold is also

measured and the result, as well as the average threshold behavior, is simulated by a

polarization dependent finite difference time domain calculation.

In Chapter 4, we study ZnO photonic crystal slab lasers where three dimensional light

confinement is achieved by the in-plane band gap effect and waveguiding in the vertical

direction. We first design the structure with air cylinders in a triangular latticed with the

dispersion relation calculation done using the plane wave expansion method. To overcome

the vertical asymmetry presented in our samples, a supercell scheme is utilized and

symmetry dependent mode selection is checked to provide the correct band structure. By

varying the in-plane lattice constant, the air cylinder radius, and the ZnO slab thickness,

we obtain the optimum structure parameters for the largest in-plane band gap overlapping

with the ZnO spectral gain. This structure is successfully fabricated with a focused

ion beam etching technique, and a single mode laser is realized at room temperature

under optical excitation. Moreover, single mode lasers with frequencies across the whole

spectral range of ZnO gain are obtained by fine-tuning the lattice constant. The lasing

mode varies from sample to sample, which indicates the crucial role played by defects

introduced during the fabrication procedure. The effect of disorder on photonic crystal

lasers, both the defect mode laser and the bandedge state laser, is studied numerically.

It is shown that the disorder tends to balance the vertical and lateral loss of a photonic
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crystal slab laser, which may facilitate the lasing process.

Finally, in chapter 5, we present concluding remarks and possible future works which

can be done based on current studies presented in this thesis.
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CHAPTER 2

COHERENT RANDOM LASERS IN WEAKLY

SCATTERING COLLOIDAL DYE SOLUTIONS

2.1 Motivation

Random lasers have attracted much interest and many studies over the past few years

[32]. One important subject is the nature of random lasing modes, which was not fully

understood. For random systems in or close to the localization regime, lasing oscillation

occurs in the eigenmodes of Maxwell’s equations (also called quasimodes for the open

system) [60–62]. The formation of quasimodes or lasing modes relies on the interference

of scattered waves which return to the same coherence volume via different closed paths.

Thus scattering provides coherent (phase-sensitive) and resonant (frequency-dependent)

feedback for lasing, leading to the selection of discrete lasing frequencies [38]. Surprisingly,

random lasing with resonant feedback was also realized in diffusive or even ballistic

systems, even though the coherent interference effect was expected to be negligibly small

[40,42,49,63]. The lasing modes were considered to be the quasimodes with small decay

rates [50,64–68]. However, recent theoretical studies suggested that the quasimodes of a

passive random system may not be the genuine normal modes of the same system with

gain [69,70].
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Another puzzle is that, experimentally, tight focusing of the pump beam is necessary

to observe discrete lasing peaks [40,42]. In diffusive or ballistic systems, the quasimodes

are spatially extended across the entire volume, thus they should all be excited more or

less equally under local pumping. Shrinking the gain volume should not decrease the num-

ber of potential lasing modes, but only increase their lasing threshold. Such expectations

contradicted the experimental observations. Several models were proposed to resolve this

issue, for example, the rare anomalously localized modes [50] or the absorption-induced

confinement of lasing modes in the pumped region [51]. The problem with the former

is that the lasing modes are not as rare as expected, while the latter no longer applies

when the absorption outside the pumped region is negligible.

In addition to the lasing peaks, sharp random spikes were observed in the single-shot

spectra of amplified spontaneous emission (ASE) from colloidal solutions over a wide

range of scattering strength [71]. The spikes were stochastic and varied from shot to

shot. They were attributed to single spontaneous emission events which happened to take

long open paths inside the amplifying random medium and picked up large gain. Thus

the emergence of ASE spikes did not rely on resonant feedback or coherent interference.

However, a clear distinction between the stochastic ASE spikes and coherent random

laser modes is still missing.

We will attempt to answer the above questions by our experimental and numerical

studies presented in this chapter.
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2.2 Lasing Experiments in Colloidal Dye Solutions

We performed experiments on several weakly scattering systems which consisted of pas-

sive scatterers embedded in active homogeneous media. The scatterers included TiO2

particles of radius 200 nm, ZnO particles of radius 38 nm, and SiO2 particles of radius

220 nm. The nanoparticles were suspended in a laser dye solution–e.g., rhodamine 640

perchlorate, stilbene 420, or LDS 722 in diethylene glycol (DEG) or methanol. The

experimental results obtained with different particles, dyes and solvents were qualita-

tively similar. As an example, we will demonstrate the lasing phenomena with colloidal

suspensions of TiO2 particles in DEG with rhodamine 640.

A small amount of TiO2 (rutile) particles, with an average radius of 200 nm, were

dissolved in the DEG solution of rhodamine 640 perchlorate dye. To prevent flocculation,

the TiO2 particles were coated with a thin layer of Al2O3. DEG was chosen as the

solvent instead of the widely used methanol because of the facts that (i) the windows

of the quartz cuvette that contained the methanol solution were coated with a layer of

TiO2 particles, whereas such coating was not observed for the DEG solution, and (ii) the

viscosity of DEG was about 30 times larger than methanol; thus the sedimentation of

TiO2 particles in DEG was much slower. In our experiment, the particle density ρ ranged

from 1.87× 108 cm−3 to 5.6× 1010 cm−3. The scattering mean free path was estimated

by ls = 1/ρσs, where σs is the scattering cross section of a TiO2 spherical particle with

radius 200 nm. The value of ls varied from 1.07 cm to 35 µm. The dye molarity M also

changed from 3 to 10 mM. Right before the lasing experiment, the suspension was placed
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in an ultrasonic bath for 30 min to prevent sedimentation of the particles. During the

experiment, the solution was contained in a quartz cuvette that was 1.0 cm long, 1.0 cm

wide, and 4.5 cm high. The dye molecules in the solution were optically pumped by the

frequency-doubled output (λp = 532 nm) of a mode-locked Nd:YAG laser (25 ps pulse

width, 10 Hz repetition rate). The pump beam was focused by a lens into the solution

through the front window of the cuvette. The radius of the pump spot at the entrance

to the solution was about 20 µm. The experimental setup is shown schematically in the

inset of Fig. 2.1. The emission from the solution was collected in the backwards direction

of the incident pump beam. A second lens focused the emission into a fiber bundle (FB)

which was connected to the entrance slit of a spectrometer with a cooled CCD array

detector. The spectral resolution was 0.6 Å.

We started the experiment with a sample of M = 5 mM and ρ = 3.0 × 109 cm−3.

At a low pumping level, the emission spectrum featured the broad spontaneous emission

band of rhodamine 640 molecules. Above a threshold pump intensity, discrete narrow

peaks emerged in the emission spectrum and their intensities grew rapidly with increased

pumping. This behavior corresponded to the onset of lasing. The lasing peaks could be as

narrow as 0.12 nm. Their frequencies changed from pulse to pulse (shot). We repeated the

experiment with samples of different particle densities but the same dye concentration.

Lasing was observed only within a certain range of particle density. Figure 1 shows the

spectra of emission from five samples taken at the same incident pump pulse energy 0.4

µJ. Each spectrum was integrated over 25 shots. Only a relatively broad ASE peak was
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Figure 2.1: Spectra of emission from DEG solutions of Rhodamine 640 (5 mM) and
TiO2 particles. The particle densities are (1)ρ = 0 (dotted curve), (2) 1.87 × 108 cm−3

(thin solid curve), (3) 1.87 × 109 cm−3(thick solid curve), (4) 1.3 × 1010 cm−3(dot-dot-
dashed curve), (5) 5.0 × 1010 cm−3 (dashed curve). All spectra were taken at the same
pump pulse energy 0.4 µJ. Each spectrum was integrated over 25 shots. Left inset is our
experimental setup, BS: beam splitter, SP: spectrometer, FB: fiber bundle. Right inset
is the emission spectrum shows the ASE peak. ρ = 5.0 × 1010 cm−3. The pump pulse
energy is 1.2 µJ.

observed for the neat dye solution, whereas a few discrete lasing peaks emerged on top

of the ASE spectrum at small particle concentration ρ = 1.87 × 108 cm−3. Increasing

the particle density to 1.87 × 109 cm−3 led to an increase in the number of lasing peaks

and the peak intensity. However, when ρ increased further to 1.3×1010 cm−3, the lasing

emission started to decrease. Eventually at ρ = 5.0×1010 cm−3 lasing peaks disappeared.

A further increase of the incident pump pulse energy to 1.2 µJ resulted in an ASE peak

at a longer wavelength, shown in the right inset of Fig. 2.1. The redshift of the ASE

peak might be caused by the surface effect on the emission frequency of rhodamine 640
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molecules adsorbed on the TiO2 particles. One support for this explanation was that

the emission frequency was blueshifted when we replaced the TiO2 particles by SiO2

particles.

In Fig. 2.2, the incident pump pulse energy at the lasing threshold Pt is plotted

against the particle density ρ. At the lasing threshold, the slope of the emission intensity

versus pump pulse energy exhibited a sudden increase (inset of Fig. 2.2). At ρ = 3.8×108

cm−3, lasing started at 0.21 µJ. As ρ increased to 1.5×109 cm−3, Pt decreased gradually

to 0.12 µJ. Then it remained nearly constant with a further increase of ρ. The threshold

started to rise at ρ = 1.9 × 1010 cm−3, then went up quickly with ρ. At ρ = 5.6 × 1010

cm−3, no lasing peaks were observed up to the maximum pump pulse energy of 2.0 µJ

we used, although at 1.0 µJ an ASE peak appeared at a longer wavelength.

The particles played an essential role in the lasing process in our suspensions be-

cause lasing did not happen in the neat dye solution. One possibility was lasing within

individual particles that served as laser resonators. It contradicted two experimental

observations: (i) the lasing threshold depended on the particle density (Fig. 2.2); (ii) the

laser output was highly directional (shown next). The left inset of Fig. 2.3 is a sketch of

our directionality measurement setup. A fiber bundle was placed at the focal plane of the

lens. It was scanned with fine steps parallel to the focal plane. At each step, the spectrum

of emission into a particular direction was recorded. The output angle θ was computed

from the fiber bundle position. Its range was limited by the diameter of the lens to about

14o. θ = 0 corresponded to the backward direction of the incident pump beam. In each



60

0.1 1 10 100

0.1

1

10

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0

20000

40000

60000

80000

100000

 

 

I (
ar

b.
 u

ni
ts

)

P
E
 ( J)

 

 

P
t (u

J)

10-9  (cm-3)

Figure 2.2: The threshold pump pulse energy Pt as a function of the TiO2 particle
densityρ. The concentration of Rhodamine 640 in DEG is 5 mM. The inset is a plot
of the emission intensity I versus the pump pulse energy PE for the suspension with
ρ = 3.0 × 109 cm−3.

spectrum, the emission intensity was integrated over the wavelength range of 604-612 nm

in which the lasing peaks were located. Figure 2.3 is a plot of the integrated emission

intensity versus the output angle θ at ρ = 3.0 × 109 cm−3. Although the spontaneous

emission at low pumping was isotropic, the lasing emission was strongly confined to the

backward direction of the incident pump beam. The divergence angle ∆θ of the out-

put laser beam was merely 4o. To check the effect of reflection by the front window of

the cuvette on lasing, we rotated the cuvette around the vertical axis and repeated the

measurement. As shown in the right inset of Fig. 2.3, φ represented the angle between

the incident pump beam and the normal of the front window. Similar lasing phenomena

were observed except for a small increase of the lasing threshold. The lasing emission
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was always confined to the backward direction of the pump beam even when φ was much

larger than the divergence angle of the focused pump beam, which was about 4o. This

result demonstrated that the front window of the cuvette was not indispensable to the

lasing process. Figure 3 also shows the angular distribution of ASE from a sample of

higher particle density (ρ = 5 × 1010 cm−3). The integrated intensity of ASE (at longer

wavelength) was nearly constant over the angular range of detection. To understand

Figure 2.3: The angular distribution of output emission intensity from DEG solutions of
5 mM Rhodamine 640 and 3.0×109 cm−3 (solid square) or 5.0×1010 cm−3 (open circle)
TiO2 particles. The solid line is a Gaussian fit of output laser beam. θ = 0 corresponds
to the backward direction of pump beam. Left inset is a sketch of experimental setup,
BS: beam splitter, SP: spectrometer, FB: fiber bundle. Right inset shows the angle φ
between the pump beam and the normal to the front window of the cuvette.

the directionality of lasing emission from the dilute suspension, the pumped region was

imaged through a side window of the cuvette. The measurement setup is sketched in

the inset of Fig. 2.4(a). Emission from the excited region was collected through the side
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window by a 5× objective lens and imaged onto a CCD camera by integrating multiple

pulses. The spectrum was taken simultaneously by partitioning the signal with a beam

splitter (BS). Figure 2.4(a) compares the spectrum of emission through the side window

to that through the front window of the cuvette from the same sample (ρ = 3 × 109

cm−3, M = 5 mM) under identical pumping conditions. The spectrum of emission from

the front window exhibited large lasing peaks. However, only spontaneous emission was

observed through the side window, and it shifted to longer wavelength as a result of

reabsorption in the unpumped solution between the excited region and side window. To

calibrate the reabsorption, we measured the spontaneous emission spectra at low pump

intensity from both front and side windows. The magnitude of reabsorption was es-

timated from the intensity ratio of emission through the side window to that through

the front. Based on this estimation, we concluded that the reabsorption was not strong

enough to make the lasing peaks, which emerged in the front emission spectrum at high

pump intensity, disappear in the side emission spectrum. This conclusion confirmed the

result of the lasing directionality measurement in Fig. 2.3. More importantly, the image

of spontaneous emission intensity distribution taken through the side window exhibited

the shape of the excited region in the sample. As shown in Fig. 2.4(b), the excited

volume at low particle density had a cone shape. The length of the cone was much larger

than its base diameter. Unfortunately, we could not get the exact length of the cone from

the image, because near its end the spontaneous emission was too weak to be recorded

by the CCD camera. At high particle density, the shape of excited volume changed to a
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hemisphere as shown in Fig. 2.4(c) at a higher pumping power. This change was caused

by increased scattering of pump light. In Fig. 2.4(b), ρ = 3.0× 109 cm−3; the scattering

mean free path ls at the pump wavelength λp = 532 nm was estimated to be 800 µm. The

(linear) absorption length la, obtained from the transmission measurement of the neat

dye solution, was about 50 µm at λp = 532 nm. Strong pumping in the lasing experiment

could saturate the absorption of dye molecules, leading to an increase of la. Since the

shape of the excited volume shown in Fig. 2.4(b) was nearly identical to that in the neat

dye solution, the scattering of pump light must be much weaker than absorption; i.e., la

was still shorter than ls. In Fig. 2.4(c), ρ = 5.0 × 1010 cm−3; ls was shortened to 53

µm. Scattering of pump light became much stronger. As a result of multiple scattering,

the cone was replaced by a hemisphere. The image of excited volume provided some clue

to the high directionality of lasing emission at small ρ and nondirectionality of ASE at

large ρ in Fig. 2.3. At low particle density, stimulated emission in the cone-shaped gain

volume was the strongest along the cone due to the longest path length. Since the cone

was parallel to the incident pump beam, lasing was confined to the direction parallel to

the pump beam. The divergence angle ∆θ of laser output was determined by the aspect

ratio of the excited cone: namely, ∆θ ∼ 2rp/Lp, where Lp is the cone length and rp is

the base radius. At large ρ, emitted photons experienced multiple scattering while being

amplified in the hemisphere-shaped gain volume. Hence, the ASE was nearly isotropic.

Therefore, the shape of the gain volume determined the lasing directionality; i.e., las-

ing occurred along the direction in which the gain volume was most extended. However,
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Figure 2.4: (a): Spectra of emission through the side window (dashed curve) and front
window (solid curve) of the cuvette. The inset is a sketch of the experimental setup,
BS: beam splitter, SP: spectrometer, FB: fiber bundle. (b): Side image of excited region
in DEG solution of 5 mM Rhodamine 640 and 3.0 × 109 cm−3 TiO2 particles. The
pump pulse energy is 0.2 µJ. (c): Side image of excited region in DEG solution of 5 mM
Rhodamine 640 and 5.0 × 1010 cm−3 TiO2 particles. The pump pulse energy is 1.2 µJ.

it was still not clear how the laser cavities were formed in the dilute suspension. We

examined the lasing spectra more carefully by taking single-shot emission spectra with

the setup shown in the inset of Fig. 2.1. Surprisingly, in most single-shot spectra the

spectral spacing of the lasing peaks was close to a constant. Figure 2.5(a) is an example of

a single-shot emission spectrum taken from the sample of ρ = 1.87× 109 cm−3 and M =

5 mM. The spectral correlation function C(dλ) ≡ 〈I(λ)I(λ+dλ)〉/〈I(λ)2〉 was computed

for the spectrum in Fig. 2.5(a) and plotted in Fig. 2.5(b). The almost regularly spaced

correlation peaks revealed the periodicity of lasing peaks. Despite the fact that the lasing

peaks completely changed from shot to shot, the peak spacing was nearly the same. In

the spectrum taken over many shots, the periodicity was smeared out due to random



65

(uncorrelated) peak positions in different shots. As an example, in Fig. 1 the solid thick

curve represents the lasing spectrum integrated over 25 pulses and the lasing peaks did

not exhibit clear periodicity. We also noticed that the periodicity was less obvious at

higher particle density. We would like to point out that the lasing peaks in the dilute
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Figure 2.5: (a): A single shot emission spectrum from DEG solution of 5 mM Rhodamine
640 and 1.87×109 cm−3 TiO2 particles. The pump pulse energy is 0.2 µJ pumping. (b):
Spectral correlation function computed for the spectrum in (a).

suspension of particles are fundamentally different from the stochastic ASE spikes that

could be observed also in the neat dye solution. Figure 2.6 shows a single-shot spectrum

of emission from the DEG solution of 5 mM rhodamine 640 without any particles. The

spectrum was taken under the same condition as that in Fig. 2.5. At a high pumping

level, stochastic spikes appeared on top of the ASE peak. The spikes in Fig. 2.6 were

denser and narrower than the lasing peaks in Fig. 2.5. They changed constantly from
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shot to shot. When integrating the spectrum over subsequent shots, the spikes were

quickly averaged out, leaving a smooth ASE spectrum, shown as the dotted curve in Fig.

2.1. Note that the stochastic spikes also appeared in the spectrum of emission from the

dye solutions with particles. However, they were taken over by the huge lasing peaks

at high pumping level. The stochastic structure of the pulsed ASE spectrum was first

reported 30 years ago [72, 73]. Since then, there have been detailed experimental and

theoretical studies of this phenomenon [74–77]. The spectral fluctuation originated from

random spontaneous emission, which was strongly amplified as it propagated through the

cone-shaped pump volume. Nonstationary interference of the partially coherent ASE not

only presented a grainy spatial pattern, but also caused drastic temporal fluctuations of

the intensity. The random intensity fluctuation within an ASE pulse in the time domain

generated stochastic spikes in the spectral domain. According to the Fourier transforma-

tion, the width of spectral spikes was inversely proportional to the ASE pulse duration.

In our case of picosecond pumping, the ASE pulse duration was of the order 25 ps. Thus

the average spike width should be ∼ 0.05 nm, which was close to the measured value of

0.07 nm. To find out the location and size of the laser cavities in the dilute suspension,

we placed a metallic rod in between the excited volume and the back window (inset of

Fig. 2.7). On the one hand, the rod prevented the emission from being reflected by the

back window into the gain volume. On the other hand, a Fabry-Perot cavity was formed.

Lasing in this cavity produced equally spaced peaks in the emission spectrum. The peak

spacing ∆λ was determined by the cavity length d (the distance between the rod and the
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Figure 2.6: A single shot emission spectrum from the DEG solution of 5 mM Rhodamine
640 without any particles. The pump pulse energy is 0.3 µJ pumping.

front window), ∆λ = λ2/2ned, where ne is the effective index of suspension. As plotted

in Fig. 2.7, ∆λ decreased with increasing d. However, when d exceeded a critical value

d0 ≃ 450 µm, ∆λ jumped to a constant value and did not change with d anymore (Fig.

2.7). The lasing spectrum and peak spacing at d > d0 were identical to those from the

same sample without the metallic rod. This result demonstrated that the laser cavity

in the colloidal solution was located within 450 µm from the front window–i.e., in the

vicinity of excited cone. Despite the scattering mean free path ls (∼ 800 µm) being much

longer than the wavelength, the laser cavity was not extended over the entire sample,

but confined to a region of dimension less than ls. This could be explained by the reab-

sorption of laser emission in the unpumped part of sample. Our white-light absorption

measurement and photoluminescence measurement of the neat dye solution showed that
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rhodamine 640 molecules in DEG had significant overlap between the absorption band

and emission band. At the dye concentration M = 5 mM, the absorption length le at the

emission wavelength λe ∼ 610 nm was about 300 µm. At low density of TiO2 particles

in the solution, the absorption length of emitted photons in the unpumped region was

shorter than the scattering length. If the emitted light traveled beyond one absorption

length from the pumped region, its chance of returning to the pumped region was ex-

tremely low. Therefore, the reabsorption of emission suppressed the feedback from the

unpumped region of the system and effectively reduced the system (or cavity) size [51].

Figure 2.7: The wavelength spacing ∆λ of lasing modes as a function of the distance d
between the metallic rod and the cuvette front window. The concentration of Rhodamine
640 in DEG is 5 mM, and the TiO2 particle density is 3.0× 109 cm−3. The pump pulse
energy is 0.2 µJ. The inset is a sketch of experimental setup. BS: beam splitter, FB: fiber
bundle.

The above experiment illustrated that the laser cavity was confined in the vicinity of
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the excited region. The directionality of laser output suggested that the laser cavity was

oriented along the excited cone. The nearly constant spectral spacing of lasing modes

resembled that of a Fabry-Perot cavity. Using the formula of a Fabry-Perot cavity, we

derived the cavity length Lc from the average wavelength spacing ∆λ of the lasing peaks,

Lc = λ2/2ne∆λ ∼ 200 − 300 µm. The estimated cavity length was close to the length

of the excited cone observed from the side images. The cone length was determined by

the penetration depth Lp of pump light into the suspension. When the scattering mean

free path ls was much larger than the absorption length at the pump wavelength, Lp

was determined solely by absorption of pump light. This could explain the experimental

observation that the averaging spacing of lasing peaks barely changed when the scattering

mean free path ls was varied by more than one order of magnitude. The cavity length Lc

(or the penetration depth Lp) did not depend on ls as long as ls exceeded the absorption

length. This result was confirmed by the side images of excited cones.

