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C'omplex nanophotonic structures refer to composite photonic materials with re-
fractive index that varies on length scales comparable to the optical wavelength. One
such example which has a high level of structural complexity and wide prevalence
in our daily life is the random medium. Light propagation in a random medium is
greatly different from homogencous medinm due to multiple scattering of the light.
Interference of the multiply scattered optical waves inside a random medium can lead
to many fascinating mesoscopic cffects such as localization, non-local intensity cor-
relations and creation of open and closed channels. These effects. besides being of
fundamental interest. are being extensively studied for practical applications rang-
ing from random lasers. light harvesting. biomedical imaging to sensing. This thesis
present studies of direct probing as well as manipulation of such mesoscopic effects

inside an on-chip random medium.

In the first part of this thesis. we present experimental results of direct probing of
mesoscopic cffects such as renormalization of the diffusion coefficient and non-local
intensity correlations inside a random medium. The random medium studied is a two
dimensional silicon waveguide with randomly positioned air holes as scatterers and
reflecting photonic crystal sidewalls.  Along with demonstrating spatial dependence
of the diffusion coefficient. we also show experimentally the buildup of long-range

intensity correlations as light propagates inside the random waveguide.



In the second part. we demonstrate a simple and effective approach of using ge-
ometry to tailor the above mentioned mesoscopic effects. We show experimentally
that in a single random waveguide of varving cross-section. the diffusion coefficient
changes spatially in two dimensions due to localization effects and this can lead to
modification of the wave diffusion. We further demonstrate that by designing the
shape of the random waveguide. the long-range spatial intensity correlation for light
propagating inside the waveguide can be efficiently and deterministically modified. In
addition to these effects. we also investigate numerically and experimentally the effect
of geometry on the transmission and reflection eigenchannels of random media. We
show that transmission eigenchannels which have universal structures in conventional
random waveguides can be modified using the waveguide geometry. In particular
geontetries, perfect reflection channels are created, and their large penetration depth
into the medium as well as the complete return of probe light to the input end would
greatly benefit sensing and imaging applications. In addition, evanescent channels
may be converted to propagating channels by modifying the geometry of the random
waveguide. Since the transmission eigenchannels determine the energyv concentrated
inside a random medium. our approach of using geometry opens the door to control
efficiently the energv density inside random media without requiring any modification

of the intrinsic disorder.

A growing field of rescarch related to random media is coherent control of light
transport using adaptive wavefront shaping techniques. Previous studies have shown
focusing, reduced reflection and enhanced transmission through a random medium
by shaping the input wavefront. A major constraint that limits the cfficiency of such
experiments is incomplete control of the input. In the third part of this thesis. we
implement the adaptive wavefront shaping technique to our on-chip random struc-

tures and with a careful design of the coupling waveguide achieve a complete control



of the input. Using adaptive wavefront shaping, we demonstrate an unprecedented
enhancement and control of the transmission and energy density inside the random
nanostructures. In addition. using wavefront shaping we also demonstrate coherent
control of light transport in random waveguides with inhomogencous scattering and
loss. These results demonstrate the possibility of controlling light matter interactions

in a random media in an on-chip platform.

Finally. we study numerically the effect of rotation on resonances of dielectric
microcavities. Unlike random media, dielectric microcavities have a spatially homo-
genenous refractive index profile. However, in a rotating frame, the effective refrac-
tive index of the resonant modes can become a function of rotation speed which can
lead to modification of the resonances of the cavity. We develop a Finite Difference
Time Domain simulation algorithm to study dielectric structures in a rotating frame.
Using the simulation algorithm, we study in detail the rotation induced changes of
resonances of microcavities of different shapes with open boundaries and demonstrate
that compared to resonant frequency. other properties of the resonances such as qual-

ity factors and farfield intensity can be more sensitive to rotation.
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List of Figures

1.1

1.2

1.3

1.4

Side-view scanning electron microscope (SEM) image of a fabricated
two dimensional random waveguide. .

Weak localization effect. Constructive interference of the waves from
the reversed loops increases the energy density at the original position
and decreases the net flux through the random medium.

Typical output speckle pattern of laser light transmitted through a
diffusive medium

Subset of paths that contribute to the correlations in the speckle pat-
tern. a and b correspond to input and output channels respectively
and the reversed arrow signifies the time-reversed path. (a) Indepen-
dent scattering paths contribute to C'}. (b) One crossing of scattering
paths lead to long-range correlations C,. Its magnitude is on the or-
der of 1/g. (¢) Two crossing of scattering paths inside the random
medium lead to infinite range correlations (3. Since it requires two
crossings, thercfore the magnitude is on the order of 1/¢%

Spatial profile (cross section averaged intensity I(z)) of maximum
transmission channel of a diffusive waveguide of W = 5.1 pym and
L = 10.2 pgm. The dimensionless conductance is ¢ = 3. The in-
set shows the 2D intensity distribution of the maximum transmission

channel.
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1.6

2.1

2.2

2.3

Electrice field distribution of a resonant mode in a circular disk with

open (a) and closed boundaries (b).

Side-view scanning clectron microscope (SEM) image of a farbicated
quasi-2D disordered photonic waveguide. The two sidewalls of the
waveguide consist of triangular lattices of air holes (lattice constant
440 nm. hole radius 154 nm). They possess a 2D photonic bandgap
and behave like reflecting walls for light incident from all angles in the
waveguide. .

(a) A schematic of the experimental setup. A lensed fiber couples the
light to the structure and another 50x objective lens (NA = 0.42)
collects the light scattered by the air holes out of the waveguide plane
and projects onto a camera. (b) Optical image of the intensity of light
scattered out-of-plane from the disordered waveguide. The wavelength
of the probe light is 1505 nm.

(a) Schematic of the sample layout showing the ridge waveguides
coupling the probe light from the cdge of the wafer to the random
waveguides with photonic crystal sidewalls (b) Layout of the fabri-

cated structures studied experimentally.
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24

2.6

(a) Experimentally measured light intensity 7(z) inside random waveg-
uides of different width 117 and constant length L=80 yan (blue solid
lines). The curves are vertically shifted for a clear view. (=2.2 pm
and &,=30 pan are found by fitting the 11"=60 pm sample with the
self-consistent theory of localization (red dashed line). With these
parameters. the self-consistent theory of localization predicts (=) for
other samples of 11'=40 gm. 20 yan. 10 gan. 5 pm (red solid curves).
which agrees well with the experimental data. (b) Position-dependent
diffusion coefficients for the five samples in (a).. . . . . .. .. .. ..
(a) Experimentally measured light intensity 7(z) inside random waveg-
uides of different width 11" and constant length L=80 pm in the deep
saturation regime €, << L (blue solid lines). The curves are vertically
offset for a clear view. £ = 1.0 um and &, = 13 pum are found by fitting
the W=60 pum sample with the self-consistent theory of localization
(red dashed line). These values are then used to predict I(z) for other
samples 11"'=40 gan. 20 gm. 10 gan. 5 gan (red solid curves). which is
in good agreement with the experimental data with no fitting parame-
ters except the vertical intensity scale. (b) Diffusion coefficients D(z)
for all samples in (a) are saturated in the region £,0 < z < L —&,.

(a) Experimentally measured I(z) of two waveguides with the same
width =5 pan but different length, L=80 pm, 160 g (blue solid
curves). Red solid curves represent the prediction of the self-consistent
theory of localization using the same values of € and &, as in Fig.
2.3(a). (b) Diffusion coefficients D(z) for the two samples in (a).

showing the saturation of D inside the longer sample L=160 pan.
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3.1

3.2

3.3

Top-view scanning electron microscope (SEN) image of a quasi-2D
disordered photonic waveguide. Light is injected from the left end of
the empty waveguide and incident onto the random array of air holes.
The waveguide wall is made of a triangle lattice of air holes which
forms a 2D photonic bandgap to confine light inside the waveguide.
(a) A schematic of the optical measurement setup. One objective
lens (NA = 0.4) couples the light from a tunable laser source to the
waveguide, and another objective lens (50x. NA = 0.42) collects the
light scattered by the air holes out of the waveguide plane and images
onto a camera. (b) An optical image of the intensity of scattered light
from the disordered waveguide. The wavelength of the probe light is
1510 nm. The intensity distribution exhibits short-range Huctuations.
z; and z represent the axial positions of two cross-sections inside the
disordered waveguide.

Long-range intensity correlation C (z1.22) in a disordered waveguide of
L =80 pum. W =60 pum. &, =30 pm, { =2.2 pm. z; is varied between 0
aud L while zy is fixed at L or L/2. Solid circles are experimental data
and solid lines represent the theoretical predictions. The dashed line
corresponds to the background taken outside the waveguide. The inset
shows C’(zl, ) for Az = zy— 2z, = 10 pm and 29 = L, L/2, L/4. Solid
circles are experimental data and solid line represents the theoretical
prediction. For a fixed Az, é(zl, zy) increases when moving deeper

into the sample.
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3.4

4.1

Long-range intensity correlation C'(z,. z,) for two waveguides with the
same length L = 80 gm and the degree of disorder (A = 26) but
different widths 1W=60 gm and 1" = 10 gan. z; is moved from 0 to L
and zy is set at L. Solid circles are experimental data and solid lines
represent the theoretical predictions. The dashed line corresponds to
the background taken outside the waveguide. The six-times reduction
of the waveguide width results in a six-fold increase in the magnitude
of intensity correlation. . . . . . . . . ... .. Lo
Normalized variance of the cross-section integrated intensity I(z),
var[I(z)]/{I(z))?, for two waveguides with the same length L = 80
pm and degree of disorder (kf = 26) but different widths 11" = 60
pm and W = 10 pm. =z is changed from 0 to L. The solid circles
are experimental data and solid lines represent the theoretical predic-
tions. The dashed line corresponds to the background taken outside
the waveguide.The six-times reduction of the waveguide width results

in a six-fold increase in the magnitude of intensity fluctuations.

Top-view scanning electron microscope (SEM) image of a quasi-2D
disordered photonic waveguide. Light is injected from the left end of
the waveguide and incident onto the random array of air holes. The
waveguide wall is made of a triangle lattice of air holes which forms
a 2D photonic bandgap to confine light inside the waveguide. The
width of the random waveguide is changed gradually from 40 pm to 5

pm through a tapered region. . . . . . . . ..o
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4.2

4.3

4.4

(a) A schematic of the experimental setup. A lensed fiber couples the
light to the structure and another 50x objective lens (NA = 0.42)
collects the light scattered by the air holes out of the waveguide plane
and projects onto a camera. (b) Optical image of the intensity of light
scattered out-of-plane from the disordered waveguide. The wavelength
of the probe light is 1505 nm. . . . . . . ... ... ...
(a) Calculated return probability in the disordered waveguide shown
in Fig. 4.1. { =2.9um. and &, = 35;an. (b) 2D renormalized position
dependent diffusion coefficient D(y, z)/ Dy for the same structure as in
(a). (c¢) Intensity distribution I(y.z)/I, inside the random structure
obtained from D(y,z)/Dyin (b). . . . . . . ...
(a) Comparison of the measured cross-section integrated intensity
I;(z) of the entire structure (solid blue line) to numerical calculations
based on self-consistent theory (dashed red line). The inset plots the
measured [;(Z) for both the wider(dashed line) and narrower (solid
line) sections of the waveguide on top of each other. Z = z/L; for
the wide section. and Z = (¢ — (L, + 10))/L, for the narrow section.
In the inset. for both cases. [;(Z) is normalized to 1 to demonstrate
the clear difference in the exponential decay rate (slope).(b) Measured
cross-section averaged intensity 7,.(z) (solid blue line) in comparison
with the results of self consistent theory (dashed red line). The verti-
cal dotted lines in (a,b) marks the starting point and the end point of

the tapered region. . . . . . L0000



ot

1

Calculated spatial long-range intensity correlation for the constant-
width and two types of tapered 2D random waveguides. The waveg-
uide length L = 80 jan. the transport mean free path £ = 2.2 jun, and
the diffusive absorption length &, = 26 pum. The waveguide in (a,d)
has a constant width W = 10 pan; in (b,e) W(z) increases linearly
from 10 g to 60 g, while in (c.f) W(z) decreases linearly from 60
pum to 10 pm. (a-c) show spatial distribution of the magnitude of long-
range correlation function. Cy(r:r) for three geometries. (d-f) show
long-range correlation function Cs(z;; 25) of cross-section averaged in-
tensity for the same geometries. The maximum value is normalized
to 1 for comparison. The differences in these plots reveal that the
waveguide geometry has a significant impact on the magnitude and
range of Co. . . . . L L Lo
Comparison of calculated long-range correlation in six waveguides with
different degrees of taper: two with constant widths of 10 pm (solid
black line) and 60 pm (dash-dotted magenta line): two with width
linearly increasing from 10 pm (thick dashed blue line) or 20 yuan (thin
dashed blue line) to 60 pm: and two with width linearly decreasing
from 60 jan to 10 gan (thick dotted red line) or 20 pm (thin dotted
red line). Other parameters are the saume as in Fig. 5.1. Both Cy(z; 2)
(a) and Cy(z; L) (b) clearly demonstrate that while the functional
form of long-range correlation is universal for uniform waveguides, it

is strongly modified in the tapered ones. . . . . . . ... ...



5.3

ot
e

Comparison of calculated long-range correlation function Cy(z; z) for
the cross-section averaged intensity inside passive diffusive waveguides
(solid line) with same scattering strength as Fig. 5.1 to the prediction
of the effective conductance model (dashed line). (a) The waveguide
has constant width W = 60 pm. (b) The waveguide width increases
linearly from 10 pm to 60 pm. (c¢) The waveguide width decreases
linearly from 60 pm to 10 pm. All three waveguides have the same
length L = 80 pm. The effective conductance model fails to predict
Cy(%; z) inside all three waveguides.

(a) Top-view scanning electron microscope (SEM) image of a quasi-
2D disordered waveguide with 1" = 60 pgm and L = 80 ym. The
waveguide wall is made of a triangle lattice of air holes which forms
a 2D photonic bandgap to confine light inside the waveguide. (b) An
optical image of the intensity of scattered light from the disordered
waveguide shown in (a). The wavelength of the probe light is 1500
nm. The white boxes mark two cross-sections at depths z; and 29
in the disordered waveguide. (c,d) Fitting of experimental data to
extract scattering and dissipation parameters. The solid blue line in
(¢) represents the experimentally measured ensemble and cross-section
averaged intensity inside the waveguides shown in (a). The solid blue
circles in (d) are the measured C(z, z) for the cross-section averaged
intensity in the waveguide shown in (a). The dashed red lines in (c)

and (d) are obtained by munerical calculation with parameters &, = 26

pm and £ = 2.2 pgm, which have the best fit to the experimental data.

xil

72



5.5 Experimental measurement of long-range intensity correlation inside
the tapered waveguides. (a,b) Top-view SEM images of fabricated
quasi-2D disordered waveguides with linearly increasing (a) or decreas-
ing (b) width. The width of waveguide in (a) increases from 10 pm
to 60 pm, and in (b) it is opposite. Both have the same length L =
80 pm. Magnified SEM images show the air holes distributed ran-
domly in the tapered section of the waveguide and the triangle lattice
of air holes in the reflecting sidewalls. (¢) Measured long-range corre-
lation function for the cross-section-averaged intensity C(z, L) inside
the tapered waveguides shown in (a) and (b). The blue circles (green
squares) represent experimental data for the waveguides with increas-

ing (decreasing) width, and the dashed lines are theoretical results. . 76
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5.6 Long-range correlation in a quasi-2D disordered waveguide whose width

varies non-monotically. (a) Top-view SEM image showing the waveg-
uide width 117 increases linearly from 10 gan at = = 0 to 60 pm at =z =
40 yan and then reduces linearly down to 10 pan at = = 80 pm. Other
structural parameters are the same as the waveguides in Fig. 5.5. (b)
An optical image of the intensity of scattered light from the disor-
dered waveguide. The wavelength of the probe light is 1510 nm. (c)
Long-range correlation function C'(z, L) for the cross-section averaged
intensities at z and L in the waveguide shown in (a). C(z, L) displays
a sharp change in the growth rate before and after = passes L/2. (d)
Long-range correlation function for the cross-section averaged intensi-
ties at z and L/2 in the waveguide shown in (a). C(z. L/2) increases
monotonically in the first half of the waveguide and decreases slightly
in the second half. In (¢, d), solid circles represent experimental data
and the dashed curves are obtained by numerical calculation.

Numerical simulation of focusing of light inside a diffusive waveguide
by shaping the input wavefront. The light intensity at the focal spot,
r = (0.z). is normalized to 1. Black dashed curve (solid red curve)
represents the background intensity [, vs. depth z inside a random
waveguide of width tapered linearly from 10 gan (60 ) to 60 gan
(10 gem). Both waveguides have the same length L = 80 pm. and they
are identical to the ones shown in Fig. 5.1. [,(z) follows the spatial

variation of (. as shown in Fig. 5.2. in both waveguides.
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6.1 Quasi-two-dimensional random waveguides of different geometry. (a,b)
Top-view SEM images of fabricated quasi-2D disordered waveguides
with linearly increasing (a) or decreasing (b) width. The width of
waveguide in (a) increases from W; = 10 ym to Wy = 60 pm, and in
(b) it is opposite. Both have the same length L = 80 pym. Magnified
SEM images show the air holes distributed randomly in the tapered
section of the waveguide and the triangle lattice of air holes in the
reflecting sidewalls. (c) An optical image of the intensity of scattered
light from the disordered waveguide. The wavelength of the probe

light is 1500 DI . .« o o e e e
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6.2

Comparison of transmission cigenvalues and ecigenchannels in constant-

width and increasing-width random waveguides.  (a) Numerically-

calculated ensemble-averaged transmission eigenvalues of random waveg-

uides with constant width (dashed line with circles) and increasing
width (solid line with squares). The constant-width waveguide (W =
5.1 pm, L = 20 pm) supports 19 transmission cigenchannels of which
17 are propagating channels and 2 are evanescent channels. whereas
the expanding waveguide (I, = 5.1 gm. W, = 10.2 pm. L = 20
pm) has 19 propagating channels of higher transmittance. (b) Spa-
tial distribution of electric field intensity inside the waveguide with
increasing width for the 18th and 19th transmission eigenchannels.
Both transform from evanescent waves at the entrance of the waveg-
uide to propagating waves due to the increase of waveguide width. (c)
Cross-section-averaged intensity. 7,.(z). for the 18th (solid line) and
19th (dashed line) channels shown in (b). The conversion from evanes-
cent wave to propagating wave causes a sudden change in the decay
length of 7,(z) near the front end of the waveguide. For comparison,
I,.(z) for the 10th cigenchannel (dotted line) of the same waveguide is
added and it shows a constant decay length. (d) Comparison of the
cross-section-averaged intensity. 7,.(z). of the maximum transmission
channel (m = 1) in the disordered waveguides with constant width
(blue dotted line) and increasing width with two different disorder
strengths (red dashed line and green solid line) and different dimen-

sions (dotted magenta line).
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6.3  Transmission eigenchannels in tapered waveguide of decreasing width.

(a) Comparison of cross-section-averaged intensity. I,.(z). of the max-
imum transmission channel (m = 1) in two waveguides with differ-
ent tapering angles and a constant-width waveguide. All waveguides
have the same length L = 20 pm. The constant-width waveguide has
W, =1, =102 pm (blue dotted line). The two tapered waveguides
have 11, = 10.2 pan and 117 /W, = 2 (red dashed line). 4 (green solid
line). The [.(z) curves are offset along the y axis for clarity. The
intensity peak shifts from the waveguide center (W, /W, = 1) towards
the output end (W, /W, > 1), and the shift is larger for higher taper-
ing angle (larger 117 /1175). (b) Cross-section-averaged intensity. [,.(z).
of a perfect reflection channel for the same tapered waveguides as in
(a). The blue dotted line corresponds to tapering of W, /W, = 2 and
green dashed line corresponds to W, /W, = 4. I,.(z) of a high reflection
channel of the constant-width waveguide (blue solid line) is added for
comparison. The insets show the spatial distribution of electric field
intensity for the high reflection channel of the constant-width waveg-
uide and the perfect reflection channel of the tapered waveguide with
1, /15 = 2. The perfect reflection channel in a tapered waveguide
exhibits slower intensity decay inside the random medium (followed
by a sharp drop near the rear end) and thus can penetrate much
deeper into the turbid medium than the high reflection channel in the
constant-width waveguide. The penetration length increases with the

tapering angle.
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6.4 Effect of absorption on the maximum transmission eigenchannel and
energy flux decay in the constant-width and tapered waveguides. (a)
Comparison of the cross-section-averaged intensity. /,.(z). of the max-
imum transmission channel in a constant-width (W = 5.1 pm, L = 20
pm) disordered waveguide with (dashed line) and without (solid line)
absorption. In the absorbing waveguide. L/€, = 3. Absorption mod-
ifies the spatial profile of the maximum transmission channel. (b)
Comparison of spatial decay of energy flux J(z) in random waveguides
with constant widths W = 5.1 pm (blue solid line) and W = 10.2 ym
(dashed magenta line), increasing width of Wy = 5.1 pm, Wy = 10.2
pum (green dotted line) and decreasing width of W, = 10.2 pm and
Wy = 5.1 pum (red dashed line). For all waveguides, L = 20 um,
L/¢, = 3 and J(z) is normalized to 1 at z = 0. While the flux decay
length remains the same for the two rectangle waveguides of different
widths, it is lengthened in the expanding waveguide and shortened in

the contracting waveguide. . . . . . . ..o
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6.5 Experimentally measured intensity decays inside disordered waveg-
uides in comparison to numerically calculated spatial profiles of the
maximum transmission eigenchannels. (a) Experimentally measured
cross-section-averaged intensity [,(z) inside quasi-2D waveguides of
constant width W = 60 um (solid blue line), increasing width with
W, =10 pm, Wy = 60 pm (dotted green line), and decreasing width
with W} = 60 pm, Wy, = 10 pm (dashed red line). All the waveg-
uides have L = 80 uym and L/§, = 3. The tapering of the waveguide
boundary causes a dramatic change in the decay lengths of I,(z).
(b) Numerically calculated I,.(z) of the maximum transmission eigen-
channel in the disordered waveguides of constant width 1V = 10.2
g (solid blue line), increasing width with W, = 5.1 pm, W, = 10.2
pum (dotted green line), and decreasing width with W, = 10.2 pm,
W, = 5.1 pm (dashed red line). All waveguides have L = 20 um and
L/¢, = 3. Despite of the reduced waveguide dimensions, the maxi-
mum transmission channels exhibit a qualitatively similar structure to
the experimentally measured intensities. indicating the intensity dis-
tribution inside a strongly absorbing random medium is determined

by the structure of the maximum transmission channel. . . . . . ..
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6.6

Transmission eigenchannels and intensity decay in a diffusive waveg-
uide of bowtie geometry. (a) Top-view SEN image of a fabricated
quasi-2D waveguide with bowtie geometry. The length of waveguide
is L = 80 pm. The width of waveguide decreases linearly from 60 pm
at z =0 to 10 pm at z = L/2 and then again increases linearly to 60
pm at z = L. (b) Numerically-calculated cross-section-averaged inten-
sity 1,(z) of the 19th (solid line) and 20th (dashed line) transmission
eigenchannels of bowtie waveguide. The length L of the waveguide
is 20 pm, the width at = = 0, L is 10.2 gan (35 propagating modes)
and the width of constriction at z = L/2 is 5.1 um (17 propagating
modes). The abrupt changes in the decay rate of I,,(z) before and after
z = L/2 indicate the conversion from propagating wave to evanescent
wave and back. The evanescent decay rate varies from one channel
to another. (c¢) Numerically-calculated I,(z) (green dashed line) and
cross-section-integrated intensity [;(z) (blue solid line) for the maxi-
mum transmission channel of the same waveguide as in (b) but with
absorption L/&, = 3. The constriction causes a significant change in
the intensity distribution of the maximum transmission channel. (d)
Experimentally measured [.(z) (green dashed line) and [;(z) (blue
solid line) inside the disordered waveguide shown in (a). Both inten-

sity distributions follow those of the maximum transmission channel.
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6.7

Transmission eigenchannels and energy distribution in a diffusive waveg-
uide of lantern geometry. (a) Top-view SEM image of a fabricated
quasi-2D disordered waveguide with lantern geometry. The length of
waveguide is L = 80 pm. The width of waveguide increases linearly
from 10 pgm at = = 0 to 60 pm at = = L/2 and then again decreases
linearly to 10 g at z = L. (b) Numerically calculated cross-section-
averaged intensity I,(z) for the 5th (dashed line) and 19th (solid line)
transmission eigenchannels of lantern geometry. The length L of the
wavegtuide is 20 gun, the width at = = 0. L is 5.1 pm (17 propagating
modes) and width at z = L/2 is 10.2 pm (35 propagating modes).
[.(z) of the 19th transmission eigenchannel exhibits the conversion of
the evanescent wave to a propagating wave near the input end and
then back to the evanescent wave near the output end due to the vari-
ation of the waveguide width. In contrast, the 5th channel remains
propagating wave across the entire waveguide. (¢) Numerically calcu-
lated [.(z) (green dashed line) and cross-section-integrated intensity
I;(z) (blue solid line) for the maximum transmission channel of the
same waveguide as in (b) but with absorption L/¢, = 3. Both in-
tensity profiles are opposite to those in the bow-tie waveguide. (d)
Experimentally measured [.(z) (green dashed line) and [,(z) (blue
solid line) inside the disordered waveguide shown in (a). The inten-
sity profiles are similar to those of the maximum transmission channel

shown in (c).
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7.1

7.2

On-chip disordered waveguide with a tapered lead. (a) Top-view scan-
ning electron micrograph (SEM) of a fabricated silicon waveguide. A
ridge waveguide (lead) is tapered from the width W, = 330 pun at
the edge of the wafer to the width W = 15 pm, in order to increase
the degree of control of the light that is injected to the disordered
waveguide. (b) Magnified SEM of the disordered region of the waveg-
uide that consists of a random array of air holes (diameter = 90 nm).
(¢) Magnified SEM showing the air holes distributed randomly within
the waveguide with a filling fraction of 6 %. (d) The sidewalls of the
waveguide are made of a triangular lattice of air holes (diameter = 360
nm) with a lattice constant of 505 nm, which supports a full photonic
bandgap at the wavelength A =151 pgm. . . . . . . .. ... ... ..
Semi-log plot of the eigenvalues of the covariance matrix C(y,y') for
the electric field E,,(y,z = L;) at the end of a tapered lead with W)
= 85 pm, W = 15 pm. and L; = 100 pm. The inset is a schematic
of the geometry. The sudden drop of cigenvalues gives the number
of significant eigenvalues. M/ = 56. which is equal to the number of

waveguide modes N = 56 at the end of the lead z=L;,. . . ... ..
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7.3 Wavefront shaping experiment to control intensity distribution inside
a disordered waveguide. (a) A schematic of the experimental setup.
A laser (HP 8168F) output at A = 1510 nm is collimated (by lens L),
expanded (by Ly, L3) and linearly polarized (by a polarized beam
splitter PBS) before being modulated by a phase-only SLM (Hama-
matsu X10468). Two lens (L,, L;) are used to project the SLM plane
to the pupil plane of an objective O; (100x, NA = 0.7), and the edge
of the wafer is placed at the focal plane. The SLM imposes phase
modulation only in one direction in order to generate a line at the
front end of the coupling waveguide. A sample phase pattern on the
SLM is shown. The light scattered out of the sample plane is collected
by another objective Oy (100x, NA = 0.7) and imaged to an InGaAs
camera (Xenics XEVA 1.7-320) by a tube lens (Lg). M; and M, are
mirrors, BS is beam splitter. (b) An optical image of the illumination
line (330 x 1.1 pum) on the waveguide facet. The input intensity is
modulated along the line. (¢) An image of the spatial distribution
of light intensity inside the disordered waveguide for a random input
wavefront. The spatial resolution is about 1.1 gm. The ratio S of the
integrated intensities over the two rectangles at the back and front side

of the waveguide is used as feedback for optimizing the input wavefront.123
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7.4

Experimental control of intensity distribution inside the disordered
waveguide. (a. b, ¢) Two-dimensional intensity distribution [(y, z)
inside the disordered waveguide shown in Fig. 7.1 for (a) random input
fields, (b) optimized input for maximum light penetration (maximizing
S). (c¢) optimized input for minimum light penetration (minimizing
S). (d, e, f) The cross-section-averaged intensity, /(z), obtained from
I(y.z) in (a, b, ¢). Dashed lines are experimental data and solid lines
are simulation results.

Numerical simulation of wavefront shaping experiment. (a.c) Weight
w(7) of each transmission eigenchannel in the input field obtained by
maximizing (a) or minimizing (c) light penetration into the disordered
waveguide with the cost function S (black solid line). For compari-
son, w(7) for the random input field (blue solid line), and for the
input field of the maximum (a) or minimum (c¢) transmission eigen-
channel after removal of amplitude modulation (red dotted line) are
also shown. (b.d) Cross-section-averaged intensity distribution 7(z)
for the maximized (b) or minimized (d) S (black solid line). as well as

the maximum (b) or minimum (d) transmission channel with (green

dash-dotted line) and without amplitude modulation (red dotted line). 128
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8.1

8.2

2D disordered waveguide with inhomogeneous scattering and loss. (a)
Top-view scanning clectron micrograph (SEM) of the fabricated sil-
icon waveguide that consists of randomly positioned air holes. The
waveguide width W = 20 pm, and length L = 60 pm. A circular
region of diameter 10 pun at the center of the waveguide has larger
and denser air holes (hole diameter = 150 nm. the air filling fraction
= 15 %). Outside this region, the air holes are smaller (diameter =
90 nm) and the filling fraction is lower (6 %). The sidewalls of the
waveguide are made of a triangular lattice of air holes (diameter = 360
nm. lattice constant = 505 nm). which supports an in-plane photonic
bandgap at the wavelength A = 1.51 pm. (b) Magnified SEM of the
central region of the disordered waveguide showing air holes of two
different sizes and densities. . . . . ... Lo
A schematic of the wavefront shaping experiment setup. A laser beam
(HP 8168F) at A = 1510 nm is collimated (by lens L,). expanded (by
L,. L3). and linearly polarized (by a polarized beam splitter PBS)
before being modulated by a phase-only SLN (Hamamatsu X10468).
Two lens (L,. Lz) arc used to project the SLM plane to the pupil
plane of an objective O; (100x. NA = 0.7). and the edge of the cou-
pling waveguide is placed at the focal plane of the objective. The
light scattered out of the sample plane is collected by a second objec-
tive Oy (100x, NA = 0.7) and imaged to an InGaAs camera (Xenics
XEVA 1.7-320) by a tube lens (Lg). A and AL, are mirrors. BS is
an unpolarized beam splitter. The inset is an optical image of the
illumination line on the front facet of the coupling waveguide. created

by modulating the phase of the SLM pixels. . . . .. ... ... .
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8.3 Optimizing the incident wavefront to enhance light transmission through
the disordered waveguide with spatially inhomogeneous scattering and
loss. Experimentally measured 2D intensity distribution I(y. z) inside
the waveguide shown in Fig. 8.1 for (a) unoptimized input fields, (b)
optimized input for maximum cost function S. The white box marks
the boundary of the disordered waveguide. . . . . . . . . ... .. ..

8.4 Numerical simulation of the ensemble averaged Poynting vector J (y,z)
of light inside the 2D disordered waveguide with spatially inhomoge-
neous scattering and loss. The magnitude of J (y, z) is shown by color
plot, and its direction is shown by the arrows. The input field in (a)
is optimized to maximize total transmission. With optimized input
wavefront, the optical waves bypass the region of higher scattering and
loss in the middle of the waveguide (denoted by a while circle). (b)
shows J| (y, z) for the maximum transmission channel, which is nearly

identical to that in (a), indicating the optimized input field couples

mostly to the maximum transmission channel. . . . . . . .. .. ..
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9.1

10.1

Frequency splitting between the CW and CCW modes in a circular
dielectric microdisk of radius £ = 590 nm and n = 3 in free space
(n = 1) as a function of the normalized rotation speed QR/c. The
circles are the FDTD simulation results for a rotating closed cavity for
a WG mode (I =1, m =7, A = 1009.8 nm) and the solid line is the
analytical result from Eq. (20). Squares arc the FDTD simmulation
results for the same mode (I = 1, m = 7. A = 1131.48 nm) in the
rotating microdisk with open boundary. Dotted line represents the
frequency shifts obtained from the FDTD simulation of the stationary
microdisk with the effective indices of refraction (inside and outside
the disk) that include the rotation-induced changes. The insets show
the mode profiles for the closed and open cavities and the black circle

marks the boundary of the cavity. . . . . . ... ... .. ... ...

