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Complex nanophotonie structures refer to composite photonic materials with re­

fractive' index that varies 011 length scales comparable to the optical wavelength. One 

such example' which has a high level of structural complexity and wide prevalence 

in our daily life is the random medium. Light propagation in a random medium is 

greatly different from homogeneous medium elue to multiple scattering of the light. 

Interference of the multiply scattered optical waves inside a random medium can lead 

to many fascinating mesoscopic* effects such as localization, non-local intensity cor­

relations and creation of open and closed channels. These effects, besides being of 

fundamental interest, are being extensively studied for practical applications rang­

ing from random lasers, light harvesting, biomedical imaging to sensing. This thesis 

present studios of direct probing as well as manipulation of such mesoscopic effects 

inside an 011-chip random medium.

I11 the first part of this thesis, we present experimental results of direct prolung of 

mesoscopic effects such as renormalization of the diffusion coefficient and 11011-local 

intensity correlations inside a random medium. Tlu' random medium studied is a two 

dimensional silicon waveguide with randomly positioned air holes as seatterers and 

reflecting photonic crystal sidewalls. Along with dem onstrating spatial dependence 

of the diffusion coefficient, we also show experimentally the buildup of long-range 

intensity correlations as light propagates inside the random waveguide.



Ill the second part, we dem onstrate a simple and effective approach of using ge­

ometry to tailor the above mentioned mesoscopic effects. We show experimentally 

tha t in a single random waveguide of varying cross-section, the diffusion coefficient 

changes spatially in two dimensions due to localization effects and this can lead to 

modification of the wave diffusion. We further dem onstrate tha t by designing the 

shape of the random waveguide, the long-range spatial intensity correlation for light 

propagating inside the waveguide can be efficiently and deterministically modified. In 

addition to these effects, we also investigate numerically and experimentally the effect 

of geometry 011 the transmission and reflection eigenchannels of random media. We 

show tha t transmission eigenchannels which have universal structures in conventional 

random waveguides can be modified using the waveguide geometry. I11 particular 

geometries, perfect reflection channels are created, and their large penetration depth 

into the medium as well as the complete return of probe light to the input end would 

greatly benefit sensing and imaging applications. In addition, evanescent channels 

may be converted to propagating channels by modifying the geometry of the random 

waveguide. Since the transmission eigenchannels determine the energy concentrated 

inside a random medium, our approach of using geometry opens the door to control 

efficiently the energy density inside random media without requiring any modification 

of the intrinsic disorder.

A growing field of research related to random media is coherent control of light 

transport using adaptive wavefront shaping techniques. Previous studies have shown 

focusing, reduced reflection and enhanced transmission through a random medium 

by shaping the input wavefront. A m ajor constraint tha t limits the efficiency of such 

experiments is incomplete control of the input. I11 the third part of this thesis, we 

implement the adaptive' wavefront shaping technique to our 011-chip random struc­

tures and with a careful design of the coupling waveguide achieve a complete control



of the input. Using adaptive wavefront shaping, we dem onstrate an unprecedented 

enhancement and control of the transmission and energy density inside the random 

nanostructures. In addition, using wavefront shaping we also dem onstrate coherent 

control of light transport in random waveguides with inhomogeneous scattering and 

loss. These results dem onstrate the possibility of controlling light m atter interactions 

in a random media in an 011-chip platform.

Finally, we study numerically the effect of rotation on resonances of dielectric 

microcavities. Unlike random media, dielectric microcavities have a spatially homo- 

genenous refractive index profile. However, in a rotating frame, the effective refrac­

tive index of the resonant modes can become a function of rotation speed which can 

lead to modification of the resonances of the cavity. We develop a Finite Difference 

Time Domain simulation algorithm to study dielectric structures in a rotating frame. 

Using the simulation algorithm, we study in detail the rotation induced changes of 

resonances of microcavities of different shapes with open boundaries and demonstrate 

tha t compared to resonant frequency, other properties of the resonances such as qual­

ity factors and farfield intensity can be more sensitive to rotation.
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6.3 Transmission eigenchannels in tapered waveguide of decreasing width.

(a) Comparison of cross-section-averaged intensity. I v(z). of the max­

imum transmission channel (m =  1) in two waveguides with differ­

ent tapering angles and a constant-width waveguide. All waveguides 
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have W[ =  10.2 //m and \ \ \ / W 2 =  2 (red dashed line). 4 (green solid 

line). The I c(z) curves are offset along the y axis for clarity. The 

intensity peak shifts from the waveguide center ( W \ / W 2 =  1) towards 

the output end { \ \ \ / W 2 >  !)■ and the shift is larger for higher taper­

ing angle (larger U 'i / i r 2). (b) Cross-section-averaged intensity. /, (-)• 

of a perfect reflection channel for the same tapered waveguides as in

(a). The blue dotted line corresponds to tapering of W \ / W 2 — 2 and 

green dashed line corresponds to W {/ W 2 — A. I v(z) of a high reflection 

channel of the constant-width waveguide (blue solid line) is added for 

comparison. The insets show the spatial distribution of electric held 

intensity for the high reflection channel of the constant-width waveg­

uide and the perfect reflection channel of the tapered waveguide with 

W i / \ V 2 — 2 . The perfect reflection channel in a tapered waveguide 

exhibits slower intensity decay inside the random medium (followed 

by a sharp drop near the rear end) and thus can penetrate much 

deeper into the turbid medium than the high reflection channel in the 

constant-width waveguide. The penetration length increases with the 

tapering angle.......................................................................................................  94
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6.4 Effect of absorption on the maximum transmission eigenchannel and 

energy flux decay in the constant-w idth and tapered waveguides, (a) 

Comparison of the cross-section-averaged intensity. I r(z). of the max­

imum transmission channel in a constant-width ( W  =  5.1 pin, L = 20 

pm) disordered waveguide with (dashed line) and without (solid line) 

absorption. In the absorbing waveguide, L/£a =  3. Absorption mod­

ifies the spatial profile of the maximum transmission channel, (b) 

Comparison of spatial decay of energy flux J(z)  in random waveguides 

with constant widths W  = 5.1 pm (blue solid line) and W  =  10.2 pm 

(dashed magenta line), increasing width of W\  =  5.1 pm, W 2 =  10.2 

pm  (green dotted line) and decreasing width of \ \ \  =  10.2 pm  and 

W 2 — 5.1 pm  (red dashed line). For all waveguides, L = 20 pm,

L / ^ a =  3 and J(z)  is normalized to 1 at 2 =  0. While the flux decay 

length remains the same for the two rectangle waveguides of different 

widths, it is lengthened in the expanding waveguide and shortened in 

the contracting waveguide.................................................................................... 100
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6.5 Experimentally measured intensity decays inside disordered waveg­

uides in comparison to numerically calculated spatial profiles of the 

maximum transmission eigenchannels. (a) Experimentally measured 

cross-section-averaged intensity I v(z) inside quasi-2D waveguides of 

constant width W  — 60 pan (solid blue line), increasing width with 

W[ — 10 pm, W ‘2 =  60 pm  (dotted green line), and decreasing width 

with Wi  =  60 pm, W ‘2  — 10 pm  (dashed red line). All the waveg­

uides have L = 80 pm and L / ^ a =  3. The tapering of the waveguide 

boundary causes a dram atic change in the decay lengths of Iv(z).

(b) Numerically calculated Iv(z) of the maximum transmission eigen- 

channel in the disordered waveguides of constant width IE =  10.2 

pm  (solid blue line), increasing width with Wi  = 5 .1  pm, W 2 =  10.2 

pm  (dotted green line), and decreasing width with W\  =  10.2 pm,

W -2 =  5.1 pm  (dashed red line). All waveguides have L = 20 pm and 

L/^a — 3. Despite of the reduced waveguide dimensions, the maxi­

mum transmission channels exhibit a qualitatively similar structure to 

the experimentally measured intensities, indicating the intensity dis­

tribution inside a strongly absorbing random medium is determined 

by the structure of the maximum transmission channel...............................102
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6.6 Transmission eigenchannels and intensity decay in a diffusive waveg­

uide of bowtie geometry, (a) Top-view SEM image of a fabricated 

quasi-2D waveguide with bowtie geometry. The length of waveguide 

is L =  80 /mi. The width of waveguide decreases linearly from 60 /mi 

at 2 =  0 to 10 /{in at 2 =  L /2  and then again increases linearly to 60 

/mi at z — L. (b) Numerically-calculated cross-section-averaged inten­

sity I v(z) of the 19th (solid line) and 20t,h (dashed line) transmission 

eigenchannels of bowtie waveguide. The length L of the waveguide 

is 20 /mi, the width at z = 0. L is 10.2 /mi (35 propagating modes) 

and the width of constriction at 2 =  L /2  is 5.1 /mi (17 propagating 

modes). The abrupt changes in the decay rate of I v(z) before and after 

2 =  L /2  indicate the conversion from propagating wave to evanescent 

wave and back. The evanescent decay rate varies from one channel 

to another, (c) Numerically-calculated I v(z) (green dashed line) and 

cross-section-integrated intensity It(z) (bine solid line) for the maxi­

mum transmission channel of the same waveguide as in (b) but with 

absorption L /£a =  3. The constriction causes a significant change in 

the intensity distribution of the maximum transmission channel, (d) 

Experimentally measured I v(z) (green dashed line) and I t (z) (blue 

solid line) inside the disordered waveguide shown in (a). Both inten­

sity distributions follow those of the maximum transmission channel. 105
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6.7 Transmission eigenchannels and energy distribution in a diffusive waveg­

uide of lantern geometry, (a) Top-view SEM image of a fabricated 

quasi-2D disordered waveguide with lantern geometry. The length of 

waveguide is L =  80 /mi. The width of waveguide increases linearly 

from 10 /mi at 2 =  0 to 60 /mi at 2 =  L/2  and then again decreases 

linearly to 10 /mi at z = L. (b) Numerically calculated cross-section- 

averaged intensity I v(z) for the 5th (dashed line) and 19th (solid line) 

transmission eigenchannels of lantern geometry. The length L of the 

waveguide is 20 /mi. the width at 2 =  0. L  is 5.1 /mi (17 propagating 

modes) and width at 2 =  L/ 2  is 10.2 /mi (35 propagating modes).

I v(z) of the 19th transmission eigenchannel exhibits the conversion of 

the evanescent wave to a propagating wave near the input end and 

then back to the evanescent wave near the output end due to the vari­

ation of the waveguide width. In contrast, the 5th channel remains 

propagating wave across the entire waveguide, (c) Numerically calcu­

lated I r(z) (green dashed line) and cross-section-integrated intensity 

It{z) (blue solid line) for the maximum transmission channel of the 

same waveguide as in (b) but with absorption L/ £a =  3. Both in­

tensity profiles are opposite to those in the bow-tie waveguide, (d) 

Experimentally measured I r(z) (green dashed line) and L(z)  (bine 

solid line) inside the disordered waveguide shown in (a). The inten­

sity profiles are similar to those of the maximum transmission channel 

shown in (c).............................................................................................................. 108
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7.1 On-chip disordered waveguide with a tapered lead, (a) Top-view scan­

ning electron micrograph (SEM) of a fabricated silicon waveguide. A 

ridge waveguide (lead) is tapered from the width Wi  =  330 //an at 

the edge of the wafer to the width W  =  15 /mi, in order to increase 

the degree of control of the light th a t is injected to the disordered 

waveguide, (b) Magnified SEM of the disordered region of the waveg­

uide th a t consists of a random array of air holes (diameter =  90 nm).

(c) Magnified SEM showing the air holes distributed randomly within 

the waveguide with a filling fraction of 6 %. (d) The sidewalls of the 

waveguide are made of a triangular lattice of air holes (diameter =  360 

nm) with a lattice constant of 505 nm, which supports a full photonic 

bandgap at the wavelength A =  1.51 pan..........................................................120

7.2 Semi-log plot of the eigenvalues of the covariance m atrix C(y,y' )  for 

the electric held E rn(y,z  — L i) at the end of a tapered lead with W\

=  85 pm, IE =  15 //m. and L\ =  100 //m. The inset is a schematic 

of the geometry. The sudden drop of eigenvalues gives the number 

of significant eigenvalues, M  =  56. which is equal to the number of 

waveguide modes TV =  56 at the end of the lead z — L {..............................120
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Wavefront shaping experiment to control intensity distribution inside 

a disordered waveguide, (a) A schematic of the experimental setup.

A laser (HP 8168F) output at A =  1510 nm is collimated (by lens L l), 

expanded (by L2, A3) and linearly polarized (by a polarized beam 

splitter PBS) before being m odulated by a phase-only SLM (Hama­

m atsu X10468). Two lens (L4, A-,) are used to project the SLM plane 

to the pupil plane of an objective Oy (lOOx, NA =  0.7), and the edge 

of the wafer is placed at the focal plane. The SLM imposes phase 

modulation only in one direction in order to generate a line at the 

front end of the coupling waveguide. A sample phase pattern  on the 

SLM is shown. The light scattered out of the sample plane is collected 

by another objective 0 2 (lOOx, NA =  0.7) and imaged to an InGaAs 

camera (Xenics XEVA 1.7-320) by a tube lens (A6). My and M 2 are 

mirrors, BS is beam splitter, (b) A11 optical image of the illumination 

line (330 x 1.1 /mi) on the waveguide facet. The input, intensity is 

m odulated along the line, (c) A11 image of the spatial distribution 

of light intensity inside the disordered waveguide for a random input 

wavefront. The spatial resolution is about 1.1 /mi. The ratio S  of the 

integrated intensities over the two rectangles at the back and front side 

of the waveguide is used as feedback for optimizing the input wavefront. 123
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7.4 Experim ental control of intensity distribution inside the disordered 

waveguide, (a. b, c) Two-dimensional intensity distribution I ( y , z )  

inside the disordered waveguide shown in Fig. 7.1 for (a) random input 

fields, (b) optimized input for maximum light penetration (maximizing 

S).  (c) optimized input for minimum light penetration (minimizing 

S).  (d, e. f) The cross-section-averaged intensity, I(z) ,  obtained from 

I(y,  z) in (a. b, c). Dashed lines are experimental data and solid lines

are simulation results............................................................................................. 125

7.5 Numerical simulation of wavefront shaping experiment. (a,c) Weight 

i u ( t ) of each transmission eigenchannel in the input held obtained by 

maximizing (a) or minimizing (c) light penetration into the disordered 

waveguide with the cost function S  (black solid line). For compari­

son, a;(r) for the random input held (blue solid line), and for the 

input held of the maximum (a) or minimum (c) transmission eigen­

channel after removal of amplitude modulation (red dotted line) are 

also shown. (b,d) Cross-section-averaged intensity distribution I(z)  

for the maximized (b) or minimized (d) S  (black solid line), as well as 

the maximum (b) or minimum (d) transmission channel with (green 

dash-clotted line) and without amplitude modulation (red dotted line). 128
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8.1 2D disordered waveguide with inhomogeneous scattering and loss, (a) 

Top-view scanning electron micrograph (SEM) of the fabricated sil­

icon waveguide tha t consists of randomly positioned air hole's. The 

waveguide width W  =  20 /am and length L =  60 //in. A circular 

region of diam eter 10 //m at the center of the waveguide has larger 

and denser air holes (hole diameter =  150 nm. the air filling fraction 

=  15 %). Outside this region, the air holes are smaller (diameter =

90 11111) and the filling fraction is lower (6 %). The sidewalls of the 

waveguide are made of a triangular lattice of air holes (diameter =  360 

11111. lattice constant =  505 nm). which supports an in-plane photonic 

bandgap at the wavelength A =  1.51 //m. (b) Magnified SEM of the 

central region of the disordered waveguide showing air holes of two 

different sizes and densities.................................................................................. 135

8.2 A schematic of the wavefront shaping experiment setup. A laser beam 

(HP 8168F) at A =  1510 nm is collimated (by lens L l), expanded (by 

L 2. L ‘4 ). and linearly polarized (by a polarized beam splitter PBS) 

before being modulated by a phase-only SLM (Hamamatsu X10468).

Two lens (L.\, L~}) an ' used to project the SLA1 plane to the pupil 

plane of an objective ()[ (lOOx. NA =  0.7). and the edge of the cou­

pling waveguide is placed at the focal plane of the objective. The 

light scattered out of the sample plane is collected by a second objec­

tive O 2  (lOOx, NA =  0.7) and imaged to an InGaAs camera (Xenics 

XEVA 1.7-320) by a tube lens (L^). AI\ and M 2 are mirrors. BS is 

an unpolarized beam splitter. The inset is an optical image' of the 

illumination line 011 the' front facet of the coupling waveguide, created

by modulating the phase of the SLM pixels.................................................... 136
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.3 Optimizing the incident wavefront to enhance light transmission through 

the disordered waveguide with spatially inhomogeneous scattering and 

loss. Experimentally measured 2D intensity distribution I(y.  z) inside 

the waveguide shown in Fig. 8.1 for (a) unoptimized input fields, (b) 

optimized input for maximum cost function S. The white box marks

the boundary of the disordered waveguide.......................................................137

.4 Numerical simulation of the ensemble averaged Poynting vector J(y,  z) 

of light inside the 2D disordered waveguide with spatially inhomoge­

neous scattering and loss. The m agnitude of J (y , z )  is shown by color 

plot, and its direction is shown by the arrows. The input field in (a) 

is optimized to maximize to tal transmission. W ith optimized input 

wavefront, the optical waves bypass the region of higher scattering and 

loss in the middle of the waveguide (denoted by a while circle), (b) 

shows J(y,  z) for the maximum transmission channel, which is nearly 

identical to tha t in (a), indicating the optimized input field couples 

mostly to the maximum transmission channel................................................138
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9.1 Frequency splitting between the CW and CCW modes in a circular 

dielectric- microdisk of radius R  =  590 nm and n =  3 in free space 

(n =  1) as a function of the normalized rotation speed VlR/c. The 

circles are the FDTD simulation results for a rotating closed cavity for 

a WG mode (/ =  1, rn = 7, A =  1009.8 nm) and the solid line is the 

analytical result from Ecp (20). Squares are the FDTD simulation 

results for the same mode (/ =  1, rn = 7, A =  1131.48 nm) in the 

rotating microdisk with open boundary. Dotted line represents the 

frequency shifts obtained from the FDTD simulation of the stationary 

microdisk with the effective indices of refraction (inside and outside 

the disk) tha t include the rotation-induced changes. The insets show 

the mode profiles for the closed and open cavities and the black circle 

marks the boundary of the cavity.......................................................................151

10.1 Calculated quality factors for the / =  1, m — ± 7  modes as a function 

of normalized rotation speed QR/c.  The squares are obtained from 

the FDTD simulation of a rotating microdisk of R  — 590 nm and 

n =  3 in free space, and the crosses from the stationary microdisk 

with the effective indices of refraction ( inside and outside the disk) 

th a t include rotation-induced changes described in chapter 9. The 

dotted lines are linear fits showing tha t the Q changes exponentially 

with rotation speed.................................................................................................160

xxvii



10.2 Relative change in Q factor ^  (squares) and the normalized fre­

quency splitting (circles) as a function of the normalized rotation 

speed VlR / c for the WG mode of I = 1, rn = —7 in the dielectric 

microdisk of R  =  590 11111 and n =  3. The dotted lines are the linear

fits................................................................................................................................161

10.3 Rotation-induced changes in the resonances of elliptical cavities, (a)

A 2D microcavity of elliptical shape. The length of minor (major) 

axis is 2a (2b). (b.c) Spatial distribution of the electric field magni­

tude ( \EZ\) for a pair of quasi-degenerate modes in the elliptical cavity 

with ci/b =  0.88 and refractive index n — 3.0. (d) A schematic show­

ing the frequency splitting ALq of a quasi-degenerate pair of modes 

(solid lines) in an elliptical cavity without rotation, and the frequency 

splitting A k r with rotation. The higher-frequency (lower-frequency) 

mode of the quasi-degenerate pair is blue (red) shifted by rotation 

(dashed lines), (e) Normalized frequency shift A A y 77 as a function 

of the normalized rotation speed H R /c  for a pair of quasi-degenerate 

modes with m =  11 and / =  1 in the ellipse with a/b  =  0.88 (red 

dashed line) and 0.92 (black solid line), (f) Magnitude of rotation- 

induced changes in Q. |AQ|- for the same pair of modes in (b). Black 

solid line and red dashed line correspond to a/b =  0.92 and 0.88 re­

spectively. (g) Relative changes in the resonant frequency AAy/Aq and 

the quality factor A Q / Q 0 for the corresponding modes in (e,f). The 

vertical axis is shown in log scale to show the differences in magnitudes. 164
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10.4 Evolution of far-field emission patterns of elliptical microcavities with 

rotation. The deformation of the ellipse is a/b = 0.92 in (a-c) and

0.88 (d-f). (a,d) Angular distribution of far-field intensity 1(0) (at 

r =  5077) of quasi-degenerate pairs of modes shown in Fig. 10.3 at 

Q R /c  — 0. The blue solid (green dashed) curve represents the mode 

with even (odd) symmetry with respect to the x axis, (b,e) Angular 

distribution of far-held intensity for the CW and CCW wave compo­

nents in the stationary resonances shown in (a.d). The solid (dashed) 

curve represents the CW (CCW) wave. The output directions of CW 

and CCW waves are symmetric with respect to the horizontal axis.

(c.f) Angular distribution of far-held intensity 1(0) (at r =  5077) of the 

modes in (a,d) at Q R /c  = 10-4 . The interference fringes in the output 

intensity patterns of stationary cavity (a,d) vanishes, as the modes 

evolve from standing wave to traveling wave with rotation. The emis­

sion patterns of the two traveling-wave modes at high rotation speed 

are not symmetric with respect to the horizontal axis..................................165
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10.5 Comparison of Sagnac effect in a rotating microcavity with chiral sym­

m etry ( 7 7  =  1. dashed line) and without chiral symmetry (7/ =  0.1. 

solid line). The value of //\V\'2 is kept the same, (a) (Dimensionless) 

frequency splitting for a pair of quasi-degenerate modes as a function 

of rotation frequency Q. (b,c) Evolution of CW (thick line) and CCW 

(thin line) traveling-wave components in the quasi-degenerate modes 

with rotation. In the symmetric cavity ( 7 7  =  1). at low rotation speed 

the eigenmodes remain standing-wave modes with equal weights of 

CCW  and CW components, and their frequency difference is barely 

changed by rotation. W hen the rotation speed is sufficiently high, 

one mode evolves to a CCW" traveling-wave mode, the other one to 

a CW traveling-wave mode; and their frequency difference starts to 

grow significantly with Q. In a chiral cavity (7/ =  0.1), the evolution 

of frequency splitting with rotation is identical to the symmetric cav­

ity. W ithout rotation both modes are dominated by ("CW traveling 

waves, but one of them (b) transforms into a CW traveling wave mode

at high Q ................................................................................................................... 171

10.6 A pair of quasi-degenerate modes (A =  598 nm) in a non-rotating 

dielectric disk (7? =  3.0) of asymmetric lima^on shape (R  =  591 11111.