In the case of linear absorption, Lp should be on the order of the (linear) absorption

length la. However, the pumping in the lasing experiment was so intense that it saturated

the absorption of dye molecules. The saturation photon flux density Is = 1/σf τf , where

σf is the fluorescence cross section and τf is the lifetime of dye molecules in the excited

state. For rhodamine 640 molecules, σf is of the order 10−16 cm2 and τf of the order of

10−9 s. Thus, Is ∼ 1025 cm−2s−1. The typical pump pulse energy at the lasing threshold

was ∼ 0.1 µJ. From the pump pulse duration and pump spot size, we estimated that

the incident pump photon flux density Ip ∼ 1027 cm−2s−1, which was two orders of
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magnitude higher than Is. Hence, at the lasing threshold the absorption of dye molecules

near the front window of the cuvette was strongly saturated, and the penetration depth

Lp was much longer than the linear absorption length la.

To confirm Lc ∼ Lp, we changed Lp by varying the dye concentration. The higher

the dye concentration, the shorter the penetration depth. If Lc ∼ Lp, the spacing of

lasing peaks ∆λ should increase. Figure 2.8(a) shows the single-shot lasing spectra from

three solutions of M = 3, 5, 10 mM. The particle density ρ was fixed at 3 × 109 cm−3.

It was evident that the spacing of lasing peaks increased at higher dye concentration.

Images of the excited cones in the inset of Fig. 2.8(b) directly show that the excited cone

was longer in the solution of lower dye concentration. Figure 2.8(b) plots the spectral

correlation functions for the three spectra in Fig. 2.8(a). From them we extracted

the average wavelength spacing ∆λ = 0.34, 0.48, 0.96 nm for M = 3, 5, 10 mM. This

result confirmed that the laser cavity length was determined by the pump penetration

depth. Hence, the laser cavity was located in the excited cone and the cavity length was

approximately equal to the cone length.

Although the lasing phenomenon in the weakly scattering dye solution seemed to

resemble that in a Fabry-Perot cavity with the “mirrors” at the tip and base of the

excited cone, the question remained as to what made the mirrors in the dilute colloidal

suspension. The experiments presented earlier in this section already ruled out the front

and back windows of the cuvette as the mirrors. The mirrors could not be formed by

the nonlinear change of refractive index (both its real and imaginary parts) of the dye
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Figure 2.8: (a): Single shot emission spectra from colloidal solution of 3.0 × 109 cm−3

TiO2 particles. The molarity of Rhodamine 640 in DEG is (from top to bottom) 3 mM,
5 mM, and 10 mM. (b) Spectral correlation functions of the single shot emission spectra
in (a). Insets are side images of pumped region for in each solution.

solution under intense pumping; otherwise, lasing would have occurred also in the neat

dye solution without particles. Another possibility is that the particles aggregated in the

solution to form large clusters that served as mirrors. We monitored the solution during

the experiment by imaging it onto a CCD camera through a side window of the cuvette.

No clusters of size larger than 1 µm were observed in the pumped solution. We removed

the clusters smaller than 1 µm by filtering the solution. After the filtering, the lasing

phenomena remained the same. We also tried other suspensions such as ZnO in DEG and

SiO2 in methanol. Our previous studies confirmed the absence of particle aggregation

in these suspensions, but we still observed a similar lasing phenomenon. Therefore,

the “mirrors” were not clusters of particles. Another candidate was bubbles or shock
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waves that were generated by the pump pulse [78–80]. We indeed observed bubbles in

the solution when the pump beam was very strong and its focal spot was close to the

front window of the cuvette. When the bubbles were large enough to be seen with our

imaging apparatus, the lasing peaks disappeared. Hence, large bubbles did not facilitate

lasing. Small bubbles, which were invisible, might be generated when the pumping was

not very high. Such bubbles were usually generated at the focal spot of the pump beam

where the pump intensity was the highest. Thus bubble formation should be sensitive

to the distance between the focal spot and the front window, which affected the pump

intensity at the focal spot due to absorption in the solution. When we shifted the focal

spot by moving the lens, the lasing behavior remained the same. This result eliminated

the possibility of small bubbles contributing to lasing. All the experimental results led

us to the conclusion that the coherent feedback for lasing came from the particles in

the solution–more specifically, from the particles located near the tip and base of the

excited cone. However, there were many particles inside the pumped volume; e.g., at

ρ = 3 × 109 cm−3 the number of particles inside the excited cone was about 400. Why

did the feedback from the particles near the two ends of the cone dominate over that from

the particles inside the cone? To understand this phenomenon, we performed numerical

calculations, to be presented in the next section.

Our experimental studies demonstrated lasing with field feedback in weakly scattering

samples. The focused pump beam created a cone-shaped gain volume in the dye solution

containing a small amount of nanoparticles. The cone length was determined by the
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absorption of dye molecules since optical scattering was much weaker than absorption.

When the scattering mean free path exceeded the size of gain volume, lasing oscillation

built up in the direction of strongest amplification–i.e., the direction in which the gain

volume was most extended. This behavior was similar to that of amplified spontaneous

emission in the weakly scattering regime [81]. The fundamental difference from ASE

was, however, the existence of feedback that originated from the backscattered light. As

pointed out by Krasad et al [82], the statistically rare sub-mean-free-path scattering could

be made effective by strong amplification. In our experiment, the extreme weakness of

feedback was compensated by high optical gain due to intense pumping. The interfer-

ence of the backscattered light was greatly enhanced, leading to coherent and resonant

feedback for lasing.

It is also important to note that the discrete lasing peaks were distinct from the

stochastic ASE spikes. The latter originated from random spontaneous emission, which

was significantly amplified in the presence of large gain. Such spectral fluctuations also

existed in ASE from the homogeneous media (without scattering). Hence, scattering

was not indispensable to the existence of ASE spikes, although the fluctuations could be

enhanced by scattering which stretched the path length of photons inside the gain volume.

In contrast, the presence of scatterers in the gain media was essential to the emergence

of lasing peaks, indicating that the lasing process relied on the feedback supplied by

scattering. This difference will be studied in more details in another future section.



74

2.3 FDTD Simulation of Random Lasing in 2D Weakly

Scattering Systems

Several models were set up in the theoretical studies of the stimulated emission in active

random media–e.g., the diffusion equation with gain [83, 84] and the Monte Carlo simu-

lation [71,85]. These models calculated the light intensity instead of the electromagnetic

field; thus, they ignored the interference effect. Although it is usually weak in the dif-

fusive regime, the interference effect is not always negligible. One example is coherent

backscattering; namely, the interference between the counterpropagating light enhances

the backscattered intensity by a factor of 2. The experimental results in the last section

illustrated that the interference effect was significant in weakly scattering samples with

gain, leading to lasing with resonant feedback. In the dilute suspensions of particles in

which lasing could be realized, the gain volume had a cone shape and the cone length

was shorter than the scattering mean free path. If we considered only one photon, it

most likely would not be scattered as it traveled from one end of the cone to the other.

However, the intense pumping generated a huge number of emitted photons. Despite the

low probability of one photon being scattered, a significant number of emitted photons

were scattered by the particles in the excited cone. Some of them were scattered back-

wards, providing feedback for lasing along the cone. Such weak feedback was greatly

amplified as the backscattered light propagated along the cone. The interference of the

backscattered light determined the lasing frequencies.

Therefore, in the presence of large gain, the interference of scattered light is not neg-
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ligible even in weakly scattering samples. To include the interference effect, we directly

calculated the electromagnetic field in a random medium by solving Maxwell’s equa-

tions using the finite-difference time-domain (FDTD) method [86]. The optical gain was

modeled as a negative conductance

σ(ω) = − σ0/2

1 + i(ω − ω0)T2
− σ0/2

1 + i(ω + ω0)T2
. (2.1)

σ0 determines the gain magnitude, and ω0 and 1/T2 represents the center frequency

and width of the gain spectrum, respectively. We neglected the gain saturation and

limited our calculations to the regime just above the lasing threshold. A seed pulse with

broad spectrum was launched at t = 0 to initiate the amplification process. The lasing

threshold was defined by the minimum gain coefficient (σ0) at which the electromagnetic

field oscillation built up in time.

Our numerical calculations aimed not at reproducing the experimental results, but

at addressing the key issues and providing physical insight into the lasing mechanism.

Hence, we simulated lasing in two-dimensional systems in order to shorten the computing

time. To model the elongated gain volume in the experiment, optical gain was introduced

to a strip of length Lp and width Wp. The refractive index was set at 1.0 both inside

and outside the strip. Dielectric cylinders of radius 100 nm and refractive index 2.0

were introduced as scattering centers. The strip dimension was much smaller than the

experimental value due to the limited computing power. Consequently, the number of

cylinders inside the strip was reduced to keep the system in the weak scattering regime.
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The experimental results in the last section suggested that the coherent feedback for

lasing resulted mainly from the particles located near the tip and base of the excited

cone. In the dilute suspension of particles, there was probably only one particle located

at the tip of the cone. One question was whether the backscattering of a single particle

could provide enough feedback for lasing. To answer this question, we started with only

two particles in the gain strip, one at each end, in the numerical simulation. The total

system size was 16 µm × 8 µm and the gain strip 8 µm × 4 µm. At the system boundary,

there was a perfectly matched absorbing layer. Two cylinders of radius 100 nm, placed

at the two ends of the gain strip, had a separation of 8 µm. When the gain coefficient σ0

was above a threshold value, we observed lasing oscillation. The spatial distribution of

the lasing intensity revealed that lasing occurred along the strip with the feedback from

the two particles. The emission spectrum, obtained by Fourier transform of the electric

field, consisted of multiple lasing modes equally spaced in frequency. We repeated the

calculation after reducing the separation between the two particles inside the gain strip

while keeping the strip length constant. The frequency spacing of lasing modes scaled

inversely with particle distance. These results confirmed lasing in the resonator composed

of only two scatterers.

In 1998, Wilhelmi proposed a laser composed of two Rayleigh scatterers with gain

medium in between [87]. We generalized the Rayleigh scatterers to Mie scatterers and
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derived the lasing threshold condition

σb

Lm−1
c

egeLc = 1. (2.2)

σb is the backscattering cross section of one particle, which depends on the particle

size, refractive index, and light wavelength. The cavity length Lc is the separation

between the two scatterers. m is the dimensionality of the scattering system. ge is the

threshold gain coefficient for lasing. σb/L
m−1
c describes the probability of a photon being

backscattered by one particle and propagating to the other particle. The larger the Lc,

the less percentage of the backscattered photons can reach the other particle. It seems

to suggest that the quality factor of the two-particle cavity decreases with increasing

Lc. This perception is incorrect. At the lasing threshold, the cavity loss is equal to the

gain–namely, the loss per unit length α = ge. In the absence of intracavity absorption,

α is related to the cold cavity Q as α = 1/Qλ. From the threshold gain coefficient ge in

Eq.(2.2), we derive the cold-cavity quality factor Q = Lc/(λ|(m − 1) ln Lc − ln σb|). As

Lc → ∞, the numerator in the expression of Q diverges faster than the denominator,

thus Q → ∞. The rise of Q with Lc is attributed to the increase of one path length

of light inside the cavity. The reduction in the probability of photons backscattered by

one particle then reaching the other particle in a long cavity is offset by the increase of

photon travel time from one particle to the other. Hence, the lasing threshold decreases

with increasing Lc. The resonator with the lowest lasing threshold is composed of two

particles with the largest possible separation inside the gain volume.
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Our numerical simulations also demonstrated directional lasing output from the two-

scatterer cavity. The near-field to far-field transformation of the electric field gave the

output laser intensity as a function of polar angle. Figure 2.9 shows the numerical data

for three gain strips of length Lp = 4, 8, 16 µm. The strip width Wp was fixed at 4 µm.

The two scatterers were always placed at the ends of the strip. From the envelop of the

far-field intensity distribution, we obtained the angular width of the output laser beam.

It decreased as the aspect ratio of the gain strip, Lp/Wp, increased. Similar results

were obtained when we varied Wp and kept Lp constant. These results indicated that

the output from a two-particle cavity laser cannot be simply regarded as scattering of a

plane wave by a single particle even if Lc ≫ λ. It relied on both the geometry of the

scatterers and the shape of the gain region. The directionality of the lasing output is a

consequence of gain guiding.

Although in the dilute suspension of particles there was probably only one particle at

the tip of the excited cone, there were more particles at the cone base whose dimension

exceeded the average distance between the particles. For example, when the particle

density ρ = 5 × 108 cm−3 and pump spot radius ∼ 20 µm, there were typically ten

particles near the base of the excited cone. To simulate this situation, we placed ten

scatterers randomly near one end of the gain strip and only one scatterer at the other

end. The lasing peaks were almost equally spaced in frequency, with the spacing close

to that with only two scatterers in the strip, one on either end. It suggested that the

feedback from the ten scatterers near one end of the gain strip was equivalent to that from
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Figure 2.9: Far-field intensity of laser emission as a function of polar angle. The zero
degree corresponds to the direction parallel to the gain strip. The width of gain strip Wp

was fixed at 4 µm. The strip length Lp = 4 µm (dotted curve), 8 µm (dashed curve),
and 16 µm (solid curve). The inset is a sketch of the geometry of the 2D system in our
numerical simulation. Two cylinders of radius 100 nm are located on both ends of the
gain strip.

one located somewhere close to this end, as far as the lasing frequencies were concerned.

One question we raised at the end of the previous section is why the feedback from

the particles near the two ends of the excited cone dominated over that from the parti-

cles inside the cone. One possible explanation would be that light backscattered by the

particles near one end of the cone experienced the most amplification as it traveled the

longest path within the gain volume to the other end of the cone. If this were the reason,

it implied that the lasing modes would differ from the quasimodes of the passive sys-

tem (without gain or loss). To check this conjecture, we randomly placed four cylinders

inside the gain strip (8 µm × 4 µm) in addition to the two at the ends and compared
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the lasing modes to the quasimodes of the passive system. The quasimodes were calcu-

lated with the multipole method [88, 89]. The field around each cylinder was expanded

in a Fourier-Bessel series of regular and outgoing cylindrical harmonic functions. The

Rayleigh identity related the regular part of the field at a particular cylinder to the waves

sourced at all other scatterers. We found the quasimodes by searching in the complex

wavelength plane for the poles of the scattering operator.

Figure 2.10: (a) Spatial intensity distribution of a lasing mode at ν = 764.9 THz in
the 2D system of six dielectric cylinders inside a gain strip 8 µm × 4 µm. The circles
represent the cylinders. The rectangle marks the boundary of the gain strip. (b) Spatial
intensity distribution of quasimode at ν = 764.5 THz in the same system as (a) but
without gain.

Our calculations revealed that despite the presence of additional scatterers, lasing still

occurred in the direction parallel to the strip. Moreover, the lasing modes corresponded

to the quasimodes with the quality factor relatively high among all the quasimodes within
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6-particle 6-particle 6-particle 2-particle 2-particle
lasing ν quasimode ν quasimode Q quasimode ν quasimode Q
715.6 712.1 28.6 712.4 27.2

736.6 18.7 730.5 28.2
744.0 742.2 31.0 748.5 29.3
764.9 764.5 29.4 766.5 30.5
782.9 785.1 37.7 784.1 31.8
806.9 811.7 38.5 801.7 32.8

Table 2.1: Frequencies ν (THz) and quality factors Q of lasing modes and quasimodes.

the gain spectrum. Table 2.1 lists the frequencies ν and quality factors Q of several lasing

modes and the corresponding quasimodes. The gain spectrum was centered at 750 THz

with a width of about 281 THz. The slight frequency shift of the lasing modes with

respect to the quasimodes was due to the gain pulling effect. Figure 2.10 shows the

intensity distributions of the lasing mode with ν = 764.9 THz and the quasimode with

ν = 764.5 THz. It is evident that the lasing-mode profile within the gain strip is nearly

identical to that of the quasimode. We checked several lasing modes and obtained the

same result. Therefore, the lasing modes were almost the same as the quasimodes in the

presence of uniform gain. In Table 2.1, we also list the frequencies and quality factors

of the quasimodes in the two-particle case (without the four particles in the middle).

The majority of the quasimodes in the system of six particles have frequencies similar

to those of two particles. This comparison suggests in the weakly scattering system

most quasimodes with relatively high Q are formed mainly by the feedback from the

particles near the system boundary. The feedback from the particles in the interior of

the system may slightly increase the quality factor or shift the mode frequency (see, e.g.,

the mode at ν = 742.2 THz). However, the feedback from these particles may also be
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destructive and reduce the quality factor. As a result, the mode at ν = 736.6 THz would

not lase. Because most quasimodes with relatively high Q have frequencies similar to

those with only the two particles fartherest apart, they, as well as the lasing modes, tend

to be equally spaced in frequency. In the numerical simulation we did not place the

particles outside the gain strip, because experimentally the feedback from those particles

is suppressed by reabsorption. Thus the effective system size is reduced, as shown in our

previous calculation [51].

The numerical simulations illustrate that the lasing modes are nearly identical to the

quasimodes of the reduced system. The quasimodes are formed by distributed feedback

from all the particles inside the reduced system. The conventional distributed feedback

(DFB) lasers, made of periodic structures, operate either in the overcoupling regime or

the undercoupling regime [56]. The random lasers, which can be regarded as randomly

distributed feedback lasers, also have these two regimes of operation. In the undercou-

pling regime the quasimodes are formed mainly by the feedback from the scatterers near

the system boundary, while in the overcoupling regime the feedback from the scatterers

inside the system becomes important. Thus, the quasimodes of an undercoupled system,

especially the ones with relatively high quality, have almost regular frequency spacing.

Note that the feedback from the scatterers inside the system is weak but not negligible;

e.g., it may cause a slight shift of mode frequency or modification of the quality factor.

In our experiment with dilute suspensions of particles, the random lasing was in the

undercoupling regime as a result of the weak scattering and small size of the reduced
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system. Therefore, the dominant feedback from the particles near the cone ends resulted

in nearly constant frequency spacing of the lasing peaks, which scaled inversely with the

cone length. Due to weak feedback from the particles inside the cone, the lasing modes

were not exactly equally spaced in frequency and some modes failed to lase as their qual-

ity factors were reduced. In the previous studies, e.g. Refs. [38, 42, 44, 45], the strong

scattering or large system size make the random laser operate in the overcoupling regime.

Thus the lasing peaks are randomly spaced. This point will be discussed in more details

in the next section.

2.4 Quasimodes and Lasing Modes Calculation in 1D Random

Systems

We have developed a numerical method based on the transfer matrix to compute the

quasimodes of 1D passive systems. This time-independent method is also applied to the

calculation of lasing modes at the threshold under a global or a local excitation. The

random system is a 1D layered structure. It is composed of N dielectric layers with air

gaps in between. The refractive index of the dielectric layers is nd, and that of the air

gaps is 1. Both the thickness d1 of the dielectric layers and the thickness of air gaps d2 are

randomized. d1,2 = d̄1,2(1 + ση), where 0 < σ < 1 represents the degree of randomness,

and η is a random number in [−1, 1], d̄1 (d̄2) is the average thickness of the dielectric

layers (air gaps). Outside the random system the refractive index is constant and its

value is equal to the average refractive index neff of the random system to eliminate the
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boundary reflection.

According to the transfer matrix formula:









p1

q1









= M









p0

q0









(2.3)

where p0 and q0 represent the forward and the backward propagating waves on one side

of the random system, p1 and q1 on the other side, M is a 2×2 matrix that characterizes

wave propagation through the random system. The eigenmode of such an open system

can be defined as a “natural mode” or a “quasimode” by generalizing the concept of

an eigenmode of a closed system [90]. The quasimode satisfies the boundary condition

that there are no incoming waves but only outgoing waves through the system boundary;

namely p0 = 0 and q1 = 0. In a passive system (without gain or absorption, the refractive

indices being real numbers), such boundary condition requires the vacuum wavevector be

a complex number, k0 = k0r + ik0i. Substituting the boundary condition into Eq. 2.3,

we get M22 = 0. Since M22 is a complex number, both the real part and imaginary part

of M22 are equal to 0. These two equations are solved to find k0r and k0i. k0r = ω/c tells

the frequency ω of a quasimode, and k0i = −γ/c gives the decay rate γ of a quasimode.

After finding k0 of a quasimode, its wavefunction can be obtained by calculating

the electric field distribution E(x) throughout the random system with the transfer ma-

trix M(k0). The wavefunction inside the random system can be written as E(x) =

E+(x)ein(x)k0x + E−(x)e−in(x)k0x, where n(x) is the (real part of) refractive index at
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position x, E+(x)ein(x)k0x represents the forward-propagating field, and E−(x)e−in(x)k0x

the backward-propagating field. Since k0 is a complex number, the amplitudes of the

forward and the backward propagating fields are E+(x)e−n(x)k0ix and E−(x)en(x)k0ix

(k0i < 0). These expressions show that there are two factors determining the wavefunc-

tion. The first is E±(x), which originates from the interference of multiply-scattered

waves. The second is e±n(x)k0ix, which leads to an exponential growth of the wavefunc-

tion toward the system boundary. Outside the random system, the wavefunction grows

exponentially to infinity due to the negative k0i. This is clearly unphysical. Thus we

disregard the wavefunction outside the random system and normalize the wavefunction

within the random system to unity.

Optical gain is introduced to the random system by adding an imaginary part ni

(negative number) to the refractive index n(x). In the case of an uniform gain, ni is

constant everywhere inside the system. Outside the random system ni is set to zero.

Different from the quasimode of a passive system, the vacuum wavevector k0 of a lasing

mode is a real number. The wavevector inside the random system is a complex number,

k = kr + iki = k0[n(x) + ini]. Its imaginary part ki = k0ni is inversely proportional to

the gain length lg. The onset of lasing oscillation corresponds to the condition that there

are only outgoing waves through the boundary of the random system. The absence of

incoming waves requires M22 = 0 in Eq. 2.3. Again since M22 is a complex number,

both its real part and imaginary part are zero. These two equations are solved to find k0

and ni. Each set of solution (k0, ni) represents a lasing mode. k0 = ω/c sets the lasing
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frequency ω, and nik0 = ki = 1/lg gives the gain length lg at the lasing threshold. The

spatial profile of the lasing mode is then obtained by calculating the field distribution

throughout the random system with the transfer matrix M(k0, ni). Since our method is

based on the time-independent wave equation, it holds only up to the lasing threshold [91].