Calculated quality factors for the [ = 1, m = £7 modes as a function
of normalized rotation speed QR/c. The squares are obtained from
the FDTD simulation of a rotating microdisk of R = 590 nm and
n = 3 in free space, and the crosses from the stationary microdisk
with the effective indices of refraction ( inside and outside the disk)
that include rotation-induced changes described in chapter 9. The
dotted lines are linear fits showing that the () changes exponentially

with rotation speed. . . . . ..o
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10.2 Relative change in (Q factor % (squares) and the normalized fre-

quency splitting f—f (circles) as a function of the normalized rotation

speed QR/c for the WG mode of [ = 1, m = —7 in the dielectric

microdisk of R = 590 nm and n = 3. The dotted lines are the linear

fits. . . 161
10.3 Rotation-induced changes in the resonances of elliptical cavities. (a)

A 2D microcavity of elliptical shape. The length of minor (major)

axis is 2a (2b). (b.c) Spatial distribution of the electric field magni-

tude (|E,

) for a pair of quasi-degenerate modes in the elliptical cavity
with a/b = 0.88 and refractive index n = 3.0. (d) A schematic show-
ing the frequency splitting Aky of a quasi-degenerate pair of modes
(solid lines) in an elliptical cavity without rotation, and the frequency
splitting Ak, with rotation. The higher-frequency (lower-frequency)
mode of the quasi-degenerate pair is blue (red) shifted by rotation
(dashed lines). (e) Normalized frequency shift Ak, R as a function
of the normalized rotation speed QR/c for a pair of quasi-degenerate
modes with m = 11 and [ = 1 in the ellipse with /b = 0.88 (red
dashed line) and 0.92 (black solid line). (f) Magnitude of rotation-
induced changes in Q. |AQ)|. for the same pair of modes in (b). Black
solid line and red dashed line correspond to a/b = 0.92 and 0.88 re-
spectively. (g) Relative changes in the resonant frequency Ak, /ky and
the quality factor AQ/Qq for the corresponding modes in (e,f). The

vertical axis is shown in log scale to show the differences in magnitudes. 164
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10.4 Evolution of far-field emission patterns of elliptical microcavities with
rotation. The deformation of the ellipse is a/b = 0.92 in (a-¢) and
0.88 (d-f). (a.d) Angular distribution of far-field intensity 7(6) (at
r = 50R) of quasi-degenerate pairs of modes shown in Fig. 10.3 at
QR/c = 0. The blue solid (green dashed) curve represents the mode
with even (odd) symmetry with respect to the x axis. (b,e) Angular
distribution of far-field intensity for the CW and CCW wave compo-
nents in the stationary resonances shown in (a.d). The solid (dashed)
curve represents the CW (CCW) wave. The output directions of CW
and CCW waves are symmetric with respect to the horizontal axis.
(c,f) Angular distribution of far-field intensity 7(0) (at r = 50R) of the
modes in (a,d) at QR/c =10"%. The interference fringes in the output
intensity patterns of stationary cavity (a,d) vanishes, as the modes
evolve from standing wave to traveling wave with rotation. The emis-
sion patterns of the two traveling-wave modes at high rotation speed

are not symmetric with respect to the horizontal axis. . . . . .. ..
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10.5

10.6

Comparison of Sagnac effect in a rotating microcavity with chiral sym-
metry (n = 1. dashed line) and without chiral symmetry (n = 0.1.
solid line). The value of y|V]? is kept the same. (a) (Dimensionless)
frequency splitting for a pair of quasi-degenerate modes as a function
of rotation frequency Q. (b,¢) Evolution of CW (thick line) and CCW
(thin line) traveling-wave components in the quasi-degenerate modes
with rotation. In the symmetric cavity (n = 1). at low rotation speed
the eigenmodes remain standing-wave modes with equal weights of
CCW and CW components, and their frequency difference is barely
changed by rotation. When the rotation speed is sufficiently high,
one mode evolves to a CCW traveling-wave mode. the other one to
a CW traveling-wave mode: and their frequency difference starts to
grow significantly with Q. In a chiral cavity (n = 0.1), the evolution
of frequency splitting with rotation is identical to the symmetric cav-
ity. Without rotation both modes are dominated by CCW traveling
waves. but one of them (b) transforms into a CW traveling wave mode
at high Q. . . . .
A pair of quasi-degenerate modes (A = 598 nm) in a non-rotating
diclectric disk (n = 3.0) of asymmetric limacon shape (R = 591 nm.
e, = 0.1, ¢, = 0.075. 0 = 1.94). (a.b) Spatial distributions of elec-
tric field intensity (inset) and angular momentum components (main
panel) inside the cavity. Both modes have more CW wave (m < 0)

than CCW wave (m >0). . .. .. ... ... ... ... ... ....
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10.7 Far-field emission intensity patterns of a pair of quasi-degenerate modes
(A =598 nm) in a non-rotating dielectric disk (n = 3.0) of asymmet-
ric limacon shape (R = 591 nm, ¢; = 0.1. ¢, = 0.075. § = 1.94). (a)
Angular distributions of emission intensities at a distance of r = 50R
from the cavity center for both modes, which have similar output di-
rections. (b) Far-field patterns of CW (red solid line) and CCW (blue
dashed line) wave components in the resonances, exhibiting distinct
output directions. . . . . . ... 173

10.8 Emission from the rotating asymmetric limacon cavity with the same
parameters as the stationary one in Fig. 10.7. (a,b) Spatial dis-
tributions of field intensities for a pair of degenerate modes, which
correspond to the stationary modes in Fig. 10.7, at the normalized
rotation frequency QR/c = 107%. The intensities outside the cavity
are enhanced to illustrate the main output directions of the two modes
are different, even though they have the same output directions with-
out rotation [Fig. 10.7(a)]. (¢) Spatial distribution of field intensity
for one of the quasi-degenerate modes in the non-rotating cavity. It
is dominated by CW wave. When the cavity rotates in the CCW di-
rection. this mode switches from CW to CCW wave. and the main
output direction is changed dramatically. (d) Angular distribution of
far field intensity for the pair of modes shown in (a,b) in the rotating

cavity. oo 175
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10.9 Rotation-induced change in emission pattern of the same cavity as the

one in Fig. 10.8, when both quasi-degenerate modes are excited si-
multaneously. (a) Angular distribution of the emission intensity I,
at a distance of r = 3R from the cavity center at three rotation
speeds. To show the change in the emission profile, /() is normal-
ized ([2"I.(0)d9 = 1). (b) Relative changes in the main emission
peak intensity (at § = 0.73) (solid squares and solid line) and in the
ratio of main peak intensity over the secondary peak intensity (at
0 = 2.79) (crosses and dashed line) vs. the normalized rotation fre-
quency QR/c. Both peak intensities are integrated over a range of
emission angle marked by the double-arrowed segments in (a). For
comparison, relative changes of resonant frequencies, %, are plotted
for circular cavities with the same area and refractive index (open cir-
cles and dotted line). The symbols represent the numerical data, and
the straight lines are linear fit of the data in the log-log plot, which
gives the slope. The values of the slope are (from top to bottom)
2.4x10% 1.2x10% , and 5.7 x 107! respectively. The rotation-induced

changes of output intensity are much larger than that of the resonance

frequency. . . . .. L
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10.100utput sensitivity to rotation for the asymmetric limacon cavity with
varving degree of spatial chirality. The cavity parameters are the
same as those in Fig. 10.6 except the value of 0. (a) Relative change
of the emission intensity in the main output direction (solid squares
and dashed line) as a function of spatial chirality « for the quasi-
degenerate modes in Fig. 10.7. The rotation frequency is fixed at
QR/c ~ 1.5 x 107°. The difference between the emission patterns
for CW and CCW waves in the non-rotating cavity is quantified by
3 (solid circles and solid line). which is also plotted against a. With
increasing spatial chirality a. CW and CCW outputs become more
distinct, enhancing the emission sensitivity to rotation. (b,c) Far-field
patterns for CW wave (red solid line) and CCW wave (blue dashed
line) in two cavities with 0 = 0 (b), and 2.75 (c¢). At 0 =0, both CW
and CCW waves emit predominantly in the direction close to § = 7/2
(b). and the slight difference of their emission directions is a result
of wave effects in the wavelength-scale cavity. As 0 increases from
0 to m. the main emission direction of the CW wave moves towards
f = 0, and the CCW wave towards # = m: meanwhile, the sccondary
cmission peak. which is in the opposite direction of the main peak.
grows monotonically. . . . ... ..o 0000000000000 179

10.11The quality (@) factor of the non-rotating asymmetric limacon cavity
with varying 6. The refractive index of the cavity is n = 3.0 and
the radius is R = 591 nm. The deformation parameters are ¢; = 0.1
and e, = 0.075. The Q is the mean of the quasi-degenerate pair of

resonances at A~ 598 nm. . . . . . .. . . ... .. ... ......180
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10.12The minimum detectable rotation speed §2. as a function of the radius
R of the asymmetric limagon cavity. The refractive index of the cavity
is n = 3.0, the deformation parameters are ¢, = 0.1 and e, = 0.075.
0 = 1.94. The wavelength is kept at A =598 nm. . . . . . ... . ..
10.13Relative changes in the main emission peak intensity as a function of
refractive index n of an asymmetric limagon cavity with ® = 591 nm.
€; =0.1, e =0.075, and 6 =1.94. The resonant modes in all the cases
have A/n ~ 200 nm where A is the vacuum wavelength and n is the
refractive index of the asymmetric limacon cavity. The rotation speed
is fixed at QR/c~3 x 1077, . . ...
10.14Absolute change in output intensity by rotation, Al,, as a function
of the cavity size R for fixed wavelength and rotation speed. The
variation of Al, with R depends on the values of f and ¢ of the
resonant modes. (a) When f = 0.1 and g =0.12, A, first increases
exponentially and then decreases exponentially. At the turning point
Ry. the radiation rate is equal to the absorption rate, v.(Ry) = 7a-
(b) When f = 0.08 and g = 0.04, A, keeps increasing exponentially
with R. but the exponent decreases at large R. As the absorption
rate reduces, the turning point Ry moves to a larger value. In both
panels, the solid line corresponds to Ry ~ 15pm, and the dashed line

to Ro ~ 2bpm. . . ..o

XXX1V



Acknowledgements

Throughout my time at Yale. I have had the honor and pleasure of working with
many brilliant minds and this thesis would not have been possible without their sup-

port and guidance.

First of all, I want to thank my thesis advisor, Professor Hui Cao for having faith
in me and providing direction, motivation, insight and guidance. [ would also like
to thank Prof. Hong Tang and Prof. Paul Fluery for their valuable suggestions and
advice throughout this entire journey. I thank Prof. Owen Miller for agreeing to be

part of my thesis committee.

Many thanks to all my fellow group members who were a great support during
this journey. Special thanks to Dr. Heeso Noh and Dr. Seng Fatt Liew for teaching
and introducing me to various numerical simulation techniques and experimental
methods. T would like to thank Dr. Brandon Redding for teaching me clectron beam
lithography as well as for teaching me how to build optical setups. T am grateful to
other former group members Dr. Sebastien Popoff. Dr. Sebastian Knitter. and Dr.
Yaron Bromberg for their immense support and guidance in various projects. I am
also grateful to all the present group members Dr. Chia Wade Hsu. Dr. Hasan Yil-

maz. Dr. Stefan Bittner. and Wen Xiong for all the stimulating discussions and ideas.

XXXV



[ want to extend my gratitude to all the people that I have collaborated in various
research projects throughout my PhD. I want to thank Prof. Alexey Yamilov who
along with being a collaborator was also a mentor and provided me with guidance
and helped me to gain insight in the ficld of random media. My special thanks to
Prof. Jan Wiersig and Prof. Li Ge for collaborating with me in the study of rotating
microcavites. Prof. Li Ge was a great support and taught me a lot about microcav-
ities. I want to thank Prof. Boris Shapiro for teaching and introducing me to the
field of long range correlations in random media. [ thank Prof. Douglas Stone for
his valuable suggestions related to various projects. I also thank Prof. Peter Rakich
and his group members for sharing their knowledge about silicon fabrication. I wish
to offer my gratitude to Michael Power, James Agresta and Christopher Tillinghast
for teaching me how to use the reactive ion etcher and various other instruments in
the cleanroom. I am grateful to Dr. Michael Rooks for his valuable guidance related
to sample fabrication. Last but not the least, I thank the department secretaries,

Maria Rao and Giselle DeVito for their great support.

I feel extremely humbled and blessed for knowing and being able to work with
many talented people in Becton, especially the students and post-docs working in
the basement. I want to thank all of them as they all made my experience at
Yale a memorable one. Finally, I would like to thank my parents for their support
throughout this experience. [ am also very grateful to all my family members, friends
and well wishers who were extremely supportive and without whom I would not have

been able to complete this journey.

XXXV1



Chapter 1

Introduction

1.1 Light Transport in Random Media

Multiple scattering of waves in random media is a phenomenon widely seen in nature.
Examples arc scattering of optical waves by biological tissues, scattering of sunlight
by clouds or sound waves being scattered by water droplets in a foggy day. Because
of its wide prevalence. the phenomenon of multiple scattering is studied in diverse
fields ranging from adaptive optics. ocean acoustics. radio physics. condensed matter

physics. seismology to biomedical imaging.

One approach to understand multiple scattering of waves such as light is to use
the concept of diffusion. Diffusion describes multiple scattering as a random walk of
photons and if the spatial gradient of the energy density is not too large, the flux is
linearly proportional to the gradient. The approach of using the concept of diffusion
is clegant as it requires knowledge of a single parameter. D. the diffusion constant.
regardless of the underlying microscopical mechanisms of transport. The diffusion
constant D is proportional to the transport mecan free path ( which is the distance

the wave travels inside the medium before its propagation direction is randomized by



scattering events. It is given bv D = éz‘(. where ¢ is the transport velocity of the
photons. and d = 2 (d = 3) for two-dimensional (three-dimensional) random medium.
{ signifies the scattering strength inside a random media and higher the scattering
inside a medium, smaller is the value of £. If { > L > A, where L is the system
length and A is the wavelength, the waves undergo ballistic transport and mostly
travel in the forward direction with few scattering events. When L > ( > A, the

waves undergo multiple scattering and the wave transport becomes diffusive.

Although the theory of diffusion can predict the average behaviors of wave trans-
port in a multiple scattering medium, it is however an approximation as it ignores
interference effects [1-4]. When scattering is weak or correspondingly / is much longer
than A, diffusion is a good approximation as interference effects are negligible. How-
ever. when scattering becomes very strong such that £ ~ A, interference effects start
dominating the wave transport. One such example is Anderson localization where
strong wave interference from different scattering events leads to suppression of wave

diffusion and waves become exponentially localized within the medimmn [5].

Interference effects due to multiple scattering of waves were originally studied in
the context of clectron transport in disordered conductors. In electronic transport.
such effects exist in the mesoscopic length scale which refers to a system length L
at which the phase coherence length of electrons is comparable or greater than L.
In such mesoscopic length scales, the quantum wave effects can dominate transport
behaviors compared to classical particle-based predictions.  Since such mesoscopic
effects are essentially wave interference effects. similar effects also exist for classical
waves such as light propagating through a scattering medium. The advantage of
studving these effects with photons is that the unlike electronic samples. which have

to be cooled down below 1 K to suppress electron-phonon interactions to preserve the



temporal coherence throughout the entire sample, for photons the temporal phase
coherence is preserved when they are scattered by static disorder. In addition, unlike
photons which do not mutually interact, Coulomb interaction between electrons is

unavoidable.

Figure 1.1: Side-view scanning electron microscope (SEM) image of a fabricated
two dimensional random waveguide. The two sidewalls of the waveguide consist of
triangular lattices of air holes. They possess a 2D photonic bandgap and behave like
reflecting walls for light incident from all angles in the waveguide. The probe light is
coupled from a silicon ridge waveguide to an empty photonic crystal waveguide, then
impinged onto a random array of air holes

In this thesis, we study experimentally some of these mesoscopic or interference
effects in light transport inside a scattering medium. The monochromatic coherent
input light is from a CW laser source and the static scattering medium studied is a
two dimensional disordered silicon waveguide with air holes as scatterers and photonic
crystal sidewalls. Fig. 1.1 shows a scanning electron microscope (SEM) image of one
such fabricated random waveguide. We directly probe the mesoscopic effects inside
the medium and show how these effects spatially evolve. We further demonstrate that
these effects can be controlled efficiently by changing the geometry of the medium
and without having to change the intrinsic disorder. With the recent development of

spatial light modulators, optical waves offer many advantages towards studying these



interference effects as now we can control the optical states. We take advantage of
that and show that by controlling the phase of the input light state. we can control
the interferences inside the scattering medium and thereby have diverse transport
behaviors of light inside a scattering mediumnt.

There are many advantages of using the two dimensional planar waveguide geome-
try for studying mesoscopic effects inside the random medium. The disorder strength
which depends on the density and size of the air holes can be precisely controlled. The
light that propagates through the random medium gets scattered both in-plane and
out of the waveguide planc. The out-of-plane scattering allows us to monitor the light
transport inside the medium from the vertical direction thus enabling us to directly
probe the mesoscopic effects inside the random waveguide. The cross-section of the
waveguides can be spatially varied which allows us to study independently the effect
of geometry on the mesoscopic effects. Finally, in these two dimensional disordered
waveguides, the magnitude of the interference effects is determined by its localization
length given by € = (7/2)N{. where N = 2117/(A/n,) is the nuber of propagating
modes in the waveguide. 1 is the waveguide width. A is the optical wavelength in
vacuum, and n, is the effective index of refraction of the random medium. Since N
scales linearly with W, & can be easily tuned by varving the waveguide width and
by changing the waveguide geometry (L, 117), we can reach both the diffusion regime
( < L < &) and localization regime (L > £) [6.7]. Therefore. even if scattering is
relatively weak (A€ > 1. where A is the wavenumber). the waveguide length L can
easily exceed &€ so that the localization effect is strong enough [6,7].

The two-dimensional disordered waveguides are fundamentally different from 3D
random media. In a 3D random medium. there exists a quantum phase transition
from localization to diffusion which depends on the disorder strength [5]. This transi-
tion was first shown by Anderson in the context of the metal-insulator transition [5],

but it exists for all waves [8.9]. For both quantum and classical waves, the character



of transport in a 3D random medium depends upon the closeness to the localization
threshold of the phase transition separating diffusion and localization. loffe and Regel
proposed that for 3D random medium. the threshold criterion for localization is given
by the Ioffe-Regel criterion, k¢ ~ 1 [10]. Because of their reduced dimensionality. the
2D disordered waveguides on the other hand are always localized in the limit L — oo.
Althiough in such structures there does not exist a mobility edge [11]. the same is not
necessary to investigate any of the mesoscopic etfects studied in this thesis and the
effects exist even for finite sized diffusive samples. In the following subsections. we

discuss in detail the mesoscopic effects studied in this thesis.

1.1.1 Renormalization of diffusion coefficient

In a diffusive medium with negligible inelastic scattering, there exists a probability
of a wave to return to the same position it has previously visited after a random
walk. The wave can therefore form a closed loop and the probability of such loops
happening increases with increase in scattering strength. For every such loop there
always exists the time-reversed loop which yields an identical phase delay. This is
shown in Fig. 1.2. Since both the loops vield the same phase delay. constructive
interference of the waves from the reversed loops increases the energy density at the
original position and decreases the net flux through the random medimm. This gives
rise to the so-called weak localization effect [12]. This is the basic mechanism which
eventually suppresses the wave diffusion leading to Anderson localization. In case of
Anderson localization. the return probability is close to unity and the wave becomes

exponentially localized within the medium.

One theory that can describe such suppression of diffusion due to interferences

between the waves traveling in the time-reversed paths is the self-consistent theory of

<t



Figure 1.2: Weak localization effect. Constructive interference of the waves from the
reversed loops increases the energy density at the original position and decreases the
net flux through the random medium.

localization [13,14]. It can predict quantitatively not only the magnitude of the in-
terferences inside the medium but can also predict modification of these interferences
due to absorption, finite size of the medium or variation of boundary conditions. The
major ingredient of the self-consistent theory is that the suppression of diffusion due
to the weak localization effects is accounted for by a renormalized diffusion coefficient
D where the amount of renormalization is proportional to the return probability of

the waves via the looped paths.

In a random media of finite size and open boundaries, compared to an infinite
medium, the return probability is reduced as the waves propagating through the
longer loops may reach the boundary and escape. The magnitude of renormalization
of D of any finite random media therefore depends on the system size. In addition,
the chance of the waves escaping from the boundaries is higher and therefore the
renormalization of D is also weaker in that region. In contrast, at the center of the

medium the chances of the waves escaping are lowest and therefore the renormal-



ization of D is also largest. This implies that along with renormalization. the value
of D is no longer a constant and becomes a spatially varying function {15-17]. In
addition to finite size. another parameter that cffects the renormalization of D is
absorption. In presence of absorption, the long loops are cut as the waves can get ab-
sorbed. Absorption therefore reduces the renormalization of D. It also sets a length
scale bevond which the waves will not reach the boundary. and D becomes position

independent [18].

Although the self-consistent theory of localization has been used to interpret sev-
eral experimental results [19 21]. its key prediction of position dependent diffusion
has not been experimentally demonstrated. In chapter 2 of this thesis. we will present
the first direct experimental evidence of position dependent diffusion inside a random
waveguide. We will present studies of random waveguides of different widths, lengths,
scattering strengths and absorption and will demonstrate their effect on renormaliza-
tion of the diffusion coefficient. In chapter 4. we will further demonstrate that it is
possible to change local diffusion within a single random waveguide without changing
the properties of the disorder by just varying the geometry of the system. By varying
the geometry. we vary the renormalization of the diffusion coefficient spatially which
changes the local diffusion within a single random waveguide. This is possible because
position dependent diffusion is caused by the nonlocal wave interference effects that

depend on the exact position of the boundary.

1.1.2 Intensity correlations in speckle patterns

When we shine a laser through a scattering meditum such as a scotch tape and look
at the output intensity pattern. we observe a complex intensity pattern consisting of

bright and dark spots. The intensity pattern is due to the interference between scat-



tered waves and is referred as speckle pattern. Fig. 1.3 shows an example of a speckle
pattern. Although the speckle pattern looks random, it is in fact not completely ran-
dom and there exists intensity-intensity correlations within the pattern [2,22,23]. The
speckle pattern in fact can be considered as a “signature” of the scattering medium
and important information about the scattering medium can be extracted by measur-
ing the correlations existing in the pattern. The correlations in a speckle pattern are
an outcome of the non-self-averaging nature of coherent wave transport in a multiple

scattering medium.

Figure 1.3: Typical output speckle pattern of laser light transmitted through a diffu-
sive medium

The intensity-intensity correlation function C of a speckle pattern can be com-
puted theoretically by means of a perturbative approach in which the disorder is
treated as a small parameter [22]. Calculation of C requires consideration of all
possible multiple-scattering paths that light can take inside a scattering medium.
However, most of the correlations among the different paths reduce to zero upon

ensemble averaging and only a subset of paths yield non-vanishing correlations and



contribute to C'. Fig. 1.4 is a schematic showing the three possible subsets of paths
that contribute to (' [22.24 30]. The first and the most obvious one (Fig. 1.4(a)).
consisting of independent scattering paths, gives rise to the short range correlation
C'1. It has the largest contribution to " and is of the order unity. In the spatial
domain, C| correlation implies that the intensity within a speckle spot is correlated.
In the angular domain, C; correlation leads to “memory effect™ in a random medium
which implies that a small shift in the direction of the incoming beam., results on

average in a shift of the same angle in the outgoing intensity speckle pattern [22.25].

The next contribution to the correlation arises when two sets of diffusing paths
cross somewhere in the middle of the sample (Fig. 1.4(b)). Because of the crossing.
two paths can “exchange” information in propagating through the sample and this
can lead to a long range correlation, Cy. Since this can only happen for two sets of
diffusion paths which meet once inside the system, the magnitude of C, correlation is
less from the previous C correlation by the probability of two diffusion paths going
through the sample and crossing somewhere in the sample which is about 1/¢ where
¢ is the dimensionless conductance of the scattering medium [22.25]. The long range
(', correlation implies that two speckles spots of the transmitted speckle pattern and
separated by distances much larger than ¢ arc correlated and if a given speckle spot
in the transmission far field is brighter than average. all the other spots also tend to

be a little brighter.

The final contribution to the correlation arises when two sets of diffusing paths
cross twice somewhere in the middle of the sample (Fig. 1.4(c¢)) [22.25]. Such cross-
ings lead to “infinite range™ correlations. C3. The 'y correlations results in all pairs
of input and output channcls of a random media to be correlated to cach other and

is responsible for the universal conductance Huctuations. Since 'y correlations are
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Figure 1.4: Subset of paths that contribute to the correlations in the speckle pattern.
a and b correspond to input and output channels respectively and the reversed arrow
signifies the time-reversed path. (a) Independent scattering paths contribute to €.
(b) One crossing of scattering paths lead to long-range correlations Cy. Its magnitude
is on the order of 1/g. (¢) Two crossing of scattering paths inside the random mediun
lead to infinite range correlations 3. Since it requires two crossings. therefore the
magnitude is on the order of 1/¢%.

formed due to two crossings of the diffusion paths, its magnitude is therefore on the

order of 1/¢°.

The correlations in the speckle pattern besides being of fundamental importance
are also important from application point of view. With the recent advances in wave-
front shaping it is now possible to focus light in a speckle spot inside or outside
a random media with possible applications ranging from deep tissue imaging. laser
surgery. radiation treatments to optogenetics. It has been observed that focusing light
on a single speckle simultaneously brightens nearby speckles due to long range corre-
lations resulting in reduction of the contrast of focusing. In addition, it has also been
shown that the long range correlations of intensity inside the random medium deter-
mines not only focusing contrast but also energy deposition inside the sample [31-33].
Although experimentally, long range correlations of intensity have been investigated.,
but most measurements were performed cither on transmitted or reflected light out-
side the random media [34 42]. It is interesting to probe the long range correlations
developed inside the random media as that will indicate how the focusing contrast
or encrgy deposition will vary spatially inside the random medium. Only one experi-
ment in microwaves has been done until now where a detector (antenna) was inserted

into the random media to measure the intensity inside the medium to calculate the



correlations [34]. In chapter 3 of this thesis. we present experimental results of di-
rect probing of the long range correlations of multiply scattered optical waves inside
a random waveguide. We demonstrate how the long range correlations evolve spa-
tially and also vary the degree of long range correlations by modifving the ¢ of the
random waveguides. In chapter 5, we further demonstrate experimentally an effec-
tive approach of tailoring the spatial dependence of long-range intensity correlation
functions inside the random system. This is accomplished by fabricating photonic
random waveguides with the cross section varying along their length. The functional
form of the long-range correlation is modified inside waveguides of different shapes

because the crossing probability of scattering paths is affected non-uniformly in space.

1.1.3 Open and closed channels in random media

Another fascinating effect resulting from interferences of multiply scattered waves
inside random media is the creation of transmission eigenchannels which are eigen-
vectors of the matrix t't. where ¢ is the field transmission matrix (TN). The trans-
mission eigenchannels of lossless random media can be broadly classified as open and
closed [43 51]. The open chaunels have transmission eigenvalues 7 close to 1 and
dominate the propagation of the waves through the mediunm. while the closed chan-
nels with 7 close to 0 dominate the reflection. Since the existence of open channels
allows the possibility for an optimally prepared coherent input beam to be transmit-
ted through a lossless diffusive medium with order unity efficiency, the open channels

have been extensively studied in the recent times [31.52-57].

Besides transmission. the energyv density distribution of multiply scattered waves
inside a disordered mediumn is also determined by the spatial profiles of the trans-

mission eigenchannels that arve excited by the input light. Recently. it has been
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Figure 1.5: Spatial profile (cross section averaged intensity /(z)) of maximum trans-
mission channel of a diffusive waveguide of W = 5.1 /im and L = 10.2 fim. The
dimensionless conductance is g = 3. The inset shows the 2D intensity distribution of
the maximum transmission channel. The 2D intensity distribution is averaged over y
to obtain the spatial profile /(z).

shown that the spatial profiles of the transmission eigenchannels are distinct and the
the maximum transmission channel has a universal spatial profile (inside a diffusive
waveguide with uniform cross section), which cannot be changed by varying disorder
strength or by adjusting the width or length of the random media [58]. Fig. 1.5 1is a
numerical simulation result which shows the spatial profile of the energy density of
a maximum transmission channel in a diffusive waveguide. The inset shows the 2D
intensity distribution inside the waveguide. In chapter 6 of this thesis we show that by
varying the geometry of a random waveguide, the spatial structure of open channels
can actually be significantly and deterministically altered from the universal ones.
This enables tuning the depth profile of energy density inside the random medium,
thus controlling how much energy is concentrated inside the sample and where it is
concentrated. We show that by gradually increasing the waveguide cross-section, we
can convert evanescent channels to propagating channels. In addition, perfect reflec-

tion channels can be created in certain confined geometries, which do not exist in

12



waveguides with uniform cross-section. We show that. unlike high-reflection channels
in uniform waveguides that exhibit shallow penctration into the disordered system.
a perfect reflection channel can penetrate almost through the entire system but does

not transmit any light.

Recent developments in the field of adaptive wavefront shaping technique have
made it possible to selectively couple mput light to the open channels to enhance
the total transmission or focusing through a random medium [59 63]. A major con-
straint that limits the efficiency of such experiments is incomplete control of the
input [63 65]. In chapter 7 of this thesis. we implement the adaptive wavefront shap-
ing technique to our on-chip random nanostructures and with a careful design of the
coupling waveguide achieve a complete control of the input. Taking the advantage of
the fact that open and closed channels have different spatial profiles and transmis-
sion, we demonstrate an unprecedented enhancement and control of the transmission
and energyv density inside the random nanostructures by selectively coupling the in-
put light to these channels. Finally in chapter 8. we extend the adaptive wavefront
shaping technique to random waveguides with inhomogeneous scattering and loss and
demonstrate the power of wavefront shaping in such structures. We show that by se-
lectively coupling input light to the open channels. regions of higher scattering and

loss can be bypassed by the light propagating in such structures.

1.2 Rotating Dielectric Microcavities

In the final part of this thesis. we study numerically the effect of rotation on resonant
modes of two dimensional diclectric microcavities. Unlike random media. microcav-

ities are homogencous structures which do not have a spatially varving refractive
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index profile. The light inside such structures is confined by total internal reflection.
The simplest example of a two dimensional microcavity is a circular disk. The light
beam inside a circular disk propagates via consecutive reflections from the boundary.
Because of the symmetry of the cavity the angle of incidence remains the same and
the condition for total internal reflection is maintained at each bounce. When the fre-
quency of the light propagating inside the cavity is such that the phase it accumulates
after one round trip is equal to 2nn (n = 1,2, 3..), the field reaches a steady state and
forms a resonant mode of the cavity. Fig. 1.6 shows the electric field distribution of

a resonant mode of a circular microcavity with closed and open boundaries.

(a) (b)

Figure 1.6: Electric field distribution of a resonant mode in a circular disk with open
(a) and closed boundaries (b). The radius of the disk is 591 nm and refractive index
is 3. The resonant wavelengths for (a) and (b) are A= 1131.48 nm and A= 1009.8
nm respectively. For the open cavity, the Q factor of the resonant mode is ~ 9000.
The black circle marks the boundary of the cavity for both (a) and (b).

Although the light inside the circular cavity is confined by total internal reflec-
tion, the confinement is not perfect. The curvature of the cavity boundary leads to an
evanescent leakage and in absence of any additional loss, the leakage rate determines
the finite lifetime or the quality factor (Q) of the resonant mode. For a circular cavity,
as seen in Fig. 1.6, because of the rotational symmetry of the shape, the leakage of
light is always isotropic. To achieve anisotropic directional emission, various asym-

metric shapes of microcavities have been investigated [66 68].
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Microcavities have been extensively studied for both fundamental physics as well
as practical applications such as filters. modulators. switches. bio-chemical sensors
and lasers [69,70]. One application that has recently been proposed is to use mi-
crocavities to detect rotation [71 84]. Possible advantages of using microcavities as
gyvroscopes will be on-chip integration and miniaturization. In a rotating frame of
reference, the effective refractive index of the resonant modes of a cavity gets mod-
ified and becomes a function of the rotation speed [72]. This leads to a shift of the
resonant frequencies of the cavity that is proportional to the rotation speed. This
frequency shift is called the Sagnac effect [71--73.77.79.85-87]. The Sagnac effect in
microcavities has been proposed to be used as a measure to detect rotation [71.72].
The Sagnac cffect however scales as the size of the cavity and is therefore extremely

small for micron sized cavities [71,72].

In the previous studies which investigated the Sagnac effect, cavities with only
closed boundaries were investigated [72.73.76]. In reality the cavitics have leakage
due to open boundaries and therefore rotation along with the resonant frequencies
can also affect the @ factor and emission intensity pattern of the resonant modes. In
chapter 9 of this thesis. we present a Finite Difference Time Domain (FDTD) algo-
rithm that we have developed to study two dimensional microcavities of any shape in
a rotating frame with both closed and open boundaries. Using the FDTD Algorithmn.
along with the Sagnac effect, we also study the (Q factor and the emission intensity
pattern of resonant modes of cavities of different shapes. In chapter 10, we present
the numerical results and demonstrate that emission intensity pattern as compared
to Sagnac effect is much more sensitive to rotation and can therefore be a better

candidate for rotation sensing.
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Chapter 2

Experimental demonstration of
position dependent diffusion in

disordered waveguides

2.1 Introduction

"' The concept of diffusion has been successfully applied to diverse phenomena such
as heat. sound. or electron transport. It has also been used to describe light trans-
port through multiple scattering media such as clouds. colloidal solutions. paint. and
biological tissues [2-5]. For electromagnetic waves such as light or any other kinds of
waves. diffusion however is an approximation as it disregards interference effects [6].

In a multiple scattering medium with negligible inelastic scattering, there exists a
probability of a wave to return to the same position it has previously visited after a
random walk. The wave can therefore form a closed loop and the probability of such
loops happening increases with increase in scattering strength. For every such loop

there alwavs exists the time-reversed loop which vields an identical phase delay. Since

1. The results shown in this chapter have been published in ref. [1].
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both the loops yield the same phase delay. constructive interference of the waves from
the reversed loops increases the energy density at the original position and decreases
the net flux through the random medium. This gives rise to the so-called weak
localization effect [7]. This is the basic mechanism which eventually suppresses the
wave diffusion leading to Anderson localization [8].

This effect of suppression of diffusion due to interferences between the waves trav-
eling in the time-reversed paths has been accounted for by a renormalized diffusion
coefficient D in the self-consistent theory of localization [9.10]. The amount of renor-
malization is proportional to the return probability. which is determined by the scat-
tering strength. finite size. and position inside the random media. The dependence of
return probability on finite size and spatial position comes from the fact that in an
open system of finite size the longer loops may reach the boundary where waves can
escape. The chance of escape of the waves is higher near the boundary resulting in
lower return probability compared to the center of the medium. The renormalization
of D is therefore weaker near the boundaries compared to the center of the random
medium implving that the value of D is not only just renormalized but also varies
spatially [11-13].

The renormalization of the diffusion cocfficient also depends on absorption or
dissipation. In the presence of dissipation. the long loops are cut. thus reducing the
renormalization of the diffusion coefficient compared to a passive system of similar
size and scattering strength. Furthermore. dissipation introduces an cffective length
scale beyond which the wave will not reach the boundary of the system and the
diffusion coefficient becomes position independent [14].