=  0.1, e2 = 0.075. S =  1.94). (a.b) Spatial distributions of elec­

tric held intensity (inset) and angular momentum components (main 

panel) inside the cavity. Both modes have more CW wave (rn < 0) 

than CCW" wave (?/? > 0)......................................................................................172
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10.7 Far-field emission intensity patterns of a pair of quasi-degenerate modes 

(A =  598 nm) in a non-rotating dielectric disk (n =  3.0) of asymmet­

ric limayon shape (7? =  591 nm. e\ =  0.1. e2 =  0.075. 5 -- 1.94). (a) 

Angular distributions of emission intensities at a distance of r =  507? 

from the cavity center for both modes, which have similar output di­

rections. (b) Far-field patterns of CW (red solid line) and CCW (blue 

dashed line) wave components in the resonances, exhibiting distinct 

output directions.................................................................................................

10.8 Emission from the rotating asymmetric limayon cavity with the same 

param eters as the stationary one in Fig. 10.7. (a,b) Spatial dis­

tributions of held intensities for a pair of degenerate modes, which 

correspond to the stationary modes in Fig. 10.7, at the normalized 

rotation frequency Q R/c  = 10-3 . The intensities outside the cavity 

are enhanced to illustrate the main output directions of the two modes 

are different, even though they have the same output directions with­

out rotation [Fig. 10.7(a)]. (c) Spatial distribution of held intensity 

for one of the quasi-degenerate modes in the non-rotating cavity. It 

is dominated bv CW wave. W hen the cavity rotates in the CCW  di­

rection. this mode switches from CW to CCW wave, and the main 

output direction is changed dramatically, (d) Angular distribution of 

far held intensity for the pair of modes shown in (a,b) in the rotating



10.9 Rotation-induced change in emission pattern  of the same cavity as the 

one in Fig. 10.8, when both quasi-degenerate modes are excited si­

multaneously. (a) Angular distribution of the emission intensity Ie 

a t a distance of r =  3R  from the cavity center at three rotation 

speeds. To show the change in the emission profile, I e(9) is normal­

ized (f027r I e(9)d9 =  1). (b) Relative changes in the main emission

peak intensity (at 9 =  0.73) (solid squares and solid line) arid in the 

ratio of main peak intensity over the secondary peak intensity (at 

9 =  2.79) (crosses and dashed line) vs. the normalized rotation fre­

quency QR/c.  Both peak intensities are integrated over a range of 

emission angle marked by the double-arrowed segments in (a). For 

comparison, relative changes of resonant frequencies, are plotted 

for circular cavities with the same area and refractive index (open cir­

cles and dotted line). The symbols represent the numerical data, and 

the straight lines are linear fit of the data in the log-log plot, which 

gives the slope. The values of the slope are (from top to bottom)

2.4 x 103, 1.2 x 103 , and 5.7 x 10-1 respectively. The rotation-induced 

changes of output intensity are much larger than  tha t of the resonance 
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lO.lOOutput sensitivity to rotation for the asymmetric limagon cavity with 

varying degree of spatial chirality. The cavity parameters are the 

same as those in Fig. 10.6 except the value of 5. (a) Relative change 

of the emission intensity in the main output direction (solid squares 

and dashed line) as a function of spatial chirality a  for the quasi- 

degenerate modes in Fig. 10.7. The rotation frequency is fixed at 

Q R /  c ~  1.5 x 10 5. The difference between the emission patterns 

for CW and CCW waves in the non-rotating cavity is quantified by 

,3 (solid circles and solid line), which is also plotted against a. W ith 

increasing spatial chirality a. CW and CCW outputs become more 

distinct, enhancing the emission sensitivity to rotation. (b,c) Far-held 

patterns for CW wave (red solid line) and CCW wave (blue dashed 

line) in two cavities with 6 =  0 (b), and 2.75 (c). At 5 =  0, both CW 

and CCW  waves emit predominantly in the direction close to 0 =  tt/2  

(b). and the slight difference of their emission directions is a result 

of wave effects in the' wavelength-scale cavity. As S increases from 

0 to 7r. the main emission direction of the CW wave moves towards 

0 = 0. and the CCW wave towards 0 = n: meanwhile, the secondary 

emission peak, which is in the opposite direction of the main peak.
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R  of the asymmetric limagon cavity. The refractive index of the cavity 

is 77 =  3.0, the deformation param eters are €[ =  0.1 and e2 =  0.075,
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€[ =0.1, e2 =0.075, and 3 =1.94. The resonant modes in all the cases 

have X/n  ~  200 nm where A is the vacuum wavelength and n is the 

refractive index of the asymmetric limagon cavity. The rotation speed
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Chapter 1

Introduction

1.1 Light Transport in R andom  M edia

Multiple scattering of waves in random media is a phenomenon widely seen in nature. 

Examples are scattering of optical waves by biological tissues, scattering of sunlight 

by clouds or sound waves being scattered by water droplets in a foggy day. Because 

of its wide prevalence, the phenomenon of multiple scattering is studied in diverse 

fields ranging from adaptive optics, ocean acoustic-s, radio physics, condensed m atter 

physics, seismology to biomedical imaging.

One approach to understand multiple scattering of waves such as light is to use 

the concept of diffusion. Diffusion describes multiple scattering as a random walk of 

photons and if the spatial gradient of the energy density is not too large, the flux is 

linearly proportional to the gradient. The approach of using the concept of diffusion 

is elegant as it requires knowledge of a single parameter. D. the diffusion constant, 

regardless of the underlying microscopical mechanisms of transport. The diffusion 

constant D  is proportional to the transport mean free path ( which is the distance' 

the wave travels inside the medium before its propagation direction is randomized by
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scattering ('vents. It is given by D  =  ^vl .  where c is the transport velocity of the 

photons, and d = 2 (d — 3) for two-dimensional (three-dimensional) random medium. 

( signifies the scattering strength inside a random media and higher the scattering 

inside a medium, smaller is the value of t. If ( >> L A, where L is the system 

length and A is the wavelength, the waves undergo ballistic transport and mostly 

travel in the forward direction with few scattering events. When I  >  f >  A, the 

waves undergo multiple scattering and the wave transport becomes diffusive.

Although the theory of diffusion can predict the average behaviors of wave trans­

port in a multiple scattering medium, it is however an approximation as it ignores 

interference effects [1-4]. When scattering is weak or correspondingly / is much longer 

than A, diffusion is a good approximation as interference effects are negligible. How­

ever, when scattering becomes very strong such tha t £ ~  A, interference effects start 

dominating the wave transport. One such example is Anderson localization where 

strong wave interference from different scattering ('vents leads to suppression of wave 

diffusion and waves become exponentially localized within the medium [5].

Interference effects due to multiple scattering of waves were originally studied in 

the context of electron transport in disordered conductors. In electronic transport, 

such effects exist in the mesoscopic length scale which refers to a system length L 

at which the phase coherence length of electrons is comparable or greater than L. 

In such mesoscopic length scales, the quantum  wave effects can dominate transport 

behaviors compared to classical particle-based predictions. Since such mesoscopic 

effects are essentially wave interference effects, similar effects also exist for classical 

waves such as light propagating through a scattering medium. The advantage of 

studying these effects with photons is that the unlike electronic samples, which have 

to be cooled down below 1 K to suppress electron-phonon interactions to preserve the
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tem poral coherence throughout the entire sample, for photons the tem poral phase 

coherence is preserved when they are scattered by static disorder. In addition, unlike 

photons which do not mutually interact, Coulomb interaction between electrons is 

unavoidable.

Figure 1.1: Side-view scanning electron microscope (SEM) image of a fabricated 
two dimensional random waveguide. The two sidewalls of the waveguide consist of 
triangular lattices of air holes. They possess a 2D photonic bandgap and behave like 
reflecting walls for light incident from all angles in the waveguide. The probe light is 
coupled from a silicon ridge waveguide to an empty photonic crystal waveguide, then 
impinged onto a random array of air holes

In this thesis, we study experimentally some of these mesoscopic or interference 

effects in light transport inside a scattering medium. The monochromatic coherent 

input light is from a CW laser source and the static scattering medium studied is a 

two dimensional disordered silicon waveguide with air holes as scatterers and photonic 

crystal sidewalls. Fig. 1.1 shows a scanning electron microscope (SEM) image of one 

such fabricated random waveguide. We directly probe the mesoscopic effects inside 

the medium and show how these effects spatially evolve. We further dem onstrate th a t 

these effects can be controlled efficiently by changing the geometry of the medium 

and without having to change the intrinsic disorder. W ith the recent development of 

spatial light modulators, optical waves offer many advantages towards studying these
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interference effects as now we can control the optical states. We take advantage of 

tha t and show that by controlling the phase of the input light state, we can control 

the interferences inside the scattering medium and thereby have diverse' transport 

behaviors of light inside a scattering medium.

There are many advantages of using the two dimensional planar waveguide geome­

try  for studying mesoscopic effects inside the random medium. The disorder strength 

which depends 011 the density and size of the air holes can be precisely controlled. The 

light that propagates through the random medium gets scattered both in-plane and 

out of the waveguide plane'. The out-of-plane scattering allows us to monitor the light 

transport inside the medium from the vertical direction thus enabling us to directly 

probe the mesoscopic effects inside the random waveguide. The cross-section of the 

waveguides can be spatially varied which allows us to study independently the effect 

of geometry on the mesoscopic effects. Finally, in these two dimensional disordered 

waveguides, the m agnitude of the interference effects is determined bv its localization 

length given by f  =  (tt/2 )N(.  where N  =  2 \ Y / ( \ / n c)  is the number of propagating 

modes in the waveguide. IF is the waveguide width. A is the optical wavelength in 

vacuum, and ne is the effective index of refraction of the random medium. Since N  

scales linearly with IF, £ (“an be easily tuned by varying the waveguide width and 

by changing the waveguide' geometry (L, IF), we can reach both the diffusion regime' 

(i < L < £) and localizatiem regime (L > £) [6.7]. Therefore, even if se-attering is 

relatively weak (k( 1. where k is the wavenumber). the waveguiele k'ligth L e-an

easily e'xceexl £ so tha t the localizatiem effect is strong enough [6,7].

The twexelimensiemal elisordereel wave'guieles are funelamentally different from 3D 

ranelom me'elia. I11 a 3D ranelom meehum. there e'xists a quantum  phase transitiem 

from lewalizatiem to eliffusiem which elepenels em the eliseweler strength [5]. This transi­

tion was first shown by Anderson in the e-emtext of the metal-insulate)r transition [5], 

but it exists for all wave's [8.9]. Few lx)th eiuantum anel e-lassieal waves, the charae'tew
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of transport in a 3D ranelom medium depends upon the closeness to the le)calizatie)ii 

threshold of the' phase transition separating eliffusion and localizatiem. Ie)ffe and Regel 

pre)pe)sed that few 3D ranele)in meelium. the thre'sholel criterion for localizatiem is given 

by the Ioffe-Re'gel criterion, kl  ~  1 [10]. Because of their reeluceel dimensionality, the' 

2D elisordereel waveguiele's e)n the other hanel are always localized in the limit L ro oo. 

Althe)iigh in such structures there eloes not exist a mobility eelge [11]. the same is not 

necessary to investigate any of the mesoscopie' effects studied in this thesis and the 

effects exist e'ven for finite sized diffusive samples. In the following subsections, we 

eliseaiss in detail the me'soscopic effects stuelieel in this thesis.

1.1 .1  R en orm aliza tion  o f  d iffusion  coefficien t

In a diffusive medium with negligible inelastic scattering, there exists a probability 

of a wave to return te> the same position it has previously visited after a randemi 

walk. The wave can therefore form a closeel loop and the probability of such loops 

happening increases with increase in scattering strength. For every such loop there 

always exists the time-reversed loop which yields an identical phase delay. This is 

shown in Fig. 1.2. Since both the loops yield the same' phase delay, constructive 

interference of the waves from the reversed loops increases the energy density at the 

original position and decreases the net flux through the random medium. This gives 

rise' to the so-called weak localization effect [12], This is the basic mechanism which 

eventually suppresses the wave diffusion leading to Anderson localization. In case of 

Anderson localization, the return probability is close to unity and the wave becomc's 

exponentially localized within the medium.

One theory tha t can describe such suppression of diffusion due to interferences 

between the waves traveling in the time-reversed paths is the self-consistent theory of



Figure 1.2: Weak localization effect. Constructive interference of the waves from the 
reversed loops increases the energy density at the original position and decreases the 
net flux through the random medium.

localization [13,14]. It can predict quantitatively not only the magnitude of the in­

terferences inside the medium but can also predict modification of these interferences 

due to absorption, finite size of the medium or variation of boundary conditions. The 

m ajor ingredient of the self-consistent theory is th a t the suppression of diffusion due 

to the weak localization effects is accounted for by a renormalized diffusion coefficient 

D  where the amount of renormalization is proportional to the return probability of 

the waves via the looped paths.

In a random media of finite size and open boundaries, compared to an infinite 

medium, the return probability is reduced as the waves propagating through the 

longer loops may reach the boundary and escape. The m agnitude of renormalization 

of D  of any finite random media therefore depends on the system size. In addition, 

the chance of the waves escaping from the boundaries is higher and therefore the 

renormalization of D  is also weaker in th a t region. In contrast, at the center of the 

medium the chances of the waves escaping are lowest and therefore the renormal­
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ization of D is also largest. This implies tha t along with renormalization, the value 

of D  is 110 longer a constant and becomes a spatially varying function [15—17]. I11 

addition to finite size, another param eter tha t effects the renormalization of D is 

absorption. In presence of absorption, the long loops are cut as the waves can get ab­

sorbed. Absorption therefore reduces the renormalization of D. It also sets a length 

scale beyond which the waves will not reach the boundary, and D  becomes position 

independent [18].

Although the self-consistent theory of localization has been used to interpret sev­

eral experimental results [19 21], its key prediction of position dependent diffusion 

has not been experimentally demonstrated. I11 chapter 2 of this thesis, we will present 

the first direct experimental evidence of position dependent diffusion inside a random 

waveguide. We will present studies of random waveguides of different widths, lengths, 

scattering strengths and absorption and will dem onstrate their effect 011 renormaliza­

tion of the diffusion coefficient. I11 chapter 4. we will further dem onstrate th a t it is 

possible to change local diffusion within a single random waveguide without changing 

the properties of the disorder by just varying the geometry of the system. By varying 

the geometry, we vary the renormalization of the diffusion coefficient spatially which 

changes the local diffusion within a single random waveguide. This is possible because 

position dependent diffusion is caused by the nonlocal wave interference effects that 

depend 011 the exact position of the boundary.

1.1 .2  In ten sity  correla tion s in sp eck le p a ttern s

W hen we shine a laser through a scattering medium such as a scotch tape and look 

at the output intensity pattern, we observe a complex intensity pattern  consisting of 

bright and dark spots. The intensity pattern  is due to the interference' between scat­
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tered waves and is referred as speckle pattern. Fig. 1.3 shows an example of a speckle 

pattern. Although the speckle pattern  looks random, it is in fact not completely ran­

dom and there exists intensity-intensity correlations within the pattern  [2,22,23]. The 

speckle pattern  in fact can be considered as a “signature” of the scattering medium 

and im portant information about the scattering medium can be extracted by measur­

ing the correlations existing in the pattern. The correlations in a speckle pattern  are 

an outcome of the non-self-averaging nature of coherent wave transport in a multiple 

scattering medium.

Figure 1.3: Typical output speckle pattern  of laser light transm itted through a diffu­
sive medium

The intensity-intensity correlation function C  of a speckle pattern  can be com­

puted theoretically by means of a perturbative approach in which the disorder is 

treated as a small param eter [22]. Calculation of C  requires consideration of all 

possible multiple-scattering paths tha t light can take inside a scattering medium. 

However, most of the correlations among the different paths reduce to zero upon 

ensemble averaging and only a subset of paths yield non-vanishing correlations and



contribute to C . Fig. 1.4 is a schematic showing the three possible subsets of paths 

tha t contribute to C  [22.24 30]. The first and the most obvious one (Fig. 1.4(a)). 

consisting of independent scattering paths, gives rise to the short range correlation 

CV It has the largest contribution to C  and is of the order unity. In the spatial 

domain, C\ correlation implies tha t the intensity within a speckle spot is correlated. 

In the angular domain, C\ correlation leads to "memory effect" in a random medium 

which implies tha t a small shift in the direction of the incoming beam, results on 

average in a shift of the same angle in the outgoing intensity speckle pattern  [22.25].

The next contribution to the correlation arises when two sets of diffusing paths 

cross somewhere in the middle of the sample (Fig. 1.4(b)). Because of the crossing, 

two paths can "exchange” information in propagating through the sample and this 

can lead to a long range correlation, C-2. Since this can only happen for two sets of 

diffusion paths which meet once inside the system, the magnitude of C2 correlation is 

less from the previous C\ correlation by the probability of two diffusion paths going 

through the sample and crossing somewhere in the sample which is about 1/g where 

g is the dimensionless conductance of the scattering medium [22.25]. The long range 

C -2 correlation implies tha t two speckles spots of the transm itted speckle pattern  and 

separated by distances much larger than I arc' correlated and if a given speckle spot 

in the transmission far held is brighter than  average-', all the other spots also tend to 

be a little brighter.

The final contribution to the correlation arises when two sets of diffusing paths 

cross twice somewhere' in the middle of the sample (Fig. 1.4(e)) [22.25]. Such cross­

ings lead to "infinite range" correlations. Cff The C-5 correlations results in all pairs 

of input and output channels of a random media to be correlated to each other and 

is responsible for the universal conductance fluctuations. Since Cfi correlations arc'
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Figure 1.4: Subset of paths tha t eoutribute to the eorrelations in the speckle pattern, 
a and b correspond to input and output channels respectively and the reversed arrow 
signifies the time-reversed path, (a) Independent scattering paths contribute to C\. 
(b) One crossing of scattering paths lead to long-range eorrelations C2- Its magnitude 
is on the order of 1 / g. (e) Two crossing of scattering paths inside the random medium 
lead to infinite' range eorrelations C.n Since it requires two crossings, therefore the 
magnitude is 011 the order of l / g 2.

formed due to two crossings of the diffusion paths, its magnitude is therefore on the 

order of l / g 2.

The eorrelations in the speckle pattern  besides being of fundamental importance 

are also im portant from application point of view. W ith the recent advances in wave­

front shaping it is now possible to focus light in a speckle spot inside or outside' 

a random media with possible applications ranging from deep tissue imaging, laser 

surgery, radiation treatm ents to optogenetics. It has been observed that focusing light 

011 a single speckle simultaneously brightens nearby speckles due to long range corre­

lations resulting in reduction of the contrast of focusing. In addition, it has also been 

shown that the long range eorrelations of intensity inside' the random medium deter­

mines not only focusing contrast but also energy deposition inside the sample [31-33]. 

Although experimentally, long range' correlations of intensity have been investigated, 

but most measurements we're performed either em transmitteel eir refleedeel light out- 

siele the ranelemi media [34 42], It is interesting to pre)be the lemg range corre'lations 

ele'veleqx'd insiele the ranelemi meelia as tha t will indicate how the focusing e-ontrast 

or energy depexsition will vary spatially insiele' the ranelemi medium. Only one' experi­

ment in micrenvaves has been done until ne>w where a ek'te'ctor (antenna) was inserteel 

into the ranelemi meelia to measure' the intensity insiele the mexlium to e'aleailate the'
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correlations [34]. In chapt('r 3 of this thesis, we present experimental results of di­

rect probing of the long range eorrelations of multiply scattered optical waves inside 

a random waveguide. We dem onstrate how the long range eorrelations evolve spa­

tially and also vary the degree of long range eorrelations by modifying the g of the 

random waveguides. In chapter 5, we further dem onstrate experimentally an effec­

tive approach of tailoring the spatial dependence of long-range intensity correlation 

functions inside the random system. This is accomplished by fabricating photonic 

random waveguides with the cross section varying along their length. The functional 

form of the long-range correlation is modified inside waveguides of different shapes 

because the crossing probability of scattering paths is affected non-uniformly in space.

1.1 .3  O pen  and closed  channels in random  m ed ia

Another fascinating effect resulting from interferences of multiply scattered waves 

inside random media is the creation of transmission eigenchannels which are eigen­

vectors of the m atrix At. where t is the held transmission m atrix (TM). The trans­

mission eigenchannels of lossless random media can be broadly classified as open and 

closed [43 51]. The open channels have transmission eigenvalues r  close to 1 and 

dominate the propagation of the waves through the medium, while the' closed chan­

nels with t  close to 0 dominate the reflection. Since' the existence of e>pen eTanncls 

alle)ws the pexssibility for an optimally prepareel cohe'rent input beam to be transm it­

ted through a lossless diffusive' meelium with ewder unity efficiency, the' e>pen channels 

have been extensively stueliexl in the recent time's [31.52-57].

Besieles transmissiem. the' energy elensity elistributiem of multiply scattereel waves 

inside a diseu'dered medium is also eletermineel bv the spatial profile's of the trans- 

missiem eigenchannels tha t are exe-itexl by the input light. Recently, it has been
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Figure 1.5: Spatial profile (cross section averaged intensity I(z) )  of maximum trans­
mission channel of a diffusive waveguide of W  =  5.1 /im and L = 10.2 fim. The 
dimensionless conductance is g =  3. The inset shows the 2D intensity distribution of 
the maximum transmission channel. The 2D intensity distribution is averaged over y 
to obtain the spatial profile I(z).

shown tha t the spatial profiles of the transmission eigenchannels are distinct and the 

the maximum transmission channel has a universal spatial profile (inside a diffusive 

waveguide with uniform cross section), which cannot be changed by varying disorder 

strength or by adjusting the width or length of the random media [58]. Fig. 1.5 is a 

numerical simulation result which shows the spatial profile of the energy density of 

a maximum transmission channel in a diffusive waveguide. The inset shows the 2D 

intensity distribution inside the waveguide. In chapter 6 of this thesis we show th a t by 

varying the geometry of a random waveguide, the spatial structure of open channels 

can actually be significantly and deterministically altered from the universal ones. 

This enables tuning the depth profile of energy density inside the random medium, 

thus controlling how much energy is concentrated inside the sample and where it is 

concentrated. We show th a t by gradually increasing the waveguide cross-section, we 

can convert evanescent channels to propagating channels. In addition, perfect reflec­

tion channels can be created in certain confined geometries, which do not exist in
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waveguides with uniform cross-section. We show that, unlike high-refiection channels 

in uniform waveguides that (exhibit shallow penetration into the disordered system, 

a perfect reflection channel can penetrate almost through the entire system but does 

not transm it any light.

Recent developments in the held of adaptive wavefront shaping technique have 

made it possible to selectively couple input light to the open channels to enhance 

the to tal transmission or focusing through a random medium [59 63]. A major con­

straint tha t limits the efficiency of such experiments is incomplete control of the 

input [63 65]. In chapter 7 of this thesis, we implement the adaptive wavefront shap­

ing technique to our on-chip random nanostructures and with a careful design of the 

coupling waveguide achieve a complete control of the input. Taking the advantage of 

the fact that open and closed channels have different spatial profiles and transm is­

sion, we dem onstrate an unprecedented enhancement and control of the transmission 

and energy density inside the random nanostructures bv selectively coupling the in­

put light to these channels. Finally in chapter 8. we extend the adaptive wavefront 

shaping technique to random waveguides with inhomogeneous scattering and loss and 

demonstrate' the power of wavefront shaping in such structures. We show tha t by se­

lectively coupling input light to the open channels, regions of higher scattering and 

loss can be bypassed by the light propagating in such structures.