In the absence of gain saturation, the amplitude of a lasing mode would grow in time

without bound. Thus we can only get the spatially-normalized profile of a lasing mode

at the threshold. The lasing mode is normalized in the same way as the quasimode

for comparison. The amplitudes of the forward and the backward propagating fields of

a lasing mode are E+(x)e−nik0x and E−(x)enik0x (ni < 0). The exponential growth

factors e±nik0x depend on the gain value |nik0|.

Local pumping is commonly used in the random laser experiment. To simulate such

situation, we introduce gain to a local region of the random system. Our method can be

used to find the lasing modes with arbitrary spatial distribution of gain. The imaginary

part of the refractive index ni(x) = ñif(x), where f(x) describes the spatial profile of the

gain and its maximum is set to 1, ñi represents the gain magnitude. The lasing modes

can be found in the way similar to the case of uniform gain. The solution to M22 = 0

gives the lasing frequency k0 and threshold gain ñik0. The normalized spatial profile of

a lasing mode is then computed with M(k0, ñi).

Using the method described above, we calculate the quasimodes of 1D random sys-

tems. The quasimodes are formed by distributed feedback from the randomly-positioned

dielectric layers. We investigate many random structures with different scattering strengths.
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Depending on the relative values of the localization length ξ and the system length L,

there are two distinct regimes in which the quasimodes are dramatically different: (i)

overcoupling regime L > ξ; (ii) undercoupling regime L ≪ ξ.

As an example, we consider the random structure with d̄1 = 100nm and d̄2 = 200nm.

σ = 0.9 for both d1 and d2. To change from the undercoupling regime to the overcoupling

regime, we increase the refractive index nd of the dielectric layers. In particular, we take

nd = 1.05 and 2.0. The larger nd leads to stronger scattering and shorter localization

length ξ. To obtain the value of ξ, we calculate the transmission T as a function of the

system length L. 〈ln T 〉 is obtained from averaging over 10,000 configurations with the

same L and σ. When L > ξ, 〈ln T (L)〉 decays linearly with L, and ξ−1 = −d〈ln T (L)〉/dL.

In the wavelength (λ) range of 500nm to 750nm, ξ exhibits slight variation with λ due

to the residual photonic bandgap effect. For nd = 1.05, ξ ∼ 200 − 240µm, while for

nd = 2.0, ξ ∼ 1.2 − 1.5µm. In the calculation of quasimodes, we fix the system size

L = 24.1µm. Thus, for n = 1.05, ξ ≫ L in the wavelength range of interest and the

random system is in the undercoupling regime; while for n = 2.0, ξ ≪ L and the system

in the overcoupling regime.

To illustrate the difference between overcoupling regime and undercoupling regime,

we compare the quasimodes of the same random structure with different nd, namely,

nd = 2.0 or 1.05. Figures 2.11(a) and (b) are the typical transmission spectra of these

two systems. For the system with nd = 2.0 most transmission peaks are narrow and well

separated in frequency, while for nd = 1.05 the transmission peaks are typically broad
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and overlapped. We find k0 = k0r + ik0i of the quasimodes in the wavelength range of

500-750nm. Figure 2.11(c) shows the values of k0r and k0i/〈k0i〉 of these modes (〈k0i〉

is the average over all the quasimodes in the wavelength range of 500-750nm). In the

system with nd = 2.0, most quasimodes are well separated spectrally, and they match the

transmission peaks. k0r corresponds to its frequency and k0i to its linewidth. However,

some quasimodes locate close to the system boundary and have relatively large k0i. They

are usually invisible in the transmission spectrum due to spectral overlap with neighboring

transmission peaks, which cause the number of transmission peaks [Fig. 2.11(a)] slightly

less than the number of quasimodes [solid squares in Fig. 2.11(c)]. In the system with

nd = 1.05, however, the number of peaks in the transmission spectrum [Fig. 2.11(b)] is

significantly less than the number of quasimodes [open circles in Fig. 2.11(c)]. This is

because in the undercoupling regime the decay rates of the quasimodes often exceed the

frequency spacing to neighboring modes. The spectral overlap of the quasimodes makes

the transmission peaks less evident and some even buried by the neighboring ones.

It is clear in Fig. 2.11(c) that the decay rate fluctuation is much stronger in the

random system with nd = 2.0 (solid squares) than that with nd = 1.05 (open circles).

This is consistent with the broadening of the quasimode decay rate distribution as a

system approaches the localization regime with increasing scattering strength. Figure

2.11(d) plots the frequency spacing ∆k0r between adjacent quasimodes normalized to

the average value 〈∆k0r〉. The quasimodes of the random system with nd = 1.05 are

more regularly spaced in frequency than those in the system with nd = 2.0.
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Figure 2.11: (a), (b): Transmission T through a 1D random structure with nd = 2.0,
1.05 as a function of vacuum wavevector k0. (c) Frequencies k0r and normalized decay
rates k0i/〈k0i〉 of the quasimodes in the random systems with nd = 2.0 (solid square)
and nd = 1.05 (open circle), compared with the frequencies k0 and normalized threshold
gain ki/〈ki〉 of lasing modes in the same systems with nd = 2.0 (+) and nd = 1.05 (×)
under uniform excitation. (d) Normalized frequency spacing ∆k0r/〈∆k0r〉 of neighboring
quasimodes in the random systems with nd = 2.0 (solid square) and nd = 1.05 (open
circle), compared with the normalized frequency spacing ∆k0/〈∆k0〉 of neighboring las-
ing modes in the same systems with nd = 2.0 (+) and nd = 1.05 (×) under uniform
excitation.
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To interpret this phenomenon, we investigate the wavefunctions of the quasimodes.

Figure 2.12(a) [(b)] shows the spatial distribution of intensity I(x) = |E(x)|2 for a typ-

ical quasimode of the random system with nd = 2.0 (nd = 1.05). I(x) is normalized

such that the spatial integration of I(x) within the random system is equal to unity.

The expression of E(x) given in the previous section reveals the two factors determining

the envelop of the wavefunction, i.e., the interference term E±(x) and the exponential

growth term e±n(x)k0ix. Depending on which term is dominant, the spatial profile of

the quasimodes can be drastically different. In the overcoupling regime, strong scatter-

ing makes the interference term dominant, and I(x) exhibits strong spatial modulation.

Most quasimodes are localized inside the random system, similar to the mode in Fig.

2.12(a). Their decay rates are low as a result of the interference-induced localization. In

the undercoupling regime, the interference effect is weak due to small amount of scat-

tering. The exponential growth term e±n(x)k0ix dominates E(x), making I(x) increase

exponentially toward the boundaries. The interference term only causes weak intensity

modulation. A typical example of such mode profile is exhibited in Fig. 2.12(b). Since

the quasimodes in the under-coupling system are spatially extended across the entire

random system, the decay rates of the quasimodes are much higher than those of the

localized modes in the overcoupling system.

We repeat the above calculations with many random systems, and find the two dif-

ferent types of quasimodes are rather typical for the systems in the overcoupling and

undercoupling regimes. The mode profiles and frequency spacings in the undercoupling
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Figure 2.12: Spatial intensity distributions of quasimodes (black solid curve) and the
corresponding lasing modes in the presence of global gain (red dashed curve) or local gain
(green dotted curve). The pumped region is between the two vertical lines, Lp = 11.87µm.
(a) The mode marked as A in Fig. 2.11(a), λ = 646 nm, nd = 2.0. (b) The mode marked
as B in Fig. 2.11(b), λ = 549 nm, nd = 1.05.

systems imply the feedbacks from the dielectric layers close to the boundaries are dom-

inant over those from the interior. However, the feedbacks from the scatterers in the

interior of the system are weak but not negligible, e.g. they induce small fluctuations in

the frequency spacings and the decay rates. Note that a random system in the under-

coupling regime cannot be approximated as a uniform slab with the average refractive

index neff , despite its quasimodes exhibit some similar features as the Fabry-Perot cav-

ity modes. Since in our calculation the refractive index outside the random system is set

to neff , there would be no quasimodes if the random system were replaced by a dielectric

slab of neff . Hence, the quasimodes in the undercoupling regime are not formed by the

boundary reflection. In the overcoupling regime, the feedback from the scatterers deep

inside the system becomes dominant, and the interference of multiply scattered waves



92

lead to the spatial localization of the quasimodes.

Next we study the lasing modes in the random system with uniform gain and compare

them to the quasimodes. ni is constant everywhere within the random system and so the

gain length lg = 1/ki = 1/k0ni. Using the method described in the previous section, we

find the frequency and the threshold gain of each lasing mode. We calculate the lasing

modes in the same random systems as in Fig. 2.11 within the same wavelength range

(500-750nm). The frequency k0 and normalized threshold ki/〈ki〉 of each lasing mode are

plotted in Fig. 2.11(c) for comparison with the quasimodes. It is clear that there exists

one-to-one correspondence between the lasing modes and the quasimodes for the random

systems in both overcoupling and undercoupling regimes. For the system with nd = 2.0,

the lasing modes match the quasimodes well, with only slight difference between ki/〈ki〉

and k0i/〈k0i〉 for the relatively leaky modes. For the system with nd = 1.05, the deviation

of the lasing modes from the quasimodes is more evident, especially for those modes with

large decay rates. Such deviation can be explained by the modification of the transfer

matrix M . In the passive system, k0i is constant but ki = k0in(x) varies spatially. With

the introduction of the uniform gain, ki becomes constant within the random system,

and the feedback inside the random system is caused only by the contrast in the real part

of the wavevector kr = k0n(x) between the dielectric layers and the air gaps. With a

decrease in the scattering strength, k0i in the passive system gets larger, and the ratio of

the feedback caused by the contrast in ki to that in kr increases. The addition of uniform

gain results in a bigger change of M , as it removes the feedback due to the inhomogeneity
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of ki. Moreover, since there is no gain outside the random system, ki suddenly drops to

zero at the system boundary. This discontinuity of ki generates additional feedback for

the lasing modes. In a weakly scattering system, the threshold gain of the lasing modes

is high. The larger drop of ki at the system boundary makes the additional feedback

stronger. To check its contribution to lasing, we replace the random system with a

uniform slab of neff while keeping the same gain profile. Since the real part of the

refractive index or kr is homogeneous throughout the entire space, the feedback comes

only from the discontinuity of ki at the slab boundaries. We find the lasing threshold in

the uniform slab is significantly higher than that in the random system with nd = 1.05.

This result confirms that for the random systems in Fig. 2.11, the additional feedback

caused by the ki discontinuity at the system boundary is weaker than the feedback due

to the inhomogeneity of kr inside the random system. However, if we further reduce nd

or L, the threshold gain increases, and the feedback from the system boundary due to

gain discontinuity eventually plays a dominant role in the formation of lasing modes.

We also compute the intensity distribution I(x) of each lasing mode at the threshold.

I(x) is normalized such that its integration across the random system is equal to 1. Such

normalization facilitates the comparison of the lasing mode profile to the quasimode

profile. In Fig. 2.12(a) [(b)], I(x) of the lasing mode is plotted together with that of the

corresponding quasimode. Although the lasing mode profiles in Figs. 2.12(a) and (b) are

quite different, they are nearly identical to those of the quasimodes. For the localized

mode in the random system with nd = 2.0, I(x) of the lasing mode does not exhibit
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any visible difference from that of the quasimode in Fig. 2.12(a). For the extended

mode in the system with nd = 1.05, the lasing mode profile deviates slightly from the

quasimode profile, especially near the system boundaries. This deviation results from

the modification of the transfer matrix M by the introduction of the uniform gain across

the random system. The modification is bigger in the under-coupling system, leading to

larger difference in the mode profile.

Finally we investigate the lasing modes under local excitation. In particular, f(x) = 1

for |x − xc| ≤ L1/2, f(x) = exp[−|x − xc|/L2] for L1/2 < |x − xc| ≤ L1/2 + 2L2, and

f(x) = 0 elsewhere (xc = L/2). The lasing mode frequency k0, the threshold gain

k̃i = k0ñi, and the spatial profile I(x) are calculated with the method described in

the previous section. I(x) is normalized in the same way as that of a quasimode for

comparison. As an example, we consider the same random structures as in Fig. 2.11 and

introduce gain to the central region of length Lp = L1 + 4L2 = 8.84 + 3.03 = 11.87µm

(marked by two vertical lines in Fig. 2.12). Figures 2.13(a) plots k0 and k̃i/〈k̃i〉 for all

the lasing modes within the wavelength range of 500-750nm. Comparing with Fig. 1, we

find some quasimodes fail to lase under local pumping, no matter how high the pumping

level is. The rest modes lase but their wavefunctions are significantly modified by the

particular local excitation. The two quasimodes shown in Fig. 2.12 both lase under the

local pumping configuration and their intensity distributions at threshold are plotted.

The mode in Fig. 2.12(a) is localized within the pumped region, and its spatial profile

is barely modified by the local gain. In contrast, the mode in Fig. 2.12(b) is spatially
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extended and has less overlap with the central gain region. The intensity distribution

of the lasing mode differs notably from that of the quasimode. The exponential growth

of I(x) toward the system boundaries is suppressed outside the gain region, while inside

the gain region I(x) grows exponentially toward the ends of the gain region at a rate

higher than that of the quasimode. These behaviors can be explained by the spatial

variation of gain. Outside the pumped region, there is no optical amplification thus I(x)

does not increase exponentially. Within the pumped region, the faster intensity growth

results from the higher threshold gain for lasing with local pumping than that with global

pumping. Nevertheless, the close match in the number and spatial position of intensity

maxima justifies the correspondence of the lasing mode to the quasimode.
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Figure 2.13: (a) Normalized threshold gain k̃i/〈ki〉 versus the frequency k0 of lasing
modes in the random systems with nd = 2.0 (solid squares) and nd = 1.05 (open circles)
under local excitation (between the two vertical lines in Fig. 2.12). (b) Normalized
frequency spacing ∆k0/〈∆k0〉 of neighboring lasing modes in the systems with nd = 2.0
(solid squares) and nd = 1.05 (open circles) under local excitation.

We repeat the calculation with many modes under the same pumping configuration,
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and find the weight of a mode within the gain region is often enhanced. To quantify such

enhancement, we introduce a parameter δ which is equal to the ratio of I(x) integrated

over the pumped region to that over the entire random system. We compare the values

of δ for the lasing modes under local excitation to that of the corresponding quasimodes.

For the mode Fig. 2.12(b), δ is increased from 0.33 for the quasimode to 0.41 for the

lasing mode, while for the mode in Fig. 2.12(a) δ remains at 0.98. Thus the effect of

local pumping is stronger for the modes in the weakly scattering system. This is because

when scattering is weak the local gain required for lasing is high. The feedback within

the pumped region is greatly enhanced, leading to the modification of the mode profile.

We also investigate the fluctuations in threshold gain and frequency spacing of lasing

modes under local excitation. Figure 2.13(a) shows the lasing threshold fluctuation for

the random system with nd = 1.05 is smaller than that with nd = 2.0. Since the number

of lasing modes under local pumping is usually less than that of quasimodes, the average

mode spacing 〈∆k0〉 is increased. Figure 2.13(b) plots the frequency spacing ∆k0 of

adjacent lasing modes normalized to the average value 〈∆k0〉. There is more fluctuation

in the mode spacing for the random system with nd = 2.0 than that with nd = 1.05.

Hence, with local gain the frequency spacing of lasing modes is more regular in the

undercoupling regime than in the overcoupling regime. This result is similar to that with

uniform gain.

Although the local pumping enhances the feedback within the pumped region, the

feedback outside the pumped region cannot be neglected. To demonstrate this, we cal-
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culate the lasing modes in the reduced systems of length Lp by replacing the random

structures outside the gain region with a homogeneous medium of neff . The reduced

system has uniform gain instead of the gain profile f(x) in the original system. The

results are shown in Fig. 2.14(a) for the system with nd = 2.0 and in Fig. 2.14(b) for

the system with nd = 1.05. The number of lasing modes in the reduced system is less

than that in the original system under local pumping. In fact, the lasing modes are

generally different, with only exception for a few modes localized within the gain region

in the system with nd = 2.0. Moreover, the lasing threshold in the reduced system is

higher than that in the original system with local gain. These differences are attributed

to the feedbacks from the random structure outside the pumped region of the original

system. It demonstrates the scatterers in the unpumped region also provides feedback for

lasing. By comparing Figs. 2.14(a) and (b), we find the difference in the lasing threshold

between the original system under local pumping and the reduced system is smaller for

the system with nd = 1.05 than that with nd = 2.0. It indicates the contribution from

the scatterers outside the gain region to lasing is reduced as the system moves further

into the undercoupling regime.

We note that local pumping introduces inhomogeneity in the imaginary part of the

refractive index, which generates additional feedback for lasing. To check its effect, we

simulate lasing in a homogeneous medium with the average refractive index neff . The

local gain profile f(x) remains the same. Only the spatial variation of ki(x) = k0ñif(x)

provides the feedback for lasing. As shown in Figs. 2.14(a) and (b), the lasing thresholds
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are much higher than those in the random systems, even for the system with nd = 1.05.

This result demonstrate that for the random systems in Figs. 2.13 and 2.14, the feedbacks

for lasing under local pumping are predominately caused by the inhomogeneities in the

real part of the refractive index n(x) or the wavevector kr(x) = k0n(x). However, a

further reduction in either nd or Lp could make the feedback due to the inhomogeneity

of ki(x) more significant.
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Figure 2.14: : Threshold gain k̃i/〈k̃i〉 of lasing modes in the (original) random system
of length 24.1µm with local excitation in the central region of length 11.87µm (solid
square), compared to the threshold gain of lasing modes in the reduced system of length
11.87µm under uniform excitation (open circle) and the threshold gain of lasing modes in
the homogeneous medium with neff under local excitation in the region of length 11.87
µm (a) nd = 2.0, neff = 1.3361, (b) nd = 1.05, neff = 1.0168.

In conclusion, we have developed a numerical method to calculate the quasimodes of

1D passive random systems and the lasing modes at the threshold with either global or

local pumping. We identify two regimes for the quasimodes: overcoupling regime (L > ξ)

and undercoupling regime (L ≪ ξ). In the undercoupling regime the electric field of a
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quasimode grows exponentially toward the system boundaries, while in the overcoupling

regime the field maxima are located inside the random system. The frequency spacings of

adjacent modes are more regular in the undercoupling regime, and there is less fluctuation

in their decay rates. The distinct characteristic of the quasimodes in the two regimes

result from the different mechanisms of mode formation. In an overcoupled system,

the quasimodes are formed mainly by the interference of multiply scattered waves by

the particles in the interior of the random system. In contrast, the feedbacks from

the scatterers close to the system boundaries play a dominant role in the formation of

quasimodes in an undercoupled system. The contributions from the scatterers in the

interior of the random system to the mode formation are weak but not negligible. They

induce small fluctuations in mode spacing and decay rate. As the scattering strength is

increased, the feedbacks from those scatterers in the interior of the system get stronger,

and the frequency spacing of the quasimodes becomes more random.

In the presence of uniform gain across the random system, the lasing modes (at the

threshold) have one-to-one correspondence with the quasimodes in both overcoupled and

undercoupled systems. However, the lasing modes may differ slightly from the corre-

sponding quasimodes in frequency and spatial profile, especially in the undercoupled

systems. This is because the introduction of uniform gain removes the feedback caused

by spatial inhomogeneity of the imaginary part of the wavevector within the random

system and creates additional feedback by the discontinuity of the imaginary part of the

wavevector at the system boundaries. As long as the scattering is not too weak, the quasi-
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modes are only slightly modified by the introduction of uniform gain and they serve as

the lasing modes. This conclusion is consistent with that drawn from the time-dependent

calculations [60, 61, 92]. Hence, the knowledge of the decay rates of the quasimodes, in

conjunction with the gain spectrum, can predict the first lasing mode. Because of the

correspondence between the lasing modes and the quasimodes, the frequency spacing of

adjacent lasing modes is more regular in the undercoupled systems with smaller mode-

to-mode variations in the lasing threshold.

When optical gain is introduced to a local region of the random system, some quasi-

modes cannot lase no matter how high the gain is. The rest modes can lase but their

spatial profiles may be significantly modified. Such modifications originate from strong

enhancement of feedbacks from the scatterers within the pumped region. It increases

the weight of a lasing mode within the gain region. Nevertheless, the feedbacks from the

scatterers outside the pumped region are not negligible. Moreover, the spatial variation

in the imaginary part of the refractive index generates additional feedback for lasing.

As the pumped region becomes smaller, the number of lasing modes is reduced, and the

frequency spacing of lasing modes is increased. In an undercoupled system, the regularity

in the lasing mode spacing remains under local excitation. Our calculation results will

help to interpret the latest experimental observations [49, 63] of spectral periodicity of

lasing peaks in weakly scattered random systems under local pumping. We note that

the effect of local excitation can be significant in an overcoupled system if the size of the

pumped region is much smaller than the spatial extend of a localized mode or the spatial
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overlap between the pumped region and the localized mode is extremely small. Hence,

caution must be exerted in using the decay rates of quasimodes to predict the lasing

threshold or the number of lasing modes under local excitation. Finally we comment

that the increase in the mode concentration in the gain region by local pumping have

distinct physical mechanism from the absorption-induced localization of lasing modes in

the pumped region [51]. The former is based on selective enhancement of feedback within

the gain region, while the latter on the suppression of the feedback outside the pumped

region by reabsorption.

2.5 Statistics of Amplified Spontaneous Emission Spikes and

Coherent Random Laser Peaks

In addition to the random lasing peaks, stochastic spikes were reported in the single-

shot spectra of amplified spontaneous emission (ASE) from dye colloidal solutions over

a wide range of scattering strength [71]. The spikes are intrinsically stochastic and vary

from shot to shot. They are attributed to single spontaneous emission events which

happen to take long open paths inside the amplifying random medium and pick up

large gain [67]. Thus the emergence of ASE spikes does not rely on resonant feedback

or coherent interference. To clarify the difference between the lasing peaks and ASE

spikes, we conduct a systematic study and show that the ASE spikes can appear without

scattering but the lasing peaks rely on the coherent feedback provided by scattering.