Although self-consistent theory of localization in open random media has been
used to understand several experimental results [15-17]. its keyv prediction of position-
dependent diffusion (PDD) has not been observed directly. This is partly because it

is difficult to probe wave transport inside three dimensional random medium. In
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this chapter, we report the first direct experimental observation of PDD by analyz-
ing light that escapes from the two-dimensional random structures via out-of-planc
scattering [18.19]. We demonstrate the effects of finite size. scattering strength and
absorption on the renormalization of the diffusion coefficient D. The experimental
results presented in this chapter, provides an experimental confirmation for the in-
terpretation of localization in open random media as position-dependent suppression
of diffusion. put forward in the self-consistent theory [11.12] and the supersymmetric
theory [13]. Although the experiment has been performed with light. the conclusions
drawn from this work directly apply to the transport of other types of waves such as

acoustic waves, microwaves and de Broglie waves of clectrons.

2.2 Two dimensional disordered waveguides

The random media what we study in this experiment are two dimensional disordered
waveguides that are designed and fabricated in a 220 nm silicon layver on top of 3 pm
buried oxide. The patterns are written by electron beam lithography and ctched in
an inductively coupled plasma reactive ion ctcher. As shown in the scanning electron
microscope (SEM) image in Fig. 2.1, the random waveguide has photonic crystal
sidewalls made of a triangular lattice of air holes (lattice constant 440 nm. hole radius
154 nm). The photonic cvstal sidewalls are designed to have a 2D photonic bandgap
for all incident angles of TE polarized light in the wavelength range of 1450 mm - 1550
nm. The Bragg length of the photonic crystal is approximately two lattice constants.
For providing optical confinement of the light in the plane of the waveguide, it is
essential to have a photonic cvstal that reflects light for all incident angles as the
light can be scattered by the air holes in all directions. The index difference between
silicon and air is not sufficient for in-plane optical confinement as the critical angle

for silicon-air interface is only ~ 21 degrees. For all the random waveguide samples
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studied in this chapter and also in the subsequent chapters, the parameters of the
photonic crystal are kept the same. In addition, the range of the probe light for
all the experiments described in this thesis is chosen such that it falls within the

range of the photonic bandgap. The incident light enters the waveguide from an open

Figure 2.1: Side-view scanning electron microscope (SEM) image of a farbicated
quasi-2D disordered photonic waveguide. The two sidewalls of the waveguide consist
of triangular lattices of air holes (lattice constant 440 nm, hole radius 154 nm). They
possess a 2D photonic bandgap and behave like reflecting walls for light incident from
all angles in the waveguide. The probe light (in the wavelength range of 1500 nm
- 1520 nm) is coupled from a silicon ridge waveguide to an empty photonic crystal
waveguide, then impinge onto a random array of air holes (hole diameter 100 nm,
and areal density 6 %) inside the waveguide.

end and is incident onto a 2D array of air holes inside the waveguide. The random
pattern of air holes causes light to scatter while going through the waveguide. The
transport mean free path i is determined by the size and density of air holes. Light
localization will occur if the length of the random array L exceeds the localization
length £ = (7r/2)AT, where N = 2W/ (X/ne) is the number of propagating modes in
the waveguide, W is the waveguide width, A is the optical wavelength in vacuum,

and ne i1s the effective index of refraction of the random medium. Since N scales
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linearly with W. & can be easily tuned by varving the waveguide width. Therefore,
by changing the waveguide geometry (L. 117). we can reach both the diffusion regime
(£ < L < &) and localization regime (L > &) [20.21].

One important factor that we need to consider in these random wavegeuides is the
dissipation of light. The wavelength range of the probe light is chosen such that light
absorption by silicon is negligible. Hence, light scattering out of the waveguide plane
by the random array of air holes is the dominant loss mechanism. Such scattering
allows us to study the effect of PDD by monitoring the intensity distribution inside
the system from the vertical direction. However, we nced to address the question
whether the out-of-plane scattering can be treated as incoherent dissipation in the
calculations. In a random array of scatterers. the fields are correlated [22.23] only
within a distance on the order of one transport mean free path £. and waves from
different coherent regions of size £ x £ have uncorrelated phases. Since there are
a large number of such coherence regions ¢ x £ in the random waveguide of size
I x L. the overall leakage may be considered incoherent and thus can be treated
effectively as material absorption. The absorption strength in the random medium
can be quantified by the diffusive dissipation length in the random system which is
&. = VDot where 7, is the ballistic dissipation time. In the experimental structures.
similar to £. the magnitude of &, also depends on the size and density of the air holes.

The planar waveguide geometry we use is well suited for studying the effect of
PDD. It allows a precise fabrication of the desired syvstem using lithography so that
the parameters such as £ and &, can be accurately controlled. The localization length
& o W can be varied by changing the waveguide width, while the diffusive dissipation
length &, remains fixed. This allows us to separate the effects of localization and
dissipation by testing waveguides of different width. The additional confinement of
light by the waveguide sidewalls makes € scale linearly with ¢, Even if scattering is

relatively weak (A€ > 1, where & is the wavenumber). the waveguide length L can
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easily exceed £ so that the localization effect is strong enough to modify diffusion.

2.3 Experimental demonstration of PDD

A schematic of the experimental setup is shown in Fig. 2.2(a). Experimentally light
from a wavelength-tunable laser (HP 8168F) is coupled to the silicon ridge waveguide
through a single-mode polarization-maintaining lensed fiber. The transverse-electric
(TE) polarization (electric field in the plane of the waveguide) of the incident light
is chosen. An optical image of the spatial distribution of light intensity across the
structure surface is taken by collecting light scattered out of plane using a 50x objec-
tive lens (numerical aperture 0.42) and recorded by an InGaAs camera (Xenics Xeva
1.7-320) (Fig. 2.2(b)). The intensity is integrated over the cross section of the waveg-
uide to obtain the evolution /(z) along the waveguide (parallel to the z axis). For
each configuration (width W, length L, transport mean free path ¢) of the disordered
waveguides, I(z) is averaged over two random realizations of air holes and fifty input
wavelengths equally spaced between 1500 nm and 1520 nm. The wavelength spacing
is chosen to produce independent intensity distributions. Additional measures are
taken to enhance the signal to noise ratio in the experiments. One major issue that
is addressed is the issuc of strav light. The lensed fiber which is tapered at the end
to focus the laser beam. focuses the light from the laser to a spot of diameter ~ 2.5
p at the edge of the wafer. The ridge waveguide has the same width as the random
waveguide it is connected to, which varies from 5 micron to 60 micron (Fig. 2.3(a,b)).
However. the height of the silicon ridge waveguide is merely 220 nm, so some of the
input light does not couple into the waveguide: instead it propagates above or below
the waveguide. To avoid such stray light, the ridge waveguide is tilted by 30 degrees
with respect to the incident direction of the light from the fiber (approximately nor-

mal to the edge of the wafer). In addition. the ridge waveguide is made 2.5 mm long.
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Camera (b)

Objective

Lensed fiber

Figure 2.2: (a) A schematic of the experimental setup. A lensed fiber couples the
light to the structure and another 50x objective lens (NA = 0.42) collects the light
scattered by the air holes out of the waveguide plane and projects onto a camera,
(b) Optical image of the intensity of light scattered out-of-plane from the disordered
waveguide. The wavelength of the probe light is 1505 nm.

so that the random waveguide structure is far from the direct path of the stray light

(Fig. 2.3(a,b)). This approach is adopted for all experimental samples studied in this

thesis. The camera used in the experiment (Xenics Xeva 1.7-320) is thermo-electric

(a) # Disordered Waveguide to

'T]1 waveguide device

Lensed Fiber Stray light

Figure 2.3: (a) Schematic of the sample layout showing the ridge waveguides coupling
the probe light from the edge of the wafer to the random waveguides with photonic
crystal sidewalls (b) Layout of the fabricated structures studied experimentally.

cooled in three stages to reduce the noise in the experiments. The image generated
by the camera is 14 bit which enables us to record intensities with a dynamic range

up to 4 orders of magnitude. In addition, measurements with different input powers
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and gain settings of the camera arve taken to further enhance the signal to noise ratio.

The signal to noise limit is set by the background signal due to the stray light.

2.3.1 PDD in disordered waveguides of different widths

Figure 2.4(a) shows the measured I(z) inside random waveguides of W varying from
60 gom to 5 pan (blue solid lines). All other parameters are kept the same. L is fixed
at 80 pn. the diameter of air holes is 100 nm. and the average (center-to-center)
distance of adjacent holes is 390 nm. { and &, are obtained by fitting the 117 = 60
pm sample. with the self-consistent theory of localization (red dashed line). We find
that £ = 2.2 pm and &, = 30 jan. With the parameters found from the W=60 pun
sample. the self-consistent theory of localization successfully predicts the decay for
I(z) in all the other samples with widths W=40 gan, 20 pm. 10 gm, 5 pan (red solid
lines). We stress that the agreement with the experimental data is obtained without
any free parameter except for the vertical intensity scale. The PDD coefficient D(z)
corresponding to the red curves in Fig. 2.4(a) are shown in Fig. 2.4(b). We can
clearly see that the diffusion coefficient is reduced inside the sample. and its value
varies along z. Farther awayv from the open boundarv. D has a smaller value. As
the width gets smaller. the reduction of D(z) is enhanced due to stronger localization
effects. The maximum reduction of D(z) is for the 117 = 5 yan waveguide and D is
reduced to 0.65D,.

Instead of calculating the experimental parameters £ and &, using munerical sim-
ulations based on given air hole radius. density and effective indices of the substrate.
the approach of fitting the experimental data of W = 60 pm sample to extract the
experimental parameters is taken as the air evlinders of the fabricated random me-
dia do not have perfectly smooth vertical walls. In addition. the exact radius of the
fabricated air cvlinders of the random media may slightly vary from the target radius

depending on the exposure used during the lithography process. Since the radius
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Figure 2.4: (a) Experimentally measured light intensity /(z) inside random waveg-
uides of different width /7 and constant length L=80 /mi (blue solid lines). The curves
are vertically shifted for a clear view. The y axis is in natural log scale. £=2.2 /mi and
£a=30 /mi are found by fitting the W =60 /mi sample with the self-consistent theory
of localization (red dashed line). With these parameters, the self-consistent theory of
localization predicts /(z) for other samples of IT=40 /an, 20 /mi, 10 /mi, 5 /mi (red
solid curves), which agrees well with the experimental data, (b) Position-dependent
diffusion coefficients for the five samples in (a).



of the air cvlinder as well as smoothness of the vertical walls affects the scattering
cross-section which eventually determines the disorder strength of the random me-
dia. it therefore becomes difficult to extract the parameters £ and &, accurately using
numerical simulations. Since ¢ and £, essentially determines the magnitude of all
the mesoscopic effects studied in this thesis, we therefore fit the experimental data

numerically to extract the exact experimental parameters.

2.3.2 PDD in disordered waveguides of different scattering

strengths

Next. we demonstrate the effect of dissipation on PDD. In strongly dissipative disor-
dered waveguides, when £, becomes smaller than the localization length £, the effect
of dissipation is significant. The suppression of diffusion is weakened by the dissipa-
tion, and a plateau for the renormalized diffusion coefficient is developed inside the
disordered system. This result can be understood as follows. Dissipation suppresses
feedback from long propagation paths, limiting the effective size of the system to the
order of diffusive dissipation length for any position that is more than one &, away
from the open boundary (€, < = < L —¢,) [11.24]. Thus. the renormalized D reaches
a constant value equal to that of an open svstem of dimension ~ 2€,. In the remain-
ing regions that are within one &, to the boundary (z < £, and L — = < &,). the
diffusion coefficient is still position dependent due to leakage through the boundary
and D increases toward the value of Dy. We note that the extent of these regions
€. 1s much greater than the transport mean free path €. The latter determines the
boundary region where the diffusion approximation is not accurate even without wave
interference [5].

To demonstrate this effect experimentally, we increase the density and size of
the scatterers in the disordered waveguides. Larger and denser scatterers along with

increased in-plane scattering also increases the out-of-plane scattering resulting in

31



larger dissipation. The enhanced dissipation enables us to reach the deep saturation
region £a <C L. In this case, in the fabricated structures, the diameter of air holes
is 150 nm, and the average distance between adjacent holes is 370 nm. Waveguide
length L is set at 80 pm and W varies from 5 /mi to 60 pm. Experimental data of
measured intensity /(z) inside the random waveguides are presented in Fig. 2.5(a).
Using the same procedure described above, we obtain the values of D(z) shown in
Fig. 2.5(b). Although we observe renormalization of D(z): but larger out-of-plane

loss (shorter £0), leads to a well-developed plateau of D(z) inside all the samples.

(a)

W=60
W=60
0.9 W=40
W=40
08 W=20
N W=20 )
W=10
AV=10 07
W=5
W=5 0.6
0 20 40 60 a0
) z(pm)
10, 40
z(pm)

Figure 2.5: (a) Experimentally measured light intensity /(z) inside random waveg-
uides of different width W and constant length L—80 /im in the deep saturation regime
£a *C L (blue solid lines). The curves are vertically offset for a clear view. The y axis
is in natural log scale, # = 1.0 /im and £a = 13 /im are found by fitting the !U=60 /im
sample with the self-consistent theory of localization (red dashed line). These values
are then used to predict /(z) for other samples W =40 /im, 20 pm, 10 pm, 5 pm (red
solid curves), which is in good agreement with the experimental data with no fitting
parameters except the vertical intensity scale, (b) Diffusion coefficients D(z) for all
samples in (a) are saturated in the region £a0 < z < L —£a.
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2.3.3 PDD in disordered waveguides of different lengths

Finallv. we demonstrate the effect of increasing the syvstem length on PDD of dis-
sipative disordered waveguides. We fabricate two waveguides of same widths and
scattering strengths but different lengths. The size and density of the air holes are
same as the samples studied in the first case (Fig. 2.4). The widths of the two
waveguides are 177 = 5 um and lengths are L = 80 pm and 160 pm. Fig. 2.6(a)
plots the measured I(z) along with the prediction of the self-consistent theorv. Fig.
2.6(b) plots the values of D(z). Although we double the length of the random system
L from 80 g to 160 gan. the minimal D no longer decreases. instead it saturates
in the middle of the random waveguide. This behavior is attributed to dissipation
which suppresses localization as seen in the previous case. As the system length L
becomes much larger than the diffusive dissipation length €,, D(z) saturates to a con-
stant value inside the disordered waveguide, similar to the results shown in Fig. 2.5.
To summarize. we have presented the first direct experimental evidence of position-
dependent suppressed diffusion of light inside random systems. We have shown that
the renormalization of the diffusion coefficient D which has long been considered as a
theoretical approach to account for localization corrections is an actual physical phe-
nowenon. We demonstrated the effects of finite size. shape and scattering strength
of the random system on PDD. By controlling these parameters we could manipulate
the strength of wave interferences and thereby could control the degree of renormal-
ization of D. We further showed that the presence of dissipation prevents D from
approaching zero and sets a limit for the minimal value of the renormalized diffusion

constant that can be reached by the localization cffects.
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Figure 2.6: (a) Experimentally measured /(z) of two waveguides with the same width
W =35 pm but different length, L—80 pm, 160 /im (blue solid curves). The y axis is
in natural log scale. Red solid curves represent the prediction of the self-consistent
theory of localization using the same values of £ and £a as in Fig. 2.4(a). (b) Diffusion
coefficients D(z) for the two samples in (a), showing the saturation of D inside the
longer sample L=160 pm.
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Chapter 3

Direct probing of long-range
intensity correlation inside a

random waveguide

3.1 Introduction

I Light propagation in disordered media has been a topic of intense studies for nearly
three decades [2-4]. In analogy with electronic transport in disordered metals. fun-
damental issues related to diffusion and localization have been addressed [5.6]. One
interesting example is long-range intensity correlation [7], which characterizes meso-
scopic transport of both classical and quantuim waves. and reflects the closeness to
the Anderson localization threshold [8]. Experimentally. correlation in time, space,
frequency. angle, and polarization have been investigated, but most measurciments
are performed on transmitted or reflected light outside the random media [9 17]. It
would be interesting to probe correlation inside the random media and to monitor

how long-range correlation build up as light propagates through the random mediun.

1. This chapter is primarily based on the journal article published in ref. [1].
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However, it is very difficult to probe transport inside three-dimensional (3D) random
media. Only in microwave experiment was a detector (antenna) inserted into the ran-
dom media to measure the intensity inside [9]. As shown in chapter 2. alternatively we
design and fabricate quasi-2D disordered waveguides to probe light transport inside
from the third dimension. This approach will allow us to directly measure intensity
correlation and fluctuations inside random structures. Furthermore. we can vary the
degree of long-range intensity correlation by changing the waveguide geometry.

The intensity-intensity correlation function C' consists of three terms. short-range
. long-range Cy and an infinite-range Cy correlation. Intuitively interferences be-
tween waves scattered along independent paths give rise to (). one crossing of paths
gencrates Cy. and two crossings cause Cy [18.19]. The spatial correlation term C de-
cays exponentially with increasing distance and vanishes beyond the transport mean
free path . 5 also decays but much more slowly, while C'; has a constant con-
tribution. The long-range correlation dominates fluctuations of total transmission
T, = >, Taw. where T, is the transmission from an incoming wave mode a to an
outgoing mode b. The magnitude of (' is on the order of 1/¢g. and C of 1/¢°. where
g =), T, is the conductance [13,20]. When g > 1. C'is dominated by C'. To mea-
sure (9, the spatial distance must exceed the transport mean free path so that (7
dies out. Alternatively, 'y can be measured by collecting all transmitted light using
an integrating sphere. This method. however. cannot be used to measure ', inside
the sample. Instead. we integrate light intensity over the waveguide cross-section to
average out the short-range fluctuation. and directly measure the long-range corre-
lation inside the disordered planar waveguide. The conductance of the waveguide
is g = (7/2)N(/L. where N = 211"/(A/n.) is the number of propagating modes
in the waveguide. L is the waveguide length. 117 is the waveguide width. A is the
light wavelength in vacuum, and n,. is the effective index of refraction of the random

medium [21]. Hence. by decreasing W, we are able to reduce g and enhance the



magnitude of (', without modifving the structural disorder.

This chapter is organized as follows. First we describe the design and fabrication
of 2D disordered waveguides as well as the optical measurement of intensity corre-
lation inside the waveguide. The next section contains the calculation of long-range
correlation inside the disordered waveguides and the formula for the physical quan-
tities that arc measured experimentally. The final section presents the experimental

data and comparison to the theory.

3.2 2D random nanostructures

Similar to random waveguides shown in chapter 2. the 2D disordered waveguides are
fabricated in a silicon-on-insulator (SOI) wafer with a 220 nm silicon laver on top of a
3 pm buried oxide [Fig. 3.1]. The patterns are written by electron beam lithography
and etched in an inductively-coupled-plasma (ICP) reactive-ion-etcher (RIE). Each
waveguide contains a 2D random array of air holes that scatter light. The air hole
diameters arc 100 nm and the average (center-to-center) distance of adjacent holes
is 390 nm. The waveguide walls are made of photonic crvstals (triangle lattice of air
holes. the lattice constant = 440 nm, the hole radius = 154 nm) that have complete
2D bandgap for in-plane confinement of light. However. light is scattered out of plane.
and this leakage allows us to observe light transport inside the disordered waveguide
from the vertical direction.

The monochromatic light from a tunable CW laser source (HP 8168F) is coupled
by an objective lens of numerical aperture (NA) = 0.4 into the empty waveguide. To
ensurc cfficient confinement inside the waveguide. the light is transverse-clectric (TE)
polarized (electric field in the plane of the waveguide). The light is subsequently inci-
dent onto the random array of air holes inside the waveguide and undergoes multiple

scattering [Fig. 3.2(a)]. The optical image of the spatial distribution of light intensity
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Figure 3.1: Top-view scanning electron microscope (SEM) image of a quasi-2D disor-
dered photonic waveguide. Light is injected from the left end of the empty waveguide
and incident onto the random array of air holes. The waveguide wall is made of a
triangle lattice of air holes which forms a 2D photonic bandgap to confine light inside
the waveguide.
across the structure is taken by collecting light scattered out of plane using a 50x
objective lens (NA = 0.42) and then recorded by an InGaAs camera (Xeva 1.7-320).
The spatial resolution is limited by the NA of the objective lens, and estimated to be
~ 2 ym. Figure 3.2(b) is a typical optical image, which exhibits short-range intensity
fluctuations.

The 2D intensity distribution inside the waveguide /(y, z) is extracted from the
optical image [Fig. 3.2(b)]. I(y,z) is then integrated along the cross-section of the

waveguide (y direction) to give the variation along the waveguide axis (z direction)

I(z). The spatial intensity correlations C(zi,z2) are then computed from /(z) as:

<

where (..) represents an ensemble average. C(zi,22) is measured for various combi-
nations of z| and z2 inside the disordered waveguides. The ensemble averaging is
done over ten random configurations of air holes and 25 input wavelengths equally

spaced between 1500 nm and 1510 nrn. The wavelength spacing is chosen to produce
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Figure 3.2: (a) A schematic ofthe optical measurement setup. One objective lens (NA
= 0.4) couples the light from a tunable laser source to the waveguide, and another
objective lens (50x, NA = 0.42) collects the light scattered by the air holes out of
the waveguide plane and images onto a camera, (b) An optical image of the intensity
of scattered light from the disordered waveguide. The wavelength of the probe light
is 1510 mil. The intensity distribution exhibits short-range fluctuations. Z and z2
represent the axial positions of two cross-sections inside the disordered waveguide.

41



different intensity distributions. Further averaging is done by generating different in-
tensity distributions by slightly moving the input coupling spot along the transverse
direction y . Nevertheless. since long range correlation depend on the size and shape
of the input beamn [22]. we ensure that the random array of air holes is illuminated
uniformly along the y direction, so that diffusion occurs only along the z direction.
The relevant parameters for light propagation in the disordered waveguide are the
transport mean free path ¢ and the diffusive dissipation length &,. The transport
mean free path £ depends on the size and density of the air holes. The dissipation
mostly comes from out-of-plane scattering since the silicon absorption at the probe
wavelength is negligible. As shown in chapter 2. this vertical leakage of light can be
treated like absorption and described by the diffusive dissipation length &, = /Dr,.
where 7, is the ballistic absorption time and D is the diffusion coefficient For the
disordered waveguides in Fig. 3.1, we find £, = 30 pan and ¢ = 2.2 pm by fitting
the measured I(z) with the diffusion equation as shown in chapter 2. The waveguide
length is 80 pan. and the width varies from 10 gm to 60 pmi. Thus the conductance

g is between 1.6 and 9.9.

3.3 Theory of long-range intensity correlation

Spatial intensity correlation defined by Eq. (3.1) involve intensities integrated over
the cross-section of the waveguide. Such integration suppresses the contribution from
the short-range correlation C) so that only C, and (5 remain. At the output end
of the disordered waveguide (z; = z, = L). these two contributions reduce to the
normalized variance of total transmission and the normalized variance of conductance
respectively [6.15]. €y and Cy in lossy systems, such as those in our experiment. have
been investigated before [8.23]. Although the expressions for Cy and C'y in Ref. [8,23]

have been derived for diffusive samples (g > 1), it has been shown to also apply to
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the localized samples (g < 1) [24]. For the disordered waveguides in our experiment.
C, is much larger than C3. Thus we ignore ('3 and assume C~C,.

Next we obtain an expression for Cy(z, z2) which can be compared to the spatial
correlation function defined in Eq. (3.1). Such expression has been derived using the
Langevin approach in Refs. [11,25-27]. For a waveguide geometry we obtain,

FOK(21.2") OK(20.2') 1 1oy
2 /o 0z B, (1(2"))7d=

gL {(L(z0)){1(22))

where N (z.z') is the solution of

FPN(=.2) K(=2) .,
SR e (2 — ") (3.3)

with boundary conditions K(0, 2") = K (L, z’) = 0. Such boundary condition neglects
surface effects which can also lead to additional terms in Eq. (3.2). They are significant
at 0 < z < L—1 < z < L[27], particularly for large index mismatch between inside
and outside of random medium. However, in our system of air holes in dielectric, the
effective refractive index of the random medium is less than that outside. In this case
surface reflections are not pronounced [4]. Hence our choice of boundary conditions
is reasonable for our samples with ¢ < L.
Solution to Eq. (3.3) is

_ sinh (o sinh(£ — ()
B £, tsinh £

K(z,2) , (3.4)

where £ = L/€,, (« = min[z, 2']/€, and (~ = max]z, 2]/€,. In the same approxima-
tion (I(z)) x sinh(L£ — ¢)/sinh £. Substituting this expression as well as Eq. (3.4)
into Eq. (3.2) we get Cy(z).22). The final expression is cumbersome in presence of

loss, so we only list several limiting cases.
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Case 1: Vanishing loss. In this case we take the limit £, — oo and get

_ 221 (2L — z))(L — 2) + (L — z,)?
3(]L2 L — 21 )

C-)(Zl . 32)

which reduces to a well known result Cy(L, L) = 2/3¢ at the output end.
Case 2: z, = L. This corresponds to correlating the intensity at the output surface

with an intensity inside random medium. We get

=8¢ +4¢ cosh 2L + 3(sinh 2L — sinh 2¢;) — 3sinh 2(£ — ()

Cy(z, L) = ‘
221, L) 16 g £ sinh® L
4L — cosh £ csch(L — sinh
n (L~C) 5.1(2 (1) Cl' (3.6)
16 g £ sinh® L
where. (; = z;/&. In lossless random medium the above expression reduces to

Co(z1, L) = 2(2L — z1)z, /(g L?), in agreement with the expression in Ref. [25,28].
Case 3: z; = z9 = z. Under this condition we obtain the normalized variance of

the cross-section integrated intensity inside the waveguide,

AC cosh 2L 4 5sinh 2L — sinh 2(L — 2¢)
CQ(Z. Z) = L 12
[16 g L sinh E]
+cschg(ﬁ — O (=4(L = ¢) + sinh 4(L — ¢)) sinh* ¢
[16 g L sinh? ﬁ]
~ 42¢ +sinh 2(L — ¢) + sinh 2()
[16 g L sinh? E] '

(3.7)

In the limit z = L this quantity reduces to the normalized variance of the to-
tal transmission. In lossless medium Eq. (3.7) reduces to a compact expression
Cy(z.2) = (22/9L)(1 — 2z/3L). We note that this function takes the maximum
value (9/8)Cy(L, L) at = = 3L /4. for any L.

In the following section we will compare the above theoretical predictions to the
experimental data obtained for 2D disordered waveguides. Because of their reduced

dimensionality, the waveguides are always localized in the L — oo limit. The extent
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of the localization effects can be controlled by varying the ratio between system length
L and the localization length & = (7/2).N(. Since N scales lincarly with 117, € can
be easily tuned by varving the waveguide width without changing transport mean
free path and, hence, maintaining constant diffusive absorption length &,. Therefore.
by changing the waveguide geometry (e.g. L or W), we can reach both the diffusion
regime (¢ < L < &) and the localization regime (£ < L) [29]. In this thesis. we

concentrate on the diffusion reginie.

3.4 Comparison of experimental results and the-
ory

Figure 3.3 shows the measured C' (z1. 29) for a disordered waveguide of L = 80 pm.
W =60 um, & = 30 pum, £ = 2.2 pm. z; is varied between 0 and L while z, is fixed
at L or L/2. As the distance between z; and z, increases. C (z1.22) decays gradually.
Even when the distance becomes much larger than the transport mean free path.
the intensity correlation does not vanish. The correlation builds up further into the
sample. As shown in the inset of Fig. 3.3, for a fixed distance Az = z,—z; = 10 pm, C
grows as 2o moves from L/4 to L. The experimentally observed long-range correlations
inside the random system agree well to the theoretical predictions represented by the
solid lines in Fig. 3.3.

Next we demonstrate the ability to manipulate the long-range correlation by ad-
justing the the width W of the waveguide while keeping the length L and the degree
of disorder the same. Figure 4 compares C'(z). z) for two disordered waveguides of
length L =80 g and " = 10 jan. 60 jan. zp is moved from 0 and L while z, is
set at L. The localization length &, falls from 788 pan for W = 60 pm to 131
for W = 10 pm. Hence, the former is in the diffusion regime (¢ < L <« &), while

the latter approaches the localization regime (L ~ &). The conductance ¢g. which is
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Figure 3.3: Long-range intensity correlation C(zi,Z:) in a disordered waveguide of L
— 80 /mi, W — 60 /iin, £0 = 30 /mi, £ = 2.2 /mi. z| is varied between 0 and L while
Z is fixed at L or L/2. Solid circles are experimental data and solid lines represent
the theoretical predictions of Egs. (3.2,3.6). The dashed line corresponds to the
background taken outside the waveguide. The inset shows C(z\, z2) for Az = z2—z|\
— 10 /mi and z2 = L,L/2,L/4. Solid circles are experimental data and solid line
represents the theoretical prediction of Egs. (3.2). For a fixed Az, C(z\, z2) increases
when moving deeper into the sample.

proportional to W, drops by a factor of 6 from 9.85 to 1.64. The probability for two
scattering paths crossing, which scales as //g, is thus enhanced by a factor of 6. This
leads to a six-fold increase of the long-range intensity correlation, as indeed observed
experimentally and in agreement with the theory in the previous section. We note
that the enhancement of long-range correlation is caused purely by the change of
waveguide geometry with no modification of the scattering strength.

Finally, we measured the normalized variance of the cross-section-integrated in-
tensity /(z) inside the disordered waveguides. As mentioned above, the normalized
variance, var[Il(z)\/(I(z))2 = C(z\ = z z2 — z), becomes equal to the normalized
variance of total transmission when z = L. Figure 3.5 shows the measured variance
inside two disordered waveguides of width W = 10 /mi, 60 /mi. The other parameters

are the same as in Fig. 3.4. z is changed from 0 to L. The normalized fluctuations of

I(z) grow with the depth of the random system. In a narrower waveguide, the fluc-
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Figure 3.4: Long-range intensity correlation C(zi,z2) for two waveguides with the
same length L = 80 /mi and the degree of disorder (k£ = 26) but different widths
W=60/mi and W — 10 /mi. z\| is moved from 0 to L and z2is set at L. Solid circles are
experimental data and solid lines represent the theoretical predictions of Eqgs. (3.6).
The dashed line corresponds to the background taken outside the waveguide. The six-
times reduction of the waveguide width results in a six-fold increase in the magnitude
of intensity correlation.
tuation is larger due to more pronounced localization effect (smaller conductance).
In summary, we directly measured the long-range spatial intensity correlation
inside the quasi-two-dimensional disordered waveguides. Light scattered out of the
waveguide plane allowed us to probe the internal transport from the third dimension.
The long-range intensity correlation gradually build up as light propagates through
the random system. The fluctuations of cross-section integrated intensity also grow
with the depth into the disordered waveguide. Good agreements between experiment
and theory are obtained. By reducing the waveguide width, we are able to enhance
the long-range intensity correlation and the relative intensity fluctuations, without
modifying the degree of disorder. Such use of geometry may provide a new approach

for manipulation of long-range spatial correlation of light intensity inside random

media as we will see in the subsequent chapters.
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Figure 3.5: Normalized variance of the cross-section integrated intensity /(z),
var[I(z)]/(1(z))2, for two waveguides with the same length L = 80 /im and degree of
disorder (hi = 26) but different widths W — 60 “m and W = 10 /zm. z is changed
from 0 to L. The solid circles are experimental data and solid lines represent the
theoretical predictions of Eqs. (3.7). The dashed line corresponds to the background
taken outside the waveguide.The six-times reduction of the waveguide width results
in a six-fold increase in the magnitude of intensity fluctuations.
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Chapter 4

Control of light diffusion inside a

random waveguide using geometry

4.1 Introduction

' The concept of diffusion is widely used to study the propagation of light through
multiple scattering media such as clouds. colloidal solutions, paint, and biological
tissues [2-5]. Diffusion. however. is an approximation as it neglects wave interference
effects [6]. Most of the scattered waves follow independent paths and have Hncorre-
lated phases. so their interference is averaged out. However. a wave may return to
a position it has previously visited after multiple scattering. and there always exists
the time-reversed path which vields identical phase delay. Constructive interference
between the waves traveling in the time-reversed paths increases the energy density
at the original position, thus suppressing diffusion [7] and eventually leading to local-
ization [8]. This effect has been accounted for by a renormalized diffusion coefficient
D in the self-consistent theory of localization [9.10]. The amount of renormaliza-

tion depends on the return probability. which is determined by the size of a random

1. This chapter is primarily based on the journal article published in ref. [1].



medium as well as the position inside [11-14]. In chapter 2. we demonstrated a direct
observation of the position-dependent diffusion coefficient in disordered waveguides.
By changing the waveguide width. we tuned the diffusion cocefficient hy varving the
strength of wave interference. However, the width of each waveguide was kept con-
stant, and we switched between the waveguides to control diffusion.

In this chapter. we fabricate disordered waveguides with a variable cross-section
and thus achieve control of light transport in the same system. In these structures
that we have designed. it is necessarv to account for spatial variation of diffusion
coefficient D in two dimensions (2D) due to the modulation of the waveguide width.
Experimentally we fabricate a random array of air holes in a waveguide geometry on
a silicon wafer. and probe light propagation inside the 2D structure from the third
dimension. The measured spatial distribution of light intensity inside the disordered
waveguide agrees well with the prediction of the self-consistent theory of localization
[12,14]. Instead of changing the degree of disorder. we demonstrate that the wave
diffusion can be manipulated by changing the geometry (cross-section) of the random
waveguide nanostructures.