1.2 R otatin g  D ielectric  M icrocavities

In the final part of this thesis, we study numerically the effect of rotation on resonant 

modes of two dimensional dielectric microcavities. Unlike random media, microcav­

ities are homogeneous structures which do not have' a spatially varying refractive
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index profile. The light inside such structures is confined by to tal internal reflection. 

The simplest example of a two dimensional microcavity is a circular disk. The light 

beam inside a circular disk propagates via consecutive reflections from the boundary. 

Because of the symmetry of the cavity the angle of incidence remains the same and 

the condition for to tal internal reflection is maintained at each bounce. W hen the fre­

quency of the light propagating inside the cavity is such th a t the phase it accumulates 

after one round trip  is equal to 2nn  (n =  1, 2, 3..), the field reaches a steady state and 

forms a resonant mode of the cavity. Fig. 1.6 shows the electric field distribution of 

a resonant mode of a circular microcavity with closed and open boundaries.

(a) (b)

Figure 1.6: Electric field distribution of a resonant mode in a circular disk with open 
(a) and closed boundaries (b). The radius of the disk is 591 nm and refractive index 
is 3. The resonant wavelengths for (a) and (b) are A =  1131.48 nm and A =  1009.8 
nm respectively. For the open cavity, the Q factor of the resonant mode is ~  9000. 
The black circle marks the boundary of the cavity for both (a) and (b).

Although the light inside the circular cavity is confined by to ta l internal reflec­

tion, the confinement is not perfect. The curvature of the cavity boundary leads to an 

evanescent leakage and in absence of any additional loss, the leakage rate determines 

the finite lifetime or the quality factor (Q ) of the resonant mode. For a circular cavity, 

as seen in Fig. 1.6, because of the rotational symmetry of the shape, the leakage of 

light is always isotropic. To achieve anisotropic directional emission, various asym­

metric shapes of microcavities have been investigated [66 68].
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Microeavities have been extensively studied for both fundamental physics as well 

as practical applications such as filters, modulators, switches, bio-chemical sensors 

and lasers [69,70]. One application tha t has recently been proposed is to use mi- 

crooavities to detect rotation [71 84]. Possible advantages of using microeavities as 

gyroscopes will be on-chip integration and miniaturization. In a rotating frame of 

reference, the effective refractive index of the resonant modes of a cavity gets mod­

ified and becomes a function of the rotation speed [72]. This leads to a shift of the 

resonant frequencies of the cavity that is proportional to the rotation speed. This 

frequency shift is called the Sagnac effect [71- 73.77. 79.85-87]. The Sagnac effect in 

microeavities has been proposed to be used as a measure to detect rotation [71.72]. 

The Sagnac effect however scales as the size of the cavity and is therefore extremely 

small for micron sized cavities [71,72].

In the previous studies which investigated the Sagnac effect, cavities with only 

closed boundaries were investigated [72.73.76]. In reality the cavities have leakage 

due to open boundaries and therefore rotation along with the resonant frequencies 

can also affect the Q factor and emission intensity pattern  of the resonant modes. In 

chapter 9 of this thesis, we present a Finite Difference Time Domain (FDTD) algo­

rithm  th a t we have developed to study two dimensional microeavities of any shape in 

a rotating frame with both closed and open boundaries. Using the FDTD Algorithm, 

along with the Sagnac effect, we also study the Q factor and the emission intensity 

pattern  of resonant modes of cavities of different shapes. In chapter 10, we present 

the numerical results and dem onstrate that emission intensity pattern  as compared 

to Sagnac effect is much more sensitive to rotation and can therefore be a better 

candidate for rotation sensing.
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Chapter 2

Experim ental dem onstration of 

position dependent diffusion in 

disordered waveguides

2.1 Introduction

1 The concept of diffusion has been successfully applied to diverse phenomena such 

as heat, sound, or electron transport. It has also been used to describe light trans­

port through multiple scattering media such as clouds, colloidal solutions, paint, and 

biological tissues [2-5]. For electromagnetic waves such as light or any other kinds of 

waves, diffusion however is an approximation as it disregards interference effects [6].

In a multiple scattering medium with negligible inelastic scattering, there exists a 

probability of a wave to return to the same position it has previously visited after a 

random walk. The wave can therefore form a closed loop and the probability of such 

loops happening increase's with increase in scattering strength. For every such loop 

there always exists the time-reversed loop which yields an identical phase' elelay. Since 

1. The' insults  show n in th is  ch a p te r  have been  published  in ref. [1].
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both the loops yield the same phase delay, constructive interference of the waves from 

the reversed loops increases the energy density at the original position and decreases 

the net flux through the random medium. This gives rise to the so-called weak 

localization effect [7]. This is the basic mechanism which eventually suppresses the 

wave diffusion leading to Anderson localization [8].

This effect of suppression of diffusion due to interferences between the waves trav­

eling in the time-reversed paths has been accounted for by a renormalized diffusion 

coefficient D  in the self-consistent theory of localization [9.10]. The amount of renor­

malization is proportional to the return probability, which is determined by the scat­

tering strength, finite size, and position inside the random media. The dependence of 

return probability on finite size and spatial position conies from the fact that in an 

open system of finite size the longer loops may reach the boundary where waves can 

escape. The chance of escape of the waves is higher near the boundary resulting in 

lower return probability compared to the center of the medium. The renormalization 

of D  is therefore weaker near the boundaries compared to the center of the random 

medium implying that the value of D  is not only just renormalized but also varies 

spatially [11-13].

The renormalization of the diffusion coefficient also depends on absorption or 

dissipation. In the presence of dissipation, the long loops are cut. thus reducing the 

renormalization of the diffusion coefficient compared to a passive system of similar 

size and scattering strength. Furthermore, dissipation introduces an effective length 

scale beyond which the wave will not reach the boundary of the system and the 

diffusion coefficient becomes position independent [14].

Although self-consistent theory of localization in open random media has been 

used to understand several experimental results [15 17]. its key prediction of position- 

dependent diffusion (PDD) has not been observed directly. This is partly because' it 

is difficult to probe wave transport inside three dimensional random medium. In
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this chapter, we report the first direct experimental observation of PDD by analyz­

ing light that escape's from the two-dimensional random structures via out-of-plane 

scattering [18.19]. We demonstrate' the effects of finite size, scattering strength anel 

absorption 011 the renormalization of the diffusion c-oefficient D. The experimental 

results presented in this chapter, provieles an experimental confirmation for the in­

terpretation of localization in open ranelom meelia as position-elepenelent suppressie)ii 

of eliffusion. put forward in the self-e-onsistent theory [11,12] anel the supersynimetrie* 

theory [13]. Although the experiment has been performed with light, the conclusions 

drawn from this work directly apply to the transport e)f other types of waves such as 

acoustic waves, microwaves anel de Broglie waves of electrons.

2.2 Tw o d im ensional disordered w aveguides

The random media what we study in this experiment are twe) dimensional elise>relereel 

waveguides tha t are designeel and fabricateel in a 220 11m silicon layer 011 top of 3 //m 

burieel oxiele. The patterns are w ritten by edectron beam lithography and e'tcdied in 

an ineluctively coupled plasma reactive ion etcher. As shown in the scanning electron 

microscope (SEM) image in Fig. 2.1, the random waveguide* has photonic* crystal 

sidewalls made of a triangular lattic e' of air hole's (lattice constant 440 11111. hole radius 

154 11111). The photonic- cystal siclc'walls are designed to have a 2D photonic banclgap 

for all incident angles of TE polarized light in the wavelength range of 1450 11111 - 1550 

11111. The Bragg length of the photonic crystal is approximately two lattice constants. 

For providing optical confinement of the light in the plane of the waveguide', it is 

essential to have a photonic- cystal tha t refic'c-ts light for all incident angle's as the' 

light can be scattered by the air holes in all eliioctions. The index difference' bc'twe'en 

silicon and air is not sufficient for in-plane optical c'onfineniont as the critical angle' 

for silicon-air interface is only ~  21 degrees. For all the random waveguide sample's
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studied in this chapter and also in the subsequent chapters, the parameters of the 

photonic crystal are kept the same. In addition, the range of the probe light for 

all the experiments described in this thesis is chosen such th a t it falls within the 

range of the photonic bandgap. The incident light enters the waveguide from an open

Figure 2.1: Side-view scanning electron microscope (SEM) image of a farbicated 
quasi-2D disordered photonic waveguide. The two sidewalls of the waveguide consist 
of triangular lattices of air holes (lattice constant 440 nm, hole radius 154 nm). They 
possess a 2D photonic bandgap and behave like reflecting walls for light incident from 
all angles in the waveguide. The probe light (in the wavelength range of 1500 nm 
- 1520 nm) is coupled from a silicon ridge waveguide to an empty photonic crystal 
waveguide, then impinge onto a random array of air holes (hole diameter 100 nm, 
and areal density 6 %) inside the waveguide.

end and is incident onto a 2D array of air holes inside the waveguide. The random 

pattern  of air holes causes light to scatter while going through the waveguide. The 

transport mean free path  i  is determined by the size and density of air holes. Light 

localization will occur if the length of the random array L  exceeds the localization 

length £ =  (7r/2)AT, where N  =  2W / (X/ne) is the number of propagating modes in 

the waveguide, W  is the waveguide width, A is the optical wavelength in vacuum, 

and n e is the effective index of refraction of the random medium. Since N  scales
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linearly with W.  £ can be easily tuned by varying the waveguide width. Therefore', 

by changing the waveguide geometry (L. IT), we can reach both the diffusion regime 

(i < L < £) and localization regime (L > £) [20.21].

One im portant factor that we need to consider in these random wavegeuides is the 

dissipation of light. The' wavelength range of the probe light is chosen such tha t light 

absorption by silicon is negligible. Hence, light scattering out of the waveguide plane 

by the random array of air holes is the dominant loss mechanism. Such scattering 

allows us to study the effect of PDD by monitoring the intensity distribution inside 

the system from the vertical direction. However, we need to address the question 

whether the out-of-plane scattering can be treated as incoherent, dissipation in the 

calculations. In a random array of scatterers. the fields are correlated [22.23] only 

within a distance 011 the order of one transport mean free path  £. and waves from 

different coherent regions of size ( x ( have uncorrelated phases. Since there are 

a large number of such coherence regions / x £ in the random waveguide of size 

IE x L. the overall leakage may be considered incoherent and thus can be treated 

effectively as material absorption. The absorption strength in the random medium 

can be quantified by the diffusive dissipation length in the random system which is 

=  VD{)Tn. where ra is the ballistic dissipation time. In the experimental structures, 

similar to /. the m agnitude of £„ also depends on the size and density of the air holes.

The planar waveguide' geometry we use' is well suited for studying the effect of 

PDD. It allows a precise' fabrication of the ele'sired system using lithography so that 

the param eters such as £ and £a can be accurately controlled. The' localization length 

£ oc W  can be varied by e-hanging the waveguide wielth, while the eliffusive elissipation 

length remains fixeel. This allows us to separate the effects of localization anel 

elissipation by testing waveguide's of different width. The additional confinement of 

light by the wave'guide sidewalls makes £ scale linearly with £. Even if scattering is 

relatively wcvik (k£ 1, where' k is the wavenmnber). the waveguide length L  e*an
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easily exceed £ so tha t the localization effect is strong enough to modify diffusion.

2.3 E xperim ental dem onstration  o f P D D

A schematic of the experimental setup is shown in Fig. 2.2(a). Experimentally light 

from a wavelength-tunable laser (HP 8168F) is coupled to the silicon ridge waveguide 

through a single-mode polarization-maintaining lensed fiber. The transverse-electric 

(TE) polarization (electric field in the plane of the waveguide) of the incident light 

is chosen. An optical image of the spatial distribution of light intensity across the 

structure surface is taken by collecting light scattered out of plane using a 50 x objec­

tive lens (numerical aperture 0.42) and recorded by an InGaAs camera (Xenics Xeva 

1.7-320) (Fig. 2.2(b)). The intensity is integrated over the cross section of the waveg­

uide to obtain the evolution I(z)  along the waveguide (parallel to the 2 axis). For 

each configuration (width IT, length L, transport mean free path  () of the disordered 

waveguides. I (z)  is averaged over two random realizations of air holes and fifty input 

wavelengths equally spaced between 1500 nm and 1520 nm. The wavelength spacing 

is chosen to produce independent intensity distributions. Additional measures are 

taken to enhance the signal to noise ratio in the experiments. One major issue that 

is addressed is the issue of stray light. The lensed fiber which is tapered at the end 

to focus the laser beam, focuses the fight from the laser to a spot of diameter ~  2.5 

//m at the edge of the wafer. The ridge waveguide has the same width as the random 

waveguide it is connected to, which varies from 5 micron to GO micron (Fig. 2.3(a,b)). 

However, the height of the silicon ridge waveguide is merely 220 11111, so some of the 

input fight does not couple into the waveguide: instead it propagates above or below 

the waveguide. To avoid such stray light, the ridge waveguide is tilted by 30 degrees 

with respect to the incident direction of the light from the fiber (approximately nor­

mal to the edge of the wafer). In addition, the ridge waveguide is made 2.5 mm long.
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Camera

Objective

Lensed fiber

(b)

Figure 2.2: (a) A schematic of the experimental setup. A lensed fiber couples the 
light to the structure and another 50x objective lens (NA =  0.42) collects the light 
scattered by the air holes out of the waveguide plane and projects onto a camera, 
(b) Optical image of the intensity of light scattered out-of-plane from the disordered 
waveguide. The wavelength of the probe light is 1505 nm.

so tha t the random waveguide structure is far from the direct path  of the stray light 

(Fig. 2.3(a,b)). This approach is adopted for all experimental samples studied in this 

thesis. The camera used in the experiment (Xenics Xeva 1.7-320) is thermo-electric

(a) # Disordered  
'T l w aveguide

W aveguide to  
device

Lensed Fiber
Stray light

Figure 2.3: (a) Schematic of the sample layout showing the ridge waveguides coupling 
the probe light from the edge of the wafer to the random waveguides with photonic 
crystal sidewalls (b) Layout of the fabricated structures studied experimentally.

cooled in three stages to reduce the noise in the experiments. The image generated 

by the camera is 14 bit which enables us to record intensities with a dynamic range 

up to 4 orders of magnitude. In addition, measurements with different input powers
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and gain settings of the camera are taken to further enhance the signal to noise ratio. 

The signal to noise limit is set by the background signal due to the stray light.

2.3 .1  P D D  in d isordered  w avegu id es o f  different w id th s

Figure 2.4(a) shows the measured I(z)  inside random waveguides of IF varying from 

60 //m to 5 /mi (blue solid lines). All other param eters are kept the same. L is fixed 

at 80 //in. the diameter of air holes is 100 nm. and the average (center-to-center) 

distance of adjacent holes is 390 nm. ( and £„ are obtained by fitting the IF =  60 

//m sample, with the self-consistent theory of localization (red dashed line). We find 

tha t L =  2.2 //m and -  30 //m. W ith the param eters found from the IF=60 //in 

sample, the self-consistent theory of localization successfully predicts the decay for 

I ( z)  in all the other samples with widths IF 10 //m, 20 //m. 10 //in, 5 //in (red solid 

lines). We stress tha t the agreement with the experimental da ta  is obtained without 

any free param eter except for the vertical intensity scale. The PDD coefficient D(z)  

corresponding to the red curves in Fig. 2.4(a) are shown in Fig. 2.4(b). We can 

clearly see tha t the diffusion coefficient is reduced inside the sample, and its value 

varies along c. Farther away from the open boundary. D  has a smaller value. As 

the width gets smaller, the reduction of D(z)  is enhanced due to stronger localization 

effects. The maximum reduction of D(z)  is for the IF =  5 //m waveguide and D  is 

reduced to 0.65D0-

Instead of calculating the experimental param eters ( arid <F using numerical sim­

ulations based on given air hole radius, density and effective indices of the substrate, 

the approach of fitting the experimental data  of IF =  60 //in sample to extract the 

experimental param eters is taken as the air cylinders of the fabricated random me­

dia do not have perfectly smooth vertical walls. In addition, the exact radius of the 

fabricated air cylinders of the random media may slightly vary from the target radius 

depending on the exposure used during the lithography process. Since the radius
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Figure 2.4: (a) Experimentally measured light intensity I(z)  inside random waveg­
uides of different w idth IV and constant length L=80 /mi (blue solid lines). The curves 
are vertically shifted for a clear view. The y axis is in natural log scale. £=2.2 /mi and 
£a=30 /mi are found by fitting the W =60 /mi sample with the self-consistent theory 
of localization (red dashed line). W ith these parameters, the self-consistent theory of 
localization predicts I(z)  for other samples of IT=40 /an, 20 /mi, 10 /mi, 5 /mi (red 
solid curves), which agrees well with the experimental data, (b) Position-dependent 
diffusion coefficients for the five samples in (a).



of the air cylinder as well as smoothness of the vertical walls affects the scattering 

cross-section which eventually determines the disorder strength of the random me­

dia. it therefore becomes difficult to extract the parameters ( and £0 accurately using 

numerical simulations. Since f  and £a essentially determines the magnitude of all 

the mesoscopic’ effects studied in this thesis, we therefore fit the experimental data 

numerically to extract the exact experimental parameters.

2 .3 .2  P D D  in d isordered  w avegu id es o f d ifferent sca tter in g  

stren g th s

Next, we dem onstrate the effect of dissipation on PDD. In strongly dissipative disor­

dered waveguides, when becomes smaller than the localization length £, the effect 

of dissipation is significant. The suppression of diffusion is weakened by the dissipa­

tion, and a plateau for the renormalized diffusion coefficient is developed inside the 

disordered system. This result can be understood as follows. Dissipation suppresses 

feedback from long propagation paths, limiting the effective size of the system to the 

order of diffusive dissipation length for any position that is more than one away 

from the open boundary (£„ < c < L — £„) [14,24]. Thus, the renormalized D  reaches 

a constant value equal to that of an open system of dimension ~  2£(/. In the remain­

ing regions tha t are within one to the boundar y e  < e  and L — z < £„), the 

diffusion coefficient is still position dependent due to leakage through the boundary 

and D  increases toward the value of D0. We note tha t the extent of these regions 

£„ is much greater than the transport mean free path  L The latter determines the 

boundary region where the diffusion approximation is not accurate even without wave 

interference [5].

To dem onstrate this effect experimentally, we increase the density and size of 

the seatterers in the disordered waveguides. Larger and denser scatterers along with 

increased in-plane scattering also increases the out-of-plane scattering resulting in
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larger dissipation. The enhanced dissipation enables us to reach the deep saturation 

region £a <C L. In this case, in the fabricated structures, the diameter of air holes 

is 150 nm, and the average distance between adjacent holes is 370 nm. Waveguide 

length L is set at 80 pm  and W  varies from 5 /mi to 60 pm. Experim ental data of 

measured intensity I(z)  inside the random waveguides are presented in Fig. 2.5(a). 

Using the same procedure described above, we obtain the values of D(z)  shown in 

Fig. 2.5(b). Although we observe renormalization of D ( z ) : but larger out-of-plane 

loss (shorter £0), leads to a well-developed plateau of D(z)  inside all the samples.

(a)
W=60

W=60
W=400.9

W=40
W=20

0.8W=20N

W=10
AV=10 0.7

W=5
W=5 0.6

20 40
z(pm)

800 60

-10, 40
z(pm)

Figure 2.5: (a) Experimentally measured light intensity I(z)  inside random waveg­
uides of different width W  and constant length L —80 /im in the deep saturation regime 
£a *C L (blue solid lines). The curves are vertically offset for a clear view. The y axis 
is in natural log scale, t  =  1.0 /im and £a =  13 /im are found by fitting the !U=60 /im 
sample with the self-consistent theory of localization (red dashed line). These values 
are then used to predict I ( z)  for other samples W = 40 /im, 20 pm, 10 pm, 5 pm (red 
solid curves), which is in good agreement with the experimental data  with no fitting 
param eters except the vertical intensity scale, (b) Diffusion coefficients D(z)  for all 
samples in (a) are saturated in the region £a0 < z < L — £a.
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2 .3 .3  P D D  in d isordered  w avegu id es o f d ifferent len g th s

Filially, wo dem onstrate the effect of increasing the system length on PDD of dis­

sipative disordered waveguides. We fabricate two waveguides of same widths and 

scattering strengths blit different lengths. The size and density of the air holes are 

same as the samples studied in the first ease (Fig. 2.4). The widths of the two 

waveguides are IF =  5 /mi and lengths are L =  80 //in and 160 //in. Fig. 2.6(a) 

plots the measured I(z)  along with the prediction of the self-consistent theory. Fig. 

2.6(b) plots the values of D(z).  Although we double the length of the random system 

L from 80 //m to 160 //m. the minimal D  no longer decreases, instead it saturates 

in the middle of the random waveguide. This behavior is a ttributed  to dissipation 

which suppresses localization as seen in the previous ease. As the system length L 

becomes much larger than the diffusive dissipation length D(z)  saturates to a con­

stant value inside the disordered waveguide, similar to the results shown in Fig. 2.5. 

To summarize, we have presented the first direct experimental evidence of position- 

dependent suppressed diffusion of light inside random systems. We have shown that 

the renormalization of the diffusion coefficient D  which has long been considered as a 

theoretical approach to account for localization corrections is an actual physical phe­

nomenon. We dem onstrated the effects of finite size, shape and scattering strength 

of the random system on PDD. By controlling these parameters we could m anipulate 

the strength of wave interferences and thereby could control the degree of renormal­

ization of D.  We further showed that the presence of dissipation prevents D  from 

approaching zero and sets a limit for the minimal value of the renormalized diffusion 

constant that can be reached by the localization effects.
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Figure 2.6: (a) Experimentally measured I (z)  of two waveguides with the same width 
W = 5 pm but different length, L —80 pm, 160 /im (blue solid curves). The y axis is 
in natural log scale. Red solid curves represent the prediction of the self-consistent 
theory of localization using the same values of £ and £a as in Fig. 2.4(a). (b) Diffusion 
coefficients D(z)  for the two samples in (a), showing the saturation of D  inside the 
longer sample L=160 pm.
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Chapter 3

Direct probing of long-range 

intensity correlation inside a 

random waveguide

3.1 Introduction

1 Light propagation in disordered media has been a topic of intense studies for nearly 

three decades [2-4]. In analogy with electronic transport in disordered metals, fun­

dam ental issues related to diffusion and localization have been addressed [5. G]. One 

interesting example is long-range intensity correlation [7], which characterizes meso­

scopic transport of both classical and quantum  waves, and reflects the closeness to 

the Anderson localization threshold [8 ]. Experimentally, correlation in time, space, 

frequency, angle, and polarization have been investigated, but most measurements 

are performed on transm itted or reflected light outside the random media [9 17]. It 

would bo interesting to probe correlation inside the random media and to monitor 

how long-range correlation build up as light propagates through the random medium.