The ensemble-averaged spectral correlation functions and the statistical distributions of
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the spectral spacing and intensity of the ASE spikes and the lasing peaks are completely

different. Such differences underline the distinct physical mechanisms.

Our experiments were performed on the diethylene glycol solutions of stilbene 420

dye and TiO2 particles (mean radius = 200nm). The experimental setup was the same

as that discribed in Section 2.2. The stilbene 420 was intentionally chosen for the weak

reabsorption of emitted light outside the pumped region. The absorption length la at the

center emission wavelength λe = 427nm was 6cm at the dye concentration M = 8.5mM.

It was much larger than the dimension (∼ 1cm) of the cuvette that held the solution. At

the particle density ρ = 3 × 109cm−3, the scattering mean free path ls ≃ 1.3mm at the

pump wavelength λp = 355nm, and ls ≃ 1.0mm at λe. Although la ≃ 10µm at λp, the

pump light penetrated much deeper than la due to the saturation of absorption by intense

pumping. The excitation volume had a cone shape of length a few hundred micron and

base diameter 30µm. Because the cone length was smaller than ls, the excitation cone

in the colloidal solution was almost identical to that in the neat dye solution. For the

emitted light, the transport was diffusive in the colloidal solution whose dimension was

much larger than ls. Light amplification, however, occurred only in a sub-mean-free-path

region. The motion of particles in the solution provided different random configuration for

each pump pulse, which facilitated the ensemble measurement under identical conditions.

The single-shot emission spectra from the colloidal solution are shown in Figs. 1(a)-

(c) with increasing pump pulse energy Ep. At Ep = 0.05µJ [Fig. 1(a)], the spectrum

exhibited sharp spikes on top of a broad ASE band. From shot to shot the spikes changed
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Figure 2.15: Single-shot emission spectrum from the 8.5mM stilbene 420 dye solutions
with 3 × 109cm−3 TiO2 particles (a)-(c) and without particles (d)-(f). The pump pulse
energy is 0.05µJ for (a) & (d), 0.09µJ for (b) & (e), 0.13µJ for (c) & (f).

completely. The typical linewidth of the spikes was about 0.07nm. The neighboring spikes

often overlap partially. As pumping increased, the spikes grew in intensity. When Ep

exceeded a threshold, a different type of peaks emerged in the emission spectrum [Fig.

1(b)]. They grew much more rapidly with pumping than the spikes, and dominated the

emission spectrum at Ep = 0.13µJ [Fig. 1(c)]. The peaks, with the typical width of

0.13nm, were notably broader than the spikes. Unlike the spikes, the spectral spacing

of adjacent peaks was more or less regular. We repeated the experiment with solutions

of different ρ as well as the neat dye solution of the same M . The peaks could only be

observed with particles in the solution, while the spikes appeared also in the spectrum

of emission from the neat dye solution [Fig. 1(d) - (f)]. Although they were similar at

Ep = 0.05µJ, the emission spectra with and without particles were dramatically different
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at Ep = 0.13µJ. Even under intense pumping, the emission spectrum of the neat dye

solution had only spikes but no peaks [Fig. 1(f)]. The maximum spike intensity was

about 50 times lower than the maximum peak intensity in the colloidal solution at the

same pumping [Fig. 1(c)]. While the pump threshold for the appearance of peaks

depended on ρ, the threshold for the emergence of spikes in solutions with low ρ was

similar to that with ρ = 0.

In our previous experimental and numerical studies [63], we concluded that the large

peaks represented the lasing modes formed by distributed feedback in the colloidal so-

lution of TiO2 particles. Although the feedback was weak at low particle density, the

intense pumping strongly amplified the backscattered light and greatly enhanced the

feedback. In contrast, the feedback from the particles was not necessary for the spikes

which also existed in the neat dye solution. Thus the spikes were attributed to the

amplified spontaneous emission.

To demonstrate quantitatively the differences between the ASE spikes and lasing

peaks, we investigated their spectral correlations and intensity statistics. Since it was

difficult to obtain reliable statistical data for the ASE spikes from the colloidal solution

at high pumping due to the presence of dominant lasing peaks, the data of ASE spikes

were taken from the neat dye solution instead. We checked that at low pumping where

the lasing peaks had not appeared, the statistical data for ASE spikes collected from

the colloidal solution with low ρ were similar to those from the neat dye solution. The

ensemble-averaged spectral correlation function C(∆λ) was obtained from 200 single-
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shot emission spectra acquired under identical condition. We chose the wavelength range

425-431 nm, within which the gain coefficient did not change much, to compute C(∆λ) =

〈I(λ)I(λ + ∆λ)〉/〈I(λ)〉〈I(λ + ∆λ)〉 − 1. At low pumping [Figs. 1(a) & (d)] C(∆λ) for

the neat dye solution was very similar to that for the colloidal solution with low ρ, while

at high pumping [Figs. 1(c) & (f)] C(∆λ) became significantly different as shown in

Figure 2(a). C(∆λ = 0), which was equal to the intensity variance, had a much larger

value for the colloidal solution than for the neat dye solution. This result reflected the

intensity ratio of the lasing peaks to the background emission was much higher than

that of the ASE spikes. Moreover, C(∆λ) for the colloidal solution exhibited regular

oscillations with the period ∼ 0.27nm. Due to slight variation of lasing peak spacing,

the oscillation was damped and the correlation peaks were broadened with increasing

∆λ. Nevertheless, the oscillation of C(∆λ) survived the ensemble average despite the

lasing peaks changed from shot to shot. This result confirmed not only the lasing peaks

in a single-shot spectrum were more or less regularly spaced, but also the average peak

spacing was nearly the same for different shots. In contrast, C(∆λ) for the neat dye

solution was smooth and decayed quickly to 0 as ∆λ increased from 0 [inset of Fig. 2(a)].

The ASE spikes produced irregular oscillations in the spectral correlation function of a

single shot emission spectrum. However, such oscillations were removed after averaging

over many shots. This result reflected the stochastic nature of the ASE spikes.

We also obtained the statistical distribution P (δλ) of wavelength spacing δλ of the

ASE spikes and that of the lasing peaks. The cross in Fig. 2.16(b) represented P (δλ)
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Figure 2.16: (a) Ensemble-averaged spectral correlation function of single-shot emission
spectra for 8.5mM stilbene 420 dye solutions with 3 × 109cm−3 TiO2 particles (dashed
curve) and without particles (solid curve). The pump pulse energy is 0.13µJ. (b) Statis-
tical distribution of wavelength spacing between adjacent lasing peaks (square) and ASE
spikes (cross) obtained from the same spectra as in (a). The solid curve represents an
exponential fit P (δλ) ∼ exp(−δλ/0.082).

for the ASE spikes within the wavelength range 425-431nm, obtained from 200 emission

spectra of the neat dye solution at Ep = 1.0µJ. Note that the data at δλ close to 0

were absent because two ASE spikes with spacing less than the spike width could not be

resolved. P (δλ) was fitted by an exponential decay, P (δλ) ∼ exp(−δλ/0.082) [solid curve

in Fig. 2.16(b)]. It showed the ASE spikes satisfied the Poisson statistics, which meant

the frequencies of individual ASE spikes were uncorrelated. P (δλ) for the lasing peaks

[square in Fig. 2.16(b)] differed dramatically from that for the ASE spikes. Instead of

an exponential decay, P (δλ) reached the maxima at δλ ∼ 0.25nm. This result reflected

the spectral repulsion of lasing modes. Since the particle suspension was in the diffusive

regime, its quasimode spacing δλ would satisfy the Wigner-Dyson distribution P (δλ) ∼
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δλ exp[−π(δλ)2/4〈δλ〉2] [93]. However, P (δλ) for the lasing modes did not fit well with

the Wigner-Dyson distribution. The deviation might be caused by several factors such

as the mode competition for gain which would limit the number of lasing modes [94].

Our numerical simulations, to be presented later, illustrated that the local pumping could

strongly modify the quasimodes even without reabsorption. Since the lasing modes might

be quite different from the quasimodes, the statistics of the lasing mode spacing could

differ from that for the quasimode spacing.

Further difference between the ASE spikes and lasing peaks was revealed in the inten-

sity statistics. From hundreds of emission spectra taken under identical conditions, we

obtained the statistical distributions of the intensities (I) of lasing peaks and ASE spikes

within the wavelength range 425 - 431nm. Some of the data were presented in Fig. 2.17,

which illustrated the two distributions were very different. The log-linear plot in Fig.

2.17(a) clearly showed that P (I/〈I〉) for the ASE spikes had an exponential tail at large

I. The tail became more extended as the pump pulse energy Ep increased. The solid and

dotted curves in Fig. 2.17(a) represented the exponential fit P (I/〈I〉) ∼ exp(−aI/〈I〉)

at large I for Ep = 0.13µJ (cross) and 0.39µJ (triangle) with a = 5.7 and 4.0, respec-

tively. The log-log plot in Fig. 2.17(b) revealed that P (I/〈I〉) for the lasing peaks had

a power-law decay at large I, namely, P (I/〈I〉) ∼ (I/〈I〉)−b. The fit of the data at Ep

= 0.09µJ (open circles) and 0.13µJ (solid squares) gave b = 3.0 and 2.3, respectively.

Hence, the power-law decay became slower with increasing pump pulse energy.

The above experimental results of correlations and statistics demonstrated the fun-
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Figure 2.17: Statistical distributions of the intensities of lasing peaks (square, circle) and
ASE spikes (cross, triangle), obtained from the 8.5mM stilbene 420 dye solutions with
3× 109cm−3 TiO2 particles and without particles, respectively. The pump pulse energy
is 0.09µJ (circle), 0.13µJ (square, cross), 0.39µJ (triangle). The lines represent fitting
(see text).

damental difference between the ASE spikes and lasing peaks. Note that the data for

the ASE spikes were taken from the neat dye solution to avoid large lasing peaks at high

pumping. At low pumping where the lasing peaks had not appeared, the data for ASE

spikes obtained from the colloidal solution with low particle density were similar to those

from the neat dye solution. Next we presented a qualitative explanation for some of the

data. The stochastic structures of the pulsed ASE spectra of neat dye solutions were

observed long ago [77]. In our experimental configuration, the ASE spikes originated

from the photons spontaneously emitted by the stilbene molecules near the ends of the

excitation cone at the beginning of the pump pulse. As they propagated along the cone,

these photons experienced the largest amplification due to their longest path length in-

side the gain volume. The ASE at the frequencies of these photons was the strongest,
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leading to the spikes in the emission spectrum. Although the spontaneous emission time

was a few nanosecond, the 25ps pump pulse created the transient gain and only the initial

part of the spontaneous emission pulse were strongly amplified. Thus the ASE pulse was

a few tens of picoseconds long. The spectral width of the ASE spikes was determined

by the ASE pulse duration. We extracted the average width of the ASE spikes from

the width of spectral correlation function in Fig. 2.16(a). After taking into account

the spectral resolution of our spectrometer, we estimated the ASE pulse duration to be

between 10ps and 100ps, in agreement with the pumping duration. Since different ASE

spikes originated from different spontaneous emission events which were independent of

each other, their frequencies were uncorrelated. It led to the Poisson statistics of the

frequency spacing of neighboring ASE spikes [Fig. 2.16(b)]. Although the occurrence of

ASE spikes did not rely on scattering, multiple scattering could increase the path lengths

of spontaneously emitted photons inside the gain volume thus raise the amplitudes of

some spikes. In our experiment, the tight focusing of the pump beam and the low par-

ticle density in the colloidal solution made the scattering mean free path exceed the size

of gain volume. The effect of scattering on the ASE spikes was negligibly small, thus

the ASE spikes exhibited little dependence on the particle density. The intensity of an

ASE spike was determined by the amount of amplification that the spontaneously emit-

ted photon experienced, which in turn depended on when and where the spontaneous

emission happened. The optical gain varied rapidly in time and space, making it difficult

to calculate the intensity statistics of the ASE spikes. Although the exponential tail of
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P (I/〈I〉) remained to be explained, the increase of the tail at higher pumping could be

understood by the larger difference in amplification of individual spontaneously emitted

photons.

2.6 Conclusion

In this chapter, we carefully studied the laser emission from weakly scattering colloidal

solutions with laser dye as gain material. First, we confirmed the observations of ran-

dom lasers with resonant feedback reported previously in similar systems. The key role

played by multiple scattering on lasing in weakly scattering systems was undoubtedly

demonstrated, moreover, the dominant contribution from the scatterers near the system

boundary on its quasimodes formation was recognized. This explained the better regular-

ity of the quasimodes’ frequencies when the system transitioned from the over-coupling

regime to the under-coupling regime. Second, we clarified the difference between coher-

ent random lasing emission peaks and stochastic amplified spontaneous emission spikes.

Both occurred in weakly scattering colloidal system and shared similar spiky spectral

characteristics. By comparing the emission spectrum, spectral intensity correlation, peak

spacing statistics and peak height statistics side by side, we showed that these two types

of emission are fundamentally different. This clarification will help people to identify

random lasing phenomena more accurately. Third, we investigated the relation between

the quasimodes of a random system and its lasing modes under either global or local

excitation. For systems under global uniform excitation, the lasing modes have one-one
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correspondence to the quasimodes of the system. When inhomogeneous local gain was

introduced, the number of lasing modes was reduced from the number of quasimodes.

What’s more, both the frequency and wavefunction of the lasing modes can be very

different from that of quasimodes, especially for weakly scattering systems. With the

reduction of lasing mode number, the frequency spacing between adjacent lasing modes

increased, therefore discrete lasing peaks can be observed experimentally from weakly

scattering systems. However, the lasing modes can be treated as neither the quasimodes

of a reduced system within the excitation region, because the feedback from outside

the pumped region still exists; nor the quasimodes of the original total system without

gain, because the local gain changes the relative weight between the feedback inside and

outside the excitation region, which makes the lasing modes different.
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CHAPTER 3

COHERENT RANDOM LASERS IN CLOSELY PACKED

RESONANT SCATTERING ZNO SPHERES

3.1 Motivation

In the previous chapter, we investigated coherent random lasing from weakly scattering

systems both experimentally and numerically. The study provided us better under-

standing for the nature of random laser phenomena. However, due to the rather weak

interference effect, the random laser cavities typically had huge loss and intense exci-

tation was required to bring the laser above its threshold. Such high threshold pump

requirement poses a main challenge for wide application of random lasers. To overcome

this challenge, various techniques have been proposed, e.g. external feedback with mir-

rors [95–97] and guiding pump light deep into the samples [98]. Besides these techniques,

a more intrinsic way to lower random laser threshold is to increase the scattering strength

of the media. Because the random laser feedback is from multiple scattering, stronger

scattering provides better light confinement and thus a higher quality factor of the laser

cavity. Both experiments and theories have confirmed that the random lasing threshold

decreases with stronger scattering, and a good example is the low threshold lasing from

the localized modes from a 1D random system [62]. Strongly localized quasimodes offer
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good candidates for low threshold random lasing modes, and the random laser, in return,

provides a handy tool to study the localized modes.

Though it has been shown that light can be localized in both 1D and 2D random

systems with a finite disorder, photon localization in 3D random systems still remains an

open question. To reach the localization regime, Ioffe-Regel criterion kels < 1 must be

sastified, where ke is the wavevector of light inside the system and ls is the scattering mean

free path. Therefore, both ke and ls should be decreased to reach the localization regime.

Because ls is inversely proportional to the scatterer concentration ρ and scattering cross

section of a single scatterer σs, it is natural to seek systems which optimize both ρ and

σs. Light scattering from a single scatter is maximized at certain resonance conditions,

which is called resonant scattering. A good example is the Mie resonance we discussed

in the Introduction. By closely packing the resonant scatterers, we can obtain a sample

which optimizes both ρ and σs. In this chapter, we investigate the light scattering and

random lasing from such samples.

The chapter is organized as follows: first, we describe the synthesis process of monodis-

perse ZnO spheres which range in diameter from the sub 100 nm scale to over 600 nm.

Such monodisperse particles are crucial to achieve the same resonant scattering for in-

dividual scatterers. A natural consequence of monodisperse spheres is the periodic opal

structure formed by self-assembling, which we have successfully fabricated. The opal sam-

ples, as well as their photonic band gap (PBG) structures, will be discussed in section

two. The random samples, on the other hand, are prepared by a cold pressing method
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and light scattering, in particular, the coherent backscattering (CBS) measurement is

investigated in section three. Then, random laser experiments from these disordered

samples are presented in section four, as well as some results from numerical simulations.

3.2 Chemical Synthesis of Monodisperse ZnO Spheres

This section describes the procedure employed to synthesize the monodisperse ZnO

nanoparticles which was developed by Seelig [100]. In principle, it is hydrolysis of zinc di-

hydrate, Zn(OOCH3)2·2H2O (ZnAc) in diethylenge glycol, HOCH2CH2OCH2CH2OH

(DEG), a process similar to that described by Jezequel et al [99]. In general, ZnAc are

dissociated in the solvent and oxygen in the water bonds to Zn2+ ions. The protons are

then removed from the structure and ZnO remains. In addition to ZnO, acetic acid is

the other reaction product.

The apparatus used for the reaction is shown schematically in Fig. 3.1. The reaction

was carried out in a 300 ml round-bottom flask, which was heated by a heating mantle.

A reflux column was attached to the top of the flask, and cold water was flowed through

the outer jacket of the column. For temperature control, a long thermocouple probe was

inserted through the reflux column so that the tip of the probe was inside the flask and

measures the temperature of the reaction solution. The output from the thermocouple

was fed to a thermostat temperature controller. The output from the controller was sent

to a variable output transformer that supplied power to the heating mantle. The power

setting on the transformer was used to control the heating rate. The entire assembly
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was placed on a stirring plate and reaction solution was stirred by a magnetic bar. All

Figure 3.1: A schematic sketch of the system used for the synthesis of ZnO spheres. Cited
from Ref. [100] since our systems were very similar.

reagents were used as-received with no pre-synthetic purification performed. In a typical

reaction, 3.295 g ZnAc · 2H2O was dissolved in 150ml DEG solvent, and the solution

was heated up while being stirred by the magnetic bar. The heating rate was 4oC/min

till the temperature got to 100oC, then was slowed down to 1oC/min by reducing the

power output from transformer. At 150oC, the solution started to appear cloudy which

indicated the begining of ZnO nucleation. The solution became totally white when

its temperature reached 165oC and after that, no visible changes were observed. The

setting point of temperature controller was at 165oC, and the solution was kept at this

temperature for another hour to complete the reaction. After that, the power supply
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was turned off and the flask was allowed to cool down to room temperature. ZnO

powders were obtained by centrifuging the solution, and washed with iso-propanol for a

few iterations of dissolving and centrifuging. Finally the clean ZnO powders were stored

in iso-propanol.

The shape and size of the ZnO particles obtained from above reaction depended on

the initial concentration of ZnAc · 2H2O in DEG, but in general they were polydisperse

as shown in the SEM image in Fig. 3.2(a). While such polydisperse ZnO spheres proved

useful for the exploration of the random lasing properties [38, 102], we still preferred

monodisperse spheres for two reasons: first, the scattering resonance of every single

sphere is the same in a random sample formed by packing the monodisperse spheres;

second, monodisperse spheres could offer us the possibility to build periodic structures.

So a revised two step reaction scheme was developed to synthesize the monodisperse

ZnO spheres [101]. First, a primary reaction as described above was conducted, and the

reaction solution was centrifuged to separate the ZnO powders from the supernatant.

The supernatant was retained, while the polydisperse powders were discarded. Then

a secondary reaction, similar as the primary reaction, was performed with only one

exception: at 150oC, prior to the occurrence of ZnO precipitation, certain amount of

primary supernatant was added into the reaction solution. A couple of things could be

observed during the reaction. First, as would be expected, a temperature drop occurred

scaled with the volume of room-temperature fluid added. Second, such addition resulted

in precipitation occurring at lower temperatures. Visually suspensions obtained in this
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two step process generally appeared whiter than that from the primary reaction.

Figure 3.2: (a) SEM image of ZnO spheres obtained from a typical one step synthesis
reaction. (b) SEM image of monodisperse ZnO spheres obtained from a revised two step
synthesis reaction. Both images are with the full scale of 4 µm.

SEM images of these powders revealed that they were monodisperse spherical parti-

cles, as shown in Figure 3.2(b). Careful size analysis showed that the diameter deviation

was within 6%, and the relative divation was usually smaller for larger spheres. Precise

control of the size of the ZnO spheres was realized by controlling the volume of primary

supernatant added [101], where best fitting showed a relation of the form d = kx−1/3,

where d was the mean sphere diameter, x the volume of primary supernatant added, and

k a fitting constant. Changing from sphere diameter to sphere volume v, the relation

became v = k′x−1, which can be understood as following: if we assume the total volume

of ZnO formed in the secondary reaction was a constant, then the individual particle

volume should be inversly proportional to the number of particles N , while N was de-

termined by the number of nucleation center in the added primary supernatant, which
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was proportional to its volume.

High resolution SEM and XRD measurements both confirmed that the monodisperse

as-grown ZnO spheres were not single crystalline spheres, but porous powders formed

by many tiny ZnO single crystal grains. So the effective refractive index of such sphere

needed to be determined instead of using bulk ZnO value. It was obtained by the trans-

mission measurement of the opal structures formed by the ZnO spheres, which will be

discussed in next section.