The proposed approach of using geometry to control the interference effects in
multiple scattering media is of both a fundamental and a practical importance. For
example. coherent control of the total transmission of light through three dimensional
random media was demonstrated by shaping the wave frout of the input light [15].
The degree of such coherent control is limited by the number of modes that can be
controlled. For 2D planar waveguide structures, the overall geometry can provide
additional degree of freedom and can be used along with wavefront shaping tech-
niques to more cfficiently control the total transmission through the random media.
Understanding the effect of geometry on transport through disordered media is also
important to explore new functionalities of on-chip photonic devices using random

media. For example. a two-dimensional disordered media has been proposed to pro-
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Figure 4.1: Top-view scanning electron microscope (SEM) image of a quasi-2D dis-
ordered photonic waveguide. Light is injected from the left end of the waveguide and
incident onto the random array of air holes. The waveguide wall is made of a triangle
lattice of air holes which forms a 2D photonic bandgap to confine light inside the
waveguide. The width of the random waveguide is changed gradually from 40 /rm to
5 fim through a tapered region.

vide efficient broad band coupling of light to a thin film at a wide range of incident
angles for solar cell applications [16]. Our experiments demonstrate that for fixed
disordered structures, coherent control of light diffusion in the plane of the film is
possible simply by varying the geometry. In addition, on-chip multiple scattering
media have also been recently applied to spectrometer applications [17]. Studying

the effect of geometry of the random structure is important to enhance the sensitivity

and resolution of such devices.
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4.2 2D disordered waveguide and experimental setup

The disordered waveguides in this experinent are fabricated with a silicon-on-insulator
(SOI) wafer where the thickness of the silicon layer and the buried oxide are 220 nm
and 3 piun respectively. The patterns are written by electron beam lithography and
ctched in an inductively-coupled-plasma (ICP) reactive-ion-etcher (RIE). Figure 4.1
is a scanning electron microscope (SEM) image of a fabricated sample. The waveguide
contains a 2D random array of air holes. The hole diameters are 120 nm, and the
average (center-to-center) distance of neighboring holes is about 385 nm. The total
length L of the random waveguide is 120 g, and the waveguide width W is changed
from W, = 40 pm to Wy = 5 pum via a tapered region. The lengths of wider (W) and
narrower (W) sections are L) = 52 pm and L, = 58 pun respectively. The tapered
section is 10 g long, with a tapering angle of 60 degrees. The waveguide walls are
made of a triangular lattice of air holes (lattice constant 440 nm, hole radius 154 nm)
that produces a complete 2D photonic bandgap.

In the optical experiment, we use a lensed fiber to couple monochromatic light
(wavelength ~ 1500 nm) from a tunable CW laser source (HP 8168F) into the waveg-
uide [Fig. 4.2(a)]. The polarization of input light is transverse-clectric (TE) (electric
field parallel to the waveguide plane). Light is scattered by the air holes inside the
waveguide and undergoes diffusion. The waveguide walls provide in-plane confine-
ment of the scattered light. However, some of the light is scattered out of the waveg-
uide plane. This leakage allows us to observe light propagation inside the disordered
waveguide from the vertical direction. The spatial distribution of light intensity across
the waveguide is projected by a 50x objective lens [numerical aperture (NA) = 0.42]
onto an InGaAs camera (Xeva 1.7-320). Figure 4.2(b) shows a typical optical image,
from which we extract the 2D intensity distribution inside the waveguide (y, z).

The ensemble averaging is done over three random configurations of air holes and

25 input wavelengths cqually spaced between 1500 nm and 1510 nm. The wavelength
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Figure 4.2: (a) A schematic of the experimental setup. A lensed fiber couples the
light to the structure and another 50x objective lens (NA = 0.42) collects the light
scattered by the air holes out of the waveguide plane and projects onto a camera,
(b) Optical image of the intensity of light scattered out-of-plane from the disordered
waveguide. The wavelength of the probe light is 1505 nm.
spacing is chosen to produce different intensity distributions. Further averaging is
done by slightly moving the input beam position along the transverse y direction.
Nevertheless, the front surface of the random structures is always uniformly illumi-
nated by the incident light.

The relevant parameters for light propagation in the disordered waveguide are the
transport mean free path ¢ and the diffusive dissipation length £0. The transport mean
free path ¢+ depends on the size and density of the air holes. The dissipation mostly

comes from out-of-plane scattering as the silicon absorption at the probe wavelength is

negligible. As shown in the work in chapter 2, this vertical loss of light can be treated
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as dissipation (or absorption) and described by the characteristic length &, = /Dy7,.
where 7, is the ballistic dissipation time and Dy is the diffusion coefficient without
localization corrections.

There are three main advantages of using the planar waveguide geometry. First.
it allows a precise fabrication of the designed structure so that the parameters such as
the transport mean free path can be accurately controlled. Second. we can easily mon-
itor the in-plane diffusion by collecting the out-of-the-plane scattered light. Third.
the localization length € can be tuned by changing the waveguide width 117, because
& = (m/2)N(, where N = 2W/(A/n.) is the number of propagating modes in the
waveguide. which is proportional to W. By varying the width of a single waveguide,
we adjust the strength of the localization effect along the waveguide. The localization
length in the wider scction of the waveguide (W, = 40 yan) is 8 times longer than
that in the narrower section (W, = 5 pm). Hence, the suppression of diffusion by

rave interference is enhanced approximately 8 times in the narrower section of the

waveguide.

4.3 Numerical simulation of position dependent
diffusion

For a quantitative description of light transport in a random waveguide of variable
width, we use the self-consistent theory of localization to calculate the diffusion cocf-
ficient D(y. z) inside the waveguide. The renormalization of D depends on the return
probability, which is position dependent [11 13]. The maximum renormalization hap-
pens inside the random media at a location where the return probability is the highest.
and the renormalization is lowest near the open boundaries of the random media. As
shownt below, the return probability takes the maximum value in the narrow portion

of the structure and not at the geometrical center as in waveguides with a uniform
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cross-section. The renormalization of the diffusion coefficient also depends on the
amount of dissipation. which suppresses feedback from long propagation paths and
sets an effective system size bevond which the wave will not return [18.19].

In order to compare the experimental results with the self-consistent theory, we
compute D(y, z) using the commercial package COMSOL Multiphysics after setting
the values of the transport mean free path ¢ and the diffusive dissipation length &,.
First the return probability is calculated at every point in the waveguide [14]. This
is done by moving a point source throughout the structure and by calculating the
light intensity at the source for cach source position. This intensity is taken as the
return probability which is then used to renormalize D(y. z). The modified D(y. 2)
is then used to recalculate the return probability. Several iterations of this procedure
are performed until the changes in D(y. z) between iterations become small enough
to be negligible. Once we obtain the final value of D(y, 2), it is used to calculate the
intensity /(y, z) inside the waveguide.

The calculation of D(y. z) is repeated for various combinations of ¢ and &, until the
calculated I(y. z) matches the measured intensity distribution. The parameters that
gave the best agreement for the measured experiment data are £ = 2.9 ym and &, = 35
pm. Figure 4.3(a) plots the calculated return probability. which is greatly enhanced
by the stronger transverse confinement (along the y direction) in the narrower section
of the waveguide. Consequently. the renormalized diffusion coefficient D(y. z). shown
in Fig. 4.3(b), reaches the minimum value close to the middle of the narrower section.
Note that in the tapered region, D changes not only along z, but also along y. The
smaller D near the boundary is attributed to the enhancement of return probability
due to reflection from the photonic crystal wall. Figure 4.3(¢) shows the spatial

distribution of in-plane diffusive light intensity I(y. =) inside the waveguide.
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Figure 4.3: (a) Calculated return probability in the disordered waveguide shown in
Fig. 4.1. £= 2.9/rni, and £a = 35/im. (b) 2D renormalized position dependent diffu-
sion coefficient D(y, z)/D 0 for the same structure as in (a), (c) Intensity distribution
I(y,z)/10 inside the random structure obtained from D(y, z)/DQin (b).
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4.4 Comparison of experimental results and nu-
merical simulation

From the experimentally measured [(y. z). we compute the cross-section integrated

W(2)/

2 . . .
J Wiz I(y. z)dy and the cross-scction averaged intensity /,(z) =

intensity [,(z) =
I;(2)/W(z). The former quantity is proportional to the z-component of total energy
flux through the cross-section of the waveguide. while the latter quantity. I.(z). is
related to the energv density.

As shown in Fig. 4.4(a). [,(z) decays more slowly with z in the wider section of
the waveguide than in the narrower one. The narrowing of the waveguide width leads
to a sharp drop of I; (energy flux). as part of the diffusive light is reflected back. The
dashed curve in Fig. 4.4(a) is the calculated [,(z) using self-consistent theory, which
agrees well with the experimental data. The inset to Fig. 4.4(a) plots the experimental
data of I;(Z) for the wider (dashed line) and narrower sections (solid line) on top of
each other. The maximum intensity of both cases are normalized to 1. For the wider
section. 2 = z/L; and for the narrower section. 2 = (z— (L, +10))/L,. We can clearly
see the difference in the exponential decay (slope) of [;(2) for the two cases. This
difference can be attributed to two factors. (i) reflection from the boundary of the
tapered region. (ii) enhanced localization cffect in the narrower section of waveguide.
Reflection only modifies the decay in the wider section of the waveguide. However,
this modification is only dominant towards the end of the wider section as can be
seen by a flattening of [,(z) ncar z = 50. From the experimental data (see inset of
Fig. 4.4(a)). we observe that the decays of the wider and narrower section are different
from the beginning (i.e. 2 ~ 0.1). This is a clear indication of the finite size effects or
enhanced localization effect in the narrow section of the waveguide. In the absence of
localization cffects. the intensity decavs for both sections will be similar until at least

z ~ (1.5, beyond which the decay in the wider section will be slightly reduced due to
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Figure 4.4: (a) Comparison of the measured cross-section integrated intensity /z(z) of
the entire structure (solid blue line) to numerical calculations based on self-consistent
theory (dashed red line). The inset plots the measured /¢(z) for both the wider(dashed
line) and narrower (solid line) sections of the waveguide on top of each other. 5= z/L\_
for the wide section, and z = (z —(Li+ 10))/L2 for the narrow section. In the inset,
for both cases, [/t(z) is normalized to 1 to demonstrate the clear difference in the
exponential decay rate (slope).(b) Measured cross-section averaged intensity [v(z)
(solid blue line) in comparison with the results of self consistent theory (dashed red
line). The vertical dotted lines in (a,b) marks the starting point and the end point of
the tapered region.
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reflection from the boundary of the tapered section.

Figure 4.4(h) plots the measured [,.(z) together with the calculated one. Similar
to previous case. 1,.(z) also decays more slowly with = in the wider section of the
waveguide than in the narrower one. Again we see a good agreement except at = ~ 60
pm. The optical image [Fig. 4.2(b)] reveals that near the photonic crystal wall of the
tapered section, the abrupt backward scattering leads to the formation of a standing
wave. thus the intensity is enhanced compared to the diffusive prediction. The spatial
extent of this effect is determined by the transport mean free path ¢ bevond which
the direction of the reflected wave is randomized. The inherent inability of a diffusive
description to describe transport on scales shorter than € explains the deviation of
the experimentally measured intensity from the theoretical prediction. as exhibited
in Fig. 4.4(b) by a small bump at = ~ 60 zm.

In summary, in this chapter we demonstrated an effective way of manipulating
light diffusion in a disordered photonic waveguide. Instead of changing the degree of
structural disorder. we varied the waveguide geometry (its cross-section). By modu-
lating the width in a single waveguide. we manipulated the interference of scattered
light and made the diffusion coefficient vary spatially in two dimensions. We mea-
sured the intensity distribution inside the quasi-2D random structures by probing
from the third dimension and the experimental results agreed well with the predic-
tions of the self-consistent theorv of localization. Although. the experiments in this
work were done with light. the outlined approach to control diffusion is also applicable
to other types of waves, such as acoustic waves, microwaves and the de Broglie waves

of clectrons.
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Chapter 5

Using geometry to manipulate
long-range correlation of light

inside random media

5.1 Introduction

! The diffusion model has heen widely utilized to describe wave propagation in disor-
dered media. e.g.. light in biological tissues. ultrasonic waves through cracked metals.
and clectron wavetfunctions in disordered conductors. It. however. ignores the in-
terferences of scattered waves. which lead to many prominent phenomena including
Anderson localization, universal conductance fluctuations. and enhanced backscatter-
ing [2 4]. Extensive theoretical and experimental studies in the past three decades
have illustrated that mesoscopic transport of both classical and quantum mechanical
waves is governed by wave interference effects [5.6].

As shown in chapter 3. one important consequence of wave interferences in ran-

dom media is the correlations in the fluctuations of scattered intensities [7.8]. The

1. This chapter is primarily based on the journal article published in ref. [1].



interference between waves scattered along independent paths gives rise to intensity
correlation on the scale of wavelength. one crossing of paths generates long-range
correlation beyond the mean free path, and two crossings leads to an infinite-range
correlation [9.10].

The non-local correlations have a direct consequence for the coherent control of
light transmission through random media via wavefront shaping [11], which has ad-
vanced rapidly in the past few years due to potential applications to deep tissue
imaging [12-14]. Indeed focusing light to a single speckle simultaneously brightens
nearby speckles, and hence reducing the contrast of focusing [15, 16]. It has been
shown that the spatial correlation of intensity inside the random medium [17 21] de-
termines not only focusing contrast but also energy deposition into the sample [22].
Therefore, manipulating the non-local correlation can open up a new avenue to con-
trolling waves inside random media.

Typically the magnitude of long-range correlation is small, but it becomes sig-
nificant in strongly scattering media, especially when localization regime [4] is ap-
proached [9,10,23-26]. Experimentally long-range correlations have been observed
not only in space, but also in time, frequency, angle, and polarization, but most mea-
surements are performed on transmitted or reflected light, i.e. outside the random
media [18,20,27-33]. Modifications of the corrclations of transmitted light have been
realized with two techniques: (i) varying the spot size of an incident beam on a wide
disordered slab [17,20,25], and (ii) inserting a constriction, e.g., a pin hole, inside a
random medium [29,34]. However, the possibility of manipulating long-range corre-
lations inside the random media has not been explored. This is at least in part due to
the experimental challenge of gaining a noninvasive access to the interior of a random
structure where light propagates.

In chapter 3, we showed quasi-two-dimensional random waveguides that we fab-

ricated to probe the transport inside from the third dimension [21, 35, 36]. This
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experimental setup has enabled us to monitor directly how the long-range spatial
correlations build up inside diffusive systems [21]. Moreover. by reducing (or increas-
ing) the width of a rectangular waveguide, we were able to enhance (or suppress)
the crossing probabilities of scattering paths throughout the system and. therefore,
to modify the magnitude of long-range correlation function. However, the functional
form of correlation remained unchanged, as it is known to be universal for diffusive
waveguides with uniform width [17.19].

In this chapter. we experimentally demonstrate an effective approach of tailoring
the spatial dependence of long-range intensity correlation function inside a random
system. This is accomplished by fabricating photonic waveguides with cross-section
varving along their length. The functional form of the long-range correlation is modi-
fied inside waveguides of different shapes because the crossing probability of scattering
paths is affected non-uniformly in space. Our approach enables global optimization of
non-local effects via system geometry and it is applicable to other types of waves such
as acoustic waves and matter waves. Besides the fundamental importance. manipu-
lating the long-range correlation of waves inside random systems is uscful for imaging
and focusing into multiply scattering media using wavefront shaping [11.22.37] be-
cause it affects such aspects as focusing contrast as well as energy deposition inside
the medium. Therefore. our approach can provide an additional degree of freedom

for controlling wave transport in scattering media.

5.2 Numerical simulations

To illustrate the effects of waveguide geometry on long-range spatial corrvelation. we
first present numerical results of two-dimensional (2D) disordered waveguides. The
structures have reflecting sidewalls which confine the light inside the waveguide where

scattering and diffusion take place within r = (y.z) plane with = being the axial
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direction. Light transport in the random waveguide is diffusive. and the non-local
intensity correlation is dominated by the long-range correlation (', [7.23]. The 2D
correlation function Cz(rlz ry) between two points r; = (yl. ,:1) and ry = ((1/2, :2) is
calculated with the Langevin approach [19,20,38 40], similar to chapter 3.

Let us consider the simplest case of linear tapering where the waveguide width
(W (2)) increases or decreases linearly along the waveguide axis z. Figure 5.1 shows
the magnitude of Cy, Cy(r;r). in three waveguides with 1 (z) being constant (a).
linear increasing (b) or linear decreasing (¢). The 2D distributions of (' across the
waveguides are clearly different in the three cases. revealing that the waveguide ge-
ometry has a significant impact on the growth of (',. In Fig. 5.1(d-f). the correlation
functions Cy(z1: 29) of the cross-section averaged intensity further illustrates the dif-
ference: in the waveguide of increasing W(z), the correlation function stay nearly
constant for most values of z; and z,, while in the waveguide of decreasing width,
the correlation function exhibits more rapid variation over z; and z,. These results
suggest that the range of spatial correlation is increased (or decreased) in the gradu-
ally expanding (or contracting) waveguide, as compared to the waveguide of constant
width.

For a more quantitative comparison. the magnitude of (', of the cross-section
averaged intensity. 1.c.. Ch(z:z). is plotted in Fig. 5.2(a) for six waveguides of same
length but different geometry. To compare the shape of these curves. the maximum
value of each curve is set to 1. After the normalization, the two curves for the constant
widths of 10 pan and 60 jan coincide and agree to the universal functional form. In
the expanding waveguide. C'y(z: z) increases more rapidly at the beginning and levels
off when light diffuses deeper into the waveguide. This is attributed to the higher
crossing probability of scattering paths near the front end of the waveguide where
the cross section is narrower. As the width increases with z. the crossing probability

is reduced. and the enhancement of C, is slowed down. The contracting waveguide
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Figure 5.1: Calculated spatial long-range intensity correlation for the constant-widtli
and two types of tapered 2D random waveguides. The waveguide length L = 80
gm, the transport mean free path + — 2.2 /mi, and the diffusive absorption length
fa = 26 gm. The waveguide in (a,d) has a constant width W = 10 gm; in (b,e)
W(z) increases linearly from 10 gm to 60 gm, while in (c,f) W(z) decreases linearly
from 60 gm to 10 gm. (a-c) show spatial distribution of the magnitude of long-range
correlation function, 62 (1%r) for three geometries, (d-f) show long-range correlation
function (>2(21;22) °f cross-section averaged intensity for the same geometries. The
maximum value is normalized to 1 for comparison. The differences in these plots
reveal that the waveguide geometry has a significant impact on the magnitude and
range of C:.
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exhibits the opposite trend: the magnitude of C2 grows more quickly in the second
half of the waveguide due to enhanced crossing probability. We can further conclude
that by enhancing the tapering of the waveguide cross section, the change in the
spatial dependence of C: can be made larger.

Figure 5.2(b) plots the correlation function C2(z; L) for two points z and L of
cross-section averaged intensity of the six waveguides. After normalizing the max-
imum value to 1, 62(2;L) for the two constant-width waveguides coincide; in the
expanding waveguide the spatial range of correlation is enhanced while in the con-
tracting waveguide the range is reduced. To be more quantitative, we find the corre-
lation length Az from C2(L —Az; L) = C2(L; L)/2. The constant-width waveguides
have the same Az = 48 /mi, whereas the waveguide tapered from 10 /tm to 60 /im
has Az = 65 /im and the one from 60 /mi to 10 /m has Az = 27 /mi. Hence, the

correlation length inside the random waveguide can be tuned by geometry.

(b)
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Figure 5.2: Comparison of calculated long-range correlation in six waveguides with
different degrees of taper: two with constant widths of 10 /mi (solid black line) and
60 /mi (dash-dotted magenta line); two with width linearly increasing from 10 /mi
(thick dashed blue line) or 20 /im (thin dashed blue line) to 60 /im; and two with
width linearly decreasing from 60 /im to 10 /iin (thick dotted red line) or 20 /im (thin
dotted red line). Other parameters are the same as in Fig. 5.1. Both C2(z;z) (a)
and C2(z;L) (b) clearly demonstrate that while the functional form of long-range
correlation is universal for uniform waveguides, it is strongly modified in the tapered

ones.

An intuitive model has been developed in the previous studies of expanding dif-
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fusive beaws inside absorption less disordered slabs [25.29]. The long-range intensity
correlation function for the transmitted light is determined by the crossing proba-
bility of scattering paths inside the slab, which is on the order of 1/¢g. where ¢ is
the dimensionless conductance. To account for the cffect of diffuse spreading of the
intensity, 1/¢ is obtained by integrating over short sections of increasing width at
different depths inside the slah. While this model can predict the long-range corre-
lations of transmitted light. it fails inside the random medium. This is because the
magnitude of long-range intensity correlation (', at depth z is not determined sim-
ply by the conductance of the waveguide section from 0 to z. which only takes into
account the crossing probability of scattering paths between 0 and z. The diffusive
waves that pass through = may return to it after multiple scattering and crossing in
the section between z and L. thus contributing to C'y at z as well. The change in the
functional form of the long-range correlation function therefore cannot be explained
by the effective conductance model. This model, which was developed in the previous
studies of expanding diffusive beans inside disordered slabs [25,29], can ouly predict
the correlations of light outside random media.

To demonstrate this. let us consider a simplest example of a diffusive waveguide
with constant width and no absorption. Since the dimensionless conductance g(z)
decreases linearly with depth =, Cy(z:2) = 1/g(2) = = would increases linearly with z.
Figure 5.3(a) plots the Cy(z; ) calculated using the Langevin approach [39,40], which
displays a nonlinear increase with z. We further compare the Cy(z: 2) inside tapered
waveguides to the prediction by the effective conductance model. As shown in Fig.
5.3(h. ¢). indeed the calculated Cy inside the random waveguide of either constant or
varving cross-section differ not just quantitatively but also qualitatively differ from the
prediction of the effective conductance model. For example. the effective conductance
model predicts a monotonic increase of Cy(z:z) with z. the actual ((z:z) in the

tapered waveguides decreases with = near the rear end. The significant differences
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confirm that the changes in the functional form of the C2 inside the random system

cannot be explained by the 2 dependence of g

0.2 0.2
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Figure 5.3: Comparison of calculated long-range correlation function C2(z; z) for the
cross-section averaged intensity inside passive diffusive waveguides (solid line) with
same scattering strength as Fig. 5.1 to the prediction of the effective conductance
model (dashed line), (a) The waveguide has constant width W = 60 gm. (b) The
waveguide width increases linearly from 10 gm to 60 gm. (c) The waveguide width
decreases linearly from 60 gm to 10 gm. All three waveguides have the same length
L = 80 gm. The effective conductance model fails to predict C2(z] z) inside all three
waveguides.

5.3 Experimental results and comparison to nu-
merical simulations

In this section we present the experimental results and compare them to numerical
simulations. We fabricate 2D disordered waveguides of various shapes in a silicon-on-
insulator (SOI) wafer with a 220 nm silicon layer on top of a 3 gm buried oxide. The
structures are patterned by electron beam lithography and etched in an inductively-
coupled-plasma (ICP) reactive-ion-etcher (RIE). Each waveguide contains a 2D ran-
dom array of air holes that scatter light. The air hole diameters are 100 nm and the
average (center-to-center) distance of adjacent holes is 390 nm. The waveguide walls
are made of triangle lattice of air holes (the lattice constant of 440 nm, the hole radius
of 154 nm) that has a complete 2D photonic bandgap for the in-plane confinement of

light.
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The experimental setup used is same as the one shown in the chapter 3. The
monochromatic beam from a tunable CW laser source (HP 8168F) is coupled into
the empty waveguide by an objective lens of numerical aperture (NA) 0.4. The
light is transverse-electric (TE) polarized, i.c.. the electric field is in the plane of
the waveguide. After propagating through the empty waveguide, the light is incident
onto the random array of air holes inside the waveguide. The front end of the random
array is uniformly illuminated along the y direction. The light undergoes multiple
scattering in the 2D plane of waveguide. Some of the light is scattered out of plane
and imaged by a 50x objective lens (NA = 0.42) onto an InGaAs camera (Xeva
1.7-320).

From the optical image. the spatial distribution of light intensity inside the waveg-
uide I(y.z) is extracted. To smooth out the short-range fluctuations. I(y. z) is av-
eraged over the cross-section of the waveguide to obtain the cross-section-averaged
intensity [,.(z). The spatial intensity correlation C(z,22) is then computed from
[.(z). With the short-range contribution removed. C'(z|. z3) is dominated by long-
range correlation Cy. The contribution of Cy. which is on the order of 1/¢* ( where
g is the dimensionless conductance ), is negligible as g > 1 in our waveguides.

As described in the previous chapters. the relevant parameters for light transport
in the disordered waveguide are the transport mean free path € and the diffusive
dissipation length &,. The transport mean free path € depends on the size and density
of the air holes. The dissipation results from out-of-plane scattering as the silicon
absorption at the probe wavelength is negligible. As shown in chapter 2, this vertical
leakage of light can be treated similarly as absorption and described by the diffusive
dissipation length &, = /D7,. where 7, is the ballistic dissipation time and D is
the diffusion coefficient [35]. To determine these two parameters. ¢ and &,. for all
the waveguides of different shapes. we extracted their values by fitting the measured

cross-section averaged intensity. [,.(z), and the magnitude of correlations C'(z.z) of
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I.(z) in a waveguide with constant width. 117 = 60gm and L = 80zan. The numerical
calculations were done with the same method as described in chapter 3 and the
paramecters extracted from the fitting are £, = 26 pm and £ = 2.2 pgm. Figure 5.4 (¢)
and (d) show the experimental data along with the fitted curves obtained from the
numerical calculations. For the waveguides of different shapes, we keep the size and
density of the air holes the same and therefore all waveguides of different shapes have
the same &, and €.

Figure 5.5(a.b) are the scanning electron microscope (SEM) images of an expand-
ing waveguide and a contracting waveguide. The measured correlation functions for
the cross-section averaged intensity inside the two waveguides. C'(z) = 2.2, = L), are
plotted in Figure 5.5(¢). The ensemble averaging is done over 4 random configura-
tions of air holes and 25 input wavelengths equally spaced between 1500 nim and 1510
nm. Additional averaging is carried out by slightly moving the incident beam spot
on the input facet of the empty waveguide to generate different intensity patterns
with uniform envelope at the front end of the random array. The experimental data
clearly show that the dependence of C'(z. L) on =z is very different for the two tapered
waveguides. which agree well to the calculation results.

Since the waveguide geometry in Fig. 5.5(b) is the mirror image of the one in
Fig. 5.5(a). the C(z. L) for light input from the left end of the former is equivalent
to that with input from the right end of the latter. As C' is dominated by long-
range correlation function, this result implies C', becomes asymmetric. Note that the
asymmetry exists only inside the random medinm. The Cy for the transmitted light
remains syimmetric. as it is determined by the dimensionless conductance g which has
the same value for the two waveguides. The difference in the correlation functions in
expanding and contracting waveguides reveals that Ch(r :ry) is no longer symmetric
because one waveguide is a mirror image of the other. In other words. the long-range

intensity correlation function for light input from one end of the tapered waveguide
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Figure 5.4: (a) Top-view scanning electron microscope (SEM) image of a quasi-2D
disordered waveguide with W = 60 /im and L = 80 fim. The waveguide wall is made
of a triangle lattice of air holes which forms a 2D photonic bandgap to confine light
inside the waveguide, (b) An optical image of the intensity of scattered light from
the disordered waveguide shown in (a). The wavelength of the probe light is 1500
nm. The white boxes mark two cross-sections at depths Zl and 22 in the disordered
waveguide. (c,d) Fitting of experimental data to extract scattering and dissipation
parameters. The solid blue line in (c) represents the experimentally measured ensem-
ble and cross-section averaged intensity inside the waveguides shown in (a). The solid
blue circles in (d) are the measured C(z, z) for the cross-section averaged intensity
in the waveguide shown in (a). The dashed red lines in (¢) and (d) are obtained by
numerical calculation with parameters £a — 26 /mi and f = 2.2 /mi, which have the
best fit to the experimental data.
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Figure 5.5: Experimental measurement of long-range intensity correlation inside the
tapered waveguides. (a,b) Top-view SEM images of fabricated quasi-2D disordered
waveguides with linearly increasing (a) or decreasing (b) width. The width of waveg-
uide in (a) increases from 10 /im to 60 /mi, and in (b) it is opposite. Both have
the same length L — 80 /mi. Magnified SEM images show the air holes distributed
randomly in the tapered section of the waveguide and the triangle lattice of air holes
in the reflecting sidewalls, (c) Measured long-range correlation function for the cross-
section-averaged intensity C{z,L) inside the tapered waveguides shown in (a) and
(b). The blue circles (green squares) represent experimental data for the waveguides
with increasing (decreasing) width, and the dashed lines are theoretical results.
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is different from that with input from the other end. This behavior is distinct from
that of the constant-width waveguide whose two ends are equivalent.

Next, we vary the waveguide cross section in a non-monotonic manner for further
manipulation of long-range intensity correlation inside the random waveguide. The
waveguide shown in Fig. 5.6(a) has the width W increasing linearly in the first half of
the waveguide and decreasing in the second half. This geometry, unlike the tapered
waveguides studied above, is symmetric with respect to the center (z = L/2). thus
the spatial intensity correlation function is the same for light incident from either end
of the waveguide. Figure 5.6(b) shows the spatial distribution of light intensity inside
the waveguide with input from the left end. The short-range intensity fuctuations
seen in Fig. 5.6(b) are smoothed out after the intensity is averaged over the cross
section, leaving only the long-range contributions to the intensity correlation function
C(z1,29). Figure 5.6(c) plots C(z, L), which increases initially at a slow rate as
z approaches L/2, but turns into a sharp risc once z passes L/2 and approaches
L. This is because the crossing probability of scattering paths is first reduced as
the waveguide is expanding in =z < L/2. and then enhanced in z > L/2 as the cross
section decreases. Therefore. the crossing probability can be controlled by modulating
the waveguide width. which changes the spatial dependence of long-range correlation
function. Figure 5.6(d) shows the intensity correlation function C'(z. L/2). It first
increases monotonically as = moves from 0 to L/2. and then decreases slightly for =
from L/2 to L. The experimental data (solid circles) are in good agreement to the

theoretical results (dashed lines) in Fig. 5.6(c¢.d).

5.4 Discussion

Finally. in this section we illustrate the significance of controlling long-range correla-

tions by geometry in focusing of light inside a highly scattering medium. We perform
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Figure 5.6: Long-range correlation in a quasi-2D disordered waveguide whose width
varies non-monotically. (a) Top-view SEM image showing the waveguide width W
increases linearly from 10 /im at z = 0 to 60 /im at 2 = 40 /im and then reduces
linearly down to 10 /mi at z — 80 /mi. Other structural parameters are the same as
the waveguides in Fig. 5.5. (b) An optical image of the intensity of scattered light
from the disordered waveguide. The wavelength of the probe light is 1510 nm. (c)
Long-range correlation function C(z, L) for the cross-section averaged intensities at z
and L in the waveguide shown in (a). C(z, L) displays a sharp change in the growth
rate before and after z passes L/2. (d) Long-range correlation function for the cross-
section averaged intensities at 2 and L/2 in the waveguide shown in (a). C(z,L/2)
increases monotonically in the first half of the waveguide and decreases slightly in the
second half. In (c, d), solid circles represent experimental data and the dashed curves
are obtained by numerical calculation.
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a numerical simulation of wavefront shaping experiment where we focus the input
light to a point inside the random waveguide by adjusting the relative phase of elec-
tric field in the guided modes of the lead waveguide at the input. Then we normalize
the light intensity at the focal point, r = (0, z), to 1, and average the intensities at
all other points of the same cross-section (same z) to obtain the focusing background
intensity [,. Figure 5.7 plots I, versus z in two diffusive waveguides, one tapered from
10 pam to 60 pm, the other from 60 pm to 10 pm. The variation of the background
intensity with depth is dramatically different for the two waveguides, and I,(z) fol-
lows the spatial dependence of (5 inside these two waveguides as shown in Fig. 5.2.
Therefore, by tailoring the long-range correlation function, we are able to tune the
focusing contrast via geometry. Since focusing light into a highly scattering sample by
wavefront shaping opens the possibility of probing inside opaque media, our approach
of controlling the quality of focusing will be important to applications of sensing and

imaging into turbid media.
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Figure 5.7: Numerical simulation of focusing of light inside a diffusive waveguide
by shaping the input wavefront. The light intensity at the focal spot, r = (0, 2),
is normalized to 1. Black dashed curve (solid red curve) represents the background
intensity IJf vs. depth z inside a random waveguide of width tapered linearly from
10 “m (60 /rm) to 60 /im (10 /im). Both waveguides have the same length L = 80
/im, and they are identical to the ones shown in Fig. 5.1. /&(z) follows the spatial
variation of C2, as shown in Fig. 5.2, in both waveguides.
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Chapter 6

Control of mesoscopic transport by
modifying transmission channels

using geometry

6.1 Introduction

I The diffusive transport of particles in a confined geometry can be effectively con-
trolled by varying the boundary shape. This approach has been widely adopted in
natural and artificial systems including channels in biological membranes. nanoporous
materials, microfluidics. and artificial ion channels [2 8]. A large variety of quasi one-
dimensional (1D) structures with modulated cross-section have been developed for
applications in controlled drug delivery, biochemical sensing, particle sorting., Brow-
nian motors. and ion pumps [8 11]. However. this powerful method has not been
extensively applied to the control of diffusive transport of waves such as light. mi-
CTOWAVE O acoustic waves.,

While wave diffusion is often described by the Brownian motion. it has a fun-

1. This chapter is primarily based on the journal article published in ref. [1].



damental difference from particle diffusion, i.c., the scattered waves interfere and
produce many important phenomena in mesoscopic physics. e.g.. Anderson localiza-
tion. universal conductance fluctuations. and enhanced backscattering [12 15]. Owr
aim is to control the mesoscopic transport by manipulating wave interference effects
in a confined geometry.

A prominent interference effect in a lossless diffusive medium is the creation of
open and closed channels. which are cigenvectors of the matrix ##. where ¢ is the field
transmission matrix (TM). The trausmission eigenvalues are close to 1 or 0, leading to
a bimodal distribution [16-24]. The open channels (with transmission eigenvalues 7
close to 1) have dominant contributions to the propagation of waves through random
media. while the closed channels (7 ~ 0) determine the reflected waves. Thus by
modifving these channels. one would be able to control wave transport. The kev
question is, then, how to modify these channels.

A recent study has shown that the maximum transmission channel has a universal
spatial profile (inside a diffusive waveguide with uniform cross section). which cannot
be changed by varying disorder strength or by adjusting the width or length of the
random media [25]. The wavefront shaping technique has been successfully developed
for selective coupling of light into open channels to enhance the total transimission or
focusing through a random medium [26-30]. but it cannot modify the transmission
eigenchannels. Therefore, an efficient method for deterministic tailoring of the spatial
structure of transmission channels is still missing.