1. T h is  chap te r  is p rim arily  based oil the  jou rna l  article' published in ref. [1].
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However, it is very difficult to probe transport inside three-dimensional (3D) random 

media. Only in microwave (experiment was a detector (antenna) inserted into the ran­

dom media to measure the intensity inside [9]. As shown in chapter 2 . alternatively wo 

design and fabricate qnasi-2D disordered waveguides to probe light transport inside 

from the third dimension. This approach will allow us to directly measure intensity 

correlation and fluctuations inside random structures. Furthermore, we can vary the 

degree of long-range intensity correlation by changing the waveguide geometry.

The intensity-intensity correlation function C  consists of three terms, short-range 

C i, long-range C2  arid an inflnite-range C:5 correlation. Intuitively interferences be­

tween waves scattered along independent paths give rise to C[. one crossing of paths 

generates C2. and two crossings cause C3 [18.19]. The spatial correlation term C\ de­

cays exponentially with increasing distance and vanishes beyond the transport mean 

free path  /. C2 also decays but much more slowly, while Cfl has a constant con­

tribution. The long-range correlation dominates fluctuations of total transmission 

T(l =  'YhbT(li). where Tab is the transmission from an incoming wave mode a to an 

outgoing mode b. The magnitude of C2 is 011 the order of 1/g. and of 1/e/2. where 

g =  T(, is the conductance [13,20]. When r/ >  1 . C  is dominated by C\ . To mea­

sure C-2. the spatial distance must exceed the transport mean free path  so tha t C\ 

dies out. Alternatively, C2 can be measured by collecting all transm itted light using 

an integrating sphere. This method, however, cannot be used to measure C2 inside' 

the sample. Instead, we integrate light intensity over the waveguide cross-section to 

average out the short-range' fluctuation, and directly measure the long-range' corre­

lation inside the disordered planar waveguide. The conductance of the waveguide 

is g =  (tt/2)A T/L . where' Ar =  2 IF /(A /cr ) is the' number of propagating modes 

in the waveguide. L is the waveguide length. IT is the waveguide width. A is the 

light wavelength in vacuum, and n r is the (effective inde'x of refraction of the random 

me'dimn [21]. Hence, by decreasing IF. we' are able to reduce g and enhance the'

38



magnitude of C -2 without modifying the structural disorder.

This chapter is organized as follows. First wo describe the design and fabrication 

of 2D disordered waveguides as well as the optical measurement of intensity corre­

lation inside the waveguide. The next section contains the calculation of long-range 

correlation inside the disordered waveguides and the formula for the physical quan­

tities th a t are measured experimentally. The filial section presents the experimental 

data and comparison to the theory.

3.2 2D random  nanostructures

Similar to random waveguides shown in chapter 2. the 2D disordered waveguides are 

fabricated in a silicon-on-insulator (SOI) wafer with a 220 nm silicon layer on top of a 

3 /mi buried oxide [Fig. 3.1]. The patterns are w ritten by electron beam lithography 

and etched in an indiictively-coiipled-plasma (ICP) reactive-ion-etcher (RIE). Each 

waveguide contains a 2D random array of air holes tha t scatter light. The air hole 

diameters are 100 11111 and the average (center-to-eenter) distance of adjacent holes 

is 390 mil. The waveguide walls are made of photonic crystals (triangle lattice of air 

holes, the lattice constant =  440 mm the hole radius =  154 11111) tha t have complete 

2D bandgap for in-plane confinement of light. However, light is scattered out of plane, 

and this leakage allows us to observe light transport inside the disordered waveguide 

from the vertical direction.

The monochromatic light from a tunable CW laser source (HP 81G8F) is coupled 

by an objective lens of numerical aperture (NA) =  0.4 into the empty waveguide. To 

ensure efficient confinement inside the waveguide, the light is transverse-electric (TE) 

polarized (electric held in the plane of the waveguide). The light is subsequently inci­

dent onto the random array of air holes inside the waveguide and undergoes multiple 

scattering [Fig. 3.2(a)]. The optical image of the spatial distribution of light intensity
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Figure 3.1: Top-view scanning electron microscope (SEM) image of a quasi-2D disor­
dered photonic waveguide. Light is injected from the left end of the empty waveguide 
and incident onto the random array of air holes. The waveguide wall is made of a 
triangle lattice of air holes which forms a 2D photonic bandgap to confine light inside 
the waveguide.

across the structure is taken by collecting light scattered out of plane using a 50 x 

objective lens (NA =  0.42) and then recorded by an InGaAs camera (Xeva 1.7-320). 

The spatial resolution is limited by the NA of the objective lens, and estim ated to be 

~  2 ym.  Figure 3.2(b) is a typical optical image, which exhibits short-range intensity 

fluctuations.

The 2D intensity distribution inside the waveguide I(y,  z) is extracted from the 

optical image [Fig. 3.2(b)]. I ( y , z )  is then integrated along the cross-section of the 

waveguide (y direction) to give the variation along the waveguide axis (z direction) 

I(z).  The spatial intensity correlations C (z i,z 2) are then computed from I(z)  as:

<311
where (..) represents an ensemble average. C (z i ,2:2) is measured for various combi­

nations of z\ and z2 inside the disordered waveguides. The ensemble averaging is 

done over ten random configurations of air holes and 25 input wavelengths equally 

spaced between 1500 nm and 1510 nrn. The wavelength spacing is chosen to produce
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Figure 3.2: (a) A schematic of the optical measurement setup. One objective lens (NA 
=  0.4) couples the light from a tunable laser source to the waveguide, and another 
objective lens (50x , NA =  0.42) collects the light scattered by the air holes out of 
the waveguide plane and images onto a camera, (b) An optical image of the intensity 
of scattered light from the disordered waveguide. The wavelength of the probe light 
is 1510 mil. The intensity distribution exhibits short-range fluctuations. Zi and z2 
represent the axial positions of two cross-sections inside the disordered waveguide.
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different intensity distributions. Further averaging is done by generating different in­

tensity distributions by slightly moving the input coupling spot along the transverse 

direction y . Nevertheless, since long range correlation depend 011 the size and shape 

of the input beam [22]. we ensure tha t the random array of air holes is illuminated 

uniformly along the y direction, so tha t diffusion occurs only along the c direction.

The relevant parameters for light propagation in the disordered waveguide are the 

transport mean free path C and the diffusive dissipation length The transport 

mean free path L depends 011 the size and density of the air holes. The dissipation 

mostly conies from out-of-plane scattering since the silicon absorption at the probe 

wavelength is negligible. As shown in chapter 2 . this vertical leakage of light can be 

treated like absorption and described by the diffusive dissipation length £a =  \ J D t u . 

where ra is the ballistic absorption time and D  is the diffusion coefficient For the 

disordered waveguides in Fig. 3.1, we find = 30 /mi and ( = 2.2 /mi by fitting 

the measured I (z)  with the diffusion equation as shown in chapter 2. The waveguide 

length is 80 /mi. and the width varies from 10 /mi to 60 /mi. Thus the conductance 

(j is between 1.6 and 9.9.

3.3 T heory o f long-range in ten sity  correlation

Spatial intensity correlation defined by Eq. (3.1) involve intensities integrated over 

th(' cross-section of the waveguide. Such integration suppresses the contribution from 

the short-range correlation C\ so tha t only C2 and remain. At the output end 

of the disordered waveguide (ci =  — L). these two contributions reduce to the

normalized variance of total transmission and the normalized variance of conductance 

respectively [6.15]. C2 and C3 in lossy systems, such as those in our experiment, have 

been investigated before [8.23]. Although the (expressions for C2 and Cb in Ref. [8,23] 

have been derived for diffusive samples (g > 1), it has been shown to also apply to
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the localized samples (g <  1) [24]. For the disordered waveguides in our experiment. 

C -2 is much larger than  C3. Thus we ignore C3 and assume C  ~  C2.

Next we obtain an expression for C-2(z 1, z2) which can be compared to the spatial 

correlation function defined in Eq. (3.1). Such expression has been derived using the 

Langevin approach in Refs. [11,25-27]. For a waveguide geometry we obtain,

•L 0>K(zl . z ' )dK(z -2. z ’) 
2 ./o dz'  0.

(.l (z ' ) )2d

C2{ZUZl) gL  < /(^ i))(/(c2)> ■ (3'2)

where I \ ( z . z !) is the solution of

Q2K( z . z ' )  K ( z . z ' )

T “
■S(z -  z') (3.3)

with boundary conditions K { 0, z') =  K ( L , 2 ') =  0. Such boundary condition neglects 

surface effects which can also lead to additional terms in Eq. (3.2). They are significant 

at 0 < z < L — l  < z < L [27], particularly for large index mismatch between inside 

and outside of random medium. However, in our system of air holes in dielectric, the 

effective refractive index of the random medium is less than tha t outside. In this case 

surface reflections are not pronounced [4]. Hence our choice of boundary conditions 

is reasonable for our samples with I. «  L.

Solution to Ecp (3.3) is

A-(J , . q  =  s i n h < < f l f ~ C > ) | ( 34)
E ,1 sum L

where C — L/£a, (< =  min[^, T]/£„ and (> =  m ax[2 , z']/£a. In the same approxima­

tion (I(z))  oc sinh(£ — C)/  sinli Substituting this expression as well as Eq. (3.4) 

into Ecp (3.2) we get The final expression is cumbersome in presence of

loss, so we only list several limiting cases.
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Case 1: Vanishing loss. In this ease we take the limit £a —>• oc and get

, 2 ;, (21 +  (L - z 2f
~l) =  n ~ jj2 ----------------------------------------- ' (3 -0 )

which reduces to a well known result C2(L, L) — 2 /3g at the output end.

Case 2: z2 = L. This corresponds to correlating the intensity at the output surface 

with an intensity inside random medium. We get

—8£i +  4£i cosh2£ +  3(sinh 2£ — sinh2£i) — 3 sinh2(£  — Ci)C2(2i ,L ) =  ------------- —---- -— r -r^------:------------------------- —
16 g C sinh C
4 (£  — Ci) cosh C csch(£ — Ci) sinh Ci 

16 g C sinh2 C
(3.6)

where. Ci — z i /Ca- In lossless random medium the above expression reduces to 

6 2 (21, T) =  2(2L — z i ) z i / (g  L 2), in agreement with the expression in Ref. [25,28].

Case 3: 21 =  z2 = z. Under this condition we obtain the normalized variance of 

the cross-section integrated intensity inside the waveguide,

^  4C cosh 2£ +  5 sinh 2£  — sinh 2(£  — 2C)C2(z . 2 ) =  —-------------=--------------------- — ---------—
[16 g C sinh £]

csch2(£  — C) (—4(£  — C) +  sinh4(£  — C))sinh2C
[16 g C sinh2 £]
4(2C +  sinh 2 (£  — C) +  sinh 2C) 

16 g C sinh2 C
(3.7)

I11 the limit 2 =  L this quantity reduces to the normalized variance of the to­

tal transmission. In lossless medium Eq. (3.7) reduces to a compact expression 

C2(z , z)  = (2z /gL) ( l  — 2z/3L).  We note tha t this function takes the maximum 

value (9/8)C-2(L, L) at 2 =  3L/4. for any L.

I11 the following section we will compare the above theoretical predictions to the 

experimental data  obtained for 2D disordered waveguides. Because of their reduced 

dimensionality, the waveguides are always localized in the L  —» 00 limit.. The extent



of the localization effects can be controlled by varying the ratio between system length 

L and the localization length £ =  (tt/ 2 ) X ( . Since AT scales linearly with IT. £ can 

be easily tuned by varying the waveguide width without changing transport mean 

free path  and, hence, maintaining constant diffusive absorption length Therefore', 

by changing the waveguide geometry (e.g. L or IT), we can reach both the diffusion 

regime (£ < L < £) and the localization regime (£ < L ) [29]. In this thesis, we 

concentrate 011 the diffusion regime'.

3.4 C om parison o f experim ental resu lts and th e ­

ory

Figure 3.3 sheiws the measured C{z\ . z2) for a elisordered waveguide of L = 80 //m. 

W  — 60 /mi, <£,, =  30 /mi, I  =  2.2 /mi. z\ is varied betwe'en 0 anel L  while z2 is fixeel 

at L eir L/2.  As the elistance betwe'en z\ anel z2 increase's. C ( z \ . z 2) decays gradually. 

Even when the distance beemnes much larger than the transport mean free path, 

the intensity emrelation eleies not vanish. The correlatiem builels up further into the 

sample. As slieiwn in the inset of Fig. 3.3, for a fixed distance A 2 =  z2 — z\ =  10 /mi, C  

grows as z2 move's from L /4  to L. The expe'rimentally observed leing-range correlations 

insiele the ranelemi system agree well to the' theoretical preelictions representeel by the' 

seilid lines in Fig. 3.3.

Next we ele'inonstrate the ability to m anipulate the' long-range ceirrelation by ad­

justing the the width IT of the waveguide while ke'eping the le'iigth L and the degree 

of eliseireler the' same. Figure 4 emnpares 6 (21. 22) for twe) diseirelerexl wave'guides e>f 

length L =80 //m anel IT =  10 //m. 60 //m. 21 is movc'd from 0 anel L while z2 is 

set at L. The' leicalizatiem le'iigth £, falls from 788 //in for IT =  60 //in te> 131 //in 

lor IT =  10 //m. I lenee. the forme'r is in the eliffusion regime' (( <C L <C £), while' 

the la tter approaches the loe-alizatiem regime (L ~  £). The eemeluctance (j. which is
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Figure 3.3: Long-range intensity correlation C(z i ,Z 2 ) in a disordered waveguide of L
— 80 /mi, W  — 60 /iin, £0 =  30 /mi, £ =  2.2 /mi. z\ is varied between 0 and L while 
Z2  is fixed at L  or L / 2. Solid circles are experimental da ta  and solid lines represent 
the theoretical predictions of Eqs. (3.2,3.6 ). The dashed line corresponds to the 
background taken outside the waveguide. The inset shows C(z\ ,  z2) for Az = z2 — z\
— 10 /mi and z2 =  L, L /2 ,L /4 . Solid circles are experimental data  and solid line 
represents the theoretical prediction of Eqs. (3.2). For a fixed Az ,  C(z\ ,  z2) increases 
when moving deeper into the sample.

proportional to W , drops by a factor of 6 from 9.85 to 1.64. The probability for two 

scattering paths crossing, which scales as l /g,  is thus enhanced by a factor of 6 . This 

leads to a six-fold increase of the long-range intensity correlation, as indeed observed 

experimentally and in agreement with the theory in the previous section. We note 

th a t the enhancement of long-range correlation is caused purely by the change of 

waveguide geometry with no modification of the scattering strength.

Finally, we measured the normalized variance of the cross-section-integrated in­

tensity I(z)  inside the disordered waveguides. As mentioned above, the normalized 

variance, var[I (z ) \ / ( I (z ) )2 = C(z\  =  z, z2 — z), becomes equal to the normalized 

variance of to tal transmission when z =  L. Figure 3.5 shows the measured variance 

inside two disordered waveguides of width W  =  10 /mi, 60 /mi. The other parameters 

are the same as in Fig. 3.4. z  is changed from 0 to  L. The normalized fluctuations of 

I(z)  grow with the depth of the random system. In a narrower waveguide, the fluc­
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Figure 3.4: Long-range intensity correlation C ( z i , z 2) for two waveguides with the 
same length L =  80 /mi and the degree of disorder (k£ =  26) but different widths 
W = 6 0 /mi and W  — 10 /mi. z\ is moved from 0 to L  and z2 is set at L. Solid circles are 
experimental data and solid lines represent the theoretical predictions of Eqs. (3.6). 
The dashed line corresponds to the background taken outside the waveguide. The six- 
times reduction of the waveguide width results in a six-fold increase in the magnitude 
of intensity correlation.

tuation  is larger due to more pronounced localization effect (smaller conductance).

In summary, we directly measured the long-range spatial intensity correlation 

inside the quasi-two-dimensional disordered waveguides. Light scattered out of the 

waveguide plane allowed us to probe the internal transport from the third dimension. 

The long-range intensity correlation gradually build up as light propagates through 

the random system. The fluctuations of cross-section integrated intensity also grow 

with the depth into the disordered waveguide. Good agreements between experiment 

and theory are obtained. By reducing the waveguide width, we are able to enhance 

the long-range intensity correlation and the relative intensity fluctuations, without 

modifying the degree of disorder. Such use of geometry may provide a new approach 

for manipulation of long-range spatial correlation of light intensity inside random 

media as we will see in the subsequent chapters.
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Figure 3.5: Normalized variance of the cross-section integrated intensity I(z) ,
var[I ( z ) ] / ( I ( z ))2, for two waveguides with the same length L = 80 /im and degree of 
disorder (hi  =  26) but different widths W  — 60 ^m  and W  = 10 /zm. z is changed 
from 0 to L.  The solid circles are experimental da ta  and solid lines represent the 
theoretical predictions of Eqs. (3.7). The dashed line corresponds to the background 
taken outside the waveguide.The six-times reduction of the waveguide width results 
in a six-fold increase in the magnitude of intensity fluctuations.
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Chapter 4 

Control of light diffusion inside a 

random waveguide using geom etry

4.1 Introduction

1 The concept of diffusion is widely used to study the propagation of light through 

multiple scattering media such as clouds, colloidal solutions, paint, and biological 

tissues [2 5]. Diffusion, however, is an approximation as it neglects wave interference 

effects [6]. Most of the scattered waves follow independent paths and have uncorre­

lated phases, so their interference is averaged out. However, a wave may return to 

a position it has previously visited after multiple scattering, and there always exists 

the time-reversed path which yields identical phase delay. Constructive' interference' 

betwe'en the waves travelling in the time-re've'rseel paths ine*rease's the energy density 

at the original petition, thus suppressing diffusion [7] anel eventually leading to local­

ization [8]. This effect has bc'en accounted for by a renormalized diffusion coc'fficient 

D  in the sc'lf-consistent theory of localization [9. 10]. The amount of renormaliza­

tion depends on the return probability, which is dc'termined by the size of a random 

1. T h is  ch ap te r  is p r im arily  based on the  jo u rn a l  article published in ref. [1],
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medium as well as the position inside [11-14]. In chapter 2. we dem onstrated a direct 

observation of the position-dependent diffusion coefficient in disordered waveguides. 

By changing the waveguide width, we tuned the diffusion coefficient by varying the 

strength of wave interference. However, the width of each waveguide was kept con­

stant, and we switched between the waveguides to control diffusion.

In this chapter, we fabricate disordered waveguides with a variable cross-section 

and thus achieve control of light transport in the same system. In these structures 

tha t we have designed, it is necessary to account for spatial variation of diffusion 

coefficient D  in two dimensions (2D) due to the modulation of the waveguide width. 

Experimentally we fabricate a random array of air holes in a waveguide geometry 011 

a silicon wafer, and probe light propagation inside the 2D structure from the third 

dimension. The measured spatial distribution of light intensity inside the disordered 

waveguide agrees well with the prediction of the self-consistent theory of localization 

[12,14]. Instead of changing the degree of disorder, we demonstrate' that, the wave 

diffusion can be manipulated by changing the geometry (cross-section) of the random 

waveguide' nanostructure's.

The proposed apprexieli of using geometry to cemtrol the interference effects in 

multiple se attering media is of lx)th a fundamental anel a practical importance. For 

example, e'erfierent contnrf erf the to tal transmissiem of light thremgh thine dimensional 

random me'elia was dememstrate'el by shaping the wave' front erf the input light [15]. 

The elegree' erf such cohe're'nt emitrol is limited by the number erf mexles that cmr be' 

cemtrerfleel. For 2D planar wave'guide structure's, the' eiverall geomerfry can provide' 

aelelitiemal elegree of freedemi anel can be use'el along with wavefront shaping tecli- 

niepies te) mewe efficiently e'ontrerf the terfal transmissiem through the random media. 

Understaneling the effee-t erf ge'emietry em transpeut thremgh diseudemel meelia is alse> 

impeutant to expleue ne'w fune-tionalities of on-eliip photonic elewiens using random 

me'elia. Feu example, a twexdimensional elisorelere'el mexlia has be'en pmposed to pro-
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Figure 4.1: Top-view scanning electron microscope (SEM) image of a quasi-2D dis­
ordered photonic waveguide. Light is injected from the left end of the waveguide and 
incident onto the random array of air holes. The waveguide wall is made of a triangle 
lattice of air holes which forms a 2D photonic bandgap to confine light inside the 
waveguide. The width of the random waveguide is changed gradually from 40 /rm to 
5 fim  through a tapered region.

vide efficient broad band coupling of light to a thin film at a wide range of incident 

angles for solar cell applications [16]. Our experiments dem onstrate th a t for fixed 

disordered structures, coherent control of light diffusion in the plane of the film is 

possible simply by varying the geometry. In addition, on-chip multiple scattering 

media have also been recently applied to spectrometer applications [17]. Studying 

the effect of geometry of the random structure is im portant to enhance the sensitivity 

and resolution of such devices.
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4.2 2D disordered w aveguide and exp erim ental setup

The disordered waveguides in this experinent are fabricated with a silicon-on-insnlator 

(SOI) wafer where the thickness of the silicon layer and the buried oxide are 220 run 

and 3 //,m respectively. The patterns are w ritten by electron beam lithography and 

etched in an inductively-conpled-plasma (ICP) reactive-ion-etcher (RIE). Figure 4.1 

is a scanning electron microscope (SEM) image of a fabricated sample. The waveguide 

contains a 2D random array of air holes. The hole diameters are 120 nm, and the 

average (center-to-center) distance of neighboring holes is about 385 11111. The total 

length L  of the random waveguide is 120 /mi. and the waveguide width W  is changed 

from IF 1 =  40 //in to W 2 =  5 //m via a tapered region. The lengths of wider (IFi) and 

narrower (IF2) sections are L\ =  52 /mi and L 2 - 58 /mi respectively. The tapered 

section is 10 /mi long, with a tapering angle of 60 degrees. The waveguide walls are 

made of a triangular lattice of air holes (lattice constant 440 11111, hole radius 154 nm) 

th a t produces a complete 2D photonic bandgap.

In the optical experiment, we use a lensed fiber to couple monochromatic light 

(wavelength ~  1500 11111) from a tunable CW laser source (HP 8168F) into the waveg­

uide [Fig. 4.2(a)]. The polarization of input light is transverse-electric (TE) (electric 

field parallel to the waveguide plane). Light is scattered by the air holes inside the 

waveguide and undergoes diffusion. The waveguide walls provide in-plane confine­

ment of the scattered light. However, some of the light is scattered out of the waveg­

uide plane. This leakage allows us to observe light propagation inside the disordered 

waveguide from the vertical direction. The spatial distribution of light intensity across 

the waveguide is projected by a 50x objective lens [numerical aperture (NA) =  0.42] 

onto an InGaAs camera (Xeva 1.7-320). Figure 4.2(b) shows a typical optical image, 

from which we extract the 2D intensity distribution inside the waveguide /(■</, z).

The ensemble averaging is done over three random configurations of air holes and 

25 input wavelengths equally spaced between 1500 11m and 1510 nm. The wavelength
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Figure 4.2: (a) A schematic of the experimental setup. A lensed fiber couples the 
light to the structure and another 50x objective lens (NA =  0.42) collects the light 
scattered by the air holes out of the waveguide plane and projects onto a camera, 
(b) Optical image of the intensity of light scattered out-of-plane from the disordered 
waveguide. The wavelength of the probe light is 1505 nm.

spacing is chosen to produce different intensity distributions. Further averaging is 

done by slightly moving the input beam position along the transverse y direction. 