3.3 Self-Assembly and Optical Calibration of ZnO Opal

Structures

We have managed to produce periodic opal structures from the as-made ZnO monodis-

perse spheres by using an evaporation-induced self-assembly process [101]. In most cases,

a small amount of the colloidal reaction solution was dropped on a substrate (glass or Si),

and allowed to dry. Because of the low vapor pressure of the solvent (DEG), the drying

process was assisted by placing the substrate on a hot plate. The substrate temperature

was set between 160oC and 220oC to get best structure qualities. Samples made in this

range showed visible bright single color reflections, which was a sign of a good period-

icity in the opal structure. Samples made at lower temperatures appeared as uniform

layers and exhibited no bright reflection; while samples deposited at higher tempera-

tures adhered poorly to the substrate. SEM images showed that well aligned FCC opal

structure were obtained by this simple method with their 〈111〉 direction normal to the



119

substrate, as shown in Fig. 3.3. Thought the self-assembly method was simple, there

Figure 3.3: Top view (a) and side view (b) SEM images of FCC structure formed by
self-assembly of monodisperse ZnO spheres obtained from two step synthesis reactions.
Both images are with full scale of 4 µm.

were some requirements one needed to follow. First, it was shown that only the as-made

reaction solution should be used to get the periodic opal structures. After the solution

was centrifuged and ZnO spheres were dispersed in other solvents like iso-propanol, DEG

or methanol, periodic structures could not be obtained by the evaporation method. This

showed that the as-made reaction solution was a stable ZnO colloidal suspension caused

by the surface charges on each ZnO sphere, and such charges were removed when other

solvents were used. Second, the substrate had to be hydrobolic to the colloidal solution.

This could cause the formation of a meniscus and generated surface tension to force

the spheres to align periodically. If the solution was wetting the substrate, no periodic

structures were observed.

There were a few limitations on this self-assembly method. One limitation was the
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sample thickness. Typically one drop of as-made solution generated a sample with thick-

ness about 2 − 3µm. In order to observe the photonic crystal behavior, it was generally

necessary to have 10-20 layers of spheres. While 2− 3µm was thick enough to accommo-

date enough layers of small spheres, larger spheres, in the 300-600 nm range, may have

too few layers to show the photonic crystal behavior. To increase the thickness, we cen-

trifuged the solution first and removed some fraction of the supernatant, so the solution

left had higher concentration and allowed to form a thicker opal structure. The other

limitation was that the produced opal structure was not a single domain structure in the

lateral direction, which was usually a few millimeters. In stead, many domains with size

smaller than 100 µm were formed, separated by cracks from each other. However, while

the lateral orientation of each domain was different, the vertical orientation was always

along 〈111〉 direction, which was exactly the direction we were interested in.

Figure 3.4: (a) Large area normal incidence transmission spectra of ZnO opal along 〈111〉
direction for ZnO opals with five different sphere sizes. (b) Reflection spectrum of ZnO
opal along 〈111〉 direction for two different sphere sizes.

Large area normal incidence transmission measurement along 〈111〉 direction was
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d(nm) λ(nm) d/λ
137
155 381 0.407
165 404 0.408
190 437 0.435
215 493 0.436
255 551 0.463
332 714 0.465

Table 3.1: Relation between ZnO sphere diameter and photonic band gap position.

performed with the ZnO opal samples and the results are plotted in Fig. 3.4(a). As

expected, it clearly shows that the bandgap center wavelength scaled with the sphere

diameter in ZnO opal structures. With the ZnO sphere size changing from 100 nm to

600 nm, the bandgap can be tuned from UV to IR regime, covering the entire visible

spectral range. For opal structures formed with small spheres, the bandgap was below

ZnO absorption edge (around 385 nm) and was not visible in transmission due to strong

absorption. To overcome this issue, reflection spectra were measured instead along 〈111〉

direction. Normal incident white light was focused by an objective lens and the reflected

light was collected by the same lens. Figure 3.4(b) shows the reflection spectra for two

opal stuctures formed with small ZnO spheres, where a refection peak close to ZnO

absorption edge was clearly observed.

To show the photonic behavior more clear, the ZnO sphere diameter d, the center

wavelength of bandgap λ and their ratio d/λ are listed in Table 3.1. It can be seen that

d/λ gradually decreases d and λ. This was expected since ZnO refractive index increases

when λ approaches the absorption edge from the long side, and d/λ should be inversely

proportional to the refractive index of ZnO opal according to Bragg reflection relation. To
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get more accurate results, we calculated the band structure of our ZnO opals using MPB

package from MIT [103]. By calculating band structures for ZnO opals with different

refractive index values and fitting the calculation with experimental data, we determined

the refractive index of the ZnO spheres. Figure 3.5(a) shows a plot of gap position (a/λ)

as a function of the refractive index n and the radius to interparticle distance ratio (r/d).

For n = 2.1 (the approximate bulk value for ZnO), the map indicated that a/λ should be

around 0.35, while our experimental obtained value was close to 0.45. This discrepancy

implied that the effective index of ZnO spheres were significantly smaller than the bulk

value. Restricting the packing parameter r/d to 0.45-0.50 as confirmed by SEM images

and keeping d/λ = 0.45, Fig. 3.5(a) yielded an refractive index in between 1.5-1.7.

Using this refractive index and r/d range, Fig. 3.5(b) predicted the gap width was about

5.5 − 7.8%. The fact that the refractive index of ZnO sphere was samller than that of

bulk ZnO indicated that these spheres were porous. The porocity of ZnO spheres was

estimated from Maxwell-Garnett equation:

ǫe = ǫ1

(

2ǫ1 + ǫ2 + 2f(ǫ2 − ǫ1)

2ǫ1 + ǫ2 − f(ǫ2 − ǫ1)

)

, (3.1)

where ǫ1 = 1 for air and ǫ2 = 4.24 for bulk ZnO at λ = 500 nm. Then for ǫe = 1.72 = 2.89,

we derived that the filling fraction f of bulk ZnO inside the sphere was around 70%.
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Figure 3.5: (a) Photonic band gap position (a/λ) and (b) photonic band gap width
(∆ω/ω0× 100) as a function of effective refractive index of the spheres r/d. The approx-
imate experimental range is indicated on each plot.

3.4 Coherent Backscattering of Light in Random Samples

Formed by Closely Packed Resonant ZnO Spheres

In previous section, we discussed the fabrication of the periodic opal structures from

monodisperse ZnO spheres. In this section, we will discuss another sample made of ZnO

spheres: random structures. Though the evaporation method introduced in last section

can also generate random samples at low temperatures, we prepared random samples by

a different way. First, ZnO powders were separated from the supernatant by centrifuging,

then they were washed with iso-propanol a few times and finally dry ZnO powders were
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obtained by evaporating iso-propanol at a high temperature. To achieve maximum gain

in our sample, we cold-pressed ZnO spheres with a pressure of 150 MPa to form tablets

with diameter 7.87 mm and thickness 1.40 mm. Since we used the same amount (0.17 g)

of ZnO powders and made the tablets of the same volume, the densities ρ of all the tablets

made of different diameter spheres were the same. The bulk ZnO filling factor of all the

tablets was derived by ρ/ρ0 ∼ 45%, where ρ0 = 5.6g/cm3 was the density of ZnO bulk

crystal. From the previous section we already knew that the ZnO spheres were porous

with bulk ZnO crystal volume fraction about 70%. Therefore, the volume fraction of

the ZnO spheres in the tablet was estimated to be around 60%. This number confirmed

that ZnO spheres were closely packed. Unlike sedimentation, our process of packing ZnO

spheres was so fast that the spheres should have no time to arrange themselves into

ordered structures. Therefore, ZnO spheres were randomly positioned in those tablets.

To calibrate the scattering strength in these random samples, we needed to measure

the transport mean free path lt. Since our samples were too thick for transmission

measurement, we conducted coherent backscattering (CBS) measurements to obtain the

transport mean free path lt. The experiment setup was following: the collimated probe

beam passed an electric chopper, reflected from a beamsplitter onto the sample surface

with a 4 mm spot. The sample was mounted on a stage which spun at ∼ 100 rpm around

the axis normal to the sample surface. The incident probe beam was deviated from the

normal direction to avoid the specular reflection. The PMT detector was put on an arm

which rotated exactly around the incident spot on the sample surface horizontally with
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an angular step controlled by a step motor. The detection arm was carefully screened

to remove the streak light and a lock-in amplifier was used in combination with the

chopperto enhance the signal to noise ratio. The angular resolution of the system was

determined by the ratio between the detection area of the PMT, which was controlled

by an aperture right in front of it, and the radial distance from the sample surface to the

detector. The angular resolution in our CBS system was less than 0.1o, thus the scanning

step size was set to be 0.1o and 0.2o depending on the CBS cone width from different

samples. Since we planed to perform lasing experiments with those ZnO samples, lt at

the wavelength of ZnO maximum gain (385 nm) was desired. However, it could not

be done due to the strong absorption of the probe light at such frequency. Instead, we

measured lt at three different probing wavelengths longer than 385nm: a CW HeNe laser

(λ = 633 nm), a mode-locked Ti:Sapphire laser (λ = 793 nm), and the second harmonics

of the Ti:Sapphire laser (λ = 400 nm). Based on these data, we expected to find a

general trend for lt on λ and estimate its value at the wavelength we were interested.

As an example, Fig. 3.6 shows the CBS cones from one sample with the three different

probing wavelengths.

We derived the transport mean free path lt from the full width at half maximum

(FWHM) of the CBS cone ∆θ using the following formula:

lt =
λ

2π∆θ(1 + ze)
(3.2)

where ze is the extrapolated length ratio [104]. We assumed that ze only depended on
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Figure 3.6: (CBS cones for sample made of ZnO spheres of 233 nm with three different
probing wavelengths.

the overall reflectivity R at the sample-air interface, i.e., ze = 2(1+R)/3(1−R), where R

was determined by the effective refractive index neff of the sample [104]. Figure 3.7(a)

shows the transport mean free path lt versus the ZnO particle diameter d at three different

probe wavelengths. First, it can be seen that for all three different λ, the transport mean

free path lt varied similarly with d. When d increased, lt first decreased rapidly and

then saturated. For λ =400 nm, lt decreased from 4.4 µm at d =85 nm to 0.6 µm at d

= 172 nm. lt was over 7 times shorter for only 87 nm change of the sphere diameter.

For λ =633 nm, lt decreased from 19.5 µm at 85 nm to 3.1 µm at 299 nm, over 6 times

shorter for about 200 nm change of d. For λ =793 nm, lt decreased from 25 µm at 114

nm to 3.3 µm at 355 nm, about 8 times shorter after 240 nm change. So the decreasing

was most abrupt for λ =400 nm. Though lt behaved very differently for these three
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different λ, when we replotted the same data in a normalized way: lt/d vs. neffd/λ,

the three curves became one. This universal behavior can be roughly understood as

follows: in Rayleigh scattering regime, lt = 1/ρσsc (assuming lt = lsc, which is satisfied

in Rayleigh scattering regime), where ρ = 1/V = (πd3/6)−1 is the concentration of

scatterers and V is the volume of one single scatterer, and σsc ∝ V 2λ−4 ∝ d6λ−4, thus

ρσsc ∝ d3λ−4, then easily lt/d ∝ (d/λ)4. If we assume that the refractive index does

not change with wavelength, then lt/d ∝ (nd/λ)4, which is roughly satisfied for ZnO

spheres at the three wavelengths we tried experimentally. Indeed such dependence was

found for samples made of small ZnO spheres in our experiments as shown in Fig. 3.7

(b). For larger spheres, resonance occurs in Mie scattering regime as we discussed in

Introduction. Remember that in Mie theory, scattering efficient Qsc depends on three

parameters: x = πr/λ, refractive index ration between scatterer and surround media m,

and y = mx [3]. Now if we assume m is λ independent, then Qsc is determined purely

on either x, as we showed in Fig. 1.1, or y. Now remember that σsc = Qscπr2 and

ρ = 1/V = (πd3/6)−1, thus it can be easily derived that lt/d only depends on y, which

explains the universal behavior shown in Fig. 3.7 (b).

Following the above discussion, one would expect that the multiple scattering in the

samples made of the monodisperse spheres should behave similarly as scattering from a

single sphere. In particular, those resonances in σsc should also appear in lt with varying

y. However, no resonances were observed experimentally in our samples as shown in

Fig. 3.7. This discrepancy was caused by our assumption of independent scattering in
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Figure 3.7: (a) Transport mean free path lt versus ZnO sphere diameter d at wavelengths.
λ = 400 nm (triangle), λ = 633 nm (circle), and λ = 793 nm (square). (b) the same data
from (a) plotted as lt/d versus n · d/λ.

above consideration, which did not hold in our closely packed sample any more. When

the scattering cross section of neighboring sphere began to overlap, dependent scattering

became important and light propagation could no longer be regarded as a sequence of

scattering events from one particle at a time. In our samples made of ZnO monodis-

perse spheres, the scattering from single sphere became stronger for larger sphere sizes,

where Mie resonance enhanced the scattering cross section σsc from individual sphere and

neighboring σs began to overlap and dependent scattering occurred. One straightforward

approach to improve in this regime is to calculate the second-order correction in density

ρ. This turned out to be a difficult task; exact calculations could only be performed for a

Gaussian fluctuation model of correlated disorder [105]. This model, well suited for the

porous silica sample of Ref. [105], may not give all the structures that resulted from the

sample of the monodisperse spheres considered in our experiments.

Another highly accurate approximation widely used for calculating lsc is the coherent
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potential approximation (CPA) [106]. Within the CPA one calculates the effective dielec-

tric constant (its imaginary part is related to lsc) of the medium, taking into consideration

the microstructure of the system. For the monodisperse spheres, one considers a single

sphere surrounded by an air shell embedded in the effective medium. Self-consistency

requires the disappearance of scattering in the forward direction. To determine the trans-

port mean free path, Busch et al proposed to calculate σt =
∫

σsc(Ω)(1 − cosθ)dΩ for

the CPA unit, where the integral of the solid angle is taken [5]. Comparing this expres-

sion with equations for independent scattering, one can see that this is an extension of

the weak scattering formula into the strong-scattering regime, replacing the real single

scatterer by an effective scatterer.

In the strong-scattering regime CPA calculations with needed corrections become

increasingly complicated and computationally heavy. Recently, it has been proposed

to use truncated multipole expansions to solve the multi-sphere problem (see Ref. [107]

and references therein). Within this generalized multi-sphere Mie (GMM) solution one

expands the electric field inside and outside of each sphere in vector spherical harmonics,

then, the field incident on a sphere is a sum of the incoming plane wave and fields

scattered by all other spheres. By matching the boundary conditions on the sphere

surfaces one obtains a linear system on the spherical harmonic coefficients, which is

solved by recursion [107]. In order to obtain scattering coefficients one adds up the

individual scattered fields in far-field zone. Computation time strongly depends on the

size parameter x, as the number of multipoles needed for convergence increases with x.
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Similar to Busch et al [5], we define lsc and lt in the strongly scattering regime as the

formula for independent scattering, but instead of CPA-based calculations of σsc(ω) and

〈cos(θ)〉 we calculate these quantities for the individual spheres inside the finite clusters.

More precisely, we (i) generate (10 realizations) clusters of 5 or 10 randomly arranged

dielectric spheres with filling fraction f ≃ 0.5; (ii) solve the scattering problem using

GMM code; (iii) find σsc,i(ω) and 〈cos(θi)〉 for each sphere in the cluster, averaged over 24

angular orientations of the cluster and 2 polarizations of the incident field; (iv) compute

average σsc(ω) and 〈cos(θ)〉 over all spheres in the cluster and 10 random configuration.

To match our experimental set-up, we have chosen the spheres with refractive index

n = 1.7 and n · d/λ ∈ [0, 4]. We should stress that our calculations become incorrect

when lsc becomes larger than the size of the cluster, which restricts y = n · d/λ > 1.

This is, however, the region where a weak scattering approximation described in the

beginning of this section, gives reliable results. Therefore, the combination of weak

scattering approximation with the cluster-based calculation gives the continuous coverage

for practically all values of y.

The results of the calculations outlined above are presented on Fig. 3.8 and 3.9. The

inset of Fig. 3.8 shows a significant modification of the scattering efficiency of the particles

in the cluster. This is due to interaction between particles. When the resonant scatterers

with scattering cross sections larger than geometrical cross section, are packed closely

together, the hybridization due to interaction (dependent scattering) occurs. As a result

the 〈σsc〉/σg saturates at about f−2/3 - square of the average (dimensionless) distance
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Figure 3.8: Scattering mean free path lsc normalized by the sphere diameter d, calculated
for clusters of 5 (dashed line) and 10 (solid line) spheres, as a function of normalized
particle size n ·d/λ. The bold line represents lsc calculated within independent scattering
approximation. Inset shows the scattering efficiencies σsc/σg of a stand-alone single
sphere (bold line), and a sphere in the clusters of 5 (dashed line) and 10 (solid line)
particles.

between scatterers. When such saturation occurs, l−1
sc ≃ ρ f−2/3 σg ∝ (d f−1/3)−1.

Normalized by the particle size lsc/d appears to be a constant as it can be seen from

Fig. 3.8. The residual structure can be traced back to the single particle resonances and

would probably not survive a small size dispersion - inevitable in the experiment.

In the inset of Fig. 3.9, we plotted [1 − 〈cos(θ)〉]−1 for a particle in a cluster. The

first obvious feature is that the scattering within the cluster is highly anisotropic. This

may be attributed to the fact that many scatterers lie close to boundary and may not

“feel” the local environment as those inside the cluster. We, however, did not notice

any systematic difference in 〈cos(θ)〉 for these two types of particles. Another important

consequence of combining lsc and 〈cos(θ)〉 in expression of lt, is the disappearance of

most of irregular structure inherited from lsc. Indeed, lt is strikingly smoother function
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Figure 3.9: Transport mean free path lt normalized by the sphere diameter d, calculated
for clusters of 5 (dashed line) and 10 (solid line) spheres, as a function of normalized
particle size n · d/λ. The bold line represents lt calculated within independent scattering
approximation. Inset shows 〈cos(θ)〉 of a stand-alone single sphere (bold line), and a
sphere in the clusters of 5 (dashed line) and 10 (solid line) particles.

of the particle size, which reproduces well the experimentally observed situation reported

in the previous section. The similarity between lt calculated for the clusters of 5 and 10

spheres and the fact that lt is smaller than the cluster size demonstrate that we capture

the most important effects due to dependent scattering. Even though the calculations

extended to larger clusters would improve our results, it should not, however, change it

significantly. The absence of systematic difference in scattering properties between the

particles in the cluster further confirms our conclusion.
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3.5 Lasing in Random Samples Formed by Closely Packed

Resonant ZnO Spheres

In the lasing experiment, the samples were optically excited by the third harmonics of

a mode-locked Nd:YAG laser (λ =355 nm, 10 Hz repetition rate, 20 ps pulse width).

The pump beam was focused to a spot on the sample surface at normal incidence. The

emission was collected by the same focusing lens and the spectra were measured by a

spectrometer with 0.13 nm spectral resolution. As shown in Fig. 3.10, at low excitation

intensity, the spectrum had a single broad spontaneous emission peak. As the pump

intensity increased, the emission peak was gradually narrowed due to amplification of

spontaneous emission (ASE). When the excitation intensity exceeded a threshold, ex-

tremely narrow peaks emerged around 375 nm. With a further increase of the pump

intensity, more sharp peaks appeared.

Figure 3.11 is a plot of the lasing threshold pump intensity versus the ZnO sphere

diameter for two different pump area sizes. When the diameter of excitation spot was

changed from 8 µm to 16 µm, the lasing threshold exhibited similar dependence on

the sphere size. There are two distinct features in Fig. 3.11: (1), the threshold pump

intensity remains nearly constant for a wide range of sphere diameter from 137 nm to

617 nm; (2), with a small decrease of sphere diameter from 137 nm to 114 nm, the lasing

threshold increases dramatically, especially for smaller pump area. For the sample of

85 nm spheres, we could only observe ASE but not lasing. The lasing threshold pump

intensity for larger pump area is lower than that for smaller pump area, that is consistent
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Figure 3.10: Measured spectra of emission from a ZnO pellet. The mean diameter of
the ZnO spheres is 617 nm. The pump beam spot on the sample surface is 8 µm in
diameter. The incident pumping intensities are (a) 6 MW/µm2 and (b) 11 MW/µm2.
The integration times are (a) 15 and (b) 3 s.

with our previous finding [40].

The lasing threshold varied as we excited different part of the same sample. In fact,

the lasing thresholds shown in Fig. 3.11 are the mean values of threshold pump intensities.

The statistical fluctuation of lasing threshold is an important character of random laser.

To fully understand random laser behavior, we measured the variance of lasing threshold

pump intensities. The nonuniformity of a sample formed of polydisperse scatterers led to

fluctuation of the scattering length across the sample, and it added an artificial variation

to the intrinsic variation of random lasing threshold. Using monodisperse ZnO spheres,

we were able to make uniform random samples. Experimentally, we shifted the pump spot

across the sample and recorded the lasing threshold pump intensity Ith. The diameter

of the excitation spot was kept constant. Then we calculated the mean value 〈Ith〉 and
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Figure 3.11: The incident pump intensity at lasing threshold Ith versus ZnO sphere
diameter d. Squares and circles correspond to the pump spot diameter of 8 µm and 16
µm respectively. Inset shows normalized scattering cross section σsc/σg of single ZnO
sphere as a function of its diameter d with parameters n = 1.7 and λ = 375 nm.

its standard deviation std(Ith) =
√

〈(Ith − 〈Ith〉)2〉. The normalized standard deviation

δγ/〈γ〉 = std(Ith)/〈Ith〉. We found experimentally that the variance for 400 threshold

data has the same value as that for 200 data. Therefore, 200 threshold data were used

to get the variance of lasing threshold. Table 3.2 lists some of our experimental results.

The standard deviation of lasing threshold decreased with an increase of sphere diameter

d. However, for the largest d, it increased slightly. As discussed earlier, in the pellets

composed of larger ZnO spheres, shorter lt resulted in smaller lasing cavities. Within

a constant pump area there are more random laser cavities available. The improved

“averaging” within the pump area leads to smaller fluctuation of the lasing threshold.

This explains the decrease of the deviation of lasing threshold with the increase of sphere

diameter d. Typically there are many spheres within the pumped region. Although the
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d(nm) lt(µm) 〈Ith〉(MW/mm2) std(Ith) (MW/mm2) δγ/〈γ〉 (%)
137 1.21 20.8 3.5 17
172 0.58 19.1 2.0 11
299 0.55 19.6 1.5 8
355 0.53 16.8 1.2 7
617 0.61 17.4 1.7 10

Table 3.2: Fluctuation of lasing threshold in different samples with 5 µm pump area.

particle configurations change with the pump positions, different pump regions of the

same sample are statistically equivalent. However, when the ZnO spheres are as large as

617 nm, the number of spheres within the pumped region is rather small. At different

pump positions, the number of spheres and their configuration can be quite different.