In this chapter, we propose and demounstrate an cffective approach to manipulate
the transmission eigenchannels to control diffusive wave transport. We show that
similar to long range correlations and renormalization of diffusion coefficient as shown
in previous chapters, by varying the geometry of a random waveguide. the spatial
structure of open channels can also be significantly and deterministically altered from

the universal ones. This enables tuning the depth profile of energy density inside
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the random medium. thus controlling how much energy is concentrated inside the
sample and where it is concentrated. By gradually increasing the waveguide cross-
section. we are able to convert evanescent channels to propagating channels. In
acdition to controlling transmission, perfect reflection channels can be created in
certain confined geometries, which do not exist in waveguides with uniform cross-
section.  We show that. unlike high reflection channels in uniform waveguides that
exhibit shallow penetration into the disordered system. a perfect reflection channel
can penctrate almost through the entire system but does not transmit any light.
Furthermore. in the presence of absorption. we can vary the decayv length of energy
flux inside a diffusive waveguide by modulating the cross-section of the waveguide
along its axis. This cannot be achieved in a waveguide of uniform cross-section. as
the flux decay length is independent of the waveguide dimension and is determined
only by the intrinsic disorder and dissipation.

Optical absorption is ubiquitous and it often weakens the localization effects [31-
39], but the approach of using geometry to control wave transport by manipulating the
structure of eigenchannels proves to be effective and robust against strong absorption.
Therefore the confined geometries enable us to control not only the amount of light
being transmitted or reflected. but also the amount of energy concentrated inside
the random media. Although strong localization cffects. absorption or asymmetric
reflection from edges can modify the universal structure of transmission channels,
but such effects also remove the open chaunels with perfect transmission [34,40, 41].
Unlike these effects, the approach of varying shape of confined geometries gives the
significant advantage and freedom to alter the spatial structures of cigenchannels
while retaining the open cigenchannels with perfect transmission.

Aside from the fundamental importance. the ability of tailoring the spatial distri-
bution of energy density of transmission eigenchannels can be exploited to manipulate

light-matter interactions in highly scattering media. c.g.. light absorption. emission.
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amplification. and nonlinear optical processes [25.42]. The potential applications
range from laser surgerv. photovoltaics. to random laser and energyv-efficient light-
ing [43 50].  Our results suggest that the perfect reflection channels may greatly
benefit sensing and imaging applications, as the light in such a channel would pene-
trate to a certain depth and then fully reflected to ensure an efficient collection of the
probe signal. The conversion of evanescent waves to propagative waves and vice versa
may be used to tailor optical excitations inside the random media. Since the applica-
tion of wavefront shaping technique to focusing or imaging through turbid media as
well as enhancing total transmission depends on the properties of high transmission
channels. the approach of modifving the transmission cigenvalues and eigenvectors by
geometry provides a complementary degree of control. While the efficiency of wave-
front shaping approach is reduced by incomplete channel control and measurement
noise [30,51,52], the approach of using geometry is immune to such external factors.
Although the above results are obtained for light, they are also applicable to other

classical and quantum mechanical waves.

6.2 Quasi-two-dimensional random waveguide

To manipulate transmission eigenchannels, we design and fabricate quasi two - dimen-
sional (2D) waveguides of various geometrics. The waveguide structures are tabricated
in a 220 nm silicon layer on top of 3 yzm buried oxide by electron beam lithography and
reactive ion etching [53]. Figure 6.1 shows the scanning electron microscope (SEM)
images of two fabricated waveguides. The waveguide contains a 2D random array of
air holes that serve as scatterers for light. The air hole diameter is 100 nm and the
average (center-to-center) distance of adjacent holes is 390 nm. The waveguide walls
are made of triangle lattice of air holes (lattice constant = 440 nm. hole radius = 154

nm) that has a complete 2D photonic bandgap for the in-plane confinement of light.
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The waveguide is connected to a lead which is an empty waveguide (without any air

holes) with a constant width to couple light in.

20 pm

20 pm

2 pm 2 pm

Figure 6.1: Quasi-two-dimensional random waveguides of different geometry. (a,b)
Top-view SEM images of fabricated quasi-2D disordered waveguides with linearly
increasing (a) or decreasing (b) width. The width of waveguide in (a) increases from
W\ = 10 /im to W2 = 60 /im, and in (b) it is opposite. Both have the same length
L = 80 /rm. Magnified SEM images show the air holes distributed randomly in the
tapered section of the waveguide and the triangle lattice of air holes in the reflecting
sidewalls, (c) An optical image of the intensity of scattered light from the disordered
waveguide. The wavelength of the probe light is 1500 nm.

A monochromatic beam of light from a tunable CW laser source (HP 8168F) is
focused by an objective lens (numerical aperture NA = 0.4) onto the lead waveguide.
The light is transverse-electric (TE) polarized, with the electric field parallel to the
plane of the waveguide (y —z plane). After propagating through the lead, the light
is incident onto the random array of air holes and undergoes multiple scattering in
the 2D plane of waveguide. Some of the light is scattered out of plane, part of which
is collected by a 50x objective lens (NA = 0.42) and imaged onto an InGaAs camera
(Xeva 1.7-320). From the optical image [Fig. 6.1(c)], the spatial distribution of
light intensity inside the waveguide /(//, z) is extracted. Ensemble averaging is done

by recording the intensity profile for 50 different wavelengths around A= 1500 nm
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and three distinet configurations of air holes. Further averaging is done by slightly
shifting the input beam spot on the lead waveguide in the transverse direction y to
produce distinct speckle illumination for the random array of air holes. nevertheless.
the incident intensity profile is always kept uniform across y.

All disordered waveguides studied in this work exhibit diffusive transport. The
relevant parameters for light transport in the disordered waveguide are the transport
mean free path ( and the diffusive dissipation length &,. The transport mean free
path £ depends on the density and diameter of the air holes. The dissipation results
from out-of-planc scattering, since the silicon absorption at the probe wavelength is
negligible. This vertical leakage of light can be treated similarly as absorption and
described by the diffusive dissipation length &, = /D7,. where 7, is the ballistic
dissipation time and D is the diffusion coefficient [53]. The values of ¢ and &, are
2.2 pm and 26 pm respectively, which were extracted from the measured intensity
distribution inside a waveguide of rectangle shape [53]. Since these two parameters
depend only on the size and density of the air holes. we keep them the same for all
waveguides with different geometries. This ensures the modification of light transport

is purely due to the change in geometry instead of structural disorder or dissipation.

6.3 Linear tapering of waveguide width

In Fig. 6.1. the two waveguides have their width T17(z) increase or decrease linearly
along the waveguide axis z. To illustrate how the transmission channels are modified
by the lincar tapering of the waveguide boundary, we first perform numerical mod-
eling by excluding the effect of dissipation. This enables us to separate the effect of
geometry from that of dissipation, which will be discussed in the next section. In the
simulation, the wavelength. refractive index. and polarization of light are the same as

in the experiment. However, the dimension of the waveguide and the transport mean
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free path are scaled down to reduce the computing time. This should not change the
conclusion of our results hecause the systems are still in the diffusive regime.

The disordered waveguide has perfectly reflecting sidewalls and is connected to
two leads (empty waveguides) at both ends. The refractive index in the empty waveg-
uide is determined by the vertical waveguiding in the silicon layer, and its value is
calculated to be n = 2.85. In the disordered waveguide. the presence of air holes
(n = 1. radius = 75 nm, filling fraction = 0.15) reduces the effective index of refrac-
tion to n = 2.62. The (vacuum) wavelength of the probe light is A =1.5 gm. and the
transport mean free path is £ = 1.1 pgm. The length of the disordered waveguide L
is set to be much larger than ¢ to ensure multiple scattering and diffusion of light.
Since the localization length (€) is proportional to the width of the waveguide (117).
the value of W is chosen to make € > L so that localization effects are negligible.

We calculate the electromagnetic field inside the disordered waveguide by solving
the Maxwell equations using a finite element simulation software (COMSOL Multi-
physics). To construct the transmission matrix ¢ of the disordered waveguide. we use
the guided modes in the leads as the basis. The input (output) lead waveguide has
a constant width equal to the same width 1, (W) of the disordered waveguide at
the front (back) end z = 0 (z = L), and it supports M = Wi /\/2n (N = W,/\/2n)
guided modes. Thus ¢ is a N x M matrix. and its clement #;; represents the field
transmission from the input j-th mode to the output i-th mode. The reflection matrix
is constructed in a similar way by computing the reflected waves. and its dimension
is Al x M.

A singular value decomposition of the transmission matrix t gives + = UAVT. A
is a .V x M diagonal matrix with min[N. M| non-negative real numbers. (/7. where
7,, is the eigenvalue of #t and represents the transmittance of the m!” transmission
eigenchannel. V' is a M x Al unitary matrix that maps the field in the guided modes

of the input lead to the cigenchannels of the disordered waveguide. and U is a N x N
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unitary matrix that maps the cigenchannels to the output waveguide modes. Each
column of V' represents an input singular vector. whose elements are the complex
coefficients for the input waveguide modes that combine to couple light into a single
transmission eigenchannel. The output field of a single transmission cigenchanel is
represented by the column of U, which is called the output singular vector. Similarly
the reflection eigenvalues p,, can be obtained by singular value decomposition of the
reflection matrix r.

For comparison. we also compute the transmission eigenchannels in the waveguide
of constant width 1. For W = 5.1 pum. A/ = N = 19. and therce are 19 transmission
eigenchannels. Figure 6.2(a) plots the transmission eigenvalues. 2 of which (m = 18
and 19) arc many orders of magnitude smaller than the others and are not shown as
they fall below the numerical accuracy . This is because the lead waveguide has larger
refractive index than the disordered waveguide and support more guided modes. The
disordered waveguide can support only N — 2 = 17 propagating modes, thus 2 of
the 19 transmission channels cannot propagate inside the disordered waveguide and
become evaunescent. Light can be coupled to these two evanescent channels with the
extra modes that can be supported by the input lead waveguide.

Therefore. the eigenchannels of the transmission matrix can be divided into two
categories: propagating channels and evanescent channels. The propagating channel
has a spatial structure that varies on the scale of the mean free path. The evanescent
channel features an intensity decay on the order of the wavelength, which is much
shorter than the mean free path. and the corresponding transmission eigenvalue is
essentially zero.

A gradual increase of the waveguide width along its axis increases the number of
propagating modes that can be supported inside the disordered waveguide. converting
the evanescent channels to the propagating channels. This is observed. as an example.

in the tapered waveguide whose width is increased from THp = 5.1 pm at 2 =0 to 115,
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Constant width

Increasing width

—WEW2=5.1/xm (d=12) A

N=10 3 “W A 5.1/im,W2=2W1(/c/=24)%
N=18 . - W= 5.1/im,W2=2W1 (\W=12)1
N=19 2.55/xm,W2=2W1, L=10/im

Figure 6.2: Comparison of transmission eigenvalues and eigenchannels in constant-
width and increasing-width random waveguides. (a) Numerically-calculated
ensemble-averaged transmission eigenvalues of random waveguides with constant
width (dashed line with circles) and increasing width (solid line with squares). The
constant-width waveguide (W = 5.1 gm, L = 20 pnl) supports 19 transmission eigen-
channels of which 17 are propagating channels and 2 are evanescent channels, whereas
the expanding waveguide (W\ =5.1 [Um, W2= 10.2 pm, L = 20 pm) has 19 propagat-
ing channels of higher transmittance, (b) Spatial distribution of electric field intensity
inside the waveguide with increasing width for the 18th and 19th transmission eigen-
channels. Both transform from evanescent waves at the entrance of the waveguide to
propagating waves due to the increase of waveguide width, (c) Cross-section-averaged
intensity, /v(z), for the 18th (solid line) and 19th (dashed line) channels shown in (b).
The conversion from evanescent wave to propagating wave causes a sudden change in
the decay length of /v(z) near the front end of the waveguide. For comparison, /v(z)
for the 10th eigenchannel (dotted line) of the same waveguide is added and it shows a
constant decay length, (d) Comparison of the cross-section-averaged intensity, /v(z),
of the maximum transmission channel (m = 1) in the disordered waveguides with
constant width (blue dotted line) and increasing width with two different disorder
strengths (red dashed line and green solid line) and different dimensions (dotted ma-
genta line). Tapering of the waveguide width breaks the symmetry of the spatial
structure of the open channel and moves the peak of /v(z) from the center of the
waveguide towards the front end. The position of the peak does not depend on the
disorder strength.
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= 10.2 /im at z — L [Fig. 6.1(a)]. With M = 19 and N = 38, the transmission matrix
~38x19 still supports 19 transmission eigenchannels, but all of them have non-vanishing

Tm [Fig. 6.2(a)],
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Figure 6.3: Transmission eigenchannels in tapered waveguide of decreasing width, (a)
Comparison of cross-section-averaged intensity, /v(z), of the maximum transmission
channel (m = 1) in two waveguides with different tapering angles and a constant-
width waveguide. All waveguides have the same length L = 20 /im. The constant-
width waveguide has Wl — W2 = 10.2 gm (blue dotted line). The two tapered
waveguides have W\ = 10.2 /im and W \/W 2= 2 (red dashed line), 4 (green solid line).
The Iv(z) curves are offset along the y axis for clarity. The intensity peak shifts from
the waveguide center (W \/W2 = 1) towards the output end (Wi/W2 > 1), and the
shift is larger for higher tapering angle (larger W\/W2). (b) Cross-section-averaged
intensity, Iv(z), of a perfect reflection channel for the same tapered waveguides as in
(a). The blue dotted line corresponds to tapering of W\/W2 = 2 and green dashed
line corresponds to W\/W2= 4. Iv(z) of a high reflection channel of the constant-
width waveguide (blue solid line) is added for comparison. The insets show the spatial
distribution of electric held intensity for the high reflection channel of the constant-
width waveguide and the perfect reflection channel of the tapered waveguide with
W\/W?2 —2. The perfect reflection channel in a tapered waveguide exhibits slower
intensity decay inside the random medium (followed by a sharp drop near the rear
end) and thus can penetrate much deeper into the turbid medium than the high
reflection channel in the constant-width waveguide. The penetration length increases
with the tapering angle.

Figure 6.2(b) shows the spatial distribution of electric field intensity inside the
tapered waveguide for the 18th and 19th transmission eigenchannels which have

the lowest transmittance. Both these channels have been converted from evanes-
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cent channels in a constant-width waveguide with 1"'= 5.1 pym to propagating chan-
nels in the tapered waveguide. [I(y.z) exhibits a sharp drop near the front side
of the waveguide. For a quantitative analysis, the cross-section-averaged intensity.
I.(z) = [1/W(2)] [ I(y.=)dy. is plotted in Fig. 6.2(c) for these two channels. For
comparison, [.(z) for the N = 10 eigenchannel is added to the plot, and it displays
an exponential decay with a constant rate. In contrast, 1,(z) for the 19th eigenchan-
nel first decavs very rapidly at small z/L. and then changes to a much slower decay at
z/L ~ 0.07. The number of guided modes in the waveguide is N(z) = 2117(z)/(A/n).
where 1V(2) is the waveguide width at depth z. and n is the effective index of refrac-
tion of the disordered waveguide. As 117 increases with z. the waveguide becomes wide
enough to support additional modes. For example. at z/L ~ 0.07. N is increased from
18 to 19. thus the 19th mode is transformed from evanescent wave to propagating
wave. Consequently, the decay length of I,(z) increases from ~ 0.14 g (comparable
to A/2mn) to ~ 1.8 um (much larger than A/27n). Similarly. the 18th cigenchannel is
transformed from evanescent to propagating at a smaller value of z/L ~ 0.05. where
N is increased from 17 to 18. Hence. this conversion can be attributed to the gradual
increase of the nuunber of propagating modes that can be supported by the tapered
waveguide at different depths.

I[f A and n are fixed. the spatial position (/L) inside the tapered waveguide where
the conversion from evancscent wave to propagating wave takes place is determined
by the width at that position, thus the spatial position where such conversion occurs
can be easily controlled by tuning the tapering angle. The disorder strength does not
affect directly the location of conversion. however, a change in the disorder strength
is often accompanied by a change in the cffective index of refraction n. which would
modify the conversion depth.

The increase of the waveguide width also enhances the transmittance of all other

transmission eigenchanuels (albeit not as large an enhancement as the above two)



which are also propagating channels in the constant width waveguide. Consequently.
the dimensionless conductance ¢ = > 7, is larger. but the number of input modes
remains the same. This behavior is distinet from the constant-width waveguide.
where the increase of width also enhances g, but the number of input modes increases
simultaneously requiring additional degree of control of the input ficld for coupling
into a single eigenchannel. The waveguide with increasing width can therefore be
useful for applications related to enhancing transmission through random media by
wavefront shaping technique with incomplete degree of control of the input field.

Furthermore. the spatial profiles of open channels are modified in the tapered
waveguide. Figure 6.2(d) compares the cross-section-averaged intensity [,.(z) of the
maximum transmission channel in the disordered waveguides with constant and in-
creasing widths. In the waveguide with uniform cross-section, I.(z) exhibits a sym-
metric profile with peak in the middle of the waveguide (z = L/2). It corresponds
to the universal structure of the maximum transmission channel in a constant-width
waveguide [25]. In the waveguide with increasing widths, 7,(z) becomes asymmetric
and its peak shifts from the center towards the front end of the waveguide (= < L/2).
As seen in Fig. 6.2(d). when the tapering angle of the waveguide boundary is merely
14°, the peak of the maximum transmission channel has already moved significantly
from the center /L = 0.5 to z/L = 0.35. This shift does not depend on the disor-
der strength or the actual dimension of the diffusive waveguide. As a confirmation.
Fig. 6.2(d) shows the spatial profiles of the highest transmission channel in two
more tapered waveguides, one has L, W, W, all reduced to half, but A unchanged
(k= 2m/A/n): the other has the same L. W, W,. but & is doubled. Although their
profiles are slightly different. the peak positions ave identical.

Next we investigate the disordered waveguide with linearly decreasing width. as
shown in Fig. 6.1(b). This geometry is the mirror image of the one in Fig. 6.1(a).

thus light injection from the left end of waveguide in Fig. 6.1(b) is identical to light
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injection from the right end of the waveguide in Fig. 6.1(a). The transmission matrix
of the waveguide in Fig. 6.1(b). ;9«35 1s the transpose of that in Fig. 6.1(a). and it
also supports 19 transmission eigenchannels with the same transmittance. Thus the
conductance ¢ is identical for the two waveguides in Fig. 6.1. However, the spatial
structure of the open channcls is different.

Figure 6.3(a) shows the cross-section-averaged intensity [,.(z) for the maximum
trausmission channel in the waveguide with decreasing width. Its peak shifts from
the center of the waveguide towards the output end (= > L/2). opposite to that of the
waveguide with increasing width in Fig. 6.2(d). The two profiles are mirror image. and
the peak always shifts towards the narrower section of the tapered waveguide. How
much the peak shifts from the waveguide center depends on the angle of tapering.
By changing the tapering angle, the location of the intensity peak can be tuned
deterministically, as seen in Fig. 6.3(a). This result illustrates that the maximum of
the energy density can be positioned to different depths inside a random system by
tailoring its geometry.

While the number of the transmission eigenchannels for the two waveguides in Fig.
6.1 is identical. the number of reflection channels differs. In the expanding waveguide
[Fig. 6.1(a)]. the reflection matrix rigx19 has 19 cigenchannels. which have one-to-
one correspondence with the transmission cigenchannels. However, in the contracting
waveguide [Fig. 6.1(b)]. the input lead waveguide supports 38 guided modes. and the
output only 19 modes. Consequently there are 19 transmission eigenchannels, but
38 reflection channels. While 19 of the reflection channels have the corresponding
transimission channels, the rest 19 do not. In other words, the reflection matrix rsgxss
has 38 eigenvalues. of which 19 of them are equal to unitv. They represent perfect
reflection channels with all incident light being reflected.

The 2-D spatial distribution of field intensity for a perfection reflection channel

in the tapered waveguide with 117 /115 = 2 is shown in the inset of Fig. 6.3(h). For
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comparison. a high reflection channel in a waveguide of uniform cross-section is also
shown. We can clearly sce that the high reflection channel in the constant-width
waveguide has a uniform decay of intensity inside the random structure. In contrast.
the intensity of the perfect reflection channel exhibits a much slower decay almost
throughout the entire random structure and then a sharp drop close to the rear end
(z~1L).

The main panel of Fig. 6.3(b) plots the cross-section-averaged intensity, [,(z).
for one of the perfect reflection channels in two tapered waveguides with different
tapering angles and a high reflection channel in the constant-width waveguide. The
high reflection channel of a constant-width waveguide has shallow penetration into
the random medium due to a rapid intensity decay. The perfect reflection channel.
however, has a much slower decay and thus a longer penetration depth. A sharp drop
of its intensity near the rear end corresponds to the cutoff beyond which no light
propagates. The cutoff occurs at the position where the waveguide width is just large
enough to support N + 1 modes (where N is the number of propagating modes in the
output lead). Since the cutoff position depends on the tapering angle of the random
waveguide. both the decav length of the intensity and the cutoff position in a perfect
reflection channel can be deterministically and effectively controlled by tuning the
tapering angle. For example. by increasing the tapering angle we are able to increase
the penetration depth by shifting the cutoff position closer to the output end, as seen
in Fig. 6.3(b).

Since light in the perfect reflection channels can penetrate deep into the scattering
system, such channels can be used for probing inside turbid media. Despite of the
deeper penetration. all the light exits from the input end. making the collection
efficiency of probe signal 100%. which is extremely useful for sensing or imaging
applications. The penetration depth can be precisely tuned via tapering the boundary

of a confined random system.

98



Unlike higl reflection or closed channels of random waveguides with uniform cross-
section. the perfect reflection channels of the tapered waveguides cannot be deduced
from the transmission matrix and will require measurement of the complete reflec-
tion matrix of the tapered waveguide. Since the cutoff position of the intensity of
the perfect reflection channels is ncar the rear end of the waveguide, an optimization
of transmission using adaptive wavefront shaping technique (described and demon-
strated in the next chapter) cannot be used ecither. Experiments requiring coupling of
input light to the perfect reflection channels will therefore require modification from
the current experimental setup as it will require measurement of the reflected light
as opposed to light inside the random media. Nevertheless, one possible advantage
of measuring the reflected light can be that it may have better signal to noise ratio
compared to measurements of light inside the random media as more light is usually
reflected from the surface of the random media compared to light that penetrates the

random media.

6.4 Effect of Absorption

In this section, we study the effect of light dissipation, which was not included the
last section. Previous studies have shown that loss has a profound impact on the
transmission channels. Tt not only modifies the statistical distribution of the trans-
mission eigenvalues [34]. but also changes the structure of eigenchannels [41.54]. In
case of passive diffusive waveguides. the probability density distribution of transmis-
sion cigenvalues, P(7), has 2 peaks, one at 1 and the other at 0. Thus, there are
many channels (the number is determined by ¢) with comparable values of 7 ~ 1.
Therefore. the total intensity inside the random medium is the sum of intensities of
all these high transmission cigenchannels.

In case of stronglv absorbing waveguides (L > &£,). the peak at 7 = 1 disappears
. = 1
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and P(r) lias a cutoff at Tmax which is determined by L/f£a. In such absorbing
waveguides, P(7) decays strongly with r with a faster decay near rmax. This implies
that the r’s will be arranged as 7\ > r2 > r3 > ... Furthermore, because P(r) decays
fast toward rmaa;, | will be much greater than 72,73,74... and the total intensity inside

the random media will therefore be dominated by the eigenchannel with the maximum

transmission.
With absorption \ \ W=102pm N;
. . W =51 pm
Without absorption V Decreasing width
Increasing width
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

z/L z/IL

Figure 6.4: Effect of absorption on the maximum transmission eigenchannel and
energy flux decay in the constant-width and tapered waveguides, (a) Comparison
of the cross-section-averaged intensity, /v(z), of the maximum transmission channel
in a constant-width {W = 5.1 /im, L — 20 /mi) disordered waveguide with (dashed
line) and without (solid line) absorption. I11 the absorbing waveguide, T/£a = 3.
Absorption modifies the spatial profile of the maximum transmission channel, (b)
Comparison of spatial decay of energy flux J(z) in random waveguides with constant
widths XV = 5.1 jum (blue solid line) and XV = 10.2 /mi (dashed magenta line),
increasing width of W\ = 5.1 /mi, X2 = 10.2 /mi (green dotted line) and decreasing
width of W1 — 10.2 /mi and XV> = 5.1 /mi (red dashed line). For all waveguides,
L —20 /mi, L/*a = 3 and J(z) is normalized to 1 at 2 = 0. While the flux decay
length remains the same for the two rectangle waveguides of different widths, it is
lengthened in the expanding waveguide and shortened in the contracting waveguide.

For the quasi-2D waveguides we fabricate, the dissipation results from out-of-plane
scattering of light, which can be treated as absorption [53]. We simulate it in the
2D waveguide by introducing an imaginary part of the refractive index. The diffusive
dissipation length is £a = yila/2, where la is the ballistic dissipation length. The

ratio of L/£a is set to 3.0, which is close to the value of the fabricated waveguides. At
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L/&, = 3, absorption causes a notable change in the spatial profile of the maximum
transmission channel as scen in Figure 6.4(a). The intensity peak of the maximum
transmission channel. which is located at the middle (/L ~ 0.5) of the passive
waveguide. moves to the front end (z/L ~ 0) due to absorption.

Although it reduces the throughput, loss allows us to manipulate the spatial decay
of cnergy flux inside the random waveguide by geometry. In the absence of loss. the net
flux J(z). integrated over the cross-section of the waveguide. points in the = direction
and its value is constant along z. By tailoring the boundary shape of the waveguide.
the magnitude of J changes, but it remains invariant with z. With the addition of
loss, J(z) decays exponentially along z. If the waveguide has a uniform cross-section,
the decay length is determined by &,. which is independent of the waveguide width
or length. However. the decay length can be varied by tapering the waveguide width
along z. Figure 6.4(b) plots J(z) in four waveguides with random input fields. To
compare the spatial profile of J(z), its value at z = 0 is normalized to 1. Two of
the waveguides have uniform width. 11" = 5.1 gm. 10.2 gan. and their J(z) overlaps
after the normalization. With a linear increase of 117 with . the decay of J(z)
becomes slower, while a linear decrease of the waveguide width accelerates the flux
decay. Hence, by varying the waveguide width along the cross-section, we can tune
the decay of energy flux inside the random media. Such tuning of flux decay rate by
geometry can be achieved only in the presence of loss. illustrating additional degree

of control enabled by combination of dissipation and geometry.

6.5 Intensity decay inside random media

Experimentally we measured the 2D intensity distribution inside the tapered waveg-
uides shown in Fig. 6.1(c¢). From I(y. z) we obtain the cross-section-averaged intensity

1.(z) which gives the depth profile of the average energy density inside the random
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waveguide. In the tapered waveguides, the intensity decay rates become significantly
different as seen in Fig. 6.5(a). [v(z) decays much faster inside the expanding waveg-
uide than that in the constant-width waveguide, while the contracting waveguide
leads to a much slower decay of /v(z). Such behavior is attributed to the variation of

the waveguide width along z.

_ Constant width
Constant width Decreasing width
Decreasing width Increasing width
Increasing width
z/L z/L

Figure 6.5: Experimentally measured intensity decays inside disordered waveguides
in comparison to numerically calculated spatial profiles of the maximum transmission
eigenchannels. (a) Experimentally measured cross-section-averaged intensity /v(z) in-
side quasi-2D waveguides of constant width W — 60 //,m (solid blue line), increasing
width with W\ = 10 /im, W2= 60 /im (dotted green line), and decreasing width with
W\ = 60 /im, W2= 10 //m (dashed red line). All the waveguides have L = 80 /im
and L/*a= 3. The tapering of the waveguide boundary causes a dramatic change in
the decay lengths of /v(z). (b) Numerically calculated /v(z) of the maximum trans-
mission eigenchannel in the disordered waveguides of constant width W = 10.2 /im
(solid blue line), increasing width with Wl = 5.1 /im, W2 = 10.2 /im (dotted green
line), and decreasing width with W\ = 10.2 /im, W2= 5.1 (dashed red line). All
waveguides have L —20 /im and L/"~a= 3. Despite of the reduced waveguide dimen-
sions, the maximum transmission channels exhibit a qualitatively similar structure to
the experimentally measured intensities, indicating the intensity distribution inside a
strongly absorbing random medium is determined by the structure of the maximum
transmission channel.

For comparison, we also measure the intensity decay inside two constant-width
waveguides. Despite of a factor of 6 difference in the waveguide width (W= 10 /im, 60
/im), Iv decays exponentially in the two waveguides with nearly the same rate (not

shown). This result confirms that the intensity decay is independent of the waveguide

width as long as W is invariant with z and localization effect is negligible [53].
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As mentioned before. the two tapered waveguides with the same tapering angle
are mirror image of each other with respect to = = L/2. Thus the transport of light
with input from one end (2 = 0) of one waveguide is equivalent to that with input
from the opposite end (z = L) of the other waveguide. Hence, the difference in
the intensity decay in the two waveguides with injection from the same end (z = 0)
illustrates asymmetric transport of light in such tapered waveguides.

Since our fabricated waveguides are in the regime of strong dissipation (L > &,),
the intensities inside the structures are dominated by the maximum transmission
channel. The experimentally measured intensities should therefore reflect qualita-
tively the intensity profiles of the maximum transmission channels. In Figure 6.5(b).
we plot the numerically calculated I,.(z) for the maximum transmission cigenchannels
in waveguides of constant widths and tapered geometries (with reduced dimensions
due to limited computing power). They exhibit qualitatively similar structures, indi-
cating the intensity distribution inside a strongly dissipative random system is deter-
mined by the maximum transmission channel whose spatial profile can be tuned by

geometry.

6.6 Non-monotonic variation of waveguide cross-

section

Finally, we change the waveguide width non-monotonically along the axis for further
control of transmission channels. Figure 6.6(a) shows a “bow-tie” waveguide whose
width IV decreases lincarly in the first half and then increases in the second half.
While the input and output ends have identical widths. the waveguide has a constric-
tion in the middle that reduces the energy How. The total number of transmission
eigenchannels is still determined by the waveguide width at the input/output. How-

ever, only a fraction of these channels (determined by the width of the constriction)
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can propagate through the constriction. The rest are converted to evanescent waves
in the vicinity of the construction due to the reduction in the number of propagat-
ing modes. As the waveguide width increases after the constriction. the evanescent
wave that can tunnel through the constriction may convert back to propagating wave.
This is scen in the intensity profiles of the transmission channels in Fig. 6.6(b). 1,(2)
decays gradually in the first part of the bow-tic waveguide. then suddenly changes
to a must faster decay ncar the constriction. after the constriction the decay slows
down again. The abrupt changes in the decay length. from much larger than the
evanescent decay length. A/27n. to smaller than A/27n and back. indicate the con-
version from propagating wave to evanescent wave and back. The accelerated decay
rate near the constriction differs from one channel to another [Fig. 6.6(b)]. Hence.
evanescent waves with different decay rates are created inside a diffusive waveguide
by the constriction.

In the bow-tie waveguide, the number of transmission eigenchannels that diffuse
through the constriction without being converted to evanescent waves is determined
by the width of the constriction. When the constriction width 117 is reduced to below
the transport mean free path ¢. light propagation in the vicinity of the constriction is
changed from 2D diffusion to quasi-1D diffusion. However. the number of waveguide
modes supported by the constriction can still be much larger than 1. as long as
W. > A allowing light diffusion through the constriction. However, if IV, < A, light
transport at the constriction changes to evanescent tunneling.

The bow-tie geometry also modifies the high transmission channels, even in the
presence of strong absorption. In Fig. 6.6 (¢) along with the cross-section-averaged
intensity 7,(z) we also plot the cross-section-integrated intensity I;(z) = 1.(z) 1 (2).
While the former only gives the depth profile of the average energy density inside the
random waveguide. the latter tells the total amount of energy concentrated at certain

depth =z. The cross-section-averaged intensity [,.(z) for the maxinnun transmission
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Figure 6.6: Transmission eigenchannels and intensity decay in a diffusive waveguide of
bowtie geometry, (a) Top-view SEM image of a fabricated quasi-2D waveguide with
bowtie geometry. The length of waveguide is L — 80 /im. The width of waveguide
decreases linearly from 60 (im at z = 0 to 10 /im at z = L/2 and then again increases
linearly to 60 fim at z = L. (b) Numerically-calculated cross-section-averaged inten-
sity Iv(z) of the 19th (solid line) and 20th (dashed line) transmission eigenchannels of
bowtie waveguide. The length L of the waveguide is 20 /im, the width at z = 0, L is
10.2 (im (35 propagating modes) and the width of constriction at z —L/2 is 5.1 fiin
(17 propagating modes). The abrupt changes in the decay rate of /v(z) before and
after z — L /2 indicate the conversion from propagating wave to evanescent wave and
back. The evanescent decay rate varies from one channel to another, (c) Numerically-
calculated Iv(z) (green dashed line) and cross-section-integrated intensity /¢(z) (blue
solid line) for the maximum transmission channel of the same waveguide as in (b) but
with absorption T/£a = 3. The constriction causes a significant change in the inten-
sity distribution of the maximum transmission channel, (d) Experimentally measured
Iv(z) (green dashed line) and 4(z) (blue solid line) inside the disordered waveguide
shown in (a). Both intensity distributions follow those of the maximum transmission
channel.
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channel exhibits a small bump at the constriction. while the cross-section-integrated
intensity ,(z) has a dip. This is because the reduction in the cross-section increases
the encrgy density but suppresses the total Hux at the center of the waveguide. Fig-
ure 6.6(d) plots the experimentally measured intensity of light inside the bow-tie
waveguide. [,(z) decays slower in the first half (z < L/2) than in the second half
(z > L/2). I,(z) exhibits opposite behavior. The qualitative agreement between the
measured intensity decay and the calculated profile of the highest transmission eigen-
channel again confirms that the energv distribution inside the bow-tie waveguide is
determined by the maximum transmission channel.