Nevertheless, the front surface of the random structures is always uniformly illumi­

nated by the incident light.

The relevant param eters for light propagation in the disordered waveguide are the 

transport mean free path  t  and the diffusive dissipation length £0. The transport mean 

free path  t  depends on the size and density of the air holes. The dissipation mostly 

comes from out-of-plane scattering as the silicon absorption at the probe wavelength is 

negligible. As shown in the work in chapter 2, this vertical loss of light can be treated
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as dissipation (or absorption) and described by the characteristic length £a =  \ / D{]r(,. 

\vh(T(' t (i is th(' ballistic- dissipation time and D q is the diffusion coefficient without 

localization corrections.

There are three main advantages of using the planar waveguide geometry. First, 

it allows a precise fabrication of the designed structure so tha t the parameters such as 

the transport mean free path  can be accurately controlled. Second, we can easily mon­

itor the in-plane diffusion by collecting the out-of-the-plane scattered light. Third, 

the localization length £ can be tuned by changing the waveguide width IF. because 

£ =  (7r/2)AT, where N  = 2 W/ ( X / n e) is the number of propagating modes in the 

waveguide, which is proportional to IF. By varying the width of a single waveguide, 

we adjust the strength of the localization effect along the waveguide. The localization 

length in the wider section of the waveguide (IFi =  40 //111) is 8 times longer than 

th a t in the narrower section (IFj - 5 //,m). Hence, the suppression of diffusion by 

wave interference is enhanced approximately 8 times in the narrower section of the 

waveguide.

4.3 N um erical sim ulation  o f position  dependent 

diffusion

For a quantitative description of light transport in a random waveguide of variable 

width, we use the self-consistent theory of localization to calculate' the diffusion coef­

ficient D(y,  z) inside the waveguide'. The renen’inalization e>f D  ele'penels em the return 

probability, wliieff is position depe'iielent [11 13]. The' maximum re'iiormalization hap­

pens insiele the' randemi meelia at a loe-atiem where the' return probability is the' highest, 

anel the re'iienmalization is lenvest new the open bounelaries of the' ranelom me'elia. As 

she>wn below, the return preffiabilitv takes the maximum value in the narrow portion 

of the structure and not at the gexmietrie-al e-enter as in waveguieles with a uniform



cross-section. The renormalization of the diffusion coefficient also depends on the 

amount of dissipation, which suppresses feedback from long propagation paths and 

sets an effective system size beyond which the wave will not return [18.19].

In order to compare the experimental results with the self-consistent theory, we 

compute D(y,  z) using the commercial package COMSOL Multiphysics after setting 

the value's of the transport mean free path  i  and the diffusive dissipation length 

First the return probability is calculated at every point in the waveguide [14]. This 

is done by moving a point source throughout the structure and by calculating the 

light intensity at the source for each source position. This intensity is taken as the 

return probability which is then used to renormalize D(y. z) .  The modified D(y . z )  

is then used to recalculate the return probability. Several iterations of this procedure 

are performed until the changes in D(y.  z ) between iterations become' small enough 

to be negligible. Once we obtain the final value of D(y,  z), it is used to calculate the 

intensity /(//, z) inside the waveguide.

The calculation of D(y.  z) is repeated for various combinations of ( and £(J until the 

calculated I(y.  z) matches the measured intensity distribution. The parameters tha t 

gave the best agreement for the measured experiment data are t  =  2.9 //m and £a =  35 

pin. Figure 4.3(a) plots the calculated return probability, which is greatly enhanced 

by the stronger transverse confinement (along the y direction) in the narrower section 

of the waveguide. Consequently, the renormalized diffusion coefficient D{y.  z). shown 

in Fig. 4.3(b), reaches the minimum value close' to the middle of the narrower section. 

Note tha t in the tapered region, D  changes not only along z, but also along y. The 

smaller D  near the boundary is attributed to the enhancement of return probability 

due to reflection from the photonic crystal wall. Figure 4.3(c) shows the spatial 

distribution of in-plane diffusive light intensity /(//. c) inside the waveguide.
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Figure 4.3: (a) Calculated return probability in the disordered waveguide shown in 
Fig. 4.1. £ =  2.9/rni, and £a =  35/im. (b) 2D renormalized position dependent diffu­
sion coefficient D(y,  z ) / D q for the same structure as in (a), (c) Intensity distribution 
I ( y , z ) / I 0 inside the random structure obtained from D(y,  z ) / D q in (b).
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4.4 C om parison of exp erim ental results and nu­

m erical sim ulation

From the experimentally measured I ( y . z ) ,  we compute the cross-section integrated 

intensity I t(z) =  I(y,  z)dy and the cross-section averaged intensity Iv(z) —

I t( z ) / W( z ) .  The former quantity is proportional to the 2-component of total energy 

flux through the cross-section of the waveguide, while the latter quan tity  I r(z). is 

related to the energy density.

As shown in Fig. 4.4(a). A (2 ) decays more slowly with 2 in the wider section of 

the waveguide than  in the narrower one. The narrowing of the waveguide width leads 

to a sharp drop of I t (energy flux), as part of the diffusive light is reflected back. The 

dashed curve in Fig. 4.4(a) is the calculated A (-) using self-consistent theory  which 

agrees well with the experimental data. The inset to Fig. 4.4(a) plots the experimental 

data  of It(z)  for the wider (dashed line) and narrower sections (solid line) on top of 

each other. The maximum intensity of both eases are normalized to 1. For the wider 

section, 2 =  z / L \  and for the narrower section, z — (2 —(Li +  lO ))/!^- We can clearly 

see the difference in the exponential decay (slope) of I f (2 ) for the two cases. This 

difference can be attributed  to two factors, (i) reflection from the boundary of the 

tapered region, (ii) enhanced localization effect in the narrower section of waveguide. 

Reflection only modifies the decay in the wider section of the waveguide. However, 

this modification is only dominant towards the end of the wider section as can be 

seen by a flattening of If(z) near 2 =  50. From the experimental data (see inset of 

Fig. 4.4(a)), we observe tha t the decays of the wider and narrower section are different 

from the beginning (i.e. 2 ~  0.1). This is a clear indication of the finite size effects or 

enhanced localization effect in the narrow section of the waveguide. I11 the absence of 

localization effects, the intensity decays for both sections will be similar until at least 

2 ~  0.5. beyond which the decay in the wider section will be slightly reduced due to
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Figure 4.4: (a) Comparison of the measured cross-section integrated intensity I t ( z ) of 
the entire structure (solid blue line) to numerical calculations based on self-consistent 
theory (dashed red line). The inset plots the measured I t (z) for both the wider (dashed 
line) and narrower (solid line) sections of the waveguide on top of each other. 5 =  z/L\_ 
for the wide section, and z  =  (z — ( L i +  10))/L 2 for the narrow section. In the inset, 
for both cases, It(z)  is normalized to 1 to dem onstrate the clear difference in the 
exponential decay rate (slope).(b) Measured cross-section averaged intensity I v(z) 
(solid blue line) in comparison with the results of self consistent theory (dashed red 
line). The vertical dotted lines in (a,b) marks the starting point and the end point of 
the tapered region.
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reflection from the boundary of the tapered section.

Figure 4.4(b) plots the measured / r (c) together with the calculated one. Similar 

to previous case. I c(z) also decays more slowly with c in the wider section of the1 

waveguide than in the narrower one. Again we see a good agreement except at  ̂ ~  60 

/mi. The optical image [Fig. 4.2(b)] reveals tha t near the photonic- crystal wall of the 

tapered section, the abrupt backward scattering leads to the formation of a standing 

wave, thus the intensity is enhanced compared to the diffusive prediction. The spatial 

extent of this effect is determined by the transport mean free path t  beyond which 

the direction of the reflected wave is randomized. The inherent inability of a diffusive 

description to describe transport 011 scales shorter than f. explains the deviation of 

the experimentally measured intensity from the theoretical prediction, as exhibited 

in Fig. 4.4(b) by a small bump at c ~  60 /mi.

I11 summary, in this chapter we dem onstrated an effective way of manipulating 

light diffusion in a disordered photonic waveguide. Instead of changing the degree of 

structural disorder, we varied the waveguide geometry (its cross-section). By modu­

lating the width in a single waveguide, we manipulated the interference of scattered 

light and made the diffusion coefficient vary spatially in two dimensions. We mea­

sured the intensity distribution inside the quasi-2D random structures by probing 

from the third dimension and the experimental results agreed well with the predic­

tions of the self-consistent theory of localization. Although, the experiments in this 

work were doin' with light, the outlined approach to control diffusion is also applicable 

to other types of waves, such as acoustic waves, microwaves and the de Broglie waves 

of electrons.
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Chapter 5

Using geom etry to m anipulate 

long-range correlation of light 

inside random media

5.1 Introduction

1 The diffusion model has been widely utilized to describe wave propagation in disor­

dered media, e.g.. light in biological tissues, ultrasonic waves through cracked metals, 

and electron wave functions in disordered conductors. It. however, ignores the in­

terferences of scattered waves, which lead to many prominent phenomena including 

Anderson localization, universal conductance fluctuations, and enhanced backscatter- 

ing [2 4], Extensive theoretical and experimental studies in the past three decades 

have' illustrated tha t mesoscopic transport of both classical and quantum  mechanical 

wave's is gerve'rneel by wave' inte'rfereiie'e effeeds [5.6].

As slienvn in chapter 3. one' impendant e-emseepie'iice e>f wave interferences in ran­

dom media is the correlations in the fluctuations e>f scattereel intensitie's [7.8]. The 

1. This  ch a p te r  is p r im arily  based on th e  jo u rn a l  article' published in red. [1].



interference between waves scattered along independent paths gives rise to intensity 

correlation on the scale of wavelength, one crossing of paths generates long-range 

correlation beyond the mean free path, and two crossings leads to an infinite-range 

correlation [9,10].

The non-local correlations have a direct consequence for the coherent control of 

light transmission through random media via wavefront shaping [11], which has ad­

vanced rapidly in the past few years due to potential applications to deep tissue 

imaging [12-14], Indeed focusing light, to a single speckle simultaneously brightens 

nearby speckles, and hence reducing the contrast of focusing [15, 16]. It has been 

shown th a t the spatial correlation of intensity inside the random medium [17 21] de­

termines not only focusing contrast but also energy deposition into the sample [22]. 

Therefore, manipulating the non-local correlation can open up a new avenue to con­

trolling waves inside random media.

Typically the m agnitude of long-range correlation is small, but it becomes sig­

nificant in strongly scattering media, especially when localization regime [4] is ap­

proached [9,10,23-26]. Experimentally long-range correlations have been observed 

not, only in space, but also in time, frequency, angle, and polarization, but most mea­

surements are performed on transm itted or reflected light, i.e. outside the random 

media [18,20,27-33]. Modifications of the correlations of transm itted light have been 

realized with two techniques: (i) varying the spot size of an incident beam on a wide 

disordered slab [17,20,25], and (ii) inserting a constriction, e.g., a pin hole, inside a 

random medium [29,34]. However, the possibility of manipulating long-range corre­

lations inside the random media has not been explored. This is at least, in part due to 

the experimental challenge of gaining a noninvasive access to the interior of a random 

structure where light, propagates.

In chapter 3, we showed quasi-two-dimensional random waveguide's tha t we fab­

ricated to probe the transport inside from the third dimension [21,35,36]. This
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experimental setup has enabled us to monitor directly how the long-range spatial 

correlations build up inside diffusive systems [21]. Moreover, by reducing (or increas­

ing) the width of a rectangular waveguide, we were able to enhance (or suppress) 

the crossing probabilities of scattering paths throughout the system and. therefore, 

to modify the magnitude of long-range correlation function. However, the functional 

form of correlation remained unchanged, as it is known to be universal for diffusive 

waveguides with uniform width [17.19].

In this chapter, we experimentally demonstrate an effective approach of tailoring 

the spatial dependence of long-range intensity correlation function inside a random 

system. This is accomplished by fabricating photonic waveguides with cross-section 

varying along their length. The functional form of the long-range correlation is modi­

fied inside waveguides of different, shapes because the crossing probability of scattering 

paths is affected non-uniformly in space. Our approach enables global optimization of 

non-local effects via system geometry and it is applicable to other types of waves such 

as acoustic waves and m atter waves. Besides the fundamental importance, manipu­

lating the long-range correlation of waves inside random systems is useful for imaging 

and focusing into multiply scattering media using wavefront shaping [11.22.37] be­

cause' it affects such aspects as focusing contrast as well as energy deposition inside 

the medium. Therefore, our approach can provide an additional degree of freedom 

for controlling wave transport in scattering media.

5.2 N um erical sim ulations

To illustrate the effects of waveguide geometry on long-range spatial correlation, we 

first present numerical results of two-dimensional (2D) disordered waveguides. The 

structures have reflecting sidewalls which confine the light inside the waveguide where 

scattering and diffusion take place within r  =  (ij. z) plane with c being the axial
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direction. Light transport in the random waveguide is diffusive, and the non-local 

intensity correlation is dominated by the long-range correlation C2 [7.23]. The 2D 

correlation function C -^ry iy ) between two points ry =  ( // i ,2 i) and r 2 =  {y2, z2) is 

calculated with the Langevin approach [19,20,38 40], similar to chapter 3.

Let us consider the simplest case of linear tapering where the waveguide width 

(IT (2 )) increases or decrease's linearly along the waveguide axis 2 . Figure 5.1 shows 

the m agnitude of C2, C ^ r i r ) ,  in three waveguides with IT(~) being constant (a), 

linear increasing (b) or linear decreasing (c). The 2D distributions of C2 across the 

waveguides are clearly different in the three cases, revealing that the waveguide ge­

ometry has a significant impact 011 the growth of C2. In Fig. 5.1(d-f). the correlation 

functions C2(2 y z2) of the cross-section averaged intensity further illustrates the dif­

ference: in the waveguide of increasing IF (2 ), the correlation function stay nearly 

constant for most values of 21 and 22, while in the waveguide of decreasing width, 

the correlation function exhibits more rapid variation over Z\ and z2. These results 

suggest that the range of spatial correlation is increased (or decreased) in the gradu­

ally expanding (or contracting) waveguide, as compared to the waveguide of constant 

width.

For a more' quantitative' comparison, the magnitude of C2 of the' cross-section 

averaged intensity, i.e.. C2(z:z).  is plotted in Fig. 5.2(a) for six waveguides of same 

length but different geometry. To compare the shape of these curves, the maximum 

value of each curve is set to 1. After the normalization, the two curves for the constant 

widths of 10 //,m and 60 /mi coincide and agree to the universal functional form. I11 

the expanding waveguide, C2(z: 2 ) increases more rapidly at the beginning and levels 

off when light diffuses deeper into the waveguide. This is a ttributed  to the higher 

crossing probability of scattering paths near the' front end of the waveguide' where' 

the (“reiss section is narrower. As the width increases with 2 . the crossing probability 

is redue*eeL aiiel the enhane'eunemt eif C2 is slowexl elown. The e-emtrae-ting waveguide'
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Figure 5.1: Calculated spatial long-range intensity correlation for the constant-widtli 
and two types of tapered 2D random waveguides. The waveguide length L = 80 
gm, the transport mean free path  t  — 2.2 /mi, and the diffusive absorption length 
£a =  26 gm. The waveguide in (a,d) has a constant width W  =  10 gm; in (b,e) 
W( z )  increases linearly from 10 gm  to 60 gm, while in (c,f) W( z )  decreases linearly 
from 60 gm  to 10 gm. (a-c) show spatial distribution of the m agnitude of long-range 
correlation function, 6 2 (1*; r) for three geometries, (d-f) show long-range correlation 
function (>2(21; 22) °f cross-section averaged intensity for the same geometries. The 
maximum value is normalized to 1 for comparison. The differences in these plots 
reveal th a t the waveguide geometry has a significant impact on the magnitude and 
range of C 2 .
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exhibits the opposite trend: the m agnitude of C2 grows more quickly in the second 

half of the waveguide due to enhanced crossing probability. We can further conclude 

th a t by enhancing the tapering of the waveguide cross section, the change in the 

spatial dependence of C2  can be made larger.

Figure 5.2(b) plots the correlation function C2(z; L) for two points z and L of 

cross-section averaged intensity of the six waveguides. After normalizing the max­

imum value to 1, 6 2 (2 ; L)  for the two constant-w idth waveguides coincide; in the 

expanding waveguide the spatial range of correlation is enhanced while in the con­

tracting waveguide the range is reduced. To be more quantitative, we find the corre­

lation length Az from C2(L — Az; L) =  C2(L; L ) / 2. The constant-width waveguides 

have the same Az =  48 /mi, whereas the waveguide tapered from 10 /tm to 60 /im 

has Az =  65 /im and the one from 60 /mi to 10 //m has Az =  27 /mi. Hence, the 

correlation length inside the random waveguide can be tuned by geometry.
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Figure 5.2: Comparison of calculated long-range correlation in six waveguides with 
different degrees of taper: two with constant widths of 10 /mi (solid black line) and 
60 /mi (dash-dotted magenta line); two with width linearly increasing from 10 /mi 
(thick dashed blue line) or 20 /im (thin dashed blue line) to 60 /im; and two with 
width linearly decreasing from 60 /im to 10 /iin (thick dotted red line) or 20 /im (thin 
dotted red line). O ther param eters are the same as in Fig. 5.1. Both C2(z;z) (a) 
and C 2( z ; L )  (b) clearly dem onstrate th a t while the functional form of long-range 
correlation is universal for uniform waveguides, it is strongly modified in the tapered 
ones.

An intuitive model has been developed in the previous studies of expanding dif­
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fusive beams inside absorption less disordered slabs [25.29]. The long-range intensity 

correlation function for the transm itted light is determined by the crossing proba­

bility of scattering paths inside the slab, which is 011 the order of 1/ry. where g is 

the1 dimensionless conductance. To account for the effect of diffuse spreading of the 

intensity, l / g  is obtained by integrating over short sections of increasing width at 

different depths inside the slab. While this model can predict the long-range corre­

lations of transm itted light, it fails inside the random medium. This is because the 

magnitude of long-range intensity correlation C2 at depth 2 is not determined sim­

ply by the conductance of the waveguide section from 0 to 2. which only takes into 

account the crossing probability of scattering paths between 0 and 2. The diffusive 

waves that pass through 2 may return to it after multiple scattering and crossing in 

the section between 2 and L.  thus contributing to C? at 2 as well. The change in the 

functional form of the long-range correlation function therefore cannot be explained 

by the effective conductance model. This model, which was developed in the previous 

studies of expanding diffusive beams inside disordered slabs [25, 29], can only predict 

the correlations of light outside random media.

To dem onstrate this, let us consider a simplest example of a diffusive waveguide 

with constant width and 110 absorption. Since the dimensionless conductance g(z)  

decreases linearly with depth 2. 62(2: 2) ~  l / g( z)  ~  2 would increases linearly with 2. 

Figure 5.3(a) plots the C2(z; 2) calculated using the Langevin approach [39,40], which 

displays a nonlinear increase with 2. We further compare the 62(2; 2) inside tapered 

waveguides to the prediction by the effective conductance model. As shown in Fig. 

5.3(b, c), indeed the calculated C-2 inside the random waveguide of either constant or 

varying cross-section differ not just quantitatively but also qualitatively differ from the 

prediction of the effective conductance model. For example, the effective conductance 

model predicts a monotonic increase of C2(z: 2) with 2. the actual C2(z: 2) in the 

tapered waveguides decreases with 2 near the rear end. The significant differences
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confirm th a t the changes in the functional form of the C2 inside the random system 

cannot be explained by the 2 dependence of g.
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Figure 5.3: Comparison of calculated long-range correlation function C2(z; z ) for the 
cross-section averaged intensity inside passive diffusive waveguides (solid line) with 
same scattering strength as Fig. 5.1 to the prediction of the effective conductance 
model (dashed line), (a) The waveguide has constant width W  =  60 gm.  (b) The 
waveguide width increases linearly from 10 g m  to 60 gm.  (c) The waveguide width 
decreases linearly from 60 g m  to 10 gm.  All three waveguides have the same length 
L = 80 gm.  The effective conductance model fails to predict C2(z] z) inside all three 
waveguides.

5.3 E xperim ental resu lts and com parison to  nu­

m erical sim ulations

In this section we present the experimental results and compare them  to numerical 

simulations. We fabricate 2D disordered waveguides of various shapes in a silicon-on- 

insulator (SOI) wafer with a 220 nm silicon layer on top of a 3 g m  buried oxide. The 

structures are patterned by electron beam lithography and etched in an inductively- 

coupled-plasma (ICP) reactive-ion-etcher (RIE). Each waveguide contains a 2D ran­

dom array of air holes tha t scatter light. The air hole diameters are 100 nm and the 

average (center-to-center) distance of adjacent holes is 390 nm. The waveguide walls 

are made of triangle lattice of air holes (the lattice constant of 440 nm, the hole radius 

of 154 nm) tha t has a complete 2D photonic bandgap for the in-plane confinement of 

light.
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The experimental setup used is same as the one shown in the chapter 3. The 

monochromatic beam from a tunable CW laser source (HP 8168F) is coupled into 

the empty waveguide bv an objective lens of numerical aperture (NA) 0.4. The' 

light is transverse-electric (TE) polarized, i.e.. the electric field is in the plane of 

the waveguide. After propagating through the empty waveguide, the light is incident 

onto the random array of air holes inside the waveguide. The front end of the random 

array is uniformly illuminated along the y direction. The light undergoes multiple' 

scattering in the 2D plane of waveguide. Some of the light is scattered out of plane 

and imaged by a 50x objective' lens (NA =  0.42) onto an InGaAs camera (Xeva 

1.7-320).

From the optical image, the spatial distribution of light intensity insiele the waveg­

uide I(y.  z) is extracted. To smooth out the short-range fluctuations. I ( y . z ) is av­

eraged over the cross-section e)f the waveguide to e)btain the cross-section-averaged 

intensity I v{z). The spatial intensity correlation C ( z h z2) is then computed from 

I r(z). W ith the short-range contribution removed. C ( z i , z 2) is dominated by long- 

range correlation C2. The contribution of Ch. which is on the order of 1/g2 ( where 

g is the dimensionless conductance ). is negligible as g ^  1 in our waveguides.

As described in the previous chapters, the relevant parameters for light transport 

in the disordered waveguide are the transport mean free path  (. and the diffusive 

dissipation length £a. The transport mean free path i depends on the size and density 

of the air holes. The dissipation results from out-of-plane scattering as the silicon 

absorption at the probe wavelength is negligible. As shown in chapter 2. this vertical 

leakage of light can be treated similarly as absorption and described by the diffusive 

dissipation length <F, =  \ / D t(i , where ra is the ballistic dissipation time and D  is 

the diffusion coefficient [35]. To determine these two parameters. ( and £f/. for all 

the waveguides of different shapes, we extracted their values by fitting the measured 

cross-section averaged intensity. I v(z). and the magnitude of correlations C (^ .^) of
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I v(z) ill a waveguide with constant width. IF =  GO//111 and L =  80//,111. The numerical 

calculations were done with the same method as described in chapter 3 and the 

parameters extracted from the fitting are £a =  26 //in and t  =  2.2 //111. Figure 5.4 (c) 

and (d) show the experimental data along with the fitted curves obtained from the 

numerical calculations. For the waveguides of different shapes, we keep the size and 

density of the air holes the same and therefore all waveguides of different shapes have 

the same £0 and t.