This may cause more fluctuation in lasing threshold. To test the above explanation,

we increased the pump area to 15 µm in diameter, and measured the variance of lasing

threshold for two samples (d = 137 nm and d = 299 nm). The normalized deviation for

the d = 137 nm sample is δγ/〈γ〉 = 11%. It is larger than 7% deviation of the d = 299 nm

sample that has shorter lt. We also compared the fluctuation of lasing threshold for the

same sample at different pump diameter s. For d = 137 nm, δγ/〈γ〉 = 17% at s = 5 µm.

It is larger than δγ/〈γ〉 = 11% at s = 15 µm. In smaller pumped region, fewer random

laser cavities are available, leading to larger threshold fluctuation. For d = 299 nm, the

two deviations are similar, δγ/〈γ〉 = 8% at s = 5 µm and δγ/〈γ〉 = 7% for 15 µm. This

may be due to accuracy of our threshold measurement. Because of the power fluctuation

of our pump laser, we could not resolve small difference in threshold fluctuation. We

simulated random laser behavior numerically by using FDTD method [86]. Due to the

computation burden of 3D system, we performed the calculation in 2D system. To
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determine the lasing threshold we will assume that it is solely determined by the mode

of the lowest radiative loss - highest quality factor Qm. This is a simplification that

neglects non-uniformity of the gain in the system. We believe, however, that qualitative

dependence should not be affected by this assumption. The system under consideration is

2D array of passive dielectric rods with refractive index n = 2.2 and filling fraction of 0.5.

When changing the size (diameter) of the rods n ·d/λ0 ∈ [0.2, 2], we kept the physical size

of the system constant 2 µm × 2 µm, with wavelength λ0 =375 nm. To determine the

quality factor of the least leaky mode, we launched a pulse with the bandwidth of about

10 nm centered at λ0. After initial excitation the modes in the excited frequency region

decayed with time. After a sufficient time only one mode with the highest Q dominated

the spectrum. This was evidenced by the stabilized field distribution in the sample. In

this regime the total energy stored in the system followed a single exponential decay with

time: E ∝ Re [exp 2iωm(1 + i/2Qm)t]. From this dependence the frequency ωm and the

quality factor Qm were determined with a Fourier transform. Since the lasing threshold

is inversely proportional to the maximum Q, we define the lasing threshold in our system

as γ ≡ 1/Qm. For 100 disorder realizations we calculated mean value of lasing threshold

〈γ〉 , and its standard deviation δγ. In order to make the comparison with experiments

done in 3D, we performed calculations for both TM (E-field parallel to the cylinder axis)

and TE (H-field parallel to the cylinder axis). It can be shown that Maxwell equations

for TM polarization are equivalent to scalar equations. For this reason it is sometimes

called s-polarization as opposed to p- or TE polarization. In the latter two components
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of electric field are available which brings them closer to the 3D case.

Figure 3.12: Average lasing threshold 〈γ〉 = 〈1/Q〉 as a function of the dimensionless
particle size. Squares and circles represent TM and TE polarizations respectively. Error
bars are too small to be shown on the plot. Inset shows scattering efficiency of a dielec-
tric cylinder with n = 2.2 for TE (thin line) and TM (thick line) polarizations vs the
dimensionless diameter.

Squares on Fig. 3.12 and 3.13 show the results for TM polarization. One can see

that there exist 3 minima of lasing threshold at n · d/λ = 0.6, 1, 1.4. As the values of

δγ remain about the same (Fig. 3.13), it would lead to sharp peaks of δγ/〈γ〉. These

peaks can be shown to be related to the band gap of the order sample with the same

filling ratio [108]. Apart from band gap related minima of 〈γ〉, and more relevant to

the current discussion, the threshold dependence on size is featureless. The threshold is

almost constant with no increase at the small particle size. This is in contrast to the

experimental result reported earlier in the paper and to the numerical calculation for TE

polarization in Fig. 3.12. Indeed, TE polarization does show a drastic decrease of 〈γ〉

at n · d/λ ≃ 0.5, which is similar to the characteristic size in both experiment and 3D
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theoretical prediction for lt. Naturally the question arises “Why TM polarization shows

such remarkable difference?”.

0 0.5 1 1.5 2
0

0.5

1

1.5
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3x 10
−3

n ⋅ d / λ

δ 
γ

Figure 3.13: Standard deviation of lasing threshold δγ as a function of the dimensionless
particle size. Squares and circles represent TM and TE polarization respectively.

To answer the above question, we plotted the scattering efficiency, Qsc = σsc/σg (not

to be confused with cavity Q), for a single cylinder in inset of Fig. 3.12. Thin and

bold lines represent TE and TM polarization respectively. One can see the significant

difference in the characteristic particle size where Qsc increases above one. This size is, in

fact, when the weak Rayleigh scattering fails and one has to account for the interactions

between the particles. For TM modes the increase in the lasing threshold (as well as lt)

should occur at n · d/λ ≃ 0.2, incidentally, this is the smallest value that we could reach

numerically without jeopardizing the numerical accuracy. So the answer to the question

posed in the previous paragraph is that we simply did not reach the transition, which

should occur at yet smaller particle size. This difference in the transition size for TE

and TM modes has a simple physical explanation. For thin dielectric cylinders, as in 3D,
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scattering is dominated by dipolar scattering, where analytical results are available [3]:

QTM =
π2

8
x3(n2 − 1)2; QTE =

π2

4
x3

(

n2 − 1

n2 + 1

)2

;
QTM

QTE
=

(n2 + 1)2

2
, (3.3)

One can see the difference in the scattering strength is about 17, and reflects the stronger

polarizability of a thin cylinder along the axis compared to that perpendicular to the

axis. This numerical prefactor leads to the difference in the characteristic size for two

polarizations. Moreover in the saturated regime, the value of the average lasing threshold

is relatively lower for TM than that for TE waves. This can be explained by stronger

interference effects in TM polarization, which is equivalent to the scalar wave. In this

respect the interference is harder to achieve for TE modes, that leads to higher threshold

as seen from Fig. 3.12.

The difference between TE and TM lasing threshold also exhibits itself through the

fluctuations in Fig. 3.13. Computational time has limited the number of disorder re-

alizations, and led to the relatively large errorbars. Nevertheless one can still conclude

that there is a general trend in increasing fluctuations δγ upon decrease of the particle

size, as it was seen in the experiment. This increase occurs at different size for TE and

TM polarizations, which is in line with the above discussion. Fluctuation for TE field is

generally higher than that for TM field. As mentioned earlier, availability of 2 electric

field polarizations in the former case is the cause.

We should also mention that one needs to exercise caution when comparing the results

of 2D simulations with 3D experiments. Indeed, the dependence of the lasing threshold
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and its fluctuation on the particle size is dimension-dependent effect. As it can be seen

from Table 3.2 and Fig. 3.13, δγ showed similar trend in both 2D simulations and 3D

experiments. However, normalized standard deviation δγ/〈γ〉 behavior is different: in

3D it increased with decrease of d (Table 3.2), while in 2D it instead decreased for TE

polarization (not shown). Further simulations performed on 3D random systems are

necessary to resolve this discrepancy. The very similar behavior of lasing threshold with

the transport mean free path confirmed the close relation between the random laser and

photon localization. It also showed the possibility of studying photon localization in

multiple scattering system by using random lasing effect.

3.6 Discussion and Conclusion

We would like to dress one question in this discussion section: Can Anderson localization

of light can be achieved by resonant scattering? There were some reports indicating that

localization was observed in the vicinity but off the resonance frequency of individual

scatterers [28,109,110]. Actually, even in diffusive systems it was shown that the optimum

scatterer size for maximum scattering was smaller than the that predicted by Mie theory

of a single scatterer [111]. However, this result can be easily understand since lsc =

2d/(3fQsc), where d is the scatterer’s diameter and f is the scatterer filling fraction. For

fixed f , maximum scattering occurs at scatterer size d0 where lsc reaches a minimum,

which requires that Qsc/d reaches a maximum. The diameter d0, however, is typically

slightly smaller than the resonant scatterer size where Qsc is a maximum, epscially for
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low refractive index scatterers. For scatterers with a high refractive index, Mie resonances

are typically sharp and d0 gets very close to the resonant scatterer size. This argument,

though explains Ref. [111] well, cannot explain the results in Refs. [28, 109, 110]. Those

results showed that the localization region was always on the higher frequency side of

the first Mie resonance, and Ref. [110] even showed that with increasing filling fraction

of scatterers, the localization region shifted to even higher frequencies from the first Mie

resonance. As discussed in Ref. [28], localization is achieved when g = δν/∆ν < 1,

where δν is the average mode linewidth and ∆ν is the average mode spacing. Resonant

scattering helps to decrease δν by increasing the dwell time of light inside the system,

while ∆ν can be increased by reducing the density of states by, say, the photonic band

gap effect. For a random system, the PBG of its periodic counterpart system is typically

at the frequency higher than the first Mie resonance frequency of single scatterers, so it

is very likely that the results in Refs. [28, 109, 110] are due to the residual PBG effect

in their systems. Moreover, the result in Ref. [110] that the localization region shifted

to higher frequency with increasing scatterers filling fraction somehow confirmed this

explanation, since increasing scatterer density induced lattice constant reduction, which

would shift the PBG to higher frequency. Whether Anderson localization can be achieved

solely by resonant scattering is still a debated question [20, 112–116]. Here I give a very

naive derivation which, I think, shows that it is possible that Anderson localization can

be achieved solely by resonant scattering.

The criteria for Anderson localization we are using here is the Ioffe-Regel condition:
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kelsc < 1 (1), where ke = 2πne/λ and lsc = 1/ρσsc, ne is the effective refractive index

of the random system. We know that such a definition of lsc can only be satisfied in the

independent scattering approximation, so we require the second condition: σsc of each

scatterer does not touch each other, which means rQ
1/2
sc < 0.5ρ−1/3 (2), where r is the

scatterer radius, Qsc = σsc/πr2 is the scattering efficiency. Starting from condition (1)

and (2), we can do the following:

lsc =
1

ρσsc
=

1

(f/v)(Qscπr2
=

4r

3Qscf
(3.4)

where f is the scattering filling fraction and v = 4πr3/3 is the volume of individual

scatterers. Substituting Equ. 3.4 into the Ioffe-Regel condition, one can get

kelsc =
2π

λ
· 4r

3Qscf
=

4x

3Qscf
< 1 (3.5)

Here we assume ne = 1, which should not change the results anyway. From condition

(2), one can easily derive that

Q
1/2
sc < (π/6f)1/3 (3.6)

Combine Equ. 3.5 and 3.6, one can get the final condition

4x

3f
< Qsc < (

π

6f
)2/3 (3.7)

Such a condition can be satisfied under certain situations. For example, let’s assume
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f = 0.1, which is a typical number satisfying the independent scattering approximation,

then condition 3.7 becomes 40x/3 < Qsc < 3. This can be satisfied for many x and

Qsc pairs, e.g., x = 0.1 and Q = 2, which can be true for small scatterers with a high

refractive index. Though Qsc is a function of x and localization has to be achieved within

a frequency window with finite width, suitable scatterers and a frequency range may still

be able to be found.

Now we would like to discuss why we did not achieve light localization in our resonant

scattering samples. Instead of a resonance dip in either transport mean free path lt or

random laser threshold Ith as functions of scatter size, we only observed that both quan-

tities quickly decreased but then saturated with increasing scatterer size. The reason

lied in the fact that our samples were too closely packed. The separation between neigh-

boring scatterers was so short that dependent scattering occurred, which quenched the

resonance enhancement from individual spheres. Unfortunately, due to our experimental

limitation, we can not fix this problem. This problem, however, can be solved in either

a charged colloidal solution [117] or systems where scatterers are embedded into spacer

materials [28]. And indeed light localization was observed in such system.

In summary, we have managed to synthesize monodisperse ZnO spheres with well

controlled sizes for a large range. Using it as the building block, both periodic opal

structures and random samples were successfully prepared. The FCC ZnO opal structure

was obtained by an evaporation enhanced self-assembly process, and photonic band gap

was demonstrated as a transmission dip or reflection peak along the 〈111〉 direction.
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By changing sphere size, the gap was tuned through the entire visible spectrum range

from UV to IR. Random samples were fabricated by cold pressing ZnO spheres into

a pellet, and the scattering strength in such samples was calibrated by the transport

mean free path lt measurement with coherent backscattering. It was shown that with

sphere diameter increasing, lt first decreased quickly then saturated for random samples

with larger spheres. A GMM simulation was performed to calculate lt and comparisons

between experimental data and simulation results were made and discussed. Random

lasing behavior was studied in these random samples. The threshold mean value and

standard deviation were measured experimentally and calculated by the FDTD method

in 2D systems for different polarizations. The random laser mean threshold changed

with sphere size, following a similar trend to that of the transport mean free path, which

confirmed the important role scattering played in random lasers.
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CHAPTER 4

ZNO PHOTONIC CRYSTAL SLAB LASERS

4.1 Motivation

In the previous chapter, we explored the closely packed resonant scatterer samples trying

to decrease the scattering mean free path ls, which, according to Ioffe-Regel criterion

kels < 1, would help photon localization thus reducing the random laser threshold.

However, it has been shown that though ls can be greatly reduced by resonant scattering,

close packing made scattering from each scatterer strongly coupled. Such dependent

scattering limits the further decrease of ls as well as the random lasing threshold. From

Ioffe-Regel criterion expression, it can be seen that the reduction of both ke and ls will

help it to be satisfied. Therefore, in this chapter, we will investigate the effect of reducing

the effective wavevector ke on both photon localization and random lasers.

Reducing ke can be achieved by introducing structure order into the a disordered

system. Such a system can be viewed in two different ways: a disordered structure with

correlations (either short or long range), or a periodic structure with disorder. In this

thesis, we will follow the second description. In particular, we will start with an ideal

periodic structure, then introduce disorder into it. The structures with a periodically

modulated dielectric constant are called photonic crystals, which have been a field with
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tremendous research interest for two decades. Though photonic crystals (which deal with

periodic structures) seem to have no relation to random lasers (which deal with random

structures), they can be strongly connected through a shared common point: photon

localization. Photon localization, which was first proposed in completely random struc-

tures, has been achieved in photonic crystals first due to the photonic bandgap (PBG)

effect in three dimension. By introducing a defect state into the PBG, the structure can

lase at a very low threshold. Though it is related to the structure disorder, it is not called

a random laser, but a photonic crystal laser.

We have already managed to prepare a 3D photonic crystal structure: ZnO opals by

self-assembly. However, due to a lack of a complete bandgap, the lasing threshold in

such samples was not significantly lowered compared to the random samples. Moreover,

the self-assembly process limited our ability to control the degree of disorder in the opal

structures, which prevented us from quantitatively studying the effect of disorderness on

lasing in photonic crystals. This situation forced us to think about preparing samples

in two dimensions instead. Compared to 3D structures, 2D structures are ready to

fabricate thank to all kinds of lithography and etching techniques, moreover, structures

with well controlled randomness can be easily obtained by mask design. Because of those

advantages, we determined to conduct our experiment using 2D structures.

In this chapter, we investigate the lasing phenomenon in 2D structures changing from

periodic to random. The samples we studied are different patterns etched in ZnO film on

a sapphire substrate. Strictly speaking, such structure is not 2D but 3D, which indeed
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makes our experimental results different from theoretical predictions for 2D structures,

which we will discuss at the end of this chapter. The chapter is presented as follows: we

first discuss the design of ZnO photonic crystal slabs with an optimized PBG overlapping

the ZnO gain spectrum, then discuss the structure fabrication process by FIB etching

and lastly discuss the experimental results. Lasing in samples with different amount of

randomness are simulated by FDTD calculations and their experimental counterparts

are discussed in the conclusion.

4.2 Band Structure Calculation of ZnO Photonic Crystal Slabs

In our experiment, 2D periodic patterns have been etched in ZnO thin films. This kind of

structure is called photonic crystal slabs (PhCS) and has attract much attention because

of their potential applications to various optoelectronic devices and circuits [59,118–123].

PhCS may lead to a complete photonic band gap for the guided modes when the wave

propagation in all in-plane directions is forbidden due to Bragg interference. Moreover,

its planar geometry makes it easy to incorporate on a chip, as well as offers a possibility

of low threshold laser sources [59, 124–129]. These lasing modes are either defect state

modes or band edge modes, however, so far the experimental efforts mainly concentrated

on PhCS made of III-V semiconductors. They operate in the infrared (IR) communication

frequencies. There is technological and commercial demand for compact and integrable

laser sources in near the ultraviolet (UV) range of optical spectrum. Because ZnO is

an efficient UV emitter with large exciton binding energy (∼ 60 meV), it is a good
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candidate for UV photonic crystal laser operating at room temperature. In this section,

we will investigate the band structure of ZnO PhCS, which offers us the guidance for

experimental fabrication of ZnO PhCS lasers.

Although Bragg reflection and index guiding description of the electromagnetic field

in PhCS can elucidate many physical phenomena that occur in such system, it is naive

because both in-plane and vertical propagations or confinements are inseparable. In order

to obtain the photonic modes of PhCS one needs to solve the problem self-consistently

within the same framework. This can be done with a plane-wave expansion method [103]

that in fact became a standard in the field.

In most IR PhCS structures, the photonic layer is usually cladded with air above and

below(see e.g. [59,128,129]). This design is advantageous for a number of reasons. First,

this is a symmetric structure: there exists a reflection symmetry with respect to the plane

that goes through the middle of the PhCS. This symmetry allows two orthogonal classes

of eigenfunctions of Maxwell equations: symmetric and antisymmetric [130]. Supercell

for the band structure calculation can be easily constructed by repeating . . . -air-PhCS-

air-PhCS-. . . indefinitely in the vertical direction. It was shown that low-lying (E-field)

symmetric modes are predominantly TE polarized, while antisymmetric ones are TM

polarized. Due to superior guiding properties of TE modes and the fact that a self-

supporting membrane percolated by air holes (unlike the collection of dielectric cylinders

in air) exhibits a PBG for the same polarization, this geometry is widely used in practice.

The supercell photonic band-structure calculations also give unphysical modes that do
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not correspond to the guided modes of the PhCS (confined to the slab). Fortunately,

physical (guided) modes can be separated using the concept of light cone as follows.

In the result of photonic band-structure calculation one obtains the frequency ω for a

given in-plane wave vector k||. This electromagnetic EM mode (concentrated inside the

photonic layer) is coupled only to the modes outside the layer with the same (ω, k||).

If ω < ck||, then kz =
√

ω2/c2 − k2
|| is imaginary outside the PhCS. Thus the light

intensity decays exponentially in the z direction away from the layer. This describes a

guided mode. In the opposite case, kz is real and light can escape to the infinity. Such a

mode is a leaky mode, which cannot be accurately described in the supercell calculations.

A continuum of modes with ω > ck form a light cone (a cone in ω− k space). Therefore,

PBGs obtained in all planar geometries are, strictly speaking, photonic band gaps for

guided modes.

In our ZnO PhCS structure, ZnO photonic layer is on sapphire substrate whose refrac-

tive index is 1.78. Unlike in III-V PhCS structures, selective removal of the underlying

layer of sapphire is currently not allowed. This experimental limitation leads to severe

restrictions: first, presence of the sapphire substrate lifts the reflection symmetry. this

results in mixing between TE-like and TM-like classes of EM modes. second, the non-air

substrate presents a second light cone, which reflects more serious radiative loss into

the sapphire substrate (leakage into the substrate starts for ω > (c/ns)k||). In such

asymmetric PhCS, high filling fraction of ZnO in the photonic layer is required to satisfy

the waveguiding in z direction, which in turn put a upper limit of feature size can be
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fabricated in the experiment.
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Figure 4.1: Schematic diagram of the vertical super-cell used in photonic band structure
simulation. Cylindrical air holes of radius r are arranged in a hexagonal pattern with
lattice constant a. The holes extend throughout the slab of thickness tPhCS and may
penetrate into the substrate to the depth of te. The thicknesses ta and ts need to be
chosen sufficiently large (see text for discussion). The cell is symmetric with respect to
reflection in Σsc plane. For convenience we also introduce a middle plane of the slab, Σ.

A band-structure calculation technique for the asymmetric geometry like ours was

proposed in Ref. [130]. The authors proposed to use a supercell where . . . -substrate-

PhCS-air-substrate-PhCS-air-. . . is periodically repeated in the z direction. Special care

needs to be exercised in order to avoid unphysical solutions that correspond to the guided

modes in the substrate layers bounded by air and a PhCS. In our simulation we con-

structed a different supercell by combining the structure and its mirror image (shown in

Fig. 4.1) for the photonic band calculation. Our choice of the unit cell is motivated by the

following. Due to a particular arrangement of the layers in our supercell, there exists an
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artificial symmetry reflection plane Σsc in Fig. 4.1. Therefore, there is an artificial clas-

sification of the modes into symmetric and antisymmetric, as it is schematically shown

in Fig. 4.2. This property provides a way to control the precision of the bandstructure

calculation. Indeed, only for the PhCS-guided modes (with eigenfrequencies outside of

the air and substrate light cones), and only when the thicknesses of air ta and substrate

ts layers are chosen to be sufficiently large, the eigenfrequencies of the Σsc-symmetric

and Σsc-antisymmetric modes are nearly degenerate. This can be seen from Fig. 4.2:

there should be no difference in eigenenergy between the functions when the value of

the eigenfunction is close to zero at the (i) Σsc plane and (ii) the top/bottom of the

supercell. The second condition arises because of the periodicity in the vertical direction:

the top/bottom of the super-cell is also a middle plane that separates two closest PhCS

layers.
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Figure 4.2: Reflection symmetry allows for solutions symmetric and antisymmetric with
regard to reflection in Σsc. This artificial symmetry helps to separate the guided modes
from the leaky ones, see text for details.
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Furthermore, one may think that the doubling of the cell size should increase the

computation time. However, at least for a PhCS with a hexagonal symmetry, Σsc con-

tains a center of inversion. The latter allows us to perform the photonic band-structure

calculation, assuming that inversion symmetry shortens the calculation time (of one sym-

metry) by a half. In all simulations reported below, we checked the consistency of the

results with the procedure outlined above, then studied the band structure of the modes

outside of the substrate (more restrictive) light cone.