The spatial structure of the open channel in the bow-tie waveguide can be tuned
by shifting the constriction away from the center of the waveguide. Unlike varying
the constriction width which would modifv the transmission eigenvalue and the di-
mensionless conductance, changing the location of the constriction only modifies the
transmission eigenchannels, but not the eigenvalues. It thus provides an efficient way
of tailoring the energy distribution inside the diffusive waveguide while keeping the
transmittance constant.

Complementary to the bow-tie waveguide. we fabricate the “lantern™ waveguide
whose width 11" increases linearly in the first half and decreases in the second half
[Fig. 6.7(x)]. In contrast to the bowtie geometry. the number of propagating modes
that can be supported in the lantern waveguide increases in the middle due to larger
cross-section, thus increasing energy throughput. In particular. a transmission eigen-
channel, which is evanescent at the input end of the random waveguide (due to the
refractive index difference from the lead waveguide), transforms to propagating wave
as the waveguide becomes wider. However, close to the rear end of the waveguide,
the propagating wave becomes evanescent again due to the decrease of the waveguide
width. Such behavior is shown in Fig. 6.7(b). where 1,.(z) for the m = 19 eigenchan-

nel exhibits a fast decay near the front end of the lantern waveguide. then the decay
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is slowed down in the middle. but near the back end the decay becomes fast again.
Since light can only tunnel out of the waveguide. there is a strong buildup of energy
inside the lantern waveguide, especially near the center where the number of waveg-
uide modes is maximum. For comparison, I,(z) of another transmission cigenchannel
(m = 5) is also plotted. Unlike m = 19, I,.(z) for m = 5 eigenchannel does not display
a dip in the intensity at z/L ~ 0 as it does not start with an evanescent wave at the
front side of the waveguide. instead it exhibits a uniform decay of intensity across the
entire waveguide.

The high transmission channels also experience a significant change in the lantern
waveguide. As seen in Fig. 6.7(c¢). the maxinmun transmission channel displays an
opposite behavior to that of the bow-tie waveguide [Fig. 6.6(¢)]. I.(z) drops faster
in the first half of the waveguide (2 < L/2) than in the second half (z > L/2),
while [,(z) is the opposite. The difference from the bow-tie waveguide is expected
because the cross-section is modulated in opposite manner in the two waveguides.
Consequently, the intensity distribution inside the lantern waveguide is very different
from that in the bow-tie waveguide. The measured [.(z) and [;(z) in Fig. 6.6(d)
exhibit distinct decay rates for = < L/2 and =z > L/2. which agree qualitatively to
those of the maximum transmission channel. This confirms the change in energy
distribution inside the lantern waveguide can be very well represented by the change

in the structure of the maximum transmission channel by geometry.

6.7 Discussion

To conclude, we have demonstrated an effective approach to modify transmission
eigenchannels of confined disordered media.  Using geometry. we can change the
spatial profiles of the transmission channels significantly and deterministically from

the universal one. It allows us to control the depth profile of the total energy as well
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Figure 6.7: Transmission eigenchannels and energy distribution in a diffusive waveg-
uide of lantern geometry, (a) Top-view SEM image of a fabricated quasi-2D disordered
waveguide with lantern geometry. The length of waveguide is L = 80 fim. The width
of waveguide increases linearly from 10 /im at z = 0 to 60 gm at z — L/2 and then
again decreases linearly to 10 /mi at z = L. (b) Numerically calculated cross-section-
averaged intensity /v(z) for the 5th (dashed line) and 19th (solid line) transmission
eigenchannels of lantern geometry. The length L of the waveguide is 20 /mi, the
width at z = 0,L is 5.1 /mi (17 propagating modes) and width at z = L/2 is 10.2
/im (35 propagating modes). [v(z) of the 19th transmission eigenchannel exhibits the
conversion of the evanescent wave to a propagating wave near the input end and then
back to the evanescent wave near the output end due to the variation of the waveg-
uide width. In contrast, the 5th channel remains propagating wave across the entire
waveguide, (c¢) Numerically calculated /v(z) (green dashed line) and cross-section-
integrated intensity /¢{z) (blue solid line) for the maximum transmission channel of
the same waveguide as in (b) but with absorption L/£a = 3. Both intensity pro-
files are opposite to those in the bow-tie waveguide, (d) Experimentally measured
Iv(z) (green dashed line) and /t¢(z) (blue solid line) inside the disordered waveguide
shown in (a). The intensity profiles are similar to those of the maximum transmission
channel shown in (c).
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as the energy density inside the random medium, thus controlling how much energy
is concentrated inside the sample and where it is concentrated. The ability to tailor
the spatial distribution of energy density can be exploited to manipulate light-matter
interactions in scattering media, which will be useful for numerous applications.

By gradually increasing the cross-section, we can enhance the transmittance of all
the transmission eigenchannels while keeping the nmumber of input modes the same.
Such geometries can be useful for applications related to enhancement of total trans-
mission by shaping the input wavefront. as in such structures there will be more open
channels due to larger conductance. NMoreover, since the waveguide cross-section at
the input end does not change. the number of input channels remains the same. and
additional degree of control of the input field is not necessary for coupling into any
one of the open channels. In addition. using geometry we can also convert evanescent
channels to propagating channels and vice versa. In a waveguide with the output
cross-section smaller than the input one. perfectly reflecting channels are created.
The light injected to such a channel would penetrate inside the scattering media to
a certain depth and then get fully reflected back to the input end. The penetration
depth of such channels can be further tuned by geometry. Such channels have poten-
tial applications for probing deep inside turbid media. Since all the light exits from
the input end. the collection efficiency of probe signal would be 100%. We can further
design geometries with opposite taperings to have the same transmission eigenvalues
but very different eigenchannel profiles. By breaking the reflection symmetry of con-
fined geometry, the transmission cigenchannels become asymmetric. In a diffusive
waveguide with non-monotonic tapering boundary such as the lantern geometry. en-
crgy can buildup inside the random medium. which will benefit the applications of
cnergy harvesting and tailoring of optical excitations inside scattering media.

Unlike the localization effects shown in chapter 2 and 4 which are suppressed by

absorption. the approach of using geometry to control light transport is effective even
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in the presence of strong absorption and does not require any change of structural
disorder. Thus this approach can truly complement the wavefront shaping technique
to control mesoscopic transport of light with an additional advantage that the cf-
ficiency is not reduced by external factors such as incomplete channel control and
measurenment noise [30]. The results discussed in this chapter are also applicable to
other waves such as microwaves. acoustics or matter waves.

Finally. we stress that the confined geometry enables manipulating the spatial
structures of transmission cigenchannels while retaining the open channels with per-
fect transmission. This is advantageous compared to other approaches that rely on
localization effects like shown in chapter 2 and 4, absorption [41] or asymmetric
surface reflections from edges [40] to modify the transmission channels as those ap-
proaches will also remove the open channels with perfect transmission. Although in
this chapter we have focused only on the maximum transmission channel. in general
using geometry the spatial profiles of the other low transmission channels can also be
deterministically and significantly modified. Since changing the confined geometry of
a random medium corresponds to modifying its boundary condition, we expect that
the Green's function inside the random system can also be tailored. This implies
that our approach of manipulating geometry in general may be applied to control
any mesoscopic effect that depends on the Green's functions inside the random media
such as non-local intensity correlations. renormalization of the diffusion coefficient.

the density of states etc.
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Chapter 7

Control of energy density inside
disordered medium by coupling to
open or closed channels using

adaptive wavefront shaping

7.1 Introduction

LTt has long been known that in disordered media there are many fascinating and
surprising cffects resulting from interferences of multiply scattered waves [2.3]. As
described in chapter 6, one of such effects is the creation of transmission cigenchannels
which can be broadly classified as either open or ¢losed [4,5]. The existence of high-
transmission (open) channels allows for an optimally prepared coherent input beam
to be transmitted through a lossless diffusive medium with order unity efficiency. In
contrast. waves injected into low-transmission (closed) channels barely penetrate the

medinm and are mostly reflected. As seen in chapter 6. in general. the penetration

1. This chapter is primarily based on the journal article published in ref. [1].



depth and encrgy density distribution of multiply scattered waves inside a disordered
medium are determined by the spatial profiles of the transmission eigenchannels that
are excited by the incident light. The distinet spatial profiles of open and closed chan-
nels suggest that selective coupling of incident light to these channels enables effective
control of total transmission and energy distribution inside the random medium [6,7].
Since the energy density determines the light-matter interactions inside a scattering
svstem. manipulating its spatial distribution opens the door to tailoring optical exci-
tations as well as linear and nonlincar optical processes such as absorption. emission.
amplification, and frequency mixing inside turbid media. The potential applications
range from photovoltaics [8,9], white LEDs [10] and random lasers [11], to biomedical
sensing [12] and radiation treatments [13].

In recent yvears there have been numerous theoretical and experimental studies
on transmission eigenchanuels [6,14 18]. While by knowing the transmission matrix,
one can determine their profiles [19 22], it is difficult to directly probe their spatial
profiles inside three-dimensional (3D) random media. So far, the open and closed
channels have been observed ounly with acoustic wave inside a two-dimensional (2D)
disordered waveguide [23]. but controlling the energy density distribution has not
been realized due to lack of an efficient wavefront modulator for acoustic wave or
microwave radiation. The advantage of optical waves is the availability of spatial
light modulators (SLMs) with many degrees of freedom. However. the commonly used
samples in optical experiment have an open slab geometry. thus making it impossible
to control all input modes due to limited numerical aperture of the imaging optics.
Such incomplete control dramatically weakens the open channels [24]. although a
notable enhancement of total transimission has been achieved [21.25]. Furthermore. an
enhancement of total energy stored inside a 3D scattering sample has been reported
[26], but a direct probe and control of the optical intensity distribution inside the

scattering medium are still missing.
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In this chapter. we demonstrate experimentally the control of the energy density
distribution inside a scattering medinm. Instead of the open slab geometry. we fab-
ricate a silicon waveguide that contains scatterers and has reflecting sidewalls. The
intensity distribution inside the two-dimensional waveguide is probed from the third
dimension. With careful design of the on-chip coupling waveguide, we can access all
the input modes. Such control of the incident wavefront enables an order of magni-
tude enhancement of the total transmission or a 50 times suppression. A direct probe
of the optical intensity distribution inside the disordered waveguide reveals that se-
lective excitation of open channels results in the buildup of energy deep inside the
scattering medium. while the excitation of closed channels greatly reduces the pene-
tration depth. Compared to the linear decay for random input fields. the optimized
wavefront can produce an intensity profile that is either peaked near the center of
the waveguide or decays exponentially with depth. The total energy stored inside the

waveguide 1s increased 3.7 times or decreased 2 times.

7.2 Design of the coupling waveguide and the dis-
ordered nanostructures

The 2D waveguide structure for this experiment is fabricated in a 220 nm silicon layer
ou top of 3 yun buried oxide by clectron beam lithography and reactive ion etching [7].
As shown in Fig. 7.1, air holes are randomly distributed within the waveguide whose
sidewalls are a photonic crystal that reflects light. At the probe wavelength A = 1.51
jan, the transport mean free path ¢ = 2.5 jan is much less than the length L =
50 pm of the disordered waveguide. so that light transport is diffusive. The out-of-
plane scattering. which provides a direct probe of light transport inside the random
structure, can be treated as loss and the diffusive dissipation length is £, = 31 jum. The

values of { and &, arc extracted from the measured intensity distribution and intensity
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fluctuations inside the disordered waveguide for uncontrolled illwmination [27]. The
waveguide of width 117 = 15 jan supports N = 56 transmission eigenchannels. among
which ~ 5 are open channels and the rest are closed channels. The total transmission
for uncontrolled illumination is about 4.8%.

The probe light is injected into the waveguide from the edge of the wafer. Due
to the large mismatch of the refractive index between silicon and air. the light can
be coupled only to the lower-order modes of the ridge waveguide. This limits the
nuber of input modes that can be controlled by wavefront shaping. To increase the
degree of input control, the coupling waveguide (lead) is tapered at an angle of 15°
[Fig. 7.1(a)]. The wider waveguide at the front end supports many more lower-order
modes. which can be excited by the incident light and then converted to high-order
modes by the taper.

To select the parameters for the tapered lead, we compute the degree of control
for the optical field at the end of the lead that will be injected to the disordered
waveguide. We simulate light propagation through the tapered waveguide using the
Finite Element Method (COMSOL) and KWANT [28]. At the entrance of the lead
(z = 0). only low-order modes (up to A} — th order) of the waveguide (of width 117)
arc excited with constant amplitude and random phase. The incident electric field
can be written as

AL
E(y.z=0)=Y_¢"0,(y).

m=1
where ¢,,(y) represents the transverse field profile for the m — th guided mode, and
6,, is the initial phase. We calculate electric field distribution at the end of the
lead E,(y.z = L;). where the subscript n denotes different set of random phases 6,),
assigned to the input field. Ly is the length of the tapered lead. Then we construct
the covariance matrix.

Cly.y") = (Ea() Eny )
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where (), represents averaging over random input wave-fields. The eigenvalues of
C'(y.y') are computed and plotted in Fig. 7.2 for a tapered waveguide of 117 = 85
pm. W= 15 pm, and L = 100 pan. The sudden drop of the cigenvalues in Fig.
7.2 gives the number of significant cigenvalues, which corresponds to the number of
independent spatial modes M that are controlled by varying the input field [Fig.
7.2]. We compute A for many tapered waveguides of different dimensions, and find
A = N as long as M exceeds the number of transverse modes N at the end of the
lead (of width TV).

In the experiment. the number of low-order modes in the coupling waveguide that
arc excited by the incident light. A/;. depends on the numerical aperture (NA) of
the objective we use to couple light into the silicon waveguide, the refractive index
contrast at the silicon/air interface, the width 11, and NA of the silicon waveguide.
For the fabricated sample in Fig. 7.1, W, = 330 pm, the total number of waveguide
modes at the front of the taper is 1245. The numerical aperture of the objective (NA
= 0.7) determines the range of incident angle for light ilhuninating the front facet of
the silicon waveguide. From the silicon/air index contrast. we calculate the angular
range of light that is coupled into the waveguide. and then obtain the number of
waveguide modes that are excited by the incident light. A/, = 359. We intentionally
make A/} much larger than N = 56. to cnsure all input modes to the disordered
waveguide are accessed experimentally. In addition, we adjust the incident beam size
to completely fill the pupil of the objective, so that the entire numerical aperture of

the objective is used to couple light into the lead.

7.3 Wavefront shaping experiment

The wavefront shaping experiment is shown schematically in Fig. 7.3(a). A monochro-

matic laser beam is phase modulated by an SLA and then focused to the edge of the
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Figure 7.1: On-chip disordered waveguide with a tapered lead, (a) Top-view scanning
electron micrograph (SEM) of a fabricated silicon waveguide. A ridge waveguide
(lead) is tapered from the width W\ = 330 pm at the edge of the wafer to the width
W = 15 pm, in order to increase the degree of control of the light that is injected to the
disordered waveguide, (b) Magnified SEM of the disordered region of the waveguide
that consists of a random array of air holes (diameter = 90 nm). (c¢) Magnified
SEM showing the air holes distributed randomly within the waveguide with a filling
fraction of 6 %. (d) The sidewalls of the waveguide are made of a triangular lattice
of air holes (diameter = 360 nm) with a lattice constant of 505 nm, which supports
a full photonic bandgap at the wavelength A= 1.51 pm.

10

0 20 40 60 80 100
Index of the eigenvalues

Figure 7.2: Semi-log plot of the eigenvalues of the covariance matrix C(y,y’) for the
electric field Em(y:z — L\) at the end of a tapered lead with W\ = 85 pm, W = 15
pm, and L| = 100 pm. The inset is a schematic of the geometry. The sudden drop
of eigenvalues gives the number of significant eigenvalues, M = 56. which is equal to
the number of waveguide modes N = 56 at the end of the lead z = L\.



wafer by a microscope objective of munerical aperture (NA) 0.7. To produce a line
of illumination at the input facet of the coupling waveguide. the SLM imposes phase
modulation only along one dimension that is parallel to the transverse direction of the
waveguide, as shown by the 2D phase mask in Fig. 7.3(a). The light that is scattered
out of plane by the random array of air holes is collected by an objective and pro-
jected to an InGaAs Camera to obtain the spatial distribution of the intensity, I(y, z),
inside the disordered structure {Fig 7.3(c)]. In the wavefront shaping experiment. we
modulate the phases of 300 macro-pixels on the SLN. Each macro-pixel is a group of
2 x 792 SLM pixels. and has the dimension 0.04 x 15.8 mm. Since the SLM plane is
projected onto the pupil plane of the objective (O;). the phase modulation is applied
to the phase space instead of the real space.

Two wavefront shaping approaches have been developed for the transmission en-
hancement, one is based on the measurement of transmission matrix [29,30]; the other
relies on feedback [31]. While the open channels can be obtained from the measured
transimission matrix. the closed channels are subject to measurement noise due to
nearly vanishing transmission. Here we took the feedback approach, and optimized
the procedure using the continuwous sequential algorithm [31] to control the energy
density inside the disordered waveguide.

To optimize the throughput of the disordered waveguide. we choose the cost func-
tion S to be the ratio of light intensity integrated over an area in the back part of
the waveguide to that in the front part marked by two rectangles in Fig. 7.3(c)l.
To smooth out the fluctuation, the intensity is integrated over an area of length d
and width W. Experimentally we varied « from 2/ to 7[, where [ = 2.5 pm is the
transport mean free path. and the final results obtained via optimization are robust.
If d is less than 2/. the spatial averaging is not sufficient to smooth out the intensity
fluctuation. The data shown in Fig. 7.4 are obtained with ¢ = 4.5/. To ensure

the convergence of the optimization algorithm. the phases of all macro-pixels are acl-
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justed in two sequential rounds. The final value of the cost function S depends on
the initial phase pattern for the optimization algorithm. but the variation is less than
10%. The final distribution of light intensity across the disordered waveguide I(y, )
also changes with the initial phase pattern. but the cross-section-averaged intensity
I(z) has almost the same profile. Thus the data obtained from different initial phase
patterns are averaged to reduce Huctuations.

To avoid experimental artifacts it is crucial to optimize the intensity ratio instead
of the intensity integrated over the entire scattering sample. because the adaptive
wave front shaping can change not only the energv distribution inside the sample.
but also the transmission through the optical syvstem that delivers light from the
SLAI to the sample. If we were to maximize or minimize the total energy within
the disordered waveguide. the optimization algorithm might find a wavefront that
enhances or suppresses the light delivery to the sample through the lens and the

objective [25].

7.4 Experimental results and comparison to nu-
merical simulations

First we maximize S to enhance light penetration into the scattering structure. Fig-
ure 7.4(b) shows the final intensity distribution [(y. z) for the optimized input. In
Fig. 7.4(e) we plot the cross-section-averaged intensity (=) = .I(l)”v I(y, z)dy, further
averaged over four wavelengths and three initial phase patterns that served as the
seed to the optimization algorithm. 7(z) is peaked near the center of the disordered
waveguide in Fig. 7.4(e), which is dramatically different from the monotonic decay
with random input fields in Fig. 7.4(d). The latter profile is in agreement with
the prediction of the diffusion theory and the slight deviation from a linear decay

is caused by the out-of-plane scattering loss. The dissipation causes an asyvimimetry
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Figure 7.3: Wavefront shaping experiment to control intensity distribution inside a
disordered waveguide, (a) A schematic of the experimental setup. A laser (HP 8168F)
output at A= 1510 nm is collimated (by lens Li), expanded (by L2, L3) and linearly
polarized (by a polarized beam splitter PBS) before being modulated by a phase-only
SLM (Hamamatsu X10468). Two lens (L4, L5) are used to project the SLM plane to
the pupil plane of an objective 01 (100x, NA = 0.7), and the edge of the wafer is
placed at the focal plane. The SLM imposes phase modulation only in one direction
in order to generate a line at the front end of the coupling waveguide. A sample phase
pattern on the SLM is shown. The light scattered out of the sample plane is collected
by another objective 0 2 (100x, NA = 0.7) and imaged to an InGaAs camera (Xenics
XEVA 1.7-320) by a tube lens (T6). M\ and A/2 are mirrors, BS is beam splitter, (b)
An optical image of the illumination line (330 x 1.1 /im) on the waveguide facet. The
input intensity is modulated along the line, (c) An image of the spatial distribution
of light intensity inside the disordered waveguide for a random input wavefront. The
spatial resolution is about 1.1 /im. The ratio S of the integrated intensities over the
two rectangles at the back and front side of the waveguide is used as feedback for
optimizing the input wavefront.
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in the optimized intensity distribution with respect to the center of the waveguide
(z/L = 0.5). as the peak of I(z) in Fig. 7.4(b) shifts towards the input end. The
rescmblance of the optimized I(z) to the spatial profile of open channels indicates
that the optimized wavefront couples light to the high-transmission eigenchannels.

Next we minimize S by adapting the input wavefront, and the resulting intensity
distribution is presented in Fig. 7.4(¢). The cross-section-averaged intensity 7(z) in
Fig. 7.4(f) exhibits a much faster decay with depth than the random input. Moreover.
the decay is clearly exponential. resembling the spatial profile of closed channels. De-
spite the presence of measurement noise, the optimized wavefront couples effectively
to the low-transmission eigenchannels.

To confirm the experimental results. we simulate a 2D disordered waveguide with
all parameters equal to the experimental values [28]. The phase-only modulation
is imposed on the input wavefront to optimize the same cost function S with the
continuous sequential algorithm. The solid curves in Fig. 7.4(d.e,f) represent the
simulation results. which agree well with the experimental data. The curves are
normalized such that the total incoming flux is equal to unity in all cases. Therefore.
the intensity profiles can be quantitatively compared to get the order of magnitude
of intensity amplification within the scattering sample.

By projecting the optimized fields onto the transmission eigenchannels. we obtain
the contributions from individual channels. Figure 7.5(a) presents the weight w of
each channel as a function of the transmission eigenvalue 7 in the case that the
cost function S is maximized [Fig. 7.4(b,e)]. In comparison to a random input
field which has equal contributions from all channels w(7) = 1/N. the optimized
field for maximum S has greatly enhanced contributions from the high transmission
channels and reduced contributions from the low-transmission channels [Fig. 7.5(a)].
While the maximum transmission channel has the largest weight, a few channcls

with slightly lower transmission also make significant contributions. Thus the energy
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Figure 7.4: Experimental control of intensity distribution inside the disordered waveg-
uide. (a, b, ¢) Two-dimensional intensity distribution /(y:z) inside the disordered
waveguide shown in Fig. 7.1 for (a) random input fields, (b) optimized input for
maximum light penetration (maximizing S). (c) optimized input for minimum light
penetration (minimizing S). (d, e, f) The cross-section-averaged intensity, /(z), ob-
tained from /(y,z) in (a, b, ¢). Dashed lines are experimental data and solid lines
are simulation results.

density distribution /(z) is slightly lower than that of the maximum transmission
channel, and shifted a bit towards the front end of the waveguide [Fig. 7.5(b)]. As
shown in Fig. 7.5(a), the weight w(r) increases exponentially with r, in contrast to
the linear increase of w with r in the case of focusing (maximizing intensity of a single
speckle) through a random medium. This difference indicates maximizing S is more
efficient for enhancing the contribution of the maximum transmission channel over
all other channels.

When S is minimized [Fig. 7.4(c,f)], the weights of high-transmission channels are
strongly suppressed, especially the highest transmission channel [Fig. 7.5(c)]. While
many low-transmission channels have slightly increased weights as compared to the
random input field, none of them becomes dominant. Since the low-transmission
channels have exponential decay with different decay lengths, the total intensity dis-

tribution 7(z) obtained by minimizing S also decays exponentially, but the decay
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length is longer than that of the minimum transmission channel [Fig. 7.5(d)].

The numerical simulation confirms that our wavefront shaping experiment results
in selective coupling of the input light to open or closed channels. which leads to
distinet intensity distribution inside the scattering waveguide. The total transmission
is increased from ~ 4.8% (for random input fields) to ~ 47% (when S is maximized),
and the total energy inside the disordered structure is enhanced 3.7 times. The
minimization of S makes the total transmission drop to ~ 0.1%. and the total energy
inside is reduced by a factor of 2.

Finally we compare numerically the feedback-based approach to the transmission-
matrix approach by computing the transmission eigenchannels from the field trans-
mission matrix. With phase-only modulation. the input ficld for a transmission eigen-
channel is decomposed by the waveguide modes. and the amplitude of the decompo-
sition coefficients are set to a constant. The removal of amplitude modulation mixes
the maximum transmission channel with other channels. as seen in Fig. 7.5(a). While
the weight of the maximum transmission channel decreases from unity to 7/-1 [32]. all
other channels have a constant weight (1—(7/4))/(N —1). The cross-section-averaged
intensity distribution /(=) is nearly identical to that obtained by maximizing S [Fig.
7.5(h)]. Similarly, elimination of amplitude modulation from the minimum transmis-
sion channel introduces contributions from all other channels [Fig. 7.5(c¢)]. Their
weights are equal (independent of their transmission), albeit smaller than that of the
minimum transmission channel. Consequently. 7(z) displays a rapid decay at shallow
depths. due to the dominant contribution from the minimum transmission channel:
it is followed by a much slower decay at large depth due to the contributions of the
remaining channels including the highly transmitting ones. The total transmission
is ~ 1%. approximately an order of magnitude higher than that obtained by mini-
mizing S. This is attributed to the stronger suppression of the higher transmission

channels by the feedback approach. i.e., the higher the transmission cigenvalue, the
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lower the weight. Therefore, with phase-only modulation of incident wavefront, the
feedback approach is far more efficient in minimizing the total transmission than the
transmission-matrix approach.

In summary, we apply the adaptive wavefront shaping technique to on-chip dis-
ordered nanostructures. Careful design of the coupling waveguide enables access
to all input modes and allows us to reach the maximum or minimum transmission
that is achievable with phase-only modulation. Selective excitation of the open or
closed channels results in the variation of the optical intensity distribution from an
exponential decay to a linear decay and to a profile peaked near the center of the ran-
dom system. The coherent control of multiple-scattering interference leads to diverse
transport behaviors in contrast to universal diffusion, highlighting the possibility of

controlling light-matter interactions in turbid media.
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Figure 7.5: Numerical simulation of wavefront shaping experiment. (a,c) Weight w(r)
of each transmission eigenchannel in the input field obtained by maximizing (a) or
minimizing (c) light penetration into the disordered waveguide with the cost function
S (black solid line). For comparison, w(r) for the random input held (blue solid line),
and for the input held of the maximum (a) or minimum (c¢) transmission eigenchannel
after removal of amplitude modulation (red dotted line) are also shown. (b,d) Cross-
section-averaged intensity distribution /(z) for the maximized (b) or minimized (d) S
(black solid line), as well as the maximum (b) or minimum (d) transmission channel
with (green dash-dotted line) and without amplitude modulation (red dotted line).
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Chapter 8

Control of light transport inside a
random medium with

inhomogeneous scattering and loss

8.1 Introduction

' In recent vears there have been rapid advances in coherent control of light propaga-
tion in strong scattering media [2]. It has been shown that light can be focused inside
or through a turbid medium by shaping the input wavefront [3]. which enables image
transmission through an opaque material [4]. As shown in the previous chapter and
other experiments. wavefront shaping techniques have also been used to enhance the
total transmission of light through a diffusive system via selective coupling of incident
light to high transmission channels [5 10]. These studies have important implications
in biophotonics and biomedical applications [11.12]. However. in real samples such as
biological tissues. the amount of light scattering often varies spatially. So far all the

samples in wavefront shaping experiments are homogencous. namely. the scattering

1. This chapter is primarily based on the journal article published in ref. [1].
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strength is constant evervwhere. Coherent control of light transport has not been
demonstrated in inhomogeneous samples and the power of wavefront shaping in such
systems is not known.

Light absorption is common in optical systems, and it can strongly modify high
transmission channels. With strong absorption uniformly spread across a scatter-
ing medium, the diffusive transport of light in the maximum transmission channel
turns into quasi-ballistic [13]. In reality. optical absorbers are often distributed non-
uniformly in random samples. and the high transmission channels redirect the energy
flow to circumvent the absorbing regions to minimize attenuation [14]. These results
are obtained from numerical simulations. and there has been no experimental study
vet. Further. it is not clear what will happen when both scattering and absorption
are spatially inhomogenecous.

In this chapter, we adopt the adaptive wavefront shaping approach to enhance light
transmission through a disordered waveguide with spatially inhomogeneous scatter-
ing and loss. The silicon waveguide contains randomly distributed air holes within
photonic crystal sidewalls. The degree of input control is much higher than that in
the open slab geometry. thanks to an on-chip tapered lead. Light transport inside
the two dimensional waveguide can be directly probed from the third dimension. Af-
ter optimizing input wavefront to enhance the total transmission. we obscrve that
optical waves bypass the region of higher scattering and loss in the waveguide. The
spatial inhomogeneity of scattering and loss leads to redirecting of energy flux to
optical paths with less scattering and loss, in order to maximize the total energy
transported through the system. The experimental data agree to the numerical sim-
ulation results. revealing how a high transmission channel is modified by spatially

inhomogeneous scattering and loss.
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8.2 2D random waveguide with inhomogeneous scat-
tering and loss

The disordered waveguide is fabricated in a silicon-on-insulator (SOI) wafer. The
thickness of the silicon layer and of the buried oxide are 220 nm and 3 jun., respectively.
The patterns are made by clectron beamn lithography and etched by an inductively-
coupled-plasma (ICP) reactive-ion-etcher (RIE). Figure 8.1 is the scanning electron
microscope (SEM) image of a fabricated sample. The waveguide is L = 60 pm long
and 11" = 20 g wide. It contains a two-dimensional (2D) random array of air holes.
While propagating in the waveguide. light is scattered both in plane and out of plane
by the air holes. The out-of-plane scattering can be treated as loss. and the material
absorption at the probe wavelength (A = 1510 nm) is negligible [15].

To introduce spatially inhomogeneous scattering and loss, we vary the size and
density of air holes in the waveguide. In a central region of diameter 10 pm, the
air holes are larger and denser (hole diameter = 150 nm. air filling fraction = 15
%). leading to stronger in-plane scattering and out-of-plane scattering. Outside this
region the scattering and loss are weaker. as the air holes are smaller (diameter = 90
nu) and the filling fraction is lower (6 %).

The relevant parameters to describe light propagation in the disordered waveguide
are the transport mean free path € and the diffusive dissipation length &,. Their
values in the two regions of different air hole size and density are extracted from the
measurciment of intensity distributions and fluctuations in two separate waveguides
with homogencous scattering and loss [16]. In the central region, £ = 1 pm and
&, = 13 pan: in the surrounding region, £ = 2.5 jun and &, = 31 .

The waveguide has reflecting sidewalls made of a triangular lattice of air holes
(diameter = 360 nm. lattice constant = 550 nm). It supports an in-plane photonic

bandgap at the probe wavelength, that confines the scattered light within the waveg-
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Figure 8.1: 2D disordered waveguide with inhomogeneous scattering and loss, (a)
Top-view scanning electron micrograph (SEM) of the fabricated silicon waveguide
that consists of randomly positioned air holes. The waveguide width W = 20 pm,
and length L = 60 pm. A circular region of diameter 10 pm at the center of the
waveguide has larger and denser air holes (hole diameter = 150 nm, the air filling
fraction = 15 %). Outside this region, the air holes are smaller (diameter = 90 nm)
and the filling fraction is lower (6 %). The sidewalls of the waveguide are made of
a triangular lattice of air holes (diameter = 360 nm, lattice constant = 505 nm),
which supports an in-plane photonic bandgap at the wavelength A= 1.51 pm. (b)
Magnified SEM of the central region of the disordered waveguide showing air holes
of two different sizes and densities.

uide. The incident light is injected from the edge of the wafer to a silicon ridge
waveguide. Due to the refractive index mismatch between silicon and air, the light
can only excite the lower-order modes of the ridge waveguide, limiting the number of
input modes that could be controlled by wavefront shaping. As shown in the previous
chapter, to increase the degree of input control, we design and fabricate a tapered
waveguide that serves as a lead to the disordered waveguide [10]. The tapering angle
is 15°, and the waveguide width is reduced from 330 pm to 20 pm over a length of
578 pm. The wider waveguide at the input supports many more lower-order modes
that are converted to higher-order modes by the taper. The numerical simulation
confirmed that the number of waveguide modes excited at the air-silicon interface by

the incident light is significantly larger than the number of transmission channels in

the disordered waveguide iV = 75.
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Figure 8.2: A schematic of the wavefront shaping experiment setup. A laser beam
(HP 8168F) at A= 1510 nm is collimated (by lens Li), expanded (by L2, L3), and
linearly polarized (by a polarized beam splitter PBS) before being modulated by a
phase-only SLM (Hamamatsu X10468). Two lens (L4, L5) are used to project the
SLM plane to the pupil plane of an objective 0! (100x, NA = 0.7), and the edge
of the coupling waveguide is placed at the focal plane of the objective. The light
scattered out of the sample plane is collected by a second objective 0 2 (100x, NA =
0.7) and imaged to an InGaAs camera (Xenics XEVA 1.7-320) by a tube lens (T6).
Mi and M2 are mirrors, BS is an unpolarized beam splitter. The inset is an optical
image of the illumination line on the front facet of the coupling waveguide, created
by modulating the phase of the SLM pixels.

8.3 Experimental setup and results

To control light transport in the disordered waveguide, we adopt the adaptive wave-
front shaping scheme that we implemented for 2D on-chip waveguides in the previous
chapter. The setup is shown again schematically in Fig. 8.2. A monochromatic laser
beam is collimated, expanded and linearly polarized. It is then phase modulated by
a spatial light modulator (SLM). The SLM plane is demagnified and projected to
the pupil plane of an objective. At the focal plane of objective lies the front facet of
the coupling waveguide. We impose one-dimensional phase modulation on the SLM
to create a line of illumination for the coupling waveguide, as shown in the inset of
Fig. 8.2. To map the spatial distribution of light intensity, /(yz) I inside the dis-
ordered structure, the out-of-plane scattered light is collected by a second objective
and projected to an InGaAs camera.