Figure 5.5(a.b) are the scanning electron microscope (SEM) images of an expand­

ing waveguide and a contracting waveguide. The measured correlation functions for 

the cross-section averaged intensity inside the two waveguides. C(z\  = z. z2 =  L).  are 

plotted in Figure 5.5(c). The ensemble averaging is done over 4 random configura­

tions of air holes and 25 input wavelengths equally spaced between 1500 11111 and 1510 

11111. Additional averaging is carried out by slightly moving the incident beam spot 

011 the input facet of the empty waveguide to generate different intensity patterns 

with uniform envelope at the front end of the random array. The experimental data 

clearly show that the dependence of C(z,  L) 011 c is very different for the two tapered 

waveguides, which agree well to the calculation results.

Since the waveguide geometry in Fig. 5.5(b) is the mirror image of the one in 

Fig. 5.5(a). the C( z , L)  for light input from the left end of the former is equivalent 

to that with input from the right end of the latter. As C is dominated by long- 

range correlation function, this result implies C2 becomes asymmetric. Note that the 

asymmetry exists only inside the random medium. The C2 for the transm itted light 

remains symmetric, as it is determined by the dimensionless conductance g which has 

the same value for the two waveguides. The difference in the correlation functions in 

expanding and contracting waveguides reveals that C ^ f rp ^ )  is 110 longer symmetric 

because one waveguide is a mirror image of the other. I11 other words, the long-range 

intensity correlation function for light input from one end of the tapered waveguide
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Figure 5.4: (a) Top-view scanning electron microscope (SEM) image of a quasi-2D 
disordered waveguide with W  = 60 /im and L = 80 fim. The waveguide wall is made 
of a triangle lattice of air holes which forms a 2D photonic bandgap to confine light 
inside the waveguide, (b) An optical image of the intensity of scattered light from 
the disordered waveguide shown in (a). The wavelength of the probe light is 1500 
nm. The white boxes mark two cross-sections at depths Z\ and 22 in the disordered 
waveguide. (c,d) F itting of experimental da ta  to extract scattering and dissipation 
parameters. The solid blue line in (c) represents the experimentally measured ensem­
ble and cross-section averaged intensity inside the waveguides shown in (a). The solid 
blue circles in (d) are the measured C(z,  z) for the cross-section averaged intensity 
in the waveguide shown in (a). The dashed red lines in (c) and (d) are obtained by 
numerical calculation with param eters £a — 26 /mi and f =  2.2 /mi, which have the 
best fit to the experimental data.
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Figure 5.5: Experim ental measurement of long-range intensity correlation inside the 
tapered waveguides. (a,b) Top-view SEM images of fabricated quasi-2D disordered 
waveguides with linearly increasing (a) or decreasing (b) width. The width of waveg­
uide in (a) increases from 10 /im to 60 /mi, and in (b) it is opposite. Both have 
the same length L — 80 /mi. Magnified SEM images show the air holes distributed 
randomly in the tapered section of the waveguide and the triangle lattice of air holes 
in the reflecting sidewalls, (c) Measured long-range correlation function for the cross- 
section-averaged intensity C{z , L)  inside the tapered waveguides shown in (a) and 
(b). The blue circles (green squares) represent experimental data  for the waveguides 
with increasing (decreasing) width, and the dashed lines are theoretical results.
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is different from that with input from the other end. This behavior is distinct from 

that of the constant-width waveguide whose' two ends are equivalent.

Next, we vary the waveguide cross section in a non-monotonic manner for further 

manipulation of long-range intensity correlation inside the random waveguide. The 

waveguide shown in Fig. 5.0(a) has the width W  increasing linearly in the first half of 

the waveguide and decreasing in the second half. This geometry, unlike the tapered 

waveguides studied above, is symmetric with respect to the center (z = L /2), thus 

the spatial intensity correlation function is the same for light incident from either end 

of the waveguide. Figure 5.6(b) shows the spatial distribution of light intensity inside 

the waveguide with input from the left end. The short-range intensity fluctuations 

seen in Fig. 5.6(b) are smoothed out after the intensity is averaged over the cross 

section, leaving only the long-range contributions to the intensity correlation function 

C-{z\,Z2 ). Figure 5.6(c) plots C(z,  L),  which increases initially at a slow rate as 

z approaches L /2, but turns into a sharp rise once z passes L /2 and approaches 

L. This is because the crossing probability of scattering paths is first reduced as 

the waveguide is expanding in c < L/2. and then enhanced in c > L /2  as the cross 

section decreases. Therefore', the crossing probability can be controlled by modulating 

the waveguide width, which changes the spatial dependence of long-range correlation 

function. Figure 5.6(d) shows the intensity correlation function C ( z , L / 2). It first 

increases monotonically as c moves from 0 to L/2. and then decrease's slightly for c 

fremi L /2 te) L. The experimental elata (soliel circles) are in good agreement to the 

theoretical results (elasheel lines) in Fig. 5.6(c,el).

5.4 D iscussion

Finally, in this section we illustrate the signifie-ance of controlling lemg-range e-orrela- 

tions by geometry in focusing e>f light inside a highly sexttering medium. We perform

77



(b)

V '

■vU z

20 nm

/  • •

°  0.02

20 40 60
z(nm )

20 40 60
z (|im)

Figure 5.6: Long-range correlation in a quasi-2D disordered waveguide whose width 
varies non-monotically. (a) Top-view SEM image showing the waveguide width W  
increases linearly from 10 /im at z  =  0 to 60 /im at 2 =  40 /im and then reduces 
linearly down to 10 /mi at z — 80 /mi. O ther structural parameters are the same as 
the waveguides in Fig. 5.5. (b) An optical image of the intensity of scattered light 
from the disordered waveguide. The wavelength of the probe light is 1510 nm. (c) 
Long-range correlation function C(z, L ) for the cross-section averaged intensities at z 
and L in the waveguide shown in (a). C(z, L ) displays a sharp change in the growth 
rate before and after z passes L/2. (d) Long-range correlation function for the cross- 
section averaged intensities at 2 and L /2  in the waveguide shown in (a). C ( z , L / 2) 
increases monotonically in the first half of the waveguide and decreases slightly in the 
second half. In (c, d), solid circles represent experimental data  and the dashed curves 
are obtained by numerical calculation.
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a numerical simulation of wavefront shaping experiment where we focus the input 

light to a point inside the random waveguide by adjusting the relative phase of elec­

tric held in the guided modes of the lead waveguide at the input. Then we normalize 

the light intensity at the focal point, r =  (0, z), to 1, and average the intensities at 

all other points of the same cross-section (same z) to obtain the focusing background 

intensity lb- Figure 5.7 plots I\, versus z in two diffusive waveguides, one tapered from 

10 pm  to 60 pm, the other from 60 pm to 10 pm. The variation of the background 

intensity with depth is dramatically different for the two waveguides, and h (z )  fol­

lows the spatial dependence of C2 inside these two waveguides as shown in Fig. 5.2. 

Therefore, by tailoring the long-range correlation function, we are able to tune the 

focusing contrast via geometry. Since focusing light into a highly scattering sample by 

wavefront shaping opens the possibility of probing inside opaque media, our approach 

of controlling the quality of focusing will be im portant to applications of sensing and 

imaging into turbid media.
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Figure 5.7: Numerical simulation of focusing of light inside a diffusive waveguide 
by shaping the input wavefront. The light intensity at the focal spot, r =  (0, z), 
is normalized to 1. Black dashed curve (solid red curve) represents the background 
intensity If, vs. depth z  inside a random waveguide of width tapered linearly from 
10 ^m  (60 /rm) to 60 /im (10 /im). Both waveguides have the same length L  =  80 
/im, and they are identical to the ones shown in Fig. 5.1. /&(z) follows the spatial 
variation of C2 , as shown in Fig. 5.2, in both waveguides.
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Chapter 6 

Control of m esoscopic transport by 

m odifying transm ission channels 

using geom etry

6.1 In troduction

1 The diffusive transport of particles in a confined geometry can be effectively con­

trolled by varying the boundary shape. This approach has been widely adopted in 

natural and artificial systems including channels in biological membranes, nanoporous 

materials, microfhiidics. and artificial ion channels [2 8]. A large variety of quasi one- 

dimensional (ID) structures with m odulated cross-section have been developed for 

applications in controlled drug delivery, biochemical sensing, particle sorting. Brow­

nian motors, and ion pumps [8 11]. However, this powerful method has not been 

extensively applied to the control of diffusive transport of waves such as light, mi­

crowave' or acoustic wave's.

While wave diffusion is often described by the Brownian motion, it has a fun- 

1. T h is  ch a p te r  is p r im arily  based on the  jou rna l  article published  in ref. [1].



damental difference from particle diffusion, i.e., the scattered waves interfere and 

produce many im portant phenomena in mesoscopic physics, e.g.. Anderson localiza­

tion. universal conductance fluctuations, and enhanced backscattering [12 15]. Our 

aim is to control the mesoscopic transport by manipulating wave interference effects 

in a confined geometry.

A prominent interference effect in a lossless diffusive medium is the creation of 

open and closed channels, which are eigenvectors of the m atrix tU. where t is the field 

transmission m atrix (TM). The transmission eigenvalues are close to 1 or 0, leading to 

a bimodal distribution [16-24]. The open channels (with transmission eigenvalues r  

close to 1) have dominant contributions to the propagation of waves through random 

media, while the closed channels (r  ~  0) determine the reflected waves. Thus by 

modifying those channels, one would be able to control wave transport. The key 

question is, then, how to modify these channels.

A recent study has shown th a t the maximum transmission channel has a universal 

spatial profile (inside a diffusive waveguide with uniform cross section), which cannot 

be changed by varying disorder strength or by adjusting the width or length of the 

random media [25]. The wavefront shaping technique has been successfully developed 

for selective coupling of light into open channels to enhance the total transmission or 

focusing through a random medium [26-30]. but it cannot modify the transmission 

eigenchannels. Therefore, an efficient method for deterministic tailoring of the spatial 

structure of transmission channels is still missing.

In this chapter, we propose and dem onstrate an effective approach to manipulate 

the transmission eigenchannels to control diffusive wave transport. We show that 

similar to long range correlations and renormalization of diffusion coefficient as shown 

in previous chapters, by varying the geometry of a random waveguide, the spatial 

structure of open channels can also be significantly and deterministically altered from 

the universal ones. This enables tuning the depth profile of energy density inside
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the random medium, thus eontrolling how much energy is concentrated inside the 

sample and where it is concentrated. By gradually increasing the waveguide cross- 

section, we are able to convert evanescent channels to propagating channels. In 

addition to eontrolling transmission, perfect reflection channels can be created in 

certain confined geometries, which do not exist in waveguides with uniform cross- 

section. We show that, unlike high reflection channels in uniform waveguides tha t 

exhibit shallow penetration into the disordered system, a perfect reflection channel 

can penetrate almost through the entire system but does not transm it any light. 

Furthermore, in the presence of absorption, we can vary the decay length of energy 

flux inside a diffusive waveguide by modulating the cross-section of the waveguide 

along its axis. This cannot be achieved in a waveguide of uniform cross-section, as 

the flux decay length is independent of the waveguide dimension and is determined 

only by the intrinsic disorder and dissipation.

Optical absorption is ubiquitous and it often weakens the localization effects [31 

39], but the approach of using geometry to control wave1 transport by manipulating the 

structure of eigenchannels proves to be effective and robust against strong absorption. 

Therefore the confined geometries enable us to control not only the amount of light 

being transm itted or reflected, but also the amount of energy concentrated inside 

the random media. Although strong localization effects, absorption or asymmetric 

reflection from edges can modify the universal structure of transmission channels, 

but such effects also remove the open channels with perfect transmission [34.40,41]. 

Unlike these effects, the approach of varying shape of confined geometries gives the 

significant advantage and freedom to alter the spatial structures of eigenchannels 

while retaining the open eigenchannels with perfect transmission.

Aside from the fundamental importance, the ability of tailoring the spatial distri­

bution of energy density of transmission eigenchannels can be exploited to m anipulate 

light-m atter interactions in highly scattering media, e.g.. light absorption, emission.
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amplification, and nonlinear optical processes [25.42]. The potential applications 

range from laser surgery, photovoltaics. to random laser and energy-efficient light­

ing [43 50]. Our results suggest tha t the perfect reflection channels may greatly 

benefit sensing and imaging applications, as the light in such a channel would pene­

tra te  to a certain depth and then fully reflected to ensure an efficient collection of the 

probe signal. The conversion of evanescent waves to propagative waves and vice versa 

may be used to tailor optical excitations inside the random media. Since the applica­

tion of wavefront shaping technique to focusing or imaging through turbid media as 

well as enhancing to tal transmission depends on the properties of high transmission 

channels, the approach of modifying the transmission eigenvalues and eigenvectors by 

geometry provides a complementary degree of control. While the efficiency of wave- 

front shaping approach is reduced by incomplete channel control and measurement 

noise [30,51,52], the approach of using geometry is immune to such external factors. 

Although the above results are obtained for light, they are also applicable to other 

classical and quantum  mechanical waves.

6.2 Q uasi-tw o-dim ensional random  w aveguide

To m anipulate transmission eigenchannels, we design and fabricate' quasi two - dimen­

sional (2D) waveguides of various geometries. The' waveguide structures are fabricated 

in a 220 mu silicon layer on top of 3 /mi buried oxide by electron beam lithography and 

reactive' ion etching [53]. Figure 6.1 shows the scanning electron microscope (SEM) 

images of two fabricated wavc'guides. The waveguide contains a 2D random array of 

air hole's th a t serve as se-atterc'rs for light. The' air hole diameter is 100 mu and the 

ave'rage (center-to-center) distance of adjacent holes is 390 11111. The waveguide walls 

are made of triangle lattice' of air holes (lattice c-onstant =  440 11111. hole radius =  154 

11111) that has a complete' 2D photonic bandgap for the' in-plane confinement of light.



The waveguide is connected to a lead which is an empty waveguide (without any air 

holes) with a constant width to couple light in.

20 pm

2 0  pm

2 pm 2  pm

Figure 6.1: Quasi-two-dimensional random waveguides of different geometry. (a,b) 
Top-view SEM images of fabricated quasi-2D disordered waveguides with linearly 
increasing (a) or decreasing (b) width. The width of waveguide in (a) increases from 
W\ =  10 /im  to W 2 =  60 /im, and in (b) it is opposite. Both have the same length 
L =  80 /rm. Magnified SEM images show the air holes distributed randomly in the 
tapered section of the waveguide and the triangle lattice of air holes in the reflecting 
sidewalls, (c) An optical image of the intensity of scattered light from the disordered 
waveguide. The wavelength of the probe light is 1500 nm.

A monochromatic beam of light from a tunable CW laser source (HP 8168F) is 

focused by an objective lens (numerical aperture NA =  0.4) onto the lead waveguide. 

The light is transverse-electric (TE) polarized, with the electric field parallel to the 

plane of the waveguide (y — z  plane). After propagating through the lead, the light 

is incident onto the random array of air holes and undergoes multiple scattering in 

the 2D plane of waveguide. Some of the light is scattered out of plane, part of which 

is collected by a 50 x objective lens (NA =  0.42) and imaged onto an InGaAs camera 

(Xeva 1.7-320). From the optical image [Fig. 6.1(c)], the spatial distribution of 

light intensity inside the waveguide /(//, z) is extracted. Ensemble averaging is done 

by recording the intensity profile for 50 different wavelengths around A =  1500 nm
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and three distinct configurations of air holes. Further averaging is done by slightly 

shifting the input beam spot 011 the lead waveguide in the transverse direction y to 

produce distinct speckle illumination for the random array of air holes, nevertheless, 

the incident intensity profile is always kept uniform across y.

All disordered waveguides studied in this work exhibit diffusive transport. The 

relevant param eters for light transport in the disordered waveguide are the transport 

mean free path ( and the diffusive dissipation length £a. The transport mean free 

path  L depends 011 the density and diameter of the air holes. The dissipation results 

from out-of-plane scattering, since the silicon absorption at the probe wavelength is 

negligible. This vertical leakage of light can be treated similarly as absorption and 

described by the diffusive dissipation length £a = \ J D t (1. where r a is the ballistic* 

dissipation time and D  is the diffusion coefficient [53]. The values of £ and £a arc'

2.2 /mi and 26 /mi respectively, which were extracted from the measured intensity 

distribution inside a waveguide of rectangle shape [53]. Since these two parameters 

depend only 011 the size1 and density of the air holes, we keep them the same for all 

waveguides with different geometries. This ensures the modification of light transport 

is purely due to the change in geometry instead of structural disorder or dissipation.

6.3 Linear tapering o f w aveguide w idth

In Fig. 6.1. the two waveguides have their width IF(T) increase or decrease' linearly 

along the waveguide axis y. To illustrate how the transmission channels are modified 

by the linear tapering of the waveguide boundary, we first perform numerical mod­

eling by excluding the effect of dissipation. This enables us to separate the' effect of 

geometry from that of dissipation, which will be discussed in the' next section. In the' 

simulation, the wavelength, refractive index, and polarization of light are the same as 

in the experiment. However, the dimension of the waveguide and the transport mean
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free path  are sealed down to reduce the computing time. This should not change the 

conclusion of our results because the systems are still in the diffusive regime'.

The disordered waveguide has perfectly reflecting sidewalls and is connected to 

two leads (empty waveguides) at both ends. The refractive index in the empty waveg­

uide is determined by the vertical waveguiding in the silicon layer, and its value is 

calculated to be n =  2.85. In the disordered waveguide, the presence of air holes 

(n =  1. radius =  75 mil, filling fraction =  0.15) reduces the effective index of refrac­

tion to n =  2.62. The (vacuum) wavelength of the probe light is A =1.5 //m. and the 

transport mean free path is £ — 1.1 /mi. The length of the disordered waveguide L 

is set to be much larger than f to ensure multiple scattering and diffusion of light. 

Since the localization length (£) is proportional to the width of the waveguide (IT), 

the value of IT is chosen to make (  >  I  so tha t localization effects are negligible.

We calculate the electromagnetic held inside the disordered waveguide by solving 

the Maxwell equations using a finite element simulation software (COMSOL Multi- 

physics). To construct the transmission m atrix t of the disordered waveguide, we use 

the guided modes in the leads as the basis. The input (output) lead waveguide has 

a constant width equal to the same width \ \ \  (115) of the disordered waveguide at 

the front (back) end 2 =  0 (z =  L), and it supports M  - IT,/A/2// (N  =  M5/A/2//) 

guided modes. Thus t is a N  x M  matrix, and its (dement t,j represents the held 

transmission from the input j- th  mode to the output /'-tli mode. The reflection m atrix 

is constructed in a similar way by computing the reflected waves, and its dimension 

is M  x M .

A singular value decomposition of the transmission m atrix t gives t =  UATh A 

is a AT x M  diagonal m atrix with niin[N. M] 11011-negative real numbers, -y/r/5 when' 

rm is the eigenvalue of A/ and represents the transm ittance of the m lh transmission 

eigencharniel. V  is a M  x M  unitary m atrix tha t maps the held in the guided modes 

of the input lead to the eigenchannels of the disordered waveguide, and U is a N  x N
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unitary m atrix tha t maps the eigenchannels to the output waveguide modes. Each 

column of V  represents an input singular vector, whose' elements arc' the complex 

coefficients for the input waveguide modes tha t combine to couple light into a single 

transmission eigenchannel. The' output field of a single transmission eigenchanel is 

represented by the column of U . which is called the output singular vector. Similarly 

the reflection eigenvalues pn can be obtained by singular value decomposition of the 

reflection m atrix r.

For comparison, we also compute the transmission eigenchannels in the waveguide 

of constant width W .  For IF =  5.1 /an. M  — N  = 19. and there are 19 transmission 

eigenchannels. Figure 6.2(a) plots the transmission eigenvalues. 2 of which (m =  18 

and 19) arc' many orders of magnitude smaller than the others and are not shown as 

they fall below the numerical accuracy . This is because the lead waveguide has larger 

refractive index than the disordered waveguide and support more guided modes. The 

disordered waveguide can support only N  — 2 =  17 propagating modes, thus 2 of 

the 19 transmission channels cannot, propagate inside the disordered waveguide and 

become evanescent. Light can be coupled to these' two evanescent channels with the 

extra modes tha t can be supported by the input lead waveguide'.

Therefore, the eigenchannels of the transmission m atrix can be divided into two 

categories: propagating channels and evanescent channels. The propagating channel 

has a spatial structure th a t varies on the scale of the mean free path. The evanescent 

channel features an intensity decay on the order of the wavelength, which is much 

shorter than the mean free path, and the corresponding transmission eigenvalue is 

essentially zero.

A gradual increase of the waveguide width along its axis increases the number of 

propagating mode's that can be supported inside the disordered waveguide, converting 

the evanescent channels to the propagating channels. This is observed, as an example, 

in the tapered waveguide whose width is increased from \ \ \  =  5.1 //in at z = i) to U5
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Figure 6.2: Comparison of transmission eigenvalues and eigenchannels in constant- 
width and increasing-width random waveguides. (a) Numerically-calculated 
ensemble-averaged transmission eigenvalues of random waveguides with constant 
width (dashed line with circles) and increasing width (solid line with squares). The 
constant-w idth waveguide (W  =  5.1 gm, L =  20 pnl) supports 19 transmission eigen­
channels of which 17 are propagating channels and 2 are evanescent channels, whereas 
the expanding waveguide (W\ = 5 .1  |Um, W 2 =  10.2 pm, L =  20 pm) has 19 propagat­
ing channels of higher transm ittance, (b) Spatial distribution of electric field intensity 
inside the waveguide with increasing width for the 18th and 19th transmission eigen­
channels. Both transform from evanescent waves at the entrance of the waveguide to 
propagating waves due to the increase of waveguide width, (c) Cross-section-averaged 
intensity, I v(z ), for the 18th (solid line) and 19th (dashed line) channels shown in (b). 
The conversion from evanescent wave to propagating wave causes a sudden change in 
the decay length of I v(z) near the front end of the waveguide. For comparison, Iv(z) 
for the 10th eigenchannel (dotted line) of the same waveguide is added and it shows a 
constant decay length, (d) Comparison of the cross-section-averaged intensity, Iv(z), 
of the maximum transmission channel (m  =  1) in the disordered waveguides with 
constant width (blue dotted line) and increasing width with two different disorder 
strengths (red dashed line and green solid line) and different dimensions (dotted ma­
genta line). Tapering of the waveguide width breaks the symmetry of the spatial 
structure of the open channel and moves the peak of I v(z) from the center of the 
waveguide towards the front end. The position of the peak does not depend on the 
disorder strength.
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=  10.2 /im at z — L  [Fig. 6.1(a)]. W ith M  =  19 and N  = 38, the transmission m atrix 

3̂8xi9 still supports 19 transmission eigenchannels, but all of them have non-vanishing 

Tm [Fig. 6.2(a)],

N,
>

-1
10

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
z/L z/L

Figure 6.3: Transmission eigenchannels in tapered waveguide of decreasing width, (a) 
Comparison of cross-section-averaged intensity, Iv(z ), of the maximum transmission 
channel (m =  1) in two waveguides with different tapering angles and a constant- 
width waveguide. All waveguides have the same length L = 20 /im. The constant- 
width waveguide has W\ — W 2 =  10.2 gm  (blue dotted line). The two tapered 
waveguides have W\ =  10.2 /im and W \/W 2 =  2 (red dashed line), 4 (green solid line). 
The Iv(z) curves are offset along the y axis for clarity. The intensity peak shifts from 
the waveguide center (W \/W 2 =  1) towards the output end (W i/W 2 > 1), and the 
shift is larger for higher tapering angle (larger W \/W 2). (b) Cross-section-averaged 
intensity, Iv(z), of a perfect reflection channel for the same tapered waveguides as in 
(a). The blue dotted line corresponds to tapering of W \/W 2 =  2 and green dashed 
line corresponds to W \/ W 2 =  4. Iv(z) of a high reflection channel of the constant - 
w idth waveguide (blue solid line) is added for comparison. The insets show the spatial 
distribution of electric held intensity for the high reflection channel of the constant- 
w idth waveguide and the perfect reflection channel of the tapered waveguide with 
W \/ W 2 — 2. The perfect reflection channel in a tapered waveguide exhibits slower 
intensity decay inside the random medium (followed by a sharp drop near the rear 
end) and thus can penetrate much deeper into the turbid medium than the high 
reflection channel in the constant-w idth waveguide. The penetration length increases 
with the tapering angle.