We chose hexagonal lattice in-plane structure due to its high rotational symmetry,

which offers a higher possibility to open a complete band gap in-plane. In Fig. 4.3 we

show an example of the calculated photonic band structure. Air light-cone boundary,

ω = ck||, and substrate light-cone boundary, ω = (c/ns)k||, are shown with dash dot

and dashed lines, respectively. The presence of a sapphire cone makes guiding at the

Γ point impossible and limits any band gap to a/λ < 0.325. For PhCS laser operation

we need to overlap a photonic band gap with a gain spectrum of ZnO, 380 < λ < 400

nm. Consequently, the lattice constant in the hexagonal air-hole pattern of PhCS has an

upper bound of a < 130 nm.

Since the presence of the substrate removes the symmetry with respect to reflection

in PhCS middle plane (Σ in Fig. 4.1), one cannot separate the modes into two indepen-

dent classes and consider them separately. This separability was crucial for obtaining

sizable PBG in a photonic membrane (or strictly two-dimensional structures). For com-

parison, we calculated the band structure of the system with the same parameters as in
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Figure 4.3: Calculated band structure of ZnO photonic crystal slab air cylinder radius
r/a = 0.25, and slab thickness t/a = 1.4. The refractive indexes for ZnO and sapphire are
2.35 and 1.78. Thin and thick lines represent TM and TE polarized modes respectively.

Fig. 4.3 but sapphire substrate was replaced by air. The obtained dispersions looked

qualitatively similar to the ones in Fig. 4.3, so that it was possible to make band-to-band

correspondence. This has been used previously to justify the existence of PBG in the

spectrum of TE modes [120]. In our case the refractive index of the substrate is quite

large, moreover it may even become comparable to the effective index of PhCS as the

patterning of ZnO film with original refractive index nZnO = 2.35 will reduce it to just

a little above that of the sapphire. These considerations warrant an in-depth analysis of

the mode polarizations.

In order to determine the degree of polarization of the electromagnetic eigenmodes of

PhCS, we studied

〈F (z)〉 =

∫

F (x, y, z) dx dy, (4.1)
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where F represents x, y or z component of electric or magnetic field. Figure 4.4 shows

these quantities for the first two bands taken at M -symmetry point of Figure 4.3. It is

clearly seen that the first (the lowest frequency) mode M1 is strongly TE polarized: Ex,

Ey and Hz are more than one order of magnitude larger the other components. Further-

more, as discussed above dominant components are nearly symmetric with respect to

middle plane of PhCS, whereas Hx, Hy and Ez are close to antisymmetric. The devia-

tion from the perfect symmetry is entirely due to the presence of the sapphire substrate.

Comparing the second mode M2 to the previous case one notices that the polarization

of the field has changed to the opposite — M2 is predominantly TM polarized.
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Figure 4.4: Integrated according to Eq.(4.1) x, y and z components of the electric, E,
and magnetic, H, field. Solid/dashed lines represent real/imaginary part of the field.
First/second two columns correspond to the first/second mode of Fig. 4.3 taken for k||
at M symmetry point. The same normalization is used for all field components, so that
their values can be compared. Mode M1/M2 shows a pronounced TE/TM polarization.

An increase in the order of the band does lead to enhancement of polarization mixing.
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However as we will see in more detail below, the substrate light-cone condition restricts

the involvement of higher-order bands. We checked the polarization of the lowest six

bands in several k|| points and found that in all relevant cases certain symmetry, TE or

TM, can be assigned to each band. Therefore, despite of highly asymmetric claddings

(sapphire versus air) and relatively small refractive index contrast between PhCS (neff ∼

2.1) and the substrate (ns = 1.78), the mixing of the polarizations in the low-order

photonic bands is limited. We measured the polarization of ZnO emission intensity from

a 600 nm-thick ZnO film on sapphire substrate. c-axis of ZnO is perpendicular to the

surface of the film. ZnO is optically excited by the third harmonic of a mode-locked

Nd:YAG laser (355 nm, 10 Hz, 20 ps). A cylindrical lens (f = 100 mm) is used to focus

the pump beam to a strip normal to the edge of the sample. The emission was collected

from edge of the sample at 1 µJ pump pulse energy. The pump area was about 2000×50

µm. Figure 4.5 clearly demonstrates that the emission is strongly polarized with the

electric field parallel to the film (TE polarization) [37,131]. Because the emission in the

ZnO thin film is predominantly TE polarized we need to consider only the TE-polarized

photonic modes. This motivates a detailed analysis of the polarization of the modes in

the experimentally relevant PhCS. From now on we will ignore TM polarized bands. In

the next section we will systematically study the effect of the structural parameters on

the width of PBG in the spectrum of TE (see thick solid lines in Figure 4.3) modes.

We intend to optimize the following three parameters that can be controlled in the

FIB etching [132]: (i) PhCS thickness, tPhCS , (ii) air hole radius, r (related to the filling
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Figure 4.5: Experimentally measured emission intensity from 600 nm ZnO film as a
function of polarization angle. The maximum intensity at about 25o corresponds to
E-field polarization parallel to the plane of the film (TE polarization).

fraction f) and etch depth, te. Due to linear nature of Maxwell equations, we normalize

all parameters to the value of lattice constant, a. Our goal is to maximize the relative

(normalized to the center frequency) PBG width. Once this is achieved, we can overlap

PhCS gap with the emission spectrum of ZnO by choosing appropriate a. From the

experimental prospective it is difficult to reproduce extremely small structural features,

therefore we prefer to have PBG at high values of a/λ if possible.

Figure 4.6 shows the results of our simulation. In panel (a) of the figure, we plot

the position and relative width of PhCS as we vary r/a within the range 0.18 − 0.30,

and keep tPhCS/a = 1.4 and te = 0.0. This corresponds to a change in the pattern

filling fraction from f = 0.88 to f = 0.67. One can clearly see that there exists a PBG

maximum at r/a ≃ 0.24 (or f ≃ 0.79). This effect has a clear physical interpretation: at

large filling fractions (small r/a) the index contrast within PhCS is small, therefore band
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splitting, as well as PBG, is small. At small filling fractions, the wave guiding becomes

poor, furthermore the decrease of the effective refractive index of the photonic layer leads

to a shift of PBG as a whole to higher frequency. Eventually, at r/a ≃ 0.26 the top of

the gap is set not by the higher order guided mode but by a/λ ≃ 0.324 at the light-cone

when k|| is at M -point (see Fig. 4.3). In reality, above this frequency the guided modes

will always be coupled to some leaky modes inside the light-cone. This phenomenon

results in a plateau of the upper bandgap edge for r/a = 0.26 − 0.30. Consequently,

PBG disappears at r/a > 0.30. For the air holes with such a large radius, the effective

refractive index of PhCS neff ≃ 1.87 approaches that of the substrate.

Figure 4.6(b) presents the effect of the photonic layer thickness, tPhCS , on PBG.

With the increase of tPhCS we also observe a maximum. For samples thinner than

the correspondent wavelength, the eigenmodes of the system substantially “spill” into

the air and (mostly) the substrate. Consequently, the effective index of PhCS becomes

comparable to ns so that PBG lies at higher frequencies. The light-cone leads to the

plateau of the upper bandgap edge as in the case of large r/a in Fig. 4.6(a). For very

thick photonic layers, tPhCS/a > 1.5, the gap closes again. This occurs due to a stronger

dependence of upper band edge frequency on the effective refractive index of PhCS.

Indeed, as neff is increased the band forming the upper edge of PBG develops the kinks

close to the light-cone, that leads to the reduction of PBG as seen in Fig. 4.6(b). As a

result of these dependences, the size of the gap can be maximized at tPhCS/a ≃ 1.45.

The possibility of improving guiding properties of the photonic layer by extending
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the air holes into the substrate was discussed in Ref. [133]. Indeed, removing a part of

the substrate material lowers its refractive index and achieves a partial effect of “un-

dercutting”. However, the fact that PBG in our case lies close to the light-cone has a

significant effect. An increase in te results in the decrease of the effective refractive in-

dex experienced by a guided mode, because it extends into the substrate. Therefore the

eigenfrequency of the mode increases and may enter the light-cone [134]. This is exactly

what happens in our system as shown in Fig. 4.6c. As te is increased the upper edge

of PBG becomes defined by the position of the substrate light-cone at M k-point (Fig.

4.3), whereas the mode that defines the lower edge of PBG is more confined to PhCS

and, therefore, is less sensitive to the effect of te. As a result, Figure 4.6(c) shows a weak

dependence on the etch depth.

As we discussed in the previous section our calculation of the photonic band gap relies

on the possibility of separating the photonic bands based on their polarization. To check

the consistency of this assumption we calculated the ratios between in-plane and normal

components of the electric fields for various structural parameters. In Fig. 4.7, we show

the polarization ratios calculated for the lowest four bands at two k|| vectors (M and

K k-points). As the structural parameters are varied, the polarization of the modes is

preserved. The most noticeable change occurs with the increase of r/a in Fig. 4.7(a).

This is due to significant modification of the band structure that occurs in this case.

Notwithstanding, the modes still remain strongly polarized, justifying our methodology.

As conclusion, in the photonic band structure calculation we find the optimum set of
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parameters for maximum PBG:

r

a
≃ 0.24

tPhCS

a
≃ 1.45

te
a

≃ 0.0 (4.2)

These parameters are significantly different from the typical parameters for IR PhCS.

This is due to several factors: (i) presence of the sapphire substrate brakes vertical

symmetry of PhCS; (ii) the refractive index contrast of ZnO/sapphire is lower than that

of InP/air usually used in IR PhCS; (iii) to preserve guiding in the photonic layer the

filling fraction and the thickness of ZnO PhCS needed to be significantly increased. This

in turns explains the relatively small PBG of about 5% that can be obtained in the ZnO

PhCS on sapphire.

Overlapping the photonic bandgap with the emission spectrum of zinc oxide required

precise control of the designed pattern with

a ≃ 123nm; tPhCS ≃ 180nm; te ≃ 0nm; r ≃ 30nm. (4.3)

This has been achieved with the FIB etching technique which we will discuss in next

section.

4.3 Fabrication of ZnO Photonic Crystal Slab Lasers

Following the design in the previous section, we started to fabricate the PhCS structure in

ZnO films. To our purpose, high quality single crystalline ZnO films with well controlled
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thickness are desired. Such films were grown on c-plane sapphire substrates with plasma

enhanced chemical vapor deposition (PECVD) technique. Film growth details can be

found in Ref. [135] and will not be discussed here. To show the film’s high quality, both

TEM and SEM images are shown in Fig. 4.8. From the TEM image, the crystalline

structure for both sapphire substrate and ZnO film are clearly shown. Though there are

defects on the first few epitaxy layers close to the interface with sapphire substrate due to

the 18% lattice mismatch, superior epitaxy of the single crystalline ZnO film was obtained

with its c axis normal to the sapphire substrate. The side view SEM image of the film

shows a very smooth cleave face, which again confirms the single crystalline structure.

The top view of the film shows some features, but AFM measurement confirmed that the

film surface is very smooth, with a roughness rms value of 2nm over 10 µm range for a

200nm thick film.

Figure 4.8: (a) High resolution TEM (b) Top and side SEM images of ZnO films grown
on c-plane sapphire substrate at 750◦C by POMBE. Horizontal scale for SEM: 1 µm.

With the single crystalline ZnO film, we managed to etch various photonic patterns
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through it. Our band structure calculation sets the guidance: a ≃ 123nm and r ≃ 30nm

for a hexagonal lattice. Such small features are technically challenging and currently

can only be obtained by two processes: (i) e-beam lithography followed by reactive ion

etching, (ii) focused ion beam etching. We decided to choose the second one (FIB) for

following considerations: first, FIB is a one step process while the other option needs

at least two steps. It not only makes the fabrication process much simpler, but also

lowers the possibility for generation of imperfections. Second, though there has been

some reports on RIE etching of ZnO, the results were far from our requirement. High

aspect ratio non-isotropic etching of ZnO in such small scales is quite challenging and no

successful recipes available currently as we know.

In Fig. 4.9, a simple sketch of the FIB facility is shown. Ga3+ ions were accelerated

by a high voltage from the source, and focused by an EM lens onto the sample surface.

An aperture with variable size was used to change the beam current, which changed

the etching rate. A typical etching recipe for a 200nm thick ZnO PhCS structure is:

accelerating voltage (30 keV), beam current (30 pA), dwell time on each etching point

(16 µs), total number of frames (400). The fabrication time of a typical 8× 8 µm PhCS

structure is about 5 min.

A typical sample prepared by FIB etching is shown in Fig. 4.10, where hexagonal

latticed air cylinders were fabricated in a 200nm thick ZnO film. One can see that each

air cylinder is far from a perfect circle, but the deviation for all the cylinders are similar,

which makes the long range periodicity still kept in the structure. The side view SEM
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Figure 4.9: A simple sketch of FIB etching setup.

image shows that the air cylinders were etched through the ZnO layer without large

deviation from the vertical direction. For a typical 8x8 µm pattern with in-plane lattice

constant a = 125nm, there are more than 4000 air cylinders in the pattern. If a mode

is well localized in-plane near the patterb center, the system can be treated as infinite

in plane, while for a extended mode, the energy leakage from the boundary can not be

neglected.

One disadvantage of the FIB etching process is that the ion bombardment introduces

defects into ZnO crystal and degrade its optical quality, which was indeed confirmed

by the PL measuremnt. In fact, none of the as-fabrucated samples with FIB can lase

even under intense optical excitation. To recover the optical quality, the samples were

annealed in air at 600oC for 30 min. Such temperature was chosen because that exper-

iments showed lower temperatures did not recover the crystal quality well, while higher

temperatures changed the structure of our patterns at long annealing time. To im-

prove the crystal quality further, rapid thermal annealing at higher temperature were
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Figure 4.10: SEM of hexagonal lattice air cylinder structure fabricated with FIB in ZnO
film. (a) top view, horizontal scale: 800 nm (b) side view, horizontal scale: 1.2 µm.

tried. However, up to 1200oC with 1 min annealing time, no significant reduction of

lasing threshold were observed in our samples. More systematic and detailed studies are

needed to clear this issue, so far we have applied the furnace annealing at 600oC for 30

min to all of our samples.

To test our theoretical prediction, we fabricated hexagonal lattice photonic structures

with different lattice constants a, while keeping r/a the same. We managed to achieve

both coarse and fine tuning of a by two different methods. The coarse tuning with step

size of 15.6 nm was realized by utilizing different patterns. In particular, the maximum

pixel resolution of the template which can be imported into the FIB facility was 512 by

512. So for a 8x8 µm pattern, the minimum change of a was one pixel and it was 15.6

nm. With such a step size, patterns with a from 100 nm to 160 nm were fabricated.

To achieve finer tuning of a, we changed the working distance from the EM lens to the

sample surface by moving the sample vertically, which changed the magnification of the
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real pattern to the template. Using this method we tuned a in a step size as small as

2nm in an 8x8 µm pattern. Such fine tuning was applied to patterns where a was close

to the predicted optimum value: 123 nm, and patterns with a changed from 110 nm to

130 nm were fabricated with a 2nm step.

4.4 Optical Characterization of ZnO Photonic Crystal Slab

Lasers

The ZnO PhCS samples were optically pumped by the third harmonics of a mode-locked

Nd:YAG laser (355 nm, 10 Hz, 20 ps) at room temperature. We used the picoseconds

pump laser simply because of its availability. Since the pump pulse is much shorter than

the lifetime of exciton in ZnO (which is a few hundred of pico seconds), the peak power

required to reach the lasing threshold would be much higher than that with nanosecond

pump pulses. A schematic sketch of the experimental setup is shown in Fig. 4.11. A 10×

microscope objective lens (f=16.5mm, N.A.=0.25) was used to focus the pump beam,

and the pump spot size were varied by changing the distance between the pump lens and

sample surface. In a typical experiment, a 6µm diameter pumping spot was used. Since

the sapphire substrate is double-side polished and transparent in both visible and UV

frequencies, a 20× microscope objective lens (f=9.0mm, N.A.=0.40) was placed at the

back side of the sample for both collection of emitted light and simultaneous measurement

of the spatial distribution of lasing mode. Then the emitted light was coupled into a UV

fiber, which was connected to a spectrometer with 0.13 nm spectral resolution. The
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pump light was blocked by a bandpass filter, while the image of lasing mode profile was

projected by the objective lens onto a UV sensitive CCD camera. The sample was also

illuminated by a white light source so that we could identify the position of the lasing

modes in the photonic lattice.

Figure 4.11: A simple sketch of lasing experiment setup on ZnO PhCS samples.

We first studied the patterns with coarse change of a from 100 nm to 160nm, Among

all the fabricated patterns lasing was realized only in the structures of a = 115nm and

a = 130nm. Figure 4.12(a) shows the spectrum of emission from a pattern with a =115

nm and r/a = 0.25. A single narrow lasing peak appeared at 387.7 nm. Figure 4.12(b)

plots the laser emission energy as a function of the pumping pulse energy. Note that not

all the pump light incident onto the sample was absorbed, part of it was transmitted,

reflected, or scattered. It was difficult then to measure the exact percentage of the

incident pumping being absorbed. Nevertheless, the threshold behavior is clearly seen

in Fig. 4.12(b). Above the threshold, the FWHM of this lasing peak was only 0.24 nm.

These data clearly indicated that lasing oscillation occurred in this PhCS structure. The

near-field image of this lasing mode was obtained simultaneously and shown in the inset of
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Fig. 4.12(a). The white square marks the boundary of the triangular lattice. The lasing

mode was spatially localized in a small region of ∼1.0 µm2 inside the lattice. As we moved

the pump spot across the lattice, the lasing modes changed in both frequency and spatial

pattern. This behavior suggested that this lasing mode was a spatially localized defect

state. It was formed by the short range structural disorder [136] which was introduced

unintentionally during fabrication. Lasing was also observed at longer wavelength for the

pattern with a=130 nm and r/a = 0.25 with higher lasing threshold.

Figure 4.12: (a) Lasing spectrum of a ZnO PhCS with a = 115 nm shows a single defect
mode. The pump pulse energy is 2.3 nJ. Inset is the near field image of the lasing mode.
(b) Emission intensity of the defect mode vs the incident pump pulse energy.

We would like to point a few experimental facts for our ZnO PhCS lasers. First,

the single mode laser typically could only be observed during a small range of pump

pulse energy. For the lasing mode shown in Fig. 4.12, single mode emission was only
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observed from 2.0 nJ to 3.0 nJ. With higher pump energy, new lasing modes started to

appear and multi-mode lasing emission was obtained. For some samples, the single mode

emission dominated over a larger pump power range, but eventually more modes would

lase at a higher pump energy. Second, even for the samples fabricated from the same

template, the lasing emission was different for each sample. However, they were typically

confined to a small frequency range, which was related to the PBG of the template

structure. Moreover, the lasing modes were not necessary to be spatially localized like

the one shown in Fig. 4.12. Actually major number of samples demonstrated lasing

modes with certain spatial extension, and sometimes could be extended over almost the

entire pattern area. An example is shown in Fig. 4.13, where the boundary of inset also

represents the sample pattern boundary. Clearly the single mode laser was an extended

mode. Third, the lasing threshold from the hexagonal latticed air cylinder structures

was much lower than that from the patterns with randomly positioned air cylinders with

the same filling fraction. Lasing from the random structures was generally with multiple

peaks in spectrum, and the lasing threshold was one order higher than the PhCS lasers.

These lasing modes were random lasers and their high threshold was mainly due to the

degrading of ZnO optical quality caused by FIB etching. This fact, on the other hand,

illustrated the high quality factor in our PhCS laser cavities. Fourth, to seek PhCS laser

with even lower threshold, we checked the effect of the pattern size on lasing threshold.

We have prepared the the same lattice structured samples with different pattern sizes:

4×4, 6×6, 8×8, 12×12 and 16×16 µm. It was observed that when pattern size increased
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from 4 × 4 to 8 × 8 µm, the lasing threshold decreased dramatically; while the pattern

size increased further, the lasing threshold became very similar. Due to our FIB etching

process limit, for the structures made from the same template, the larger the pattern

was, the more deviated from the template. Thus for large area samples like 12 × 12 or

16 × 16 µm, the structure disorder made the in-plane PBG effect less dominant, which

prevented the further decrease of lasing threshold. Fifth, we tried introducing certain

defects into our ZnO PhCS structure by design, e.g., intentional missing one air cylinder

(called D1 defect), or one center cylinder plus the nearest neighboring six cylinders (called

D2 defect). However, no significant changes were observed for the lasing modes from such

structures compared to the structures without any designed defects.

Figure 4.13: A typical lasing spectrum for a extended defect mode close to dielectric
band edge. Pump pulse energy: 2.0 nJ. Inset: near field image of the lasing mode, the
square boundary represents the boundary of the PhCS pattern.

To confirm the lasing modes (both localized and extended) were truly related to the

in-plane photonic crystal structure, we managed to fabricate a series of samples with the
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same hexagonal structure yet different lattice constant a. To overcome the 15 nm pixel

resolution limit in the 8×8 µm pattern, we carefully change the working distance between

the ion gun and the sample surface to change the magnification value. With this method,

we successfully fabricated ZnO PhCS samples with a from 100 nm to 140nm with step

size as fine as 2 nm. The similar laser emission was observed from those samples and the

results are shown in Fig. 4.14. In Fig. 4.14(a) the lasing mode wavelength is plotted for

samples with different lattice constant a. It can be seen that the lasing wavelength was

linearly scales with a, which clearly demonstrate the lasing modes were photonic crystal

lasers. The threshold pump pulse energy for these lasing modes is shown in Fig. 4.14(b).

With a minimum occurred between 110 nm to 125 nm, the lasing threshold quickly

increased for samples with both smaller and larger lattice constants. This result was

explained by the spectral overlap between the in-plane PBG of ZnO PhCS structures

and the Zno bulk gain. For the structures with a between 110 nm and 125 nm, the

calculated PBG was positioned within the ZnO gain range, 375 nm to 405 nm. While

for structures with larger or smaller a, their PBG was far away from the gain maximum,

which made them difficult to lase.