To enhance the total transmission through the disordered waveguide, we choose

the feedback-based optimization technique, which is robust against measurement
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Figure 8.3: Optimizing the incident wavefront to enhance light transmission through
the disordered waveguide with spatially inhomogeneous scattering and loss. Exper-
imentally measured 2D intensity distribution J(y, z) inside the waveguide shown in
Fig. 8.1 for (a) unoptimized input fields, (b) optimized input for maximum cost
function S. The white box marks the boundary of the disordered waveguide.

noise as shown in the previous chapter. The cost function S is given by the ratio
of the cross-section integrated intensity of light at the back end of the waveguide to
that at the front end. We use the continuous sequential algorithm to maximize S
by adjusting the phase of SLM pixels [3]. Figures 8.3(a) and (b) show the intensity
distribution I(y, z) for an unoptimized input and an optimized input, respectively.
When the input wavefront is not optimized, the light intensity decreases with the
depth in the disordered waveguide. Stronger out-of-plane scattering brightens the
central region that has larger and denser air holes. In contrast, the optimized input
wavefront makes the central region dark, meanwhile the intensities on both sides of
this region increases. Such changes indicate that light bypasses the central region

with higher scattering and loss to maximize the total energy transported through the

medium.

8.4 Numerical simulations

For a better understanding of the experimental results, in order to understand the

energy flow for optimized input, we perform a numerical simulation [17] to calcu-
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Figure 8.4: Numerical simulation of the ensemble averaged Poynting vector J(y:z) of
light inside the 2D disordered waveguide with spatially inhomogeneous scattering and
loss. The magnitude of J(y,z) is shown by color plot, and its direction is shown by
the arrows. The input held in (a) is optimized to maximize total transmission. With
optimized input wavefront, the optical waves bypass the region of higher scattering
and loss in the middle of the waveguide (denoted by a while circle), (b) shows
J(y, z) for the maximum transmission channel, which is nearly identical to that in
(a), indicating the optimized input held couples mostly to the maximum transmission
channel.

late the ensemble averaged Poynting vector J{y)z) for an optimized input of a 2D
disordered waveguide with all parameters equal to the experimental values. Similar
to the previous chapter, the continuous sequential algorithm is used to optimize the
total transmission via phase-only modulation of the input wavefront. The total trans-
mission increases from 3.2% with unoptimized input to 42% with optimized input.
Figure 8.4(a) plots the magnitude and direction of J{y,z) in the disordered waveg-
uide for an optimized input. The optimized input wavefront makes the energy hux
circumvent the central region with higher scattering and loss, in agreement to the ex-
perimental result. Further, Fig. 8.4(b) shows the magnitude and direction of J(y,z)
of the maximum transmission channel, which resembles that of the optimized input
in Fig. 8.4(a). This result suggests that with the optimized input wavefront, light
transport is dominated by the maximum transmission channel. We confirmed this by
decomposing the optimized input wavefront by the transmission eigenchannels. The
contribution from the maximum transmission channel is significantly larger than all

other channels. Therefore, the optimization of incident wavefront leads to selective



coupling of light to the high transmission channels.

In summary, we enhanced light transmission through a 2D waveguide with spa-
tially inhomogeneous scattering and loss by shaping the wavefront of incident light.
Using a tapered lead, we are able to access all input modes by a spatial light modula-
tor. The optimized wavefront selectively couples light to high transmission channels,
which bypass the regions of higher scattering and loss. This work demonstrates the
power of wavefront shaping in controlling light transport in inhomogeneous scatter-
ing samples, which are common in real applications. In addition, these results may
trigger further studies of on-chip disordered photonic nanostructures with spatially

varying scattering strength and loss to mold the flow of light [18].
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Chapter 9

Finite Difference Time Domain
Algorithm for Rotating Dielectric

Structures

9.1 Introduction

I Optical gyvroscopes have been widely used in industrial and military applications
ranging from inertial navigation svstems in aircrafts and vessels to control. stabiliza-
tion. and positioning systems for robotics and virtual reality applications [2]. Com-
pared to the mechanical gvros. optical gyvros have higher sensitivity and lower drift
rates. All optical rotation sensors exploit the Sagnac effect which is the phase differ-
ence hetween two counter-propagating waves along a closed-loop fiber or waveguide.
Recently slow light structures, e.g., photonic crystals [3.4] and coupled microres-
onators [5 9]. have been explored for the realization of high-sensitivity miniatur-
ized optical gvroscopes. In addition to the phase shift. a rotation-induced photonic

bandgap has been suggested and studied [10]. All these optical gyros are passive

1. This chapter is primarily based on the journal article published in ref. [1].
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in the sense that the light sources are external. The active gyvros produce the two
counter-propagating beams within the structures. and their frequency difference is
often used as a measure of the rotation speed. NMicrocavity lasers have recently been
investigated for ultrasmall active optical gyroscopes [11-14]. Wavelength-scale mi-
crodisk cavities have small footprints and can be made with current semiconductor
fabrication technologies [11 -13].

In the theoretical investigations of optical gyroscopes, diverse strategies have been
undertaken. e.g.. the direct modal analysis of time-dependent Maxwell equations in
the laboratory frame [15.16]. the extension of tight-binding theory to electrodynam-
ics of a rotating medium [3]. and the two-dimensional Greens function in a rotating
environment [17]. The numerical approaches include the extended transfer matrix
method [6] and the finite-difference time-domain (FDTD) algorithm in a rotating
frame [18]. The FDTD method is an ab-initio, time domain method that can simu-
late both steady state and transient processes. Analytical results are often difficult to
be obtained for complex photonic structures with open boundaries, and the FDTD
simulation provides a vital tool for the design and optimization of rotation sensors.
An extensive and detailed analysis of the numerical dispersion. the diclectric bound-
ary condition and the perfectly matched laver absorbing boundary conditions in the
rotating FDTD model has been performed previously [18].

In this chapter, we modity the standard FDTD algorithm for stationary frame to
rotating frame by incorporating the modified constitutive relations due to rotation.
and simulate a wavelength-scale optical gyroscope based on a circular microdisk.
Different from the previous FDTD model, which calculates only £ and H, we calculate
E. H. D.and B by solving simultaneously and separately the Maxwell equations and
the constitutive relations in the rotating frame. We validate our FDTD codes by
comparing the simulated frequency splitting of resonant modes of a circular disk to

the analvtical results.
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9.2 FDTD algorithm for rotating frame

Basic physical laws governing electromagnetic fields are invariant under coordinate
transformation including noninertial ones [18,19]. Maxwell equations therefore retain
their form, and the transformation from the stationary frame to a rotating frame is
manifested by the changes in the constitutive relations. Assume the medium rotates
slowly with a constant angular velocity Q around a fixed axis, such that |QL| < c.
where L is the maximum distance from the rotation axis. and ¢ is the velocity of light
in vacuum. The constitutive relations in the rotating frame to the first order of 2
are [14.18.19]:

E=D+c2OxixH (9.1)

pH=B—c?20x7xE (9.2)

We consider a dielectric disk of radius R in free space. The disk is in the 2 — y plane
and rotates around its center with = Q2. The disk can be considered as a two-
dimensional systemn with an effective index of refraction n. It has been shown that
in a rotating two-dimensional svstem the electromagnetic fields can be decomposed
into transverse electric (TE) and transverse magunetic (TM) modes [17]. Without loss
of generality. we concentrate on the TM modes in this thesis. For TM modes. the
non-vanishing field components are E..D.. H,. H,. B,. and B,. and the constitutive

relations are reduced to

¢E. =D, — ¢ *(QyH, + QwH,) (9.3)

iH, = B, — ¢ *(QrE.) (9.4)
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pH, = B, — ¢ *(QyE.)

(9.5)

The Maxwell equations remain the same in the rotating frame, and there are no free

charges or currents in the microdisk systems. We adopt the Yee lattice and leapfrog

scheme in our FDTD algorithm. All field components are updated with the Maxwell

equations and the constitutive relations in a particular order:

oD. 0H, 0H,

ot Ox Ay

eE, =D, — C"Z(QyHy + QxH,)

0B, OF,
ot Oy
08, _OE.
ot Ox

pwH, = B, — ¢ *(QxE,)

wH, =B, — C_Q(Q:UEZ)

(9.6)

(9.10)

(9.11)

Equations 9.6, 9.8, and 9.9 are identical to those in the stationary frame, and we

discretize them in space and time following the standard procedure of Yee algorithm

for a stationary frame. Equations 9.6, 9.8, and 9.9 update D., B,, and B,, respec-

tively. Equations 9.7, 9.10, and 9.11, which update E., H,, and H,, respectively,

contain additional terms from rotation. which make the discretization complicated.

For example, the discretized form of Eq. 9.7 in terms of Yee notation where time step
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is given by superscript and spatial stepping is given by subscript is

n _ n —2 n
fz‘—l/2,j+1/2Ez|i—1/2,j+1/2 - Dzli—1/2,j+1/2 —C (QyHy|i—l/2,j+l/2

+QxHI‘?—1/2,j+l/2) (9.12)

The semi-implicit-approximation or temporal average of E, gives [20] :

n o n+1/2
6i—1/2,j+1/2Ez|i—1/2,j+1/2 - 6i—1/2-j+1/2(Ez‘i—1/2,j+1/2

VB )2

i—1/2,j+1/2

and a similar expression for D,. The leapfrog scheme does not calculate the value of

H, at (i —1/2,5+ 1/2), and we therefore use a spatial average as an approximation

Hy|?—1/2,j+1/2 = (Hy|?;1,j+1/2 + Hy|2j+1/2)/2

Similar spatial average is applied to H,. After substituting these expressions into Eq.

9.12 we get

n+1/2 n—1/2

Ei*I/Q»j‘H/?EZ|i—1/2.j+1/2 = _Ei—1/2~j+1/2E2li—1/2,j+1/2
n+1/2 n—1/2 -2 n
+(Dzli71/2,j+l/2 + Dz‘ifl/Q,j+l/2) - ¢ (Qy(Hyli—l,J‘H/?
HH |21 p2) + Qu(He |y g1 + Hal1)2,5)) (9.13)

Equation 9.13 is the final form that we use in our algorithm to update E,. To update
H, and Hy with Eqgs. 9.10 and 9.11, we follow the same procedure, but use the semi-

implicit approximation or temporal averaging for H, and H,, and perform the spatial
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averaging for E.:

/«11—1/2.J'+IHI-HI_JFII/ZJ-H = —/'i—1/2.j+lH«l'|?Ql/2.j+l
+(B, ?j11/2.j+l + B.r|z':’;1/2,j+1) - (7_2(9-”7(Ez ?jll//zz.jﬂ/z
CELE L) (9.14)
Hi.j+1/2Hy‘?_J-++11/2 = “lfi.j+1/2Hy|?.j+1/2
+(By|?,;11/2 + Bu|?.j+1/2) - (3_2(Q,U(Ez ;:Fll//;ﬁlﬂ
FE ) (9.15)

Our algorithm therefore uses Maxwell equations to update D and B from F and H,
and the constitutive relations to update E and H from D and B. Although it includes
additional quantities and equations compared to the previous FDTD algorithm, our
algorithm is actually simpler as there are no time derivatives or spatial derivatives
in the extra equations. This improves the numerical stability and accuracy of the
FDTD simulation.

For simulating a stationary or rotating closed cavity. we use Dirichlet Boundary
conditions in our FDTD algorithm. For stationary or rotating open cavities. we
terminate the main grid by a uniaxial perfectly matched layer (UPNL) designed for
a stationary frame. The condition for vanishing reflection from the UPML has been
obtained in the stationary frame [20]. In a rotating frame, since the constitutive
relations are changed, the zero reflection condition cannot be perfectly satisfied [18].
To determine the applicability of the UPML designed for a stationary frame in a
rotating frame, we estimate the crror caused by residual reflection from the UPML.
The test region and benchmark region share the center. and both have a square-

shaped main grid terminated by UPML. However the main grid of the benchmark
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region is five times bigger than that of the test region. We launch a hard source at
the centre of both the test region and the benchiark region at the initial time step

n = 0. and calculate the global crror [20]

()’global|” = Z Z |E3[|;11 - E:,13|:2J12 (916)
i J

at various time steps n. where E:.T|Z ;s the value of E. at time step n and position
(i.j) in the test region and E. p|!; is in the benchmark region. After the source
has propagated and reached the UPML of the test region but not the UPML of the
benchmark region. Eq. 9.16 gives an estimation of the reflection from the UPML.
We observed. for a stationary main grid terminated by a stationary UPML. the
maximum global error is ~ 1.3 x 107!, For a rotating main grid with the maximum
v/c ~ 0.01 and terminated by stationary UPML, the maximum global error is ~
2.1 x 1075, The global error increases by a factor of ~ 10° but still is small enough

and the reflection does not corrupt the results as shown in the next sections.

9.3 Sagnac effect in a microdisk cavity

In this section. we present the analytical result of Sagnac effect in a rotating microdisk.
In the rotating frame. the wave equation for clectric field of TM polarized light can

be written in the polar coordinates as [11,13.14]:

[g; + (%) ((%) + ,%j; v 211\/:?(‘% b2kt B = 0 (9.17)

In a circular disk. E.(r.0) = f(r)eap(—im8). where m is an integer. and

2

[ad—zz * (l) (%) — s | =0 (9.18)
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where

['2 _1.20,,2 Q
v\, =k [11 + 2/11—] (9.19)
w

Equation 9.19 implies that rotation induces a change in the dielectric constant or the
refractive index, which is given by n;ff = n? + Qm% [14]. For a given direction of
rotation, the clockwise (CW) and counter-clockwise (CCW) waves inside the cavity
experience different n.,p as they have opposite signs of the azimuthal number. m.
The wave traveling in the same direction of rotation acquires a higher n.;,; than
that traveling in the opposite rotation. Thus rotation lifts the degeneracy of WG
modes. For a closed cavity, where Dirichlet Boundary conditions are applied at the
boundary. the frequency splitting between the CW and CCW modes can be obtained
analytically to the first order of Q [11]:

Aw = 2(%)9 (9.20)

n
Equation 9.20 corresponds to the Sagnac effect in a closed cavity. For an open cavity.
neps is modified both inside and outside the cavity. Since for a whispering gallery
27 R

mode, m ~ == (where A and R are resonant wavelength and radius of the cavity).

Eq. 9.20 implies that Sagnac effect scales linearly with the size of the cavity.

9.4 Validation of the FDTD algorithm

Using our FDTD algorithm, we simmulate a rotating microdisk cavity with both closed
and open boundary. The circular disk has a radius & = 590 nm and a refractive index
ndisk = 3. In order to find the frequencies of resonant modes in a stationary open
cavity. we first launch a seed pulse with a broad bandwidth centered at A = 2R to
excite many cavity resonances. The modes with shorter lifetime will decay faster in

time, and the Fourier transform of the field inside the cavity at a later time will give
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the frequencies of the surviving modes with longer lifetime. We investigate the mode
at A = 1131.48 nm with radial number [ = 1 and azimuthal number m = 7. The
wavelength of the same mode in the closed cavity can be found from the zero of Bessel
Function, which gives A = 1009.8 nm. Once we get the resonant frequencies of the
stationary cavities, for our simulations of rotating open and closed cavities, we excite
only that particular mode by launching a seed pulse with bandwidth narrower than
the frequency spacing between the adjacent modes. The rotation induces a frequency
splitting of the CW and CCW modes, which causes a temporal beating of the fields.
The Fourier transform of the intracavity electric field gives the frequencies of the two
split modes. The frequency difference Aw for the WG modes with m = £7,1 = 1
in a closed cavity of R = 590 nm and nd** = 3 is plotted by the circles in Fig. 9.1,
and the solid line is the analytical result from Eq. 9.20. Their excellent agreement
validates our FDTD model.

To test the applicability of the UPML to the rotating case, we simulate a rotating
diclectric cavity of R = 590 nm and nd"** in free space, and calculate the frequency
splitting Aw for the WG modes with m = +7,1 = 1 (squares in Fig. 9.1). The

effect of rotation can also be treated as a change of the refractive index. According

to Eq. 9.19, the effective index of refraction as a function of the rotation velocity €2

is (ndek)2 = (nd*%)2 + 2m(92/w), which for (Q/w) < 1 gives n&sk ~ ndisk + ( il ),

dishk
T'LO w

disk

. ) disk
where ng*" and ng

are the refractive indices for the stationary disk and rotating
disk, respectively. Along with the disk, we also change the refractive index outside the
cavity in a similar way. The rotation induced change of the resonant frequency can
be calculated with an index change in the stationary case. The frequency splitting
calculated in this way for the WG modes of m = £7,1 = 1 is plotted by the dotted
line in Fig. 9.1, and it agrees well to the FDTD simulation in the rotating framec.

Such agreement indicates the residual reflection from the UPML has negligible effect.

Fig. 9.1 shows that an open cavity has a larger frequency splitting between the CW
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and CCW modes than a closed cavity. It can be attributed to the increased mode

size in the open cavity because the held can extend beyond the disk edge.

x 10

m- Open cavity

Closed cavity

QR/c X 10.3

Figure 9.1: Frequency splitting between the CW and CCW modes in a circular di-
electric microdisk of radius R = 590 nm and » = 3 in free space (n = 1) as a function
of the normalized rotation speed QR/c. The circles are the FDTD simulation results
for a rotating closed cavity for a WG mode (/ = 1, m = 7, A= 1009.8 nm) and the
solid line is the analytical result from Eq. (20). Squares are the FDTD simulation
results for the same mode (/ = 1, m = 7, A= 1131.48 nm) in the rotating microdisk
with open boundary. Dotted line represents the frequency shifts obtained from the
FDTD simulation of the stationary microdisk with the effective indices of refraction
(inside and outside the disk) that include the rotation-induced changes. The insets
show the mode profiles for the closed and open cavities and the black circle marks
the boundary of the cavity.

9.5 Discussion

In this chapter, we present the FDTD algorithm that we developed to simulate pho-
tonic structures in a rotating frame. The Maxwell equations solved using the FDTD
algorithm assumes that the rotation angular velocity D is constant in time, and the
maximal speed v — QR to be small in magnitude compared to the speed of light. The

results therefore do not take into account relativistic effects. In addition, the effect of
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rotation on the electronic structure of the materials is not taken into account. Under
these assumptions. good agreement between the FDTD simulations of the Sagnac
effect in 2D closed cavities and the analytical results is obtained and that validates
our simulation algorithm. For open cavities, UPNL for stationary frame is adapted
and the residual reflection from the UPML is shown to have negligible effects on the
rotation-induced frequency shift of the wavelength-scale microdisk cavities as long
as the maximal speed v < ¢. Our numerical results illustrate that the frequency
splitting in an open microdisk cavity is larger than that in a closed cavity of same
size. This is attributed to an increase of mode size in the open cavity.

Unlike the previous FDTD model which substitutes the constitutive relations into
the Maxwell equations and updates only £ and H in time stepping [18]. in our algo-
rithm we calculate both E, H, and D, B by solving simultaneously and separately
the Maxwell equations (identical to that in a stationary frame) and the modified con-
stitutive relations in the rotating frame. In the previous approach [18]. the spatial
derivatives associated with rotation require the values of the fields at the time mid-
steps which are missing. and a lincar extrapolation in time is used to evaluate the
missing values based on the two previously calculated values. As a consequence of
the lincar extrapolation based on values of the fields in the previous time steps. the
algorithin becomes unstable for all time steps and gives rise to non-physical exponen-
tially growing fields as shown analytically in Ref. [21]. This instability increases with
faster rotation speeds and longer running times. In our algorithm, we avoid this issue
by incorporating D and B in addition to £ and H fields and using time interpolation
into the algorithm instead of extrapolation. For same grid size and time-stepping. our
algorithm however takes more computation time as it calculates 4 quantities instead
of 2. The running time eventually puts a limit on the maximum size of microcavity
and the minimum rotation speed that can be simulated.

Finally. in this chapter we studied only the rotation induced changes in the res-
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onant frequencies.  As described above, the change in resonant frequency due to
rotation can be attributed to change in refractive index and a linecar change in re-
fractive index due to rotation leads to a linear change in resonant frequency. For
open cavities, the curvature of the cavity boundary leads to an evancscent leakage
and in absence of any additional loss, the leakage rate determines the finite lifetime
or the quality factor (QQ) of the resonant mode and the shape determines the output
intensity pattern. Since the (Q and output intensity both originate from an evanes-
cent tunneling process. where the tunneling barrier is determined by the refractive
index of the cavity. unlike the resonant frequency these two quantitics are exponen-
tially sensitive to change in refractive index. Further. as shown above. the change
in refractive index due to rotation is linearly proportional to azimuthal number m
of the mode which is again linearly proportional to the radius of the cavity 2. This
implics that as compared to Sagnac effect which will increase linearly with cavity
size, the magnitude of rotation induced changes in @ and emission pattern will show
a much superior exponential scaling with the cavity size. In the next chapter, based
on this motivation. we explore these two quantities and show that they indeed are
more sensitive compared to Sagnac effect. In the simulations presented in this thesis.
due to computation limitations, we simulate ouly small cavities and correspondingly
the rotation speeds are very high. This however should not change the conclusions
and as shown in the next chapter. the results of larger cavities can be inferred from

the results of small cavities using scaling arguments.
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Chapter 10

Rotation induced changes in
optical resonances of dielectric

microcavities

10.1 Introduction

I Optical microcavities have been explored for various applications such as coherent
light sources in integrated photonic circuits, single-photon emitters, and biochemi-
cal sensors [4.5]. One potential application that has received attention recently is
ultrasiall on-chip optical gvroscope [1.2.6 19]. Almost all conventional optical gv-
roscopes rely on the Sagnac effect for rotation sensing [12. 14. 20, 21]. The Sagnac
cffect refers to rotation-induced phase shift between two counter-propagating waves
in an optical loop or frequency splitting in a resonant cavity as described in chapter
9. Since the Sagnac cffect scales linearly with the cavity size [20,22]. microcavities
have much lower frequency response to rotation. As such. rotation-induced changes

in other characteristics of microcavity resonances, such as the quality (QQ) factor have

1. This chapter is primarily based on the journal articles published in ref. [1 3]
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been investigated. For example. in circular Brage microlasers, the rotation-induced
intensity modulation has been shown to have exponential dependence on the rotation
velocity [9].

Stationary microcavities with shape deformed from circle have generated a lot
of interest in the past two decades, with the quest to achieve optimal directional
radiation from microlasers. Deformed microcavities have also been explored for ro-
tation sensing, with the focus on rotation-induced changes in resonant frequencies of
closed cavities [7.8.11.18.20]. Unfortunately the shape deformation often lifts the
frequency degeneracy of cavity modes. causing a threshold behavior for the Sagnac
effect. For deformed cavities with open boundaries. it is however interesting to study
how rotation modifies the emission intensity patterns and investigate its sensitivity
to rotation.

In this chapter, we present a detailed numerical study on the effects of rotation on
optical resonances in microcavities of various shapes with open boundary. We start
with a circular cavity where we investigate the rotation induced changes in @) factors
and compare that to the Sagnac effect. We show that the Q factor. which determines
the lasing threshold and the output power. is more sensitive to rotation than the
resonant frequency. In the second section we study a deformed elliptical cavity. We
investigate how deformation cffects the threshold behavior of the Sagnac effect. In
addition, we also show how rotation modifies the emission intensity patterns. In
the final section, we concentrate on deformed cavities with broken chiral symmetry.
We show that emission intensity pattern of such cavities can be extremely sensitive
to rotation and can be used to detect rotation. Further. by tuning the degree of
spatial chirality with cavity shape. we show that we are able to maximize the emission
sensitivity to rotation without spoiling the quality factor.

Various niethods have bheen developed to study photonic structures in rotating

frame [23-29]. In this chapter, we numerically calculate the cavity resonances using
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the finite-difference tinie-domain (FDTD) method described in Chapter 9. In all
the simulations. we consider the diclectric microdisk in free space, the disk thickness
is much less than its radius., so it can be approximated as a 2D cavity with an
effective index of refraction n. We present the results of the transverse magnetic
(TM) resonances with the electric field perpendicular to the disk plane (parallel to
the = axis) and the magnetic field parallel to the plane (the » — y plane). The disk
rotates about the z axis in the counter-clockwise direction with a constant angular
velocity of rotation 2. The rotation is slow enough that Q1 < ¢. where R is the disk
radius. and we keep only the leading-order terms of QR /¢ in the wave equation. In
the rotating frame where the disk is stationary. the Maxwell equations retain their

form. but the constitutive relations are modified [1.23.24.30].

10.2 Rotation induced changes in () factor of res-
onances of a circular microcavity

In this section. we simulate the same circular cavity and the resonaut mode that we
studied in the previous chapter. The circular disk has a radius R = 590 nm and
a stationary refractive index nd™* = 3. The wavelength of the resonant mode is
A = 1131.48 nm, radial number [ = 1. and azimuthal number m = 7. In an open
cavity. along with the resonant frequency. rotation also changes the quality factor
of a resonant mode, because the contrast of refractive index inside and outside the
disk varies with the rotation and affects the degree of optical confinement by the
cavity. For a rotating diclectric microdisk. the refractive index changes both inside

and outside the disk, and the refractive index difference is given by

~ ; ; . m<? 1 1
disk outside disk outside
ng " —Ng ~ (g™ = gt + ( ) Tk T oul (10.1)

w ng ng
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Equation 10.1 simplifies for the case of a disk in free space ngt*id = 1 as
sk utsi sk msl 1
P = ot ot - )+ ()| (10.2)
w ngr
O

Equation 10.2 implies the rotation increases the refractive index difference for negative
m. Thus the ) factor for the counter-propagating mode increases with the rotation
speed €). For the co-propagating mode with positive m, the ) factor decreases with
rotation. In the case of a microdisk, the change in the refractive index contrast is
symmetric and opposite for the clockwise (CW) and counter-clockwise (CCW) modes.
Figure 10.1 plots the (Q values obtained from the simulation (given by the squares)
for the CW and CCW modes for different rotation speeds. For the m = 7 mode, we
see a decrease in the () factor whereas the ) factor for the m = —7 mode increases.
The change has the same magnitude but opposite sign for the two modes. Within
the range of rotation speed in the simulation, we observe an exponential dependence
of AQ = Qcw (Q) — Qew (2 = 0) on Q. This is because % < 1 and the rotation-
induced change of the refractive index scales linearly with €. The @Q factor of a
TIR-based whispering gallery (WG) mode depends exponentially on the difference in
the refractive index inside and outside the disk. which scales linearly with the rotation
speed according to Eq. 10.2.

In the simulation, the  factor of a cavity mode is extracted from the temporal
decay of the field. At a given rotation speed, a single mode at frequency w is excited
by a seed pulse launched near the disk edge. By making the bandwidth of the pulse
narrower than the frequency difference between the CW and CCW modes, we ensure
only one mode is excited and eliminate beating in the time trace of E,. E,(t) displays
an exponential decay after the seed pulse is gone, and from the decay time 7 we obtain
() = wr, where w is the resonant frequency. An important point to notice is that,

the sensitivity of the () factor to rotation is more than one order of magnitude higher
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Figure 10.1: Calculated quality factors for the /= 1, m = +7 modes as a function of
normalized rotation speed QR/c. The squares are obtained from the FDTD simula-
tion of a rotating microdisk of R = 590 nm and » —3 in free space, and the crosses
from the stationary microdisk with the effective indices of refraction ( inside and
outside the disk) that include rotation-induced changes described in chapter 9. The
dotted lines are linear fits showing that the Q changes exponentially with rotation
speed.

compared to the change in frequency. Figure 10.2 plots the relative change in Q/

as a function of 12, in comparison with the normalized frequency splitting

where Q01is the O factor of the stationary cavity, k0 — WgQ’' Cis the normalized resonant
frequency of the stationary cavity, and Ak = Au/c is the normalized rotation induced
splitting of the resonant frequency. Both scale linearly with 12, and the slope for — m
versus 12 is 2.16 x 102, whereas the slope for ~ wversus 12 is 1.12 x 10~13. The
QO factor for this cavity is therefore ~ 20 times more sensitive to rotation than the
resonant frequency. The QO not only determines the threshold pump level for lasing,
but also affects the output power above the threshold. Thus the change of QO by
rotation would modify the lasing thresholds for CW and CCW modes, and break the
balance between the CW and CCW output power. The higher sensitivity of O to 12

indicates the rotation-induced changes in lasing thresholds and output power can be

more dramatic than the lasing frequency shift in the microdisk lasers.
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Figure 10.2: Relative change in Q factor » (squares) and the normalized frequency

splitting ~ (circles) as a function of the normalized rotation speed VIR/c for the WG
mode of / = 1, m — —F in the dielectric microdisk of R = 590 nm and » = 3. The
dotted lines are the linear fits.

10.3 Elliptical cavities

In a stationary circular cavity, CW and CCW propagating waves do not couple and
they form two degenerate resonant modes of the cavity, which are characterized by the
azimuthal number m and radial number I The superposition of these two modes can
form standing waves (with sine and cosine angular dependence) that are also resonant
modes of the cavity. With rotation, the CW and CCW waves experience different
refractive indices and their frequencies start to split [7]. This frequency splitting is
linearly proportional to the rotation velocity th Since rotation makes the CW and
CCW waves non-degenerate, the only resonances of a rotating circular cavity are the
non-degenerate CW and CCW resonant modes.

In deformed stationary cavities, however, the CW and CCW waves may be cou-
pled by scattering from the non-isotropic cavity boundary, and they form two quasi-

degenerate resonances of frequency splitting Ak0O. With rotation, the frequency dif-
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ference between these two quasi-degenerate resonances can be written as [7]:

1

Ak () = lmcg 4 (g@j - (10.3)

where ¢ is a coupling constant that is proportional to the size of the cavity. Only
when the rotation velocity €2 exceeds a certain threshold value Q. = ¢Aky/g, the
rotation-induced frequency shift g€2/¢ becomes comparable to the intrinsic splitting
Aky. For Q < Q., Ak, is approximately equal to Aky and is barely changed by
rotation. Hence there exists a “dead zone” at low rotation speed for the Sagnac
effect. Once the rotation induced frequency shift is much larger than the intrinsic
splitting, Ak, approaches its asymptote g{2/c and increases linearly with the rotation
speed.

In this section, we study a simple deformed cavity shape, the ellipse [31-36], as
drawn in Fig. 10.3(a). In the Cartesian coordinates the cavity boundary is given by
(x/a)* + (y/b)? = 1, where 2a and 2b are the lengths of the minor and major axis
respectively (a < b). We vary the ratio a/b, while keeping the area mab constant.
For the results in this section, we set R = vab = 0.54 g, and the wavelength (in
vacuum) A is around 0.72 pm. The refractive index is equal to 3.0 inside the cavity,
and 1.0 outside. For a/b close to 1, the high-QQ modes resembles the WG modes in
a circular disk, and they cach can be assigned a dominant azimuthal number m and
a radial number . The coupling between CW and CCW waves in the ellipse results
in a frequency splitting Aky. The quasi-degenerate pair of modes have even and odd
symmetry with respect to the major or minor axis, as seen in an example given in Fig.
10.3(b,c). The stronger the deformation, i.e., the smaller the ratio a/b, the larger the
splitting Aky.

When the ellipse rotates, the higher-frequency mode of the quasi-degenerate pair

is blue shifted, and the lower-frequency one red-shifted [Fig. 10.3(d)]. We numerically
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calculate the frequency splitting Ak, in the rotating cllipse using the FDTD method.
Figure 10.3(e) plots the value of Ak, as a function of rotation speed €2 for a pair of
quasi-degenerate modes with m = 11 and [ = 1 in the ellipse with /b = 0.88 (dashed
line) and 0.92 (solid line). Their normalized frequencies are approximately the same.
kR ~ 4.73, where k = 27/X and R =Vab is the average radius of the cavity. The
threshold values. expressed as Q.R/c. are on the order of ~ 1077 and ~ 107 for the
ellipses with a/b = 0.88 and 0.92 respectively. below which the frequency spacing of
the two resonances remains nearly unchanged from Aky. Thus the larger deformation
leads to a wider dead zone. For Q > Q.. Ak, increases linearly with €2 in both cavities.
as it is dominated by rotation-induced frequency splitting.

The cavity shape deformation also causes a dead zone in the rotation-induced
change of (), as shown in Fig. 10.3(f). The quasi-degenerate pair of resonances have
slightly different Q@ even at © = 0. For € > Q. the @ for one mode increases with
Q) and decrcases for the other. The magnitude of the change in (Q due to rotation,
|AQ)|. is the same for the pair (to the leading order of RQ2/c [18]). The larger the
deformation (smaller a/b). the wider the dead zone for |AQ|. Beyoud the dead zone.
the larger slope of |AQ] vs ©Q for smaller value of /b indicates the cavity with weaker
deformation is more responsive to rotation.

In Fig. 10.3(g). we compare the relative changes in resonant frequency and @
factor due to rotation. i.e. Ak, /ky and AQ/Qy. where ky and @, are the average
frequency and quality factor for the quasi-degenerate pair of modes at = 0. AQ/Qy
is more than one order of magnitude higher than Ak, /ky, indicating the relative
change of ( by rotation is much larger than that of frequency in the wavelength-scale
elliptical cavity.