Figure 6.2(b) shows the spatial distribution of electric field intensity inside the 

tapered waveguide for the 18th and 19th transmission eigenchannels which have 

the lowest transm ittance. Both these channels have been converted from evanes­
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cent channels in a constant-width waveguide with \V=  5.1 /an to propagating chan­

nels in the tapered waveguide. I(ij. z) exhibits a sharp drop near the front side 

of the waveguide. For a quantitative analysis, the cross-section-averaged intensity, 

I r(z) =  [l/ir(,~ )] I I{i j . z)dy.  is plotted in Fig. 0.2(c) for these two channels. For 

comparison, I v(z) for the N  =  10 eigenchannel is added to the plot, and it displays 

an exponential decay with a constant rate. In contrast, Iv(z) for the 19th eigenchan­

nel first decays very rapidly at small z / L.  and then changes to a much slower decay at 

z / L  ~  0.07. The number of guided modes in the waveguide is N(z )  =  2\]"(z) / ( \ /n) .  

where IF (-) is the waveguide width at depth and n is the effective index of refrac­

tion of the disordered waveguide. As IF increases with 2 . the waveguide becomes wide 

enough to support additional modes. For example, at z / L  ~  0.07. A' is increased from 

18 to 19. thus the 19th mode is transformed from evanescent wave to propagating 

wave. Consequently, the decay length of I v(z) increases from ~  0.14 //an (comparable 

to A/27m) to ~  1.8 //an (much larger than  A/27rn). Similarly, the 18th eigenchannel is 

transformed from evanescent to propagating at a smaller value of z / L  ~  0.05, where 

N  is increased from 17 to 18. Hence, this conversion can be attributed to the gradual 

increase of the number of propagating modes that can be supported by the tapered 

waveguide at different depths.

If A and n are fixed, the spatial position {z/L)  inside the tapered waveguide where 

the conversion from evanescent wave to propagating wave takes place is determined 

by the width at th a t position, thus the spatial position where such conversion occurs 

can be easily controlled by tuning the tapering angle. The disorder strength does not 

affect directly the location of conversion, however, a change in the disorder strength 

is often accompanied by a change in the effective' index of refraction n. which would 

modify the conversion depth.

The increase of the waveguide width also enhances the transm ittance of all other 

transmission eigenchannels (albeit not as large an enhancement as the above two)



which are also propagating channels in the constant width waveguide. Consequently, 

the diniensionless conductance g =  Tw is larger. but the nninber of input inodes 

remains the same. This behavior is distinct from the constant-width waveguide, 

where the increase of width also enhances ry, but the number of input modes increases 

simultaneously requiring additional degree of control of the input held for coupling 

into a single eigenchannel. The waveguide with increasing width can therefore be 

useful for applications related to enhancing transmission through random media by 

wavefront shaping technique with incomplete degree of control of the input held.

Furthermore, the spatial profiles of open channels are modified in the tapered 

waveguide. Figure 6.2(d) compares the cross-sect ion-averaged intensity I c(z) of the 

maximum transmission channel in the disordered waveguides with constant and in­

creasing widths. In the waveguide with uniform cross-section, I v(z) exhibits a sym­

metric profile with peak in the middle of the waveguide (z =  L / 2). It corresponds 

to the universal structure of the maximum transmission channel in a constant-width 

waveguide [25]. In the waveguide with increasing widths, Iv(z) becomes asymmetric 

and its peak shifts from the center towards the front end of the waveguide (c < 1 /2 ). 

As seen in Fig. 6.2(d). when the tapering angle of the waveguide boundary is merely 

14°, the peak of the maximum transmission channel has already moved significantly 

from the center z / L  — 0.5 to z / L  = 0.35. This shift does not depend on the disor­

der strength or the actual dimension of the diffusive waveguide. As a confirmation, 

Fig. 6.2(d) shows the spatial profiles of the highest transmission channel in two 

more tapered waveguides, one has L, \ \ \ , W 2  all reduced to half, but k( unchanged 

(k — 2tt/ X/n):  the other has the same L.  IIA H T but k( is doubled. Although their 

profile's are slightly different, the peak positions are identical.

Next we investigate the disordered waveguide' with linearly elecre'asing wieltlr. as 

shown in Fig. 6.1(b). This gnometry is the' mirre)r image of the one in Fig. 6.1(a). 

thus light injee-tion from the left enel of waveguiek' in Fig. 6.1(b) is iek'iitical to light
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injection from the right end of the waveguide in Fig. 6.1(a). The transmission matrix 

of the waveguide in Fig. 6.1(b). f i<)x3«- is the transpose of that in Fig. 6.1(a). and it 

also supports 19 transmission eigenchannels with the same transm ittance. Tims the 

conductance g is identical for the two waveguides in Fig. 6.1. However, the spatial 

structure of the open channels is different.

Figure 6.3(a) shows the cross-section-averaged intensity Iv(z) for the maximum 

transmission channel in the waveguide with decreasing width. Its peak shifts from 

the center of the waveguide towards the output end (z > L/2) .  opposite to that of the 

waveguide with increasing width in Fig. 6.2(d). The two profiles are mirror image, and 

the peak always shifts towards the narrower section of the tapered waveguide. How 

much the peak shifts from the waveguide center depends 011 the angle of tapering. 

By changing the tapering angle, the location of the intensity peak can be tuned 

deterministically, as seen in Fig. 6.3(a). This result illustrates tha t the maximum of 

the energy density can be positioned to different depths inside a random system by 

tailoring its geometry.

While the number of the transmission eigenchannels for the two waveguides in Fig. 

6.1 is identical, the number of reflection channels differs. I11 the expanding waveguide 

[Fig. 6.1(a)]. the reflection m atrix r 19xlg has 19 eigenchannels. which have one-to- 

one correspondence with the transmission eigenchannels. However, in the contracting 

waveguide [Fig. 6.1(b)], the input lead waveguide supports 38 guided modes, and the 

output only 19 modes. Consequently there are 19 transmission eigenchannels, but 

38 reflection channels. While 19 of the reflection channels have the corresponding 

transmission channels, the rest 19 do not. In other words, the reflection m atrix 7-38x38 

has 38 eigenvalues, of which 19 of them are equal to unity. They represent perfect 

reflection channels with all incident light being reflected.

The 2-D spatial distribution of held intensity for a perfection reflection channel 

in the tapered waveguide with IF i/H b =  2 is shown in the inset of Fig. 6.3(b). For
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comparison, a high reflect ion channel in a waveguide of uniform cross-section is also 

shown. We can clearly see that the high reflection channel in the constant-width 

waveguide has a uniform decay of intensity inside' the random structure. In contrast, 

the intensity of the perfect reflection channel exhibits a much slower decay almost 

throughout the entire random structure and then a sharp drop close to the rear end 

(z ~  L).

The main panel of Fig. 6.3(b) plots the cross-section-averaged intensity, I v(z), 

for one of the perfect reflection channels in two tapered waveguides with different 

tapering angles and a high reflection channel in the constant-width waveguide. The 

high reflection channel of a constant-width waveguide has shallow penetration into 

the random medium due to a rapid intensity decay. The perfect reflection channel, 

however, has a much slower decay and thus a longer penetration depth. A sharp drop 

of its intensity near the rear end corresponds to the cutoff beyond which no light 

propagates. The cutoff occurs at the position where the waveguide width is just large 

enough to support N  +  1 modes (where N  is the number of propagating modes in the 

output lead). Since the cutoff position depends 011 the tapering angle of the random 

waveguide', both the decay length of the intensity and the cutoff position in a perfect 

reflection channel can be deterministically and effectively controlled by tuning the 

tapering angle. For example, by increasing the tapering angle we are able to increase 

the penetration depth by shifting the cutoff position closer to the output end, as seen 

in Fig. 6.3(b).

Since light in the perfect reflection channels can penetrate deep into the scattering 

system, such channels can be used for probing inside turbid media. Despite of the 

deeper penetration, all the light exits from the input end. making the collection 

efficiency of probe signal 100(Z . which is extremely useful for sensing or imaging 

applications. The penetration depth can be precisely tuned via tapering the boundary 

of a confined random system.



Unlike high reflection or closed channels of random waveguides with uniform cross- 

section. the perfect reflection channels of the tapered waveguides cannot be deduced 

from the transmission m atrix and will require measurement of the complete reflec­

tion m atrix of the tapered waveguide. Since the cutoff position of the intensity of 

the perfect reflection channels is near the rear end of the waveguide, an optimization 

of transmission using adaptive wavefront shaping technique (described and demon­

strated in the next chapter) cannot be used either. Experiments requiring coupling of 

input light to the perfect reflection channels will therefore require modification from 

the current experimental setup as it will require measurement of the reflected light 

as opposed to light inside the random media. Nevertheless, one possible advantage 

of measuring the reflected light can be tha t it may have better signal to noise ratio 

compared to measurements of light inside the random media as more light is usually 

reflected from the surface of the random media compared to light tha t penetrates the 

random media.

6.4 Effect o f A bsorption

In this section, we study the effect of light dissipation, which was not included the 

last section. Previous studies have shown that loss has a profound impact 011 the 

transmission channels. It not only modifies the statistical distribution of the trans­

mission eigenvalues [34]. but also changes the structure of eigenchannels [41,54], I11 

case' of passive' diffusive waveguides, the preibability elensity elistribution of transm is­

sion eigenvalues, P ( r ) , has 2 peaks, eme at 1 and the either at 0. Thus, there are' 

many channels (the numbe'r is dete'rmineel by ey) with comparable values eif t  ~  1 . 

Therefore, the' to tal intensity insiele the ranelom me'elium is the sum of intensities eif 

all these high transmissieui eigeneliannels.

In case eif strongly absorbing wave'guiele's (L  £„). the peak at r  =  1 elisappears
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and P ( t ) lias a cutoff at Tm a x  which is determined by L /£a. In such absorbing 

waveguides, P(r)  decays strongly with r  with a faster decay near Tm a x . This implies 

th a t the r ’s will be arranged as T\ > r 2 >  r 3 >  ... Furthermore, because P(r)  decays 

fast toward rmaa;, t \  will be much greater than 72, 73, 74... and the to tal intensity inside 

the random media will therefore be dominated by the eigenchannel with the maximum 

transmission.

W = 10.2 pm N ; 
W = 5.1 pm 
Decreasing width 
Increasing width

With absorption \  \  
Without absorption V

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
z/L z/L

Figure 6.4: Effect of absorption on the maximum transmission eigenchannel and 
energy flux decay in the constant-w idth and tapered waveguides, (a) Comparison 
of the cross-section-averaged intensity, Iv(z ), of the maximum transmission channel 
in a constant-w idth {W  =  5.1 /im, L — 20 /mi) disordered waveguide with (dashed 
line) and without (solid line) absorption. I11 the absorbing waveguide, T /£a =  3. 
Absorption modifies the spatial profile of the maximum transmission channel, (b) 
Comparison of spatial decay of energy flux J(z)  in random waveguides with constant 
widths XV =  5.1 jum (blue solid line) and XV =  10.2 /mi (dashed magenta line), 
increasing width of W\ =  5.1 /mi, XV2 = 10.2 /mi (green dotted line) and decreasing 
width of W\ — 10.2 /mi and XV2 =  5.1 /mi (red dashed line). For all waveguides, 
L — 20 /mi, L /^ a =  3 and J(z)  is normalized to 1 at 2 =  0. While the flux decay 
length remains the same for the two rectangle waveguides of different widths, it is 
lengthened in the expanding waveguide and shortened in the contracting waveguide.

For the quasi-2D waveguides we fabricate, the dissipation results from out-of-plane 

scattering of light, which can be treated as absorption [53]. We simulate it in the 

2D waveguide by introducing an imaginary part of the refractive index. The diffusive 

dissipation length is £a =  y i l a/ 2, where la is the ballistic dissipation length. The 

ratio of L /£a is set to 3.0, which is close to the value of the fabricated waveguides. At
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L/£u — 3. absorption causes a notable change' in the spatial profile of the maximum 

transmission channel as seen in Figure 0.4(a). The intensity peak of the maximum 

transmission channel, which is located at the middle ( z / L  ~  0.5) of the passive 

waveguide, moves to the front end ( z / L  ~  0) due to absorption.

Although it reduces the throughput, loss allows us to manipulate the spatial decay 

of energy flux inside the random waveguide by geometry. In the absence of loss, the net 

flux J(z).  integrated over the cross-section of the waveguide, points in the 2 direction 

and its value is constant along 2 . By tailoring the boundary shape' of the waveguide', 

the magnitude of J  changes, but it remains invariant with z. W ith the addition of 

loss. J(z)  decays exponentially along 2 . If the waveguide has a uniform cross-section, 

the decay length is determined by £a. which is independent of the waveguide width 

or lc'iigth. However, the' decay length can be varied by tapering the waveguide width 

along 2 . Figure 6.4(b) plots J(z)  in four waveguide's with random input fiedds. To 

compare the spatial profile of J(z) ,  its value' at 2 =  0 is normalized to 1. Two of 

the waveguides have uniform width. IF =  5.1 //m. 10.2 //m. and their J(z)  overlaps 

after the normalization. W ith a linear increase of IF with 2 . the decay of J(z)  

becomes slower, while a linear decrease of the waveguide width accelerates the flux 

dec:ay. Hence, by varying the waveguide width along the cross-section, we e an tune 

the' decay of energy flux inside the' random mc'dia. Such tuning of flux decay rate by 

geometry can be' achicwed only in the pre'seiwe' of loss, illustrating additional degree' 

of control enabled by combination of dissipation and geometry.

6.5 In ten sity  decay inside random  m edia

Expc'rimentallv we me'asurc'd the 2D intensity distribution inside the tapered wave'g- 

uieles shown in Fig. 6.1(e). From I(y,  2 ) we obtain the CToss-section-averaged intensity 

I v(2 ) which give's the' depth profile of the average energy density inside the random
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waveguide. In the tapered waveguides, the intensity decay rates become significantly 

different as seen in Fig. 6.5(a). Iv(z) decays much faster inside the expanding waveg­

uide than  tha t in the constant-w idth waveguide, while the contracting waveguide 

leads to a much slower decay of Iv(z). Such behavior is a ttributed  to the variation of 

the waveguide width along z.

Constant width 
Decreasing width 
Increasing width

Constant width 
Decreasing width 
Increasing width

z/L z/L

Figure 6.5: Experimentally measured intensity decays inside disordered waveguides 
in comparison to numerically calculated spatial profiles of the maximum transmission 
eigenchannels. (a) Experimentally measured cross-section-averaged intensity Iv(z) in­
side quasi-2D waveguides of constant width W  — 60 //,m (solid blue line), increasing 
width with W\ =  10 /im, W 2 =  60 /im (dotted green line), and decreasing width with 
W\ =  60 /im, W 2 =  10 //m (dashed red line). All the waveguides have L =  80 /im 
and L /^ a =  3. The tapering of the waveguide boundary causes a dram atic change in 
the decay lengths of I v(z). (b) Numerically calculated Iv(z) of the maximum trans­
mission eigenchannel in the disordered waveguides of constant width W  =  10.2 /im 
(solid blue line), increasing width with W\ =  5.1 /im, W 2 =  10.2 /im (dotted green 
line), and decreasing w idth with W\ =  10.2 /im, W 2 =  5.1 (dashed red line). All 
waveguides have L — 20 /im and L /^ a =  3. Despite of the reduced waveguide dimen­
sions, the maximum transmission channels exhibit a qualitatively similar structure to 
the experimentally measured intensities, indicating the intensity distribution inside a 
strongly absorbing random medium is determined by the structure of the maximum 
transmission channel.

For comparison, we also measure the intensity decay inside two constant-width 

waveguides. Despite of a factor of 6 difference in the waveguide width (W =  10 /im, 60 

/im), Iv decays exponentially in the two waveguides with nearly the same rate (not 

shown). This result confirms th a t the intensity decay is independent of the waveguide 

width as long as W  is invariant with z  and localization effect is negligible [53].
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As mentioned before, the two tapered waveguides with the same tapering angle 

arc1 mirror image of each other with respect to c =  L/2. Thus the transport of light 

with input from one end (z =  0) of one waveguide is equivalent to that with input 

from the opposite end (z = L) of the other waveguide. Hence, the difference in 

the intensity decay in the two waveguides with injection from the same end (z = 0) 

illustrates asymmetric transport of light in such tapered waveguides.

Since our fabricated waveguides are in the regime of strong dissipation (L £„), 

the intensities inside the structures are dominated by the maximum transmission 

channel. The experimentally measured intensities should therefore reflect qualita­

tively the intensity profiles of the maximum transmission channels. In Figure 0.5(b). 

we plot the numerically calculated I v(z) for the maximum transmission eigenchannels 

in waveguides of constant widths and tapered geometries (with reduced dimensions 

due to limited computing power). They exhibit qualitatively similar structures, indi­

cating the intensity distribution inside a strongly dissipative random system is deter­

mined by the maximum transmission channel whose spatial profile can be tuned by 

geometry.

6.6 N on -m on oton ic variation o f w aveguide cross- 

section

Finally, we change the waveguide width non-nionotonically along the axis for further 

control of transmission channels. Figure 6.6(a) shows a “bow-tie” waveguide whose 

w idth IF decreases linearly in the first half and then increase's in the second half. 

While the1 input and output ends have identical widths, the waveguide has a constric­

tion in the1 middle tha t reduces the energy flow. The total number of transmission 

eigenchannels is still determined by the waveguide width at the inpu t/ou tpu t. How­

ever. only a fraction of these channels (determined by the width of the constriction)
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can propagate through the constriction. The rest are converted to evanescent waves 

in the vicinity of the construction due to the reduction in the number of propagat­

ing modes. As the waveguide width increases after the constriction, the evanescent 

wave tha t can tunnel through the constriction may convert back to propagating wave. 

This is seen in the intensity profiles of the transmission channels in Fig. 6.6(b). I v(z) 

decays gradually in the first part of the bow-tie waveguide, then suddenly changes 

to a must faster decay near the constriction, after the constriction the decay slows 

down again. The abrupt changes in the decay length, from much larger than the 

evanescent decay length. X/27vn. to smaller than X/2'ku and back, indicate the con­

version from propagating wave to evanescent wave and back. The accelerated decay 

rate near the constriction differs from one channel to another [Fig. 6.6(b)]. Hence, 

evanescent waves with different decay rates are created inside a diffusive waveguide 

by the constriction.

In the bow-tie waveguide, the number of transmission eigenchannels tha t diffuse 

through the constriction without being converted to evanescent waves is determined 

by the width of the constriction. W hen the constriction width IF(. is reduced to below 

the transport mean free path  L light propagation in the vicinity of the constriction is 

changed from 2D diffusion to quasi-ID diffusion. However, the number of waveguide 

modes supported by the constriction can still be much larger than 1. as long as 

W c A, allowing light, diffusion through the constriction. However, if IF,. < A, light 

transport at the constriction changes to evanescent tunneling.

The bow-tie geometry also modifies the high transmission channels, even in the 

presence of strong absorption. In Fig. 6.6 (c) along with the cross-section-averaged 

intensity I v(z) we also plot the cross-section-integrated intensity /?(;) =  I r(z) W ( z ) . 

While the former only gives the depth profile of the average energy density inside the 

random waveguide, the latter tells the total amount of energy concentrated at certain 

depth c. The cross-section-averaged intensity /, (-) for the maximum transmission
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Figure 6.6: Transmission eigenchannels and intensity decay in a diffusive waveguide of 
bowtie geometry, (a) Top-view SEM image of a fabricated quasi-2D waveguide with 
bowtie geometry. The length of waveguide is L — 80 /im. The width of waveguide 
decreases linearly from 60 (im at z =  0 to 10 /im at z = L / 2 and then again increases 
linearly to 60 fim  at z = L. (b) Numerically-calculated cross-section-averaged inten­
sity I v(z) of the 19th (solid line) and 20th (dashed line) transmission eigenchannels of 
bowtie waveguide. The length L  of the waveguide is 20 /im, the width at z  =  0, L is
10.2 (im (35 propagating modes) and the width of constriction at z — L /2  is 5.1 fiin 
(17 propagating modes). The abrupt changes in the decay rate of Iv(z) before and 
after z — L / 2 indicate the conversion from propagating wave to evanescent wave and 
back. The evanescent decay rate  varies from one channel to another, (c) Numerically- 
calculated Iv(z) (green dashed line) and cross-section-integrated intensity I t(z) (blue 
solid line) for the maximum transmission channel of the same waveguide as in (b) but 
with absorption T /£a =  3. The constriction causes a significant change in the inten­
sity distribution of the maximum transmission channel, (d) Experimentally measured 
I v(z) (green dashed line) and h( z )  (blue solid line) inside the disordered waveguide 
shown in (a). Both intensity distributions follow those of the maximum transmission 
channel.
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channel exhibits a small bump at the constriction, while the cross-section-integrated 

intensity //(c) has a dip. This is because the reduction in the cross-section increases 

the energy density but suppresses the total flux at the ('enter of the waveguide. Fig­

ure 6.0(d) plots the experimentally measured intensity of light inside the bow-tie 

waveguide. I v(z) decays slower in the first half (z < L/2)  than in the second half 

(z > L/2).  //(c) exhibits opposite behavior. The qualitative agreement between the 

measured intensity decay and the calculated profile of the highest transmission eigen­

channel again confirms tha t the energy distribution inside the bow-tie waveguide is 

determined by the maximum transmission channel.