4.5 Effect of Disorder on Photonic Crystal Lasers

The reason that different lasing modes were obtained for the samples fabricated under

the same template, is because different unavoidable disorder was introduced during the

fabrication process into different samples. From the top view SEM image shown in Fig.
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Figure 4.14: (a) Experimentally measured incident pump pulse energy at the lasing
threshold as a function of lattice constant a. Dash line indicates that samples with
a < 110 nm don’t lase at shown pump pulse energy range. (b) Measured lasing mode
wavelength as a function of lattice constant a. Dash lines at λ = 380 nm and 400 nm are
edges of gain spectrum of ZnO.

4.10, the drilled air cylinders are deviated from perfect circles designed in template,

and such deviation distribution is different for different samples. To demonstrate this

point more clear, a larger area SEM image, as well as the deviation distribution from

the template, is shown in Fig. 4.15. For different samples fabricated under the same

template, such deviation distribution could be completely different. The deviation was

mainly caused by two factors: one is the intrinsic limit of the FIB etching process, e.g.

the different deviation for different air cylinders; the other is the sample or ion beam drift

during the long etching process, which is typical a few minutes for a 8x8 µm pattern.

We have been trying to optimize all fabrication conditions and the residual deviation is

beyond our experimental control. However, such deviation distribution played a crucial
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role in the formation of our ZnO PhCS lasing modes. In previous Introduction chapter,

we mentioned there are typically two different type of photonic crystal lasers: the defect

mode laser and bandedge state laser. The former is spatially confined to the carefully

designed defect region and the later is spatially extended. However, the lasing mode

observed in our ZnO PhCS is different from both of them. Without any intentionally

designed defects, the lasing modes can be either spatially localized or extended due to

specific structure deviation distributions in individual sample patterns. The reason that

both localized and extended modes can lase under similar pump condition is because the

in-plane PBG is rather narrow in our ZnO PhCS structures. Due to the narrow PBG, the

FIB introduced disorder can move the bandedge state deep into the gap easily. However,

such deep gap defect mode has similar lasing threshold as the bandedge states because

the narrow gap becomes very shallow by the addition of defect modes. Thus with the

same degree of disorder and pump condition, gap defect mode may lase first for some

samples (which is spatially localized), while bandedge state will lase first for others (which

is spatially extended). The narrow PBG also explains the small pump energy for single

mode operation, since both the gap defect mode and the bandedge states share almost

the same threshold. Same explanation applied to the observation that the structures

with intentionally designed defects did not show significant difference on laing behaviors.

We know that for a PhCS laser cavity, light may escape vertically through the

top/bottom interfaces into air/substrate or laterally via the edge of the periodic pat-

tern into air or unpatterned part of the slab. The vertical leakage rate is characterized
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Figure 4.15: (a) Top-view SEM of a ZnO PhCS. The inset shows structural Fourier
transform from the digitized SEM. Long-range periodicity is reflected in the six maxima
at the positions corresponding to the perfect lattice. (b) Difference between the digitized
SEM of real sample and the perfect honeycomb lattice reveals the structural disorder.

by the out-of-plane energy loss per optical cycle Q−1
⊥ , and the lateral by Q−1

//
. A defect

state spatially localized in plane has a large distribution of k//, thus typically has large

leakage in the vertical direction, i.e., Q−1
⊥ >> Q−1

//
. For a extended bandedge state, the

k// distribution is small, so the lateral leakage usually dominates over the vertical one,

Q−1
//

>> Q−1
⊥ . The total loss is described by Q−1

tot = Q−1
⊥ + Q−1

//
. Low lasing threshold

demands maximization of Qtot, which is hindered by Q⊥ for a localized defect state and

Q// for a extended bandedge state. To improve Qtot, many works have been done to in-

crease Q⊥ for a localized defect cavity state. For our ZnO PhCS structures, the increase

of lasing threshold for smaller patterns indicated that the dominant loss was the lateral

leakage for them, while the saturated threshold for larger patterns showed the vertical
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leakage instead became the dominant loss. In another word, for patterns smaller than

8x8 µm, Q−1
//

> Q−1
⊥ and Qtot is dominated by Q//, thus size increasing reduced the

lasing threshold. While for patterns larger than 8 × 8 µm, Q−1
//

< Q−1
⊥ and Qtot was

dominated by Q⊥. Therefore as a conclusion: first, the lasing mode is a band edge type

of extended mode, second, the vertical leakage dominates when pattern size is larger than

8 × 8 µm.

To quantitatively study the effect of disorder on both defect mode lasers and bandedge

state lasers from the photonic crystal slab structures, we consider a system schematically

depicted in the inset of Fig. 4.16(a). A dielectric slab of thickness 180 nm and refractive

index n of 2.35 is sandwiched between air and substrate (nsub = 1.78). Within the slab,

N infinitely long grooves run parallel to y axis. The width of a groove is 22 nm, the

lattice constant of the disorderless structure is 100 nm. We consider light propagating

in the x-z plane, with the electric field along the y axis. Such a system is 2D, which

allows numerical simulation of large statistical ensembles of random systems. Despite

the simplification, the system in Fig. 4.16(a) retains the property essential for our study

of ZnO PhCS laser: the possibility of vertical (along the z axis) and lateral (along the

x axis) radiative escape. Using the FDTD method, we find the mode of the passive

system that has the highest Qtot [136]. A Gaussian pulse was launched at all spatial

points in the slab and the energy is allowed to leak out radiatively. The simulation area

is terminated by uniaxially perfectly matched absorbing layer that absorbs all outgoing

waves. The pulse excites all modes within 30 nm wavelength range around 400 nm. After
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the initial multimode decay the field distribution is stabilized and the longest-lived mode

can be seen. This is further confirmed by observing a monoexponential decay of the total

energy stored in the system that allows determination of Qtot. By integrating Poynting

vector over the corresponding interfaces [1], we obtained the outgoing flux in the vertical

and horizontal directions, and Q⊥ and Q//. In our simulation, the Q−1
tot = Q−1

⊥ + Q−1
//

relation was satisfied numerically to within 2%.

Figure 4.16: (a) k// distributions of the highest-Qtot modes at one pixel beneath the

slab-substrate interface. The thin (thick) dashed curve represents the mode found in
the disorderless system (N = 24) with (without) an artificial defect. The corresponding
solid curves are representative examples of the highest-Qtot modes in these systems with
position disorder (δx = 10 nm). The vertical line marks the substrate light-cone bound-
ary. The inset is a schematic sketch of the simulated structure. (b) Squares and circles

represent
〈

Q///Q⊥
〉

, averaged over 300 random realizations of N = 24 system with and

without the artificial defect, versus disorder strength δx.

Fourier transform of the spatial profile of electric field at the interface between the

slab and substrate gives the mode distribution in k// (in-plane component of the wave
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vector) space. In a perfectly periodic structure, the band edge mode has the highest

Qtot. It is spatially extended in x, thus has a narrow distribution in k// [thick dashed

curve in Fig. 4.16(a)]. Next we intentionally create a defect by increasing the spacing

between two neighboring grooves at the center of the pattern to 150 nm. The highest-

Qtot mode is localized around this artificial defect with a localization length of 140 nm.

Strong localization in x results in a broad distribution in k// [thin dashed curve in Fig.

4.16(a)], with the maximum lying closer to the edge of substrate light cone [dash-dotted

vertical line in Fig. 4.16(a)]. Its Qtot is limited by Q⊥, which is about 3 times smaller

than the corresponding Q// in a system of N = 24. In contrast, the band edge mode

is concentrated well beyond the light cone in k// space, thus its Q⊥ is much higher.

However, its spatial extension makes the lateral leakage larger, hence its Qtot is limited

by Q//.

To simulate the position disorder of air cylinders in real structure [Fig. 4.15(b)],

random variation of groove position xn is introduced. We choose ∆xn randomly from a

uniform distribution with the standard deviation δx = 5, 10, 15 nm. δx characterizes the

”strength” of disorder. As the disorder is introduced, the highest-Qtot state differs from

realization to realization, and the correspondent Q//, Q⊥, as well as the frequency vary.

We study statistical distributions of these parameters and their dependences on disorder

strength δx and system size N .

In small systems (N = 12 and 24) with an artificial defect and weak disorder (δx = 5

nm), the highest-Qtot modes always concentrate around the defect at the center of the
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pattern. These modes become more spatially extended than those without disorder.

Therefore, their k// distribution is narrowed and the k// component within the light cone

is significantly reduced [Fig. 4.16(a)]. This reduction leads to a decrease in the vertical

leakage, thus, an increase in Q⊥. Meanwhile, Q// starts increasing as the mode gets

less localized in real space. The ensemble-averaged
〈

Q///Q⊥
〉

, shown in Fig. 4.16(b),

decreases monotonously to unity with increase of disorder strength. Therefore, disorder

removes the imbalance between vertical and lateral leakages of a single defect state,

making
〈

Q///Q⊥
〉

→ 1. As a result, the ensemble-averaged quality factor 〈Qtot〉 is

slightly higher than that without disorder. In a larger system or with stronger disorder,

the highest-Qtot mode is no longer pinned at the artificial defect. Instead, it can explore

the entire pattern to find the optimum configuration for the best vertical and lateral

confinement. This leads to a further increase of 〈Qtot〉.

With the introduction of disorder, the the band edge mode becomes less extended. As

its ”tail” moves away from boundaries of the pattern, the lateral leakage decreases, thus

Q// increases. Meanwhile, the distribution in k// space is broadened and shifted closer

to the light-cone edge [Fig. 4.16(a)]. The increase in vertical leakage results in a decrease

of Q⊥. The ensemble-averaged
〈

Q///Q⊥
〉

, shown in Fig. 4.16(b), rises continuously to

unity with increasing disorder strength. Again, disorder balances the vertical and lateral

leakages of the band edge mode, as it does to the defect state. However, for a band edge

mode the increase in
〈

Q//

〉

is not as large as the decrease in 〈Q⊥〉; thus 〈Qtot〉 is slighter

lower than it is without disorder. Nevertheless, as the pattern size N increases, the total
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leakage rate decreases monotonically. This behavior differs fundamentally from that of

a photonic crystal waveguide, where optical loss increases exponentially with its length.

In contrast, a disordered PhCS laser benefits from an increase of the pattern size, simply

because a larger system provides a bigger pool of modes from which the highest-Qtot

mode can be selected. This effect should be more pronounced in PhCS microlasers with

2D periodicity [Fig. 4.15(a)], due to the larger phase-space compared to the numerically

simulated systems with 1D periodicity.

The calculation demonstrates that the structural disorder may lead to self optimiza-

tion of optical confinement in a PhCS and formation of high-Qtot modes which serve as

the lasing modes. In a sufficiently large PhCS with short-range disorder, a microcavity

with balanced Q⊥ and Q// can be formed spontaneously without any carefully designed

structural defects. In our UV PhCS lasers, random scattering by structural disorder

leads to in-plane localization of band edge modes. The underlying physical mechanism is

similar to that of light localization in random media. The reduction of density of states

near photonic band edge enhances the localization effect. The best-confined modes are

selectively amplified in the presence of optical gain due to long photon lifetime.

4.6 Conclusion

In summary, we have calculated the band structure of ZnO PhCS on sapphire substrate,

optimized the band gap by changing the photonic layer thickness, air cylinder radius, and

etching depth into the sapphire substrate. A narrow gap has been demonstrated for TE-
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like bands which are preferred by the gain of our ZnO film on sapphire. The optimum

parameters for a maximum PBG in our ZnO PhCS structure has been obtained and

such a PhCS structure has been successfully fabricated by FIB etching techniques. The

degrading of ZnO film optical quality by ion bombardment was recovered by post thermal

annealing. These ZnO PhCS structures were optically excited at room temperature and

single mode lasing has been demonstrated. Moreover, by changing lattice constants, the

lasing wavelength was tuned over a 30 nm wavelength range. The lasing modes were

identified as edge modes close to the dielectric band with cavity quality self-optimized

by the defects introduced during the fabrication process.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

This thesis presents a study of lasing in multiple light scattering media. Depending on

whether the spatial distribution of the scattering structure is random or periodic, the

laser can be termed as a random laser or a photonic crystal laser. They are different

from laser cavities with well defined boundaries, e.g. the whisper-gallery mode laser,

where the interference among multiply “reflected” light determines the lasing mode. The

most simple examples that demonstrate the differences between these lasers are the one

dimensional laser cavities: a distributed feedback laser (DFB) is a photonic crystal laser,

a randomly distributed feedback laser (RDFB) is a random laser, and a Fabry-Perot

cavity is a laser cavity with a well defined boundary. In principle, such distinctions

are not necessary since all the laser cavities should satisfy both amplitude and phase

conditions. However, in this thesis we only focus on the laser cavities with distributed

feedback, i.e. where the interference among multiply “scattered” light determines the

lasing mode.

We have studied random lasers with resonant feedback in both weakly and strongly

scattering media. For the weakly scattering system, we chose the colloidal solution with

laser dyes as gain materials in our experiments. By changing the particle density and dye
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concentration, we can control the scattering length ls and gain length lg (and absorption

length la) for both the pump and emission light separately. A semi-1D cone shaped

excitation volume was achieved with tight focusing and weak scattering of the pump

light. This particular gain geometry gave some special properties to the random laser

emission, e.g. the directional output along the backward direction of the pump beam and

the near regular multiple peaks in the single shot spectrum whose spacing inversely scaled

with the excitation cone length. These characteristics inspired us to carefully investigate

the nature of the lasing modes, which bore two important conclusions.

First, we demonstrated the difference between quasimodes of a random system and

its lasing modes under local excitation. These two types of modes have been numeri-

cally shown to be the same for strongly scattering systems in or close to the localization

regime. Such a correspondence was taken for granted in weakly scattering systems, where

the lasing modes were considered to be the quasimodes with small decay rates. However,

we showed that such close similarity only exists for quasimodes and lasing modes under

a global uniform gain. For a weakly scattering system under local excitation, the number

of lasing modes can be significantly less than that of quasimodes for the same frequency

range, and the number decreases with the local pump region size. The lasing mode

number reduction makes the average spacing between neighboring modes increase, which

explains the requirement of tight focusing for discrete random laser modes in weakly

scattering media. Notice that the difference between lasing modes and quasimodes is

the intrinsic consequence of local excitation, which is different from that caused by the



184

presence of reabsorption of emitted light outside the pumped region. The reabsorption

artificially suppresses the feedback from outside the pumped region, which is not neces-

sary because the selective enhancement of feedback within the excitation region itself can

change the lasing modes dramatically from the quasimodes of the original passive system.

Generally speaking, lasing modes under inhomogeneous excitation will be different from

the quasimodes of the passive system, since both type of modes are eigenmodes of the

Maxwell’s equations and the dielectric constant spatial distribution ǫ(~r, t) is definitely

changed by the presence of the inhomogeneous gain. The difference will be rather small

if the required gain for lasing modes is small. A good example is the set of spatially

localized modes in strongly scattering media which are well overlapped spatially with

the excitation. However, for weakly scattering systems in the diffusive or even ballistic

regime, the quasimodes are formed by the feedback from the whole system and spatially

extended. The required gain for lasing modes is high in such systems and the feedback

weight change caused by inhomogeneous gain is thus large, which, in turn changes the

lasing modes from quasimodes more dramatically, both in frequency and in their wave

function. One important consequence of the difference is that the statistical distribution

of decay rates of the quasimodes (neither the original system nor the “reduced” system

defined by the excitation region) cannot be applied directly to predict the lasing threshold

statistics of random laser modes.

Second, we illustrated the difference between amplified spontaneous emission (ASE)

spikes and coherent random laser peaks, both share a similar discrete spiky emission
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spectrum. An ASE spike is attributed to a single spontaneous emission event which hap-

pens to take long open paths inside the amplifying random medium, while a random laser

peak is formed by interference of scattered waves which return to a coherence volume via

different closed paths. The ASE spikes are intrinsically stochastic and their frequencies

vary from shot to shot, even with the fixed dielectric constant distribution. The frequen-

cies of lasing peaks, however, are determined by the dielectric constant distribution and

will be conserved under the same excitation condition for static ǫ(~r). In a colloidal so-

lution, where the scatterers keep floating, both spikes and peaks vary from shot to shot.

However, with increasing pumping energy, lasing peaks dominate over the ASE spikes

quickly. In neat dye solution, because of the absence of scatterers, only ASE spikes are

observed even under intense excitation. We showed the quantitative differences between

ASE spikes and lasing peaks by statistical measurements. In particular, because the ASE

spikes originate from independent spontaneous emission events, their frequencies are un-

correlated, leading to a quick decaying spectral correlation under ensemble-average, as

well as having Poisson statistics dictate their spectral spacing. While for lasing peaks,

different peaks correspond to different lasing modes from the same system, thus their

frequencies are correlated. Therefore, an oscillation with the period determined by the

non-zero most probable average spacing survives after the same ensemble-average. Their

difference also shows in the intensity statistics, where the ASE spikes’ intensity follows

an exponential tail, while the lasing peak intensity can be better fitted with a power

law. Due to the complicate spatial and temporal change of gain caused by intense pulse
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pumping, the exact reason behind the two different intensity statistics needs further

study. However, our experiments clearly distinguished the difference between ASE spikes

and random lasing peaks, which will help people to correctly identify coherent random

laser emission from weakly scattering systems.

One main technical concern about random lasers is the high lasing threshold, which

needs to be greatly lowered for mass application. Because the feedback for a random

laser comes from multiple scattering, one solution is to enhance the strength of scat-

tering within the random media, namely, by decreasing the scattering mean free path

ls. Since ls = 1/ρσs, where ρ is the scatterer density and σs is the the scattering cross

section from a single scatterer, a natural thought to reduce ls is to maximize both ρ and

σs. ρ can be maximized by close packing and σs can be maximized by utilizing resonant

scattering. We have tested this idea by studying random lasing from the closely packed

monodisperse ZnO spheres, whose size was tuned to overlap their Mie resonance with

the ZnO gain spectrum. First, we developed a chemical reaction process to synthesize

monodisperse ZnO spheres with a controllable diameter over a large range (from less than

100 nm to over 600 nm). A large number of these particles were then cold pressed to form

a pellet-shaped random sample. The Mie resonance from each sphere was calculated nu-

merically, with its refractive index precisely estimated by the transmission measurement

with self-assembled opal structures. Then a coherent backscattering (CBS) experiment

was performed with these samples, and the transport mean free path lt was derived from

the width of the CBS cone. By increasing the sphere diameter d from sub 100 nm to
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about 120 nm, lt quickly decreased to about 500 nm and saturated afterwards. This

behavior was consistent with the calculation based on ls = 1/ρσs, with the exception

that the measured saturated value of lt at larger sphere diameters was larger than the

expected value. The discrepancy was explained by dependent scattering, which happens

when the scatterers are too close to each other. In another word, the scattering from a

single scatterer is affected by the presence of neighboring scatterers, and the independent

scattering assumption of the formula ls = 1/ρσs is broken. The occurrence of dependent

scattering was confirmed by our generalized multiple Mie scattering (GMMS) calculation.

The measured lasing threshold dependence on sphere size followed similar trends as the

transport mean path, which demonstrated that resonant scattering can greatly lower the

random lasing threshold before dependent scattering starts.

Two points are worth mentioning for the resonant scattering random systems. First,

we were unable to vary the filling fraction f of the scatterers in our sample over a large

range. By adding the control of f , we can hold the independent scattering assumption for

certain f . Under this condition, whether Ioffe-Regal criteria kels < 1 can be satisfied still

needs further investigation. The f control can be achieved by several ways experimentally,

e.g. by using colloidal solution or by embedding the scatterers into low index shell spheres.

Second, we ignored the possibility of existence of locally ordered structures, which can be

easily formed in the closely packed monodisperse spheres. Such locally ordered structures

may form certain photonic band gaps, which will reduce the density of states at the gap

frequency. According to Thouless criterion, light localization will be achieved when the
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average mode linewidth δω is less than the average mode spacing ∆ω. Therefore, the

density of states reduction will increase ∆ω and facilitate light localization and thus lower

the lasing threshold.

Besides the random laser, we also studied photonic crystal lasers with ZnO as gain

material. Facilitated by band structure calculations and the focused ion beam (FIB)

etching technique, we realized the first reported ZnO photonic crystal slab (PhCS) laser,

which emits ultraviolet light under optical pumping at room temperature. We developed

a super-cell based plane wave expansion method to calculate the band structure of the

asymmetric ZnO PhCS structure, where a ZnO layer with a 2D hexagonal lattice formed

by air cylinders seated on top of a c-plane sapphire substrate. The photonic band gap of

the in-plane periodic structure was optimized by choosing the correct ZnO layer thickness

t, air cylinder radius r and lattice constant a. Then the designed structure was etched

using the FIB technique, which overcame the fabrication challenge of small feature sizes,

e.g. a = 100 nm and r = 25 nm. The ion etching process damaged the ZnO crystal

structure severely, and its optical quality was partially recovered by post thermal anneal-

ing. Single mode lasers, both spatially localized and extended, were realized from these

PhCS structures, and the lasing frequency has been finely tuned across the whole ZnO

gain spectrum range by varying the in-plane lattice constant. Due to the small feature

size of the ZnO PhCS structure, the unavoidable defects introduced by the FIB etching

process were relatively large. However, unlike in the wave propagation case, such defects

were shown not to be very detrimental to lasing in PhCS structures. The reason was
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because the disorder induced a balance between vertical and lateral energy leakage. The

threshold of ZnO PhCS lasers can be further lowered by reducing both the structure de-

fects and optical quality damage introduced during fabrication, which could be achieved

by some alternative fabrication methods other than FIB, e.g. E-beam lithography and

reactive ion etching. The PhCS structure can be further optimized by undercutting the

substrate, if possible, to make the structure symmetric and reduce the vertical loss by

better waveguiding.

We have only studied lasing from either random or periodic structures, with the ad-

dition of periodic structures with a small amount of disorder. It would be interesting to

map over an entire crossing from periodic structures to random structures, and inves-

tigate the lasing behavior from structures with different degrees of disorder. We have

numerically studied this problem in two dimensional systems by using FDTD calcula-

tions, and found that a certain optimum degree of disorder exists for lowering the lasing

threshold. It would be fruitful to experimentally test this theory, and also extend the

study to the more general three dimensional systems.
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