Next we investigate the rotation-induced changes in the output intensity patterns
of elliptical cavities with the FDTD method. As the radius of curvature varies along

the cavity boundarv. the strongest emission occurs at the locations of the highest
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Figure 10.3: Rotation-induced changes in the resonances of elliptical cavities, (a)
A 2D microcavity of elliptical shape. The length of minor (major) axis is 2a (2b).
(b,c) Spatial distribution of the electric held magnitude ([i?z]) for a pair of quasi-
degenerate modes in the elliptical cavity with a/b = 0.88 and refractive index n =
3.0. (d) A schematic showing the frequency splitting A£;0 of a quasi-degenerate pair
of modes (solid lines) in an elliptical cavity without rotation, and the frequency
splitting 4 kr with rotation. The higher-frequency (lower-frequency) mode of the
quasi-degenerate pair is blue (red) shifted by rotation (dashed lines), (¢) Normalized
frequency shift AkrR as a function of the normalized rotation speed QR/c for a pair
of quasi-degenerate modes with m = 11 and / = 1 in the ellipse with a/b — 0.88 (red
dashed line) and 0.92 (black solid line), (f) Magnitude of rotation-induced changes
in Q, |AQ|, for the same pair of modes in (b). Black solid line and red dashed line
correspond to a/b = 0.92 and 0.88 respectively, (g) Relative changes in the resonant
frequency A4 kr/k0and the quality factor A Q/Qo for the corresponding modes in (e,f).
The vertical axis is shown in log scale to show the differences in magnitudes.
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Figure 10.4: Evolution of far-field emission patterns of elliptical microcavities with
rotation. The deformation of the ellipse is a/6 = 0.92 in (a-c) and 0.88 (d-f). (a,d)
Angular distribution of far-held intensity 7(0) (at » = 50R) of quasi-degenerate pairs
of modes shown in Fig. 10.3 at QR/c = 0. The blue solid (green dashed) curve
represents the mode with even (odd) symmetry with respect to the x axis. (b,e)
Angular distribution of far-held intensity for the CW and CCW wave components
in the stationary resonances shown in (a,d). The solid (dashed) curve represents the
CW (CCW) wave. The output directions of CW and CCW waves are symmetric
with respect to the horizontal axis. (c,f) Angular distribution of far-held intensity
1(9) (at » = 501?) of the modes in (a,d) at QR/c =10-4. The interference fringes in
the output intensity patterns of stationary cavity (a,d) vanishes, as the modes evolve
from standing wave to traveling wave with rotation. The emission patterns of the
two traveling-wave modes at high rotation speed are not symmetric with respect to
the horizontal axis.
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curvature. The main emission directions for the elliptical cavities ave therefore parallel
to the minor-axis of the ellipse (@ axis, 8 = 0°.180°). As shown in Fig. 10.4(a). the
far-ficld intensity patterns for a stationary uasi-degenerate pair of modes have even
and odd parity with respect to the major and minor axes of the ellipse, and there
are several lobes around 6 = 0°,.180° as a result of the interference of the emission
from CW and CCW waves in the cavity. By decomposing the field outside the cavity
into CW and CCW wave components. we identifv the far-field patterns for CW and
CCW waves [Fig. 10.4(b)]. The CW and CCW waves in the stationary resonances do
not emit exactly in the same directions. even though they are symmetrical about the
major and minor axes. This difference is caused by wave effects. including the Goos-
Hanchen shift and Fresnel filtering, which become significant in the wavelength-scale
cavities [37-401.

With increasing rotation speed, the standing-wave modes evolve to CW and CCW
traveling-wave resonances, and the interference fringes in the far-field patterns vanish
in Fig. 10.4(c¢). Moreover. output directions for CW and CCW waves are no longer
svmmetric with respect to the major and minor axes. as both rotate slightly in the
direction of rotation (CCW). This behavior is attributed to the rotation-induced
change in the refractive index. namelyv. the index increases for the co-propagating
wave (propagating in the same direction as the rotation) and decreases for the counter-
propagating wave. In the elliptical cavity with smaller a /b, the difference between the
CW and CCW output directions at 2 = 0 is larger, and the rotation-induced change
in the far-field pattern is smaller [Fig. 10.4(d-f)]. Above we present only the results
for the higher-frequency mode of the quasi-degenerate pair; the lower-frequency mode
is red-shifted by rotation and the magnitude of change is the same as that for the

higher-frequency mode.
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10.4 Rotating optical microcavities with broken
chiral symmetry

Although the elliptical cavity is deformed. there exists a rotational or chiral symmetry
in the shape i.e. the shape does not introduce any preferred sense of rotation. Opti-
cal resonators may acquire structural chirality from shape deformation or boundary
scattering. which induces asymmetric coupling between the CW and CCW propa-
gating waves in the cavity [41 43]. With open boundary. the cavity resonances are
dominated by either CW or CCW waves. thus possessing a preferred sense of rota-
tion [44-49]. Such cavities with broken chiral symmetry are called chiral cavities. In
this section we investigate the interplay between openness and chirality of rotating
microcavities.

It is not known what happens if a chiral cavity rotates, e.g.. whether the Sagnac
effect would survive in the absence of chiral symmetry, and how the intrinsic chi-
rality is affected by rotation. In a non-rotating cavity with chiral symmetry. every
resonance has balanced CW and CCW wave components. and the output intensity
profile is symmetric. As shown in the previous section. rotation makes individual
mode dominated by either CW or CCW wave. thus introducing asviumetry in the
far-ficld pattern if CW and CCW waves have different output directions. In a chiral
cavity. even without rotation the breaking of chiral symmetry can make the far-field
pattern asymmetric; it is not clear how rotation would further modify the emission
profile.

To answer these questions, in this section we investigate open microcavities with
broken chiral syvmmetry in the rotating frame. Our calculations show that a quasi-
degenerate pair of co-propagating-wave modes in the non-rotating chiral cavity evolve
to counter-propagating ones at high rotation speed. The intrinsic chirality is thus

removed by rotation. and the Sagnac effect is similar to that of a non-chiral cavity.

167



However. the flip of propagation direction for one of the quasi-degencrate modes will
lead to a striking change of its far-field pattern. as long as the CW and CCW waves
have distinct output directions. By tuning the cavity shape, we arc able to vary the
degree of chirality without spoiling the quality factor. The maximal chirality results
in the largest difference in CW and CCW outputs, making the emission profile most
sensitive to rotation. The surprising enhancement of rotation sensitivity of chiral
microcavitics may open up the possibility of on-chip rotation sensors using a new

scheme for rotation sensing .

10.4.1 Simple analytical model of a rotating chiral cavity to

calculate Sagnac effect

Let us first model a non-rotating chiral cavity. The asymmetric coupling between CW

and CCW propagating waves can be described by an effective Hamiltonian [42,49].

wo 0 r 1%
H, = n , (10.4)
0 o) I]V* r
where V' = |Vl]e. wy is the frequency of the unperturbed CCW and CW wave

components. Their coupling leads to an overall frequency shift T, and asymmetric
trausition clements Voand nV*. where the deviation of |5| from unity represents the
degree of asymmetry. Diagonalization of Hy gives the ecigenfrequencies

. 3 0
v

wy =wy+ T+ V] . (10.5)
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The frequency splitting Awy = 2,/7|V| results from the coupling of CW and CCW
waves. The normalized eigenvectors are

1
£ = fcow _ . (10.6)

sow ) VIR & e
The eigenvectors are composed of CW and CCW waves with relative intensity ratio
[n]. thus a higher asymmetry of the coupling leads to a stronger chirality of the

eigenmodes. When the cavity rotates, the Hamiltonian becomes

A 0
H = Hy+ , (10.7)

0 —A

where £A represents the frequency shift of CCW/CW wave by rotation. We assume
the rotation speed is slow enough that |A| is linearly proportional to the rotation

frequency €2. For simplicity, we set A = (). The eigenfrequencies are

wy =wo + £ /n|V|2+ AZ. (10.8)

The frequency splitting becomes Aw = 21/n|V]2 + A2 = 2/(Awy/2)2 + Q2. The
normalized eigenvectors are

’ 1
‘= feew | 1 | (10.9)

Sow W1+ \ ae™®

where a = +y/n + A2/|[V]2 = A/|V].
At low rotation speed, the additional frequency splitting induced by rotation (€2)
is much smaller than the original splitting (Awy). so the total splitting remains nearly

constant Aw ~ Awg. Only when Q becomes comparable to Awg. the rotation-induced
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splitting becomes significant, and Aw starts to grow with 2. Eventually at € > Aw.
Aw = 202 the lincar increase of Aw with € recovers the Sagnac effect. Hence, the
frequency splitting at € = 0 causes a “dead zone™ for the Sagnac effect [7].

I a chiral cavity the dependence of Aw on 2 is identical to that in a non-chiral
cavity, as long as the value of 7|V?] is kept the same [Fig. 10.5(a)]. Although without
rotation both modes in the chiral cavity are dominated by CCW (CW) traveling
waves for [ < 1 (|n| > 1). one of them is transformed into a CW (CCW) traveling
wave mode by rotation, and its frequency shifts in the opposite direction to the other

mode, producing the same Sagnac effect as in the non-chiral cavity.

10.4.2 Resonant modes in a non-rotating chiral cavity

We choose dielectric microdisks with the shape of asyvmmetric limacon. which unlike
other chiral cavities have high @) factor and small frequency splitting Awg [49]. The
microdisk can be regarded as a two-dimensional (2D) cavity as the disk thickness
is much smaller than the radius. In the polar coordinates. the cavity boundary is
described by r(0) = R[1 + €; cos(f) + €3 cos(26 + 0)]. where R is the radius. €; and e,
are the deformation parameters, and ¢ determines the degree of chirality. For 0 = mm
(m is an integer), the cavity has the chiral symmetry [r(—=0) = r(6)]. and the coupling
from CW wave to CCW wave is equal to that from CCW to CW. As 0 deviates from
mm. the chiral svmmetry is broken. so is the balance between CW and CCW wave
coupling. Consequently. cach pair of quasi-degenerate modes are dominated by either
CW or CCW wave.

We consider a pair of transverse-magnetic (TM) resonant modes where noralized
frequencies of the two modes are AR >~ 6.2, where b = 27/A. and A is the vacuum
wavelength. Their @ factors are about 56.500. The insets in Figure 10.6(a.b) show
the spatial distributions of electric field intensity for these two modes. The intra-

cavity electric field (perpendicular to the cavity plane) is expanded in the cvlindrical
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Figure 10.5: Comparison of Sagnac effect in a rotating microcavity with chiral sym-
metry (77 = 1. dashed line) and without chiral symmetry (77 = 0.1, solid line). The
value of 771/ |2 is kept the same, (a) (Dimensionless) frequency splitting for a pair of
quasi-degenerate modes as a function of rotation frequency fI. (b,c) Evolution of CW
(thick line) and CCW (thin line) traveling-wave components in the quasi-degenerate
modes with rotation. In the symmetric cavity (77 = 1), at low rotation speed the
eigenmodes remain standing-wave modes with equal weights of CCW and CW com-
ponents, and their frequency difference is barely changed by rotation. When the
rotation speed is sufficiently high, one mode evolves to a CCW traveling-wave mode,
the other one to a CW traveling-wave mode; and their frequency difference starts to
grow significantly with Q. In a chiral cavity (77 = 0.1), the evolution of frequency
splitting with rotation is identical to the symmetric cavity. Without rotation both
modes are dominated by CCW traveling waves, but one of them (b) transforms into
a CW traveling wave mode at high QO
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harmonics, Ezn\r,d) = X700 GnJm{nkr)etTnd: Where Jm is the m-th order Bessel
function of the first kind. Positive (negative) values of angular momentum m cor-
respond to CCW (CW) traveling wave components. The origin of this expansion is
chosen to be (x, y) = (ei/?/2, 0). The distributions of |am|2 in Fig. 10.6 (a,b) illustrate
that both modes have more CW wave components than the CCW ones. The spatial

chirality of a mode is defined as

-1
mm (g _,, Le T m 2)

max (E-oo laml2-E r la"»2)

a=1— (10.10y

For this pair of modes, a = 0.25.
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Figure 10.6: A pair of quasi-degenerate modes (A= 598 nm) in a non-rotating dielec-
tric disk (n = 3.0) of asymmetric limagon shape (R = 591 nm, ¢\ =0.1, 62 = 0.075,
5 = 1.94). (a,b) Spatial distributions of electric field intensity (inset) and angular
momentum components (main panel) inside the cavity. Both modes have more CW
wave (m < 0) than CCW wave (m > 0).

Both modes generate directional emissions, as shown in Fig. 10.7(a). To find the
output directions for CW and CCW traveling waves, we decompose the electric field
outside the cavity with outgoing harmonic waves, E°ut(r,9) = Hm\kr)eirn9,
where Hm is the m-th order Hankel function of the first kind. By summing only
positive or negative m terms in the field expansion and taking » —>00, we obtain
the far-field intensity patterns for the CW and CCW waves separately, as shown in
Fig. 10.7(b). The main output direction of CW wave is 9 ~ 0.7 , and for the CCW

wave 0 — 2.8 [Fig. 10.7(b)]. Due to the dominant presence of CW wave in the

172



quasi-degenerate pair, their far-held patterns are similar to that of the CW wave.

@ (b) tt/2

3n/2 3n/2

Figure 10.7: Far-held emission intensity patterns of a pair of quasi-degenerate modes
(A = 598 nm) in a non-rotating dielectric disk (n = 3.0) of asymmetric limagon
shape (i? — 591 nm, el = 0.1, 62 = 0.075, 5 = 1.94). (a) Angular distributions of
emission intensities at a distance of » — 507? from the cavity center for both modes,
which have similar output directions, (b) Far-held patterns of CW (red solid line)
and CCW (blue dashed line) wave components in the resonances, exhibiting distinct
output directions.

10.4.3 [Effect of rotation on the emission patterns of chi-
ral microcavities and comparison of its sensitivity to
Sagnac effect

Next we investigate how the emission patterns of the asymmetric limagon are modified
by rotation. As shown in the previous section, without rotation, the pair of quasi-
degenerate modes have similar far-held patterns, because they are both dominated by
either CW or CCW traveling waves. W ith rotation, we expect one of them will hip the
propagation direction, and its far-held pattern will change dramatically since the CW
and CCW waves have distinct and different output directions. To illustrate this we
simulate using FDTD an asymmetric limagon cavity rotating with a constant angular
velocity D around a hxed axis perpendicular to the cavity plane. Using FDTD, we

calculate the modes prohles of the resonant modes of the rotating cavity. As shown

173



in Fig. 10.8. one of the two modes in Fig. 10.7 switches from C'W to CCW traveling-
wave. while the other one remains CW. Consequently their output directions become
very different.

The striking change of output direction by rotation originates from the breaking
of chiral symmetry in the open microcavity. Even when the cavity is at rest, the
resonances already acquire a preferred sense of rotation, as the quasi-degenerate pairs
are both dominated by CW or CCW traveling waves. However. as the microcavity
starts rotating. the intrinsic chiralitv of the resonances is removed. and every pair has
one mode CW dominated and the other CCW dominated.

The direction of rotation determines which one of the quasi-degencrate pair. the
higher or lower frequency mode. will flip the propagation direction and exhibit a
dramatic change in the output dircction. For example, the two modes in Fig. 10.7
are both dominated by CW traveling waves at rest; if the rotation is in the CCW
(CW) direction, the lower (higher) frequency mode will transform to CCW, and its
frequency will decrease (increase) further with rotation. Hence. by measuring the
emission frequency in the main output direction of the CCW or CW wave, we can
identify the direction of rotation.

In reality both of the quasi-degenerate modes are often excited simultaneously.
and their relative phases depend on the excitation condition. which varies from one
experimental setting to another. The interference of their output fields determine the
emission pattern, which will be modified by rotation. To calculate quantitatively the
change of emission pattern by rotation, we simulate a generic case. Sced pulses are
launched from ten randomly chosen locations inside the cavity to excite the quasi-
degencrate modes. The photodetectors are assumed to be stationary in the rotating
frame and placed at a distance of 3R from the cavity center. After the sced pulses
pass by. the photodetectors are turned on to measure the emission intensity. Figure

10.9 (a) plots the temporally-integrated intensity I, as a function of the emission
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Figure 10.8: Emission from the rotating asymmetric limagon cavity with the same
parameters as the stationary one in Fig. 10.7. (a,b) Spatial distributions of field
intensities for a pair of degenerate modes, which correspond to the stationary modes in
Fig. 10.7, at the normalized rotation frequency QR/c = 10-3. The intensities outside
the cavity are enhanced to illustrate the main output directions of the two modes are
different, even though they have the same output directions without rotation [Fig.
10.7(a)]. (c) Spatial distribution of field intensity for one of the quasi-degenerate
modes in the non-rotating cavity. It is dominated by CW wave. When the cavity
rotates in the CCW direction, this mode switches from CW to CCW wave, and the
main output direction is changed dramatically, (d) Angular distribution of far field
intensity for the pair of modes shown in (a,b) in the rotating cavity.
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angle 8 for the quasi-degenerate pair of modes in Fig. 10.7. The irregular oscillations
of I, with € results from the beating of the two excited modes. which depend on their
initial phase difference.

The excitation condition is kept the same when the rotation speed € increases. With
increasing 2, some peaks of I.(#) increase while others decrease [Fig. 10.9(a)], as the
co-propagating wave resonances evolve to counter-propagating ones. The main emis-
sion peak at 6 >~ 0.7 is from the CW wave, and its intensity decreases as one of the
modes is converted to CCW wave by rotation. Meanwhile. the secondary peaks at
f ~ 2.8 increases with €. since they are from the CCW wave. In Fig. 10.9(b). the
relative changes in the main peak intensity and its ratio to the secondary peak inten-
sitv are plotted versus the normalized rotation speed QR /¢ (¢ is the speed of light in
vacuum). The latter is about two times larger than the former.

Aw

To compare with the Sagnac effect, we calculate the frequency splitting Ak = ==
of these two modes in a circular cavity with the same area and refractive index as the
asymmetric limacon. The normalized frequency splitting %I)‘ where ky = wp/c is the
normalized resonant frequency in the non-rotating cavity. gives the relative change of
the resonant frequency by rotation. A linear fit of the data in the log-log plot of Fig.
10.9(b) finds the slopes. which reflect the sensitivity to rotation. The slope for the
relative change in the main emission peak intensity of the asymmetric limacon cavity

is about three orders of magnitude larger than the slope of the relative frequency shift

in the circular cavity.

10.4.4 Tuning of cavity shape to maximize sensitivity

To enhance the emission sensitivity to rotation, we tune the degree of spatial chirality

by varving o of the limacon cavity. We compute the spatial chirality o of the quasi-
. Yg G . .

degenerate modes in the non-rotating cavity with varving . As o increases from 0

to m. « first grows and reaches the maxinmuum at ¢ ~ 1.94. then drops to zero at
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Figure 10.9: Rotation-induced change in emission pattern of the same cavity as the
one in Fig. 10.8, when both quasi-degenerate modes are excited simultaneously, (a)
Angular distribution of the emission intensity /e at a distance of » = 3R from the
cavity center at three rotation speeds. To show the change in the emission profile,
Ie{9) is normalized (JQkIe(9)d9 = 1). (b) Relative changes in the main emission peak
intensity (at 9 = 0.73) (solid squares and solid line) and in the ratio of main peak
intensity over the secondary peak intensity (at 9 — 2.79) (crosses and dashed line)
vs. the normalized rotation frequency QR/c. Both peak intensities are integrated
over a range of emission angle marked by the double-arrowed segments in (a). For
comparison, relative changes of resonant frequencies, are plotted for circular
cavities with the same area and refractive index (open circles and dotted line). The
symbols represent the numerical data, and the straight lines are linear fit of the data
in the log-log plot, which gives the slope. The values of the slope are (from top to
bottom) 2.4 x 103, 1.2 x 103 , and 5.7 x ICRI respectively. The rotation-induced
changes of output intensity are much larger than that of the resonance frequency.
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0 =« [19]. We simulate the rotating cavities with different 4. and find that the
relative change of the main emission peak intensity increases monotonically with «
at a fixed rotation speed [Fig. 10.10(a)].

To interpret this result, we compare the far-field patterns for CW and CCW
waves in the non-rotating cavities with different o. The difference between CW and
CCW cmission patterns is quantified by g = ]()M [ I (0) — Icew (0)|d6, which is
plotted as a function of v in Fig. 10.10(a). Both Iy () and Iecy-(0) are normalized
(f(;ﬂ Ievwcew(8)dd = 1). The monotonic increase of J with a indicates that the
emission patterns for CW and CCW waves become more distinct at higher chirality.
consequently the mode emission pattern changes more significantly by rotation. The
maximal spatial chiralitv provides the highest sensitivity of microcavity output to
rotation.

The tuning of the structural chirality of the asymmetric limacon cavity to max-
imize the cmission sensitivity to rotation does not spoil the @ factor of the cavity.
To confirm, we calculate the @ values for the same resonances in the non-rotating
cavities with different o. The @ factors of the pair of modes shown in Fig. 10.6 are
very close and their mean is plotted as a function of o in Figure 10.11. As o varies
from 0 to 7. the @ decreases slightly and monotonically. in agreement to the result
of previous study on larger cavities [19]. Therefore. we are able to tune the spatial
chirality of the resonances in the asymmetric limacon cavity without singnificantly

spoiling the quality factor.

10.4.5 Scaling of rotation-induced relative change in output

intensity with cavity size and effect of refractive index

Due to limited computing power. we can simulate only wavelength-scale asymmetric
O . O .
limacon cavities in the rotating frame. Consequently. the rotation speed must be very

high to change the emission direction. The emission sensitivity will increase with the
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Figure 10.10: Output sensitivity to rotation for the asymmetric limagon cavity with
varying degree of spatial chirality. The cavity parameters are the same as those in
Fig. 10.6 except the value of 6. (a) Relative change of the emission intensity in
the main output direction (solid squares and dashed line) as a function of spatial
chirality a for the quasi-degenerate modes in Fig. 10.7. The rotation frequency is
fixed at QR/c — 1.5 x 10~5. The difference between the emission patterns for CW
and CCW waves in the non-rotating cavity is quantified by (3 (solid circles and solid
line), which is also plotted against a. With increasing spatial chirality e, CW and
CCW outputs become more distinct, enhancing the emission sensitivity to rotation.
(b,c) Far-held patterns for CW wave (red solid line) and CCW wave (blue dashed
line) in two cavities with 6 = 0 (b), and 2.75 (¢). At 6 = 0, both CW and CCW waves
emit predominantly in the direction close to 0 = 7t/2 (b), and the slight difference of
their emission directions is a result of wave effects in the wavelength-scale cavity. As
S increases from 0 to ir, the main emission direction of the CW wave moves towards
0 = 0, and the CCW wave towards 9 = 7; meanwhile, the secondary emission peak,
which is in the opposite direction of the main peak, grows monotonically.
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Figure 10.11: The quality (Q) factor of the non-rotating asymmetric limagon cavity
with varying 6. The refractive index of the cavity is » — 3.0 and the radius is R =
591 nm. The deformation parameters are el =0.1 and €2 = 0.075. The Q is the mean
of the quasi-degenerate pair of resonances at A~ 598 nm.
cavity size R. because the spatial chirality increases with cavity size [49], along with an
increase of the O factor and a decrease of the intrinsic frequency splitting Aa;0- In this
subsection, we present a scaling analysis using the coupled mode theory developed in
the previous studies [6,18]. The minimum rotation speed 12c to produce a noticeable
change of the emission intensity is proportional to the size of the dead zone Acj0. Our
numerical simulation of non-rotating cavities reveals that AlcO reduces exponentially
as kR increases, leading to an exponential drop of flc with (increasing) R. Thus we
can estimate flc as a function of R from the numerical data of very small cavities.
For the asymmetric limagon cavity of R = 591 nm [Fig. 10.9], the relative change
of the main emission peak intensity is 1% at 11 = 4.2 x 1010 RPM (revolution per
minute). Assuming such a change can be detected experimentally, we get flc =
4.2 x 1010 RPM at R = 0.59 /mi. If we keep the wavelength the same (A = 598 nm)
and increase R to 10 pm, 12c reduces to 3.5 x 106 RPM; a further increase of R to 25
/im reduces llcto 1.1 RPM .

The scaling of flc with wavelength A can be inferred from the above analysis, since
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Figure 10.12: The minimum detectable rotation speed as a function of the radius
R of the asymmetric limagon cavity. The refractive index of the cavity is n — 3.0,
the deformation parameters are €| = 0.1 and 62 = 0.075, S = 1.94. The wavelength is
kept at A= 598 nm.

QOc and Acc0 depend on kR instead of £ or R separately. Thus reducing wavelength
A in a cavity of fixed R is equivalent to increasing R while fixing A. In a cavity of
fixed i?, reduces exponentially as k increases, so the rotation-induced change of
emission pattern is larger for a shorter wavelength.

The sensitivity of emission intensity will also depend on the refractive index of the
mierocavity. To investigate the dependence of the rotation-induced output change on
the refractive index of the cavity, we repeat the numerical simulation that produces
Fig. 10.9, but for different values of refractive index n. Figure 10.13 plots the relative
change in the main emission peak intensity at a fixed rotation speed of k/R/c —
3 x 10-5 as a function of n. As n decreases, the same rotation speed causes a larger
change in the output intensity. This is because the dead zone is smaller when the
refractive index of the cavity is lower. In addition, the lower refractive index will
increase the output coupling efficiency due to higher radiation rate, thus further

enhancing the absolute emission intensity change by rotation.
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Figure 10.13: Relative changes in the main emission peak intensity as a function of
refractive index n of an asymmetric limagon cavity with R = 591 nm, el =0.1, €2
=0.075, and 5 =1.94. The resonant modes in all the cases have X/n ~ 200 nm where
Ais the vacuum wavelength and » is the refractive index of the asymmetric limagon
cavity. The rotation speed is fixed at QR/c ~ 3 x 10-5.

10.4.6 Absolute change in output intensity by rotation

The scaling analysis in the last section is based on the relative change in the output
intensity by rotation. The absolute amount of change in the output intensity, at a
given input power, also depends on the output coupling efficiency of the cavity. In
this final section, we analyze the absolute intensity change due to rotation, which
determines the signal to noise ratio of the rotation sensing measurement [12].

We consider two dissipation channels for the input power: (i) radiation into the
far field, (ii) absorption inside the cavity. The former is determined by the radiation
rate yr, which is inversely proportional to the radiative quality factor Qr| and the
latter is by the absorption rate which is inversely proportional to the absorptive
quality factor Qa. The total loss rate is 7*= yr + ya, and the total quality factor is

Ot = (1/90r T 1/Qa)~1« When the input power is constant, the absolute change in
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the output intensity at a fixed rotation speed €2 is

Al x 51, (10.11)
t
The fraction on the right hand side is the output coupling efficiency (the percentage
of the input power converted to radiation), and the second term is the relative change
in the output intensity due to rotation. Both terms depend on the cavity size R. As
R increases. the radiation rate decreases exponentially and eventually submerged by
the absorption rate which remains constant with .

In the wavelength-scale cavity. v, > 7,. and v = .. The output coupling ef-
ficiency is approximately equal to unityv. thus Al, is determined solely by 07,. As
discussed in the previous section. the relative change in the output intensity is in-
versely proportional to the size of the dead zone Awp, which scales exponentially
with kR at a given rotation speed, thus 87, o ¢/¥% and the exponent f depends
on the cavity shape. refractive index and the type of resonance. For a small cavity
whose radiation dominates over absorption. the absolute change in output intensity
AI, increases exponentially with R for fixed € and \. i.e. AL, x /%",

—9%7 where the expo-

However. as R increases. 7, decreases exponentially. 5, x e
nent g also depends on the cavity shape. refractive index and the tyvpe of resonance.
Eventually 5, becomes much smaller than ~,. and ~; ~ 5, is independent of R. The
output coupling efficiency then decreases exponentially with increasing R, counter-
acting the exponential increase of d1,. The final scaling of Al, with R depends on
the values of f and ¢. If f < ¢g, Al, first increases exponentially with R and then
decreases exponentially. as shown in Fig. 10.14(a). The turning point Ry is set by
Y (Ry) = v.. However. if f > g. Al, keeps increasing exponentially with R, albeit
the exponent decreases at R > R, [Fig. 10.14(h)]. As the absorption rate reduces.

the turning point Ry moves to a larger value. enhancing Al, of large cavity [Fig.
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10.14(a,b)].

(a) (b)

10 10
0 10 20 30 40 50 0 10 20 30 40 50
R (j-im) R (urn)

Figure 10.14: Absolute change in output intensity by rotation, A /0, as a function of
the cavity size R for fixed wavelength and rotation speed. The variation of A/Qwith
R depends on the values of / and g of the resonant modes, (a) When / = 0.1 and
g =0.12, AIQfirst increases exponentially and then decreases exponentially. At the
turning point R g, the radiation rate is equal to the absorption rate, 7r(i?0) = 7a- (b)
When / = 0.08 and g = 0.04, A/0 keeps increasing exponentially with R, but the
exponent decreases at large R. As the absorption rate reduces, the turning point Rg
moves to a larger value. In both panels, the solid line corresponds to R0 ~ 15/im,
and the dashed line to R0~ 25/iin.

In our numerical simulation of asymmetric limagon cavity with — 0.1, e2 =
0.075, S = 1.94 and refractive index n = 3.0, we found varying values of / and g
for different high-Q resonances. Some of them have / < 9, the others / > g By
optimizing the cavity shape and refractive index, we can tune the values of / and g
to maximize the absolute change in output intensity. Further enhancement may be
achieved by minimizing the absorption in the cavity, e.g., by fabricating the cavity
with more transparent material or turning the operation wavelength farther away
from the absorption band. Such optimization is beyond the scope of the work in this
thesis. Such optimization will however become mandatory for designing a practical

and sensitive on-chip rotation sensor.
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Chapter 11

Conclusions

In this thesis. we studied two tvpes of dielectric structures. The first one is a random
medium where the refractive index varies spatially in length scales comparable to the
wavelength. Light inside such structures is multiply scattered and the interference of
multiply scattered waves inside the medium leads to interesting mesoscopic effects.
We studied and controlled experimentally some of these mesoscopic effects inside an
on-chip random medium.

The first mesoscopic effect that we studied is the renormalization of the diffusion
coefficient.  We presented in chapter 2 of this thesis, the first direct experimental
observation of position dependent diffusion which is a weak localization cffect. We
showed that because of interference effects. the diffusion coefficient D is no longer
a constant and becomes renormalized where the amount of renormalization depends
on the spatial position inside the medium. We further showed that by varyving the
scattering strength and absorption, the renormalization of the diffusion cocfficient can
be modified. In chapter 3 of this thesis. we studied another mesoscopic effect which
is the long range correlation of intensity inside a random medium. We demonstrated
how these correlations evolve as light propagates through the random medium. We

showed that by modifyving the conductance of the medium, the magnitude of these
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correlations can be modified. This happens because the long range correlations arise
due to crossing of the scattering paths of light and the probability of such crossings
happening inside the medium is inversely proportional to the conductance. Therefore
by modifying the conductance, the magnitude of such correlations can be altered.

In the second part of the thesis, we demonstrated experimentally a simple but
efficient approach of using geometry to deterministically and efficientlv control the
above measured mesoscopic effects. In chapter 4. we showed that by varving the
width in a single waveguide. the localization effects can be modified which can lead
to modification of D. Using geometry, the diffusion of light inside the random media
can therefore be locally modified. In chapter 5. we further demonstrated experi-
mentally that spatial correlations can also be tailored by designing the shape of the
waveguide. By fabricating photonic random waveguides with the cross section varying
along their length, the functional form of the long-range correlation can be modified
inside waveguides of different shapes because the crossing probability of scattering
paths is affected nonuniformly in space.

The ability to control the interference effects inside a random medium besides
being of fundamental importance is also important from application point of view.
For example, by controlling diffusion inside the random medium. we can control the
encrgy density inside the medium. Since the energy density dictates the light matter
interactions, our ability to control the energy density also gives us the ability to
control the light matter interactions inside a random medium. Similarly. the ability
to control the long range correlations can also be of great significance for applications
where it may be necessary to focus light in a speckle spot inside a random medium.
As shown in chapter 5, by tailoring the shape of the correlation function we can tailor
the contrast of focusing and the energyv deposition inside the random medium.

Another fascinating interference effect in random media that has recently drawn

much attention is the creation of open and closed transmission eigenchannels. The
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open and closed channels not only dictate the transmission through the random
medium. but also determine the spatial profile of the energy density. With recent
advances in the field of adaptive wavefront shaping. it has now become possible to
selectively couple input light to these eigenchannels. In chapter 6 of the thesis. we
showed experimentally and numerically that by varying the geometry of a random
waveguide, the spatial structure of open channels can be significantly and determinis-
tically altered from the universal ones and that enables us to tune the energyv density
profiles inside the random medinm. As compared to using the localization effects
mentioned in chapter 2 and 4. the advantage of using geometry is that although it
modifies the energy density profiles. the bimodal distribution is still maintained which
implies that open channels with high transmission are still retained. In chapter 6.
we also showed that by gradually increasing the waveguide cross-section. we can con-
vert evanescent channels to propagating channels. Further, perfect reflection channels
can be created in certain confined geometries, which do not exist in waveguides with
uniform cross-section. Unlike high-reflection channels in uniform waveguides that ex-
hibit shallow penetration into the disordered system. a perfect reflection channel can
penetrate almost through the entive system but does not transmit any light. Such
channels can be of great importance for sensing applications.

In chapter 7. we extended our work on transmission eigenchannels and imple-
mented the adaptive wavefront shaping techniqgue to our on-chip random nanostruc-
tures. We carefully designed our coupling waveguide to achieve complete control of
the input. Using adaptive wavetront shaping techniques, we optimized our input light
to selectively couple to the open and closed channels. Thanks to the complete control
of the input and distinet and different spatial profiles and transmission cigenvalues of
the open and closed channels, we achieved an unprecedented control of transmission
and energyv density inside the random nanostructures. In chapter 8. we demonstrated

that such coherent control of light using wavefront shaping is also possible inside ran-
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dom media with inhomogeneous scattering and loss which are common in real life for
example the biological tissues.

The second type of dielectric structures that we studied in the final part of this
thesis are microcavities. Dielectric microcavities, unlike random media, have a ho-
mogeneous refractive index profile and the light inside such structures is confined by
total internal refraction. However, in a rotating frame, the effective refractive index
of the resonant modes is no longer a constant and becomes a function of rotation
speed. This leads to modification of the characteristics of the resonances in the ro-
tating frame and such modification of the properties of the resonances can be used
to detect rotation. One such example is the modification of the resonant frequency
which is called as the Sagnac effect. In chapter 9. we presented a Finite Difference
Time Domain simulation algorithm that we developed to study dielectric microcavi-
ties of different shapes with open boundaries in a rotating frame. In chapter 10, we
used the algorithm to study rotating microcavities and along with Sagnac effect, we
also studied rotation induced changes in other properties of the resonances such as
the @ factor and output intensity pattern. We demonstrated that the () factor and
emission intensity can be more sensitive to rotation compared to the Sagnac effect.
We further tuned the cavity shape to maximize the sensitivity of the output intensity
and finally proposed an alternative scheme to detect rotation using the change in

output intensity pattern.
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