The spatial structure of the open channel in the bow-tie waveguide can be tuned 

bv shifting the constriction away from the center of the waveguide. Unlike varying 

the constriction width which would modify the transmission eigenvalue and the di- 

mensionless conductance, changing the location of the constriction only modifies the 

transmission eigenchannels, but not the eigenvalues. It thus provides an efficient way 

of tailoring the energy distribution inside the diffusive waveguide while keeping the 

transm ittance constant.

Complementary to the bow-tie waveguide, we fabricate the "lantern" waveguide 

whose width IT increases linearly in the first half and decreases in the second half 

[Fig. 6.7(a)]. In contrast to the bowtie geometry, the number of propagating modes 

tha t can be supported in the lantern waveguide increases in the middle due to larger 

cross-section, thus increasing energy throughput. In particular, a transmission eigen­

channel, which is evanescent at the input end of the random waveguide (due to the 

refractive index difference from the lead waveguide1), transforms to propagating wave 

as the waveguide becomes wider. However, close to the rear end of the waveguide, 

the propagating wave becomes evanescent again due to the decrease1 of the waveguide 

width. Such behavior is shown in Fig. 6.7(b). where I r{z) for the m — 19 eigenchan­

nel exhibits a fast decay near the1 front end of the1 lanteTii waveguide, then the decay
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is slowed down in the middle, but near the back end the decay becomes fast again. 

Since light can only tunnel out of the waveguide, there is a strong buildup of energy 

inside the lantern waveguide, especially near the center where the number of waveg­

uide modes is maximum. For comparison, I t,(z) of another transmission eigenchannel 

(rn — 5) is also plotted. Unlike m =  19, I c(z) for rn =  5 eigenchannel does not display 

a dip in the intensity at z / L  ~  0 as it does not start with an evanescent wave at the 

front side of the waveguide, instead it exhibits a uniform decay of intensity across the 

entire waveguide.

The high transmission channels also experience a significant change in the lantern 

waveguide. As seen in Fig. 6.7(c). the maximum transmission channel displays an 

opposite behavior to that of the bow-tie waveguide [Fig. 6.6(e)]. I v(z) drops faster 

in the first half of the waveguide (z < L/2)  than in the second half (z > L/2) ,  

while It{z) is the opposite. The difference from the bow-tie waveguide is expected 

because the cross-section is modulated in opposite manner in the two waveguides. 

Consequently, the intensity distribution inside the lantern waveguide is very different 

from that in the bow-tie waveguide. The measured I v(z) and It(z) in Fig. 6.6(d) 

exhibit distinct decay rates for z < L / 2  and c > L/2.  which agree qualitatively to 

those of the maximum transmission channel. This confirms the change in energy 

distribution inside the lantern waveguide can be very well represented by the change 

in the structure of the maximum transmission channel by geometry.

6.7 D iscussion

To conclude, we have dem onstrated an effective approach to modify transmission 

eigenchannels of confined disordered media. Using geometry, we can change the 

spatial profiles of the transmission channels significantly and deterministically from 

the universal one. It allows us to control the depth profile of the total energy as well
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Figure 6.7: Transmission eigenchannels and energy distribution in a diffusive waveg­
uide of lantern geometry, (a) Top-view SEM image of a fabricated quasi-2D disordered 
waveguide with lantern geometry. The length of waveguide is L = 80 fim. The width 
of waveguide increases linearly from 10 /im at z =  0 to 60 gm  at z — L /2  and then 
again decreases linearly to 10 /mi at z =  L. (b) Numerically calculated cross-section- 
averaged intensity Iv(z) for the 5th (dashed line) and 19th (solid line) transmission 
eigenchannels of lantern geometry. The length L of the waveguide is 20 /mi, the 
width at z = 0, L is 5.1 /mi (17 propagating modes) and width at z = L / 2 is 10.2 
/im (35 propagating modes). Iv(z) of the 19th transmission eigenchannel exhibits the 
conversion of the evanescent wave to a propagating wave near the input end and then 
back to the evanescent wave near the output end due to the variation of the waveg­
uide width. In contrast, the 5th channel remains propagating wave across the entire 
waveguide, (c) Numerically calculated I v(z) (green dashed line) and cross-section- 
integrated intensity It{z) (blue solid line) for the maximum transmission channel of 
the same waveguide as in (b) but with absorption L /£a =  3. Both intensity pro­
files are opposite to those in the bow-tie waveguide, (d) Experimentally measured 
I v(z) (green dashed line) and It(z) (blue solid line) inside the disordered waveguide 
shown in (a). The intensity profiles are similar to those of the maximum transmission 
channel shown in (c).
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as the energy density inside the random medium, thus controlling how rnneh energy 

is concentrated inside the sample and where' it is concentrated. The ability to tailor 

the spatial distribution of energy density can be exploited to m anipulate light-m atter 

interactions in scattering media, which will be useful for numerous applications.

By gradually increasing the cross-section, we can enhance the transm ittance of all 

the transmission eigenchannels while keeping the number of input modes the same. 

Such geometries can be useful for applications related to enhancement of total trans­

mission by shaping the input wavefront, as in such structures there will be more open 

channels due to larger conductance. Moreover, since the waveguide cross-section at 

the input end does not change, the number of input channels remains the same, and 

additional degree of control of the input field is not necessary for coupling into any 

one of the open channels. In addition, using geometry we can also convert evanescent 

channels to propagating channels and vice versa. In a waveguide with the output 

cross-section smaller than  the input one. perfectly reflecting channels are created. 

The light injected to such a channel would penetrate inside the scattering media to 

a certain depth and then get fully reflected back to the input end. The penetration 

depth of such channels can be further tuned by geometry. Such channels have poten­

tial applications for probing deep inside turbid media. Since all the light exits from 

the input end, the collection efficiency of probe signal would be 100(7c. We can further 

design geometries with opposite taperings to have the same transmission eigenvalues 

but very different eigenchannel profiles. By breaking the reflection symmetry of con­

fined geometry, the transmission eigenchannels become asymmetric. In a diffusive' 

waveguide with non-monotonic tapering boundary such as the lantern geometry, en­

ergy can buildup inside' the ranelenn medium, which will benefit the applie-ations e>f 

energy harvesting ane.1 tailoring of e>ptie al exe-itations inside scattering meelia.

Unlike the' localizatiem effects slmwn in eiiapter 2 and 4 whieii are suppressed by 

absenptiem, the appremch e)f using ge'ometry tee control light transpeut is effective even
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ill the presence of strong absorption and does not require any change of structural 

disorder. Thus this approach can truly complement the wavefront shaping technique 

to control mesoscopic transport of light with an additional advantage that the ef­

ficiency is not reduced by external factors such as incomplete channel control and 

measurement noise [30]. The results discussed in this chapter are also applicable to 

other waves such as microwaves, acoustics or m atter waves.

Finally, we stress tha t the confined geometry enables manipulating the spatial 

structures of transmission eigenchannels while retaining the open channels with per­

fect transmission. This is advantageous compared to other approaches tha t rely on 

localization effects like shown in chapter 2 and 4, absorption [41] or asymmetric 

surface reflections from edges [40] to modify the transmission channels as those ap­

proaches will also remove the open channels with perfect transmission. Although in 

this chapter we have focused only on the maximum transmission channel, in general 

using geometry the spatial profiles of the other low transmission channels can also be 

deterministioally and significantly modified. Since changing the confined geometry of 

a random medium corresponds to modifying its boundary condition, we expect that 

the Green's function inside the random system can also be tailored. This implies 

th a t our approach of manipulating geometry in general may be applied to control 

any mesoscopic effect tha t depends on the Green's functions inside the random media 

such as non-local intensity correlations, renormalization of the diffusion coefficient, 

the density of states etc.
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Chapter 7

Control of energy density inside 

disordered m edium  by coupling to  

open or closed channels using 

adaptive wavefront shaping

7.1 In troduction

1 It lias long been known that in disordered media there are many fascinating and 

surprising effects resulting from interference's of multiply scattered waves [2.3]. As 

described in chapter 6. one of such effects is the creation of transmission eigenchannels 

which can be broadly classified as either open or closed [4,5]. The existence of higli- 

transmission (open) channels allows for an optimally prepared coherent input beam 

to be transm itted through a lossless diffusive medium with order unity efficiency. In 

contrast, waves injected into low-transmission (closed) channels barely penetrate the 

medium and are mostly reflected. As seen in chapter 6. in general, the penetration 

1. This  chap te r  is p r im arily  based on the  jo u rn a l  article published in ref. [1].



depth and energy density distribution of multiply scattered waves inside a disordered 

medium are determined by the spatial profiles of the transmission eigenchannels that 

are excited by the incident light. The distinct spatial profiles of open and closed chan­

nels suggest tha t selective' coupling of incident light to these channels enables effective 

control of total transmission and energy distribution inside the random medium [6,7]. 

Since the energy density determines the light-m atter interactions inside a scattering 

system, manipulating its spatial distribution opens the door to tailoring optical exci­

tations as well as linear and nonlinear optical processes such as absorption, emission, 

amplification, and frequency mixing inside turbid media. The potential applications 

range from photovoltaics [8,9], white LEDs [10] and random lasers [11], to biomedical 

sensing [12] and radiation treatm ents [13].

In recent years there have been numerous theoretical and experimental studies 

on transmission eigenchannels [6,14 18]. While by knowing the transmission matrix, 

one can determine their profiles [19 22], it is difficult to directly probe their spatial 

profiles inside' three-dimensional (3D) random media. So far. the open and closed 

channels have been observed only with acoustic wave inside a two-dimensional (2D) 

disordered waveguide [23]. but controlling the energy density distribution has not 

been realized due to lack of an efficient wavefront modulator for acoustic' wave or 

microwave radiation. The advantage' of optical waves is the availability of spatial 

light modulators (SLMs) with many degrees of freedom. However, the commonly used 

samples in optical experiment have an open slab geometry, thus making it impossible 

to control all input mode's due to limited numerical aperture of the imaging optics. 

Suc'li incomplc'te control dramatic-ally weakens the open channc'ls [24]. although a 

notable' enhane-ement of total transmission has be'en ac'hieved [21.25]. Furthermore, an 

enhane-ement of total energy stored inside a 3D scattering sample' has be'en reportc'd

[26], but a direct probe' and control of the' optical intensity distribution inside the 

scattering mc'dium are still missing.
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In this chapter, we dem onstrate experimentally the control of the energy density 

distribution inside a scattering medium. Instead of the open slab geometry, we fab­

ricate a silicon waveguide tha t contains seattcrers and has reflecting sidewalls. The 

intensity distribution inside the two-dimensional waveguide is probed from the third 

dimension. W ith careful design of the 011-chip coupling waveguide, we can access all 

the input modes. Such control of the incident wavefront enables an order of magni­

tude enhancement of the total transmission or a 50 times suppression. A direct probe 

of the optical intensity distribution inside the disordered waveguide reveals that se­

lective excitation of open channels results in the buildup of energy deep inside the 

scattering medium, while the excitation of closed channels greatly reduces the pene­

tration depth. Compared to the linear decay for random input fields, the optimized 

wavefront can produce an intensity profile that is either peaked near the center of 

the waveguide or decays exponentially with depth. The to tal energy stored inside the 

waveguide is increased 3.7 times or decreased 2 times.

7.2 D esign  o f th e coupling w aveguide and th e  dis­

ordered nanostructures

The 2D waveguide structure for this experiment is fabricated in a 220 11111 silicon layer 

011 top of 3 //in buried oxide by electron beam lithography and reactive ion etching [7]. 

As shown in Fig. 7.1, air holes are randomly distributed within the waveguide whose 

sidewalls are a photonic crystal tha t reflects light. At the probe wavelength A =  1.51 

//in, the transport mean free path ( =  2.5 //m is much less than the length L =  

50 //in of the disordered waveguide, so tha t light transport is diffusive. The out-of­

plane scattering, which provides a direct probe of light transport inside the random 

structure, can be treated as loss and the diffusive dissipation length is £n =  31 //111. The 

values of / and £a are extracted from the measured intensity distribution and intensity
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fluctuations inside the disordered waveguide for uncontrolled illumination [27]. The 

waveguide of width IT =  15 //m supports N  =  5G transmission eigenchannels. among 

which ~  5 are open channels and the rest are closed channels. The total transmission 

for uncontrolled illumination is about 4.8%.

The probe light is injected into the waveguide from the edge of the wafer. Due 

to the large mismatch of the refractive index between silicon and air. the light can 

be coupled only to the lower-order modes of the ridge waveguide. This limits the 

number of input modes that can be controlled by wavefront shaping. To increase the 

degree of input control, the coupling waveguide (lead) is tapered at an angle of 15° 

[Fig. 7.1(a)]. The wider waveguide at the front end supports many more lower-order 

modes, which can be excited by the incident light and then converted to high-order 

modes by the taper.

To select the param eters for the tapered lead, we compute the degree of control 

for the optical held at the end of the lead th a t will be injected to the disordered 

waveguide. We simulate light propagation through the tapered waveguide using the 

Finite Element Method (COMSOL) and KWANT [28]. At the entrance of the lead 

(c =  0). only low-order modes (up to M\ — th order) of the waveguide (of width } \ \)  

are excited with constant amplitude and random phase. The incident electric held 

can be w ritten as
M i

E (,, .z  = l)) = Y ^ M ,- 9m(!,).
m= 1

where 4>m{y) represents the transverse held profile for the m — th guided mode, and 

0,n is the initial phase. We calculate electric, held distribution at the end of the 

lead E n(y .z  = L\). where' the subscript n denotes different set of random phases 0m 

assigned to the input held. L\ is the length of the tapered lead. Then we construct 

the covariance' matrix.

C(y. if) = {E„(y)K(y’))n,
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where ()„ represents averaging over random input wave-fields. The eigenvalues of 

C ( ij. ij') are computed and plotted in Fig. 7.2 for a tapered waveguide of TT i =  85 

//in. IF =  15 /mi. and L[ = 100 //in. The sudden drop of the eigenvalues in Fig.

7.2 gives the number of significant eigenvalues, which corresponds to the number of 

independent spatial modes M  that are controlled by varying the input field [Fig. 

7.2], We compute M  for many tapered waveguides of different dimensions, and find 

M  = N  as long as M\ exceeds the number of transverse modes N  at the end of the 

lead (of width IF).

In the experiment, the number of low-order modes in the coupling waveguide tha t 

are excited by the incident light. M\. depends on the numerical aperture (NA) of 

the objective we use to couple light into the silicon waveguide, the refractive index 

contrast at the silicon/air interface, the width IFi and NA of the silicon waveguide. 

For the fabricated sample in Fig. 7.1, W\ - 330 //in, the total number of waveguide 

modes at the front of the taper is 1245. The numerical aperture of the objective (NA 

=  0.7) determines the range of incident angle for light illuminating the front facet of 

the silicon waveguide. From the silicon/air index contrast, we calculate the angular 

range of light tha t is coupled into the waveguide, and then obtain the number of 

waveguide modes tha t are excited by the incident light. M[ =  359. We intentionally 

make M\ much larger than N  =  56. to ensure all input modes to the disordered 

waveguide are accessed experimentally. In addition, we adjust the incident beam size 

to completely fill the pupil of the objective, so that the entire numerical aperture of 

the objective is used to couple light into the lead.

7.3 W avefront shaping experim ent

The wavefront shaping experiment is shown schematically in Fig. 7.3(a). A monochro­

matic laser beam is phase m odulated by an SLM and then focused to the edge of the
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Figure 7.1: On-chip disordered waveguide with a tapered lead, (a) Top-view scanning 
electron micrograph (SEM) of a fabricated silicon waveguide. A ridge waveguide 
(lead) is tapered from the width W\ =  330 pm  at the edge of the wafer to the width 
W  =  15 pm, in order to increase the degree of control of the light tha t is injected to the 
disordered waveguide, (b) Magnified SEM of the disordered region of the waveguide 
th a t consists of a random array of air holes (diameter =  90 nm). (c) Magnified 
SEM showing the air holes distributed randomly within the waveguide with a filling 
fraction of 6 %. (d) The sidewalls of the waveguide are made of a triangular lattice 
of air holes (diameter =  360 nm) with a lattice constant of 505 nm, which supports 
a full photonic bandgap at the wavelength A =  1.51 pm.
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Figure 7.2: Semi-log plot of the eigenvalues of the covariance m atrix C (y ,y ')  for the 
electric field E m(y: z — L\)  at the end of a tapered lead with W\ =  85 pm, W  =  15 
pm, and L\ =  100 pm. The inset is a schematic of the geometry. The sudden drop 
of eigenvalues gives the number of significant eigenvalues, M  =  56. which is equal to 
the number of waveguide modes N  =  56 at the end of the lead z = L\.



wafer by a microscope objective of numerical aperture (NA) 0.7. To produce a line 

of illumination at the input facet of the coupling waveguide, the SLM imposes phase 

modulation only along out' dimension tha t is parallel to the transverse direction of the 

waveguide, as shown by the 2D phase mask in Fig. 7.3(a). The light tha t is scattered 

out of plane by the random array of air holes is collected by an objective and pro­

jected to an InGaAs Camera to obtain the spatial distribution of the intensity, /(//, 2 ), 

inside the disordered structure [Fig 7.3(c)]. I11 the wavefront shaping experiment, we 

modulate the phases of 300 macro-pixels 011 the SLM. Each macro-pixel is a group of 

2 x 792 SLM pixels, and has the dimension 0.04 x 15.8 mm. Since the SLM plane is 

projected onto the pupil plane of the objective (Oi). the phase modulation is applied 

to the phase space instead of the real space.

Two wavefront shaping approaches have been developed for the transmission en­

hancement, one is based 011 the measurement of transmission m atrix [29,30]; the other 

relies on feedback [31]. While the open channels can be obtained from the measured 

transmission matrix, the closed channels are subject to measurement noise due to 

nearly vanishing transmission. Here we took the feedback approach, and optimized 

the procedure using the continuous sequential algorithm [31] to control the energy 

density inside the disordered waveguide.

To optimize the throughput of the disordered waveguide, we choose the cost func­

tion S  to be the ratio of light intensity integrated over an area in the back part of 

the waveguide to tha t in the front part [marked bv two rectangles in Fig. 7.3(c)]. 

To smooth out the fluctuation, the intensity is integrated over an area of length d 

and width IF. Experimentally we varied d, from 21 to 7/, where I — 2.5 /mi is the 

transport mean free path, and the final results obtained via optimization are robust. 

If d is less than 2/. the spatial averaging is not sufficient to smooth out the intensity 

fluctuation. The data shown in Fig. 7.4 are obtained with d =  4.5/. To ensure 

the convergence of the optimization algorithm, the phases of all macro-pixels are ad­
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justed in two sequential rounds. The final value of the cost funetion S  depends on 

the initial phase pattern  for the optimization algorithm, but the variation is less than 

10%. The final distribution of light intensity across the disordered waveguide I(y,  z) 

also changes with the initial phase pattern, but the cross-section-averaged intensity 

I (z)  has almost the same profile. Thus the data  obtained from different initial phase' 

patterns are averaged to reduce fluctuations.

To avoid experimental artifacts it is crucial to optimize the intensity ratio instead 

of the intensity integrated over the entire scattering sample, because the adaptive 

wave front shaping can change' not only the energy distribution inside the sample, 

but also the transmission through the optical system that delivers light from the 

SLM to the sample. If we were to maximize or minimize the total energy within 

the disordered waveguide, the optimization algorithm might find a wavefront tha t 

enhances or suppresses the light delivery to the sample through the lens and the 

objective [25].

7.4 E xperim ental resu lts and com parison to  nu­

m erical sim ulations

First we maximize S  to enhance light penetration into the scattering structure. Fig­

ure 7.4(b) shows the final intensity distribution /(//. z) for the optimized input. In 

Fig. 7.4(e) we plot the cross-section-averaged intensity I(z)  =  / U /(//, z)dy,  further 

averaged over four wavelengths and three initial phase patterns tha t served as the 

seed to the optimization algorithm. I (z)  is peaked near the center of the disordered 

waveguide in Fig. 7.4(e). which is dram atically different from the monotonie decay 

with random input fields in Fig. 7.4(d). The latter profile is in agreement with 

the prediction of the diffusion theory and the slight deviation from a linear decay 

is caused bv the out-of-plane scattering loss. The dissipation causes an asymmetry
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mask

(b)

I-2 L3 PBS

SLM
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BS

Sample

IR CCD 100 X

Figure 7.3: Wavefront shaping experiment to control intensity distribution inside a 
disordered waveguide, (a) A schematic of the experimental setup. A laser (HP 8168F) 
output at A =  1510 nm is collimated (by lens Li), expanded (by L2, L3) and linearly 
polarized (by a polarized beam splitter PBS) before being modulated by a phase-only 
SLM (Hamamatsu X10468). Two lens (L4, L5) are used to project the SLM plane to 
the pupil plane of an objective 0 \  (100 x, NA =  0.7), and the edge of the wafer is 
placed at the focal plane. The SLM imposes phase modulation only in one direction 
in order to generate a line at the front end of the coupling waveguide. A sample phase 
pattern  on the SLM is shown. The light scattered out of the sample plane is collected 
by another objective 0 2 (lOOx, NA =  0.7) and imaged to an InGaAs camera (Xenics 
XEVA 1.7-320) by a tube lens (T6). M\  and A/2 are mirrors, BS is beam splitter, (b) 
An optical image of the illumination line (330 x 1.1 /im) on the waveguide facet. The 
input intensity is modulated along the line, (c) An image of the spatial distribution 
of light intensity inside the disordered waveguide for a random input wavefront. The 
spatial resolution is about 1.1 /im. The ratio S  of the integrated intensities over the 
two rectangles at the back and front side of the waveguide is used as feedback for 
optimizing the input wavefront.
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in the optimized intensity distribution with respect to the center of the waveguide 

( z / L  = 0.5). as the peak of I(z)  in Fig. 7.4(b) shifts towards the input end. The 

resemblance of the optimized I(z)  to the spatial profile of open channels indicates 

tha t the optimized wavefront couples light to the high-transmission eigenchannels.

Next we minimize S  by adapting the input wavefront, and the resulting intensity 

distribution is presented in Fig. 7.4(c). The cross-section-averaged intensity I(z)  in 

Fig. 7.4(f) exhibits a much faster decay with depth than the random input. Moreover, 

the decay is clearly exponential, resembling the spatial profile of closed channels. De­

spite the presence of measurement noise, the optimized wavefront couples effectively 

to the low-transmission eigenchannels.

To confirm the experimental results, we simulate a ‘2D disordered waveguide with 

all param eters equal to the experimental values [28]. The phase-only modulation 

is imposed on the input wavefront to optimize the same cost function S  with the 

continuous sequential algorithm. The solid curves in Fig. 7.4(d,e,f) represent the 

simulation results, which agree well with the experimental data. The curves are 

normalized such tha t the total incoming flux is equal to unity in all cases. Therefore, 

the intensity profiles can be quantitatively compared to get the order of magnitude 

of intensity amplification within the scattering sample.

By projecting the optimized fields onto the transmission eigenchannels. we obtain 

the contributions from individual channels. Figure 7.5(a) presents the weight w of 

each channel as a function of the transmission eigenvalue r  in the case that the 

cost function S  is maximized [Fig. 7.4(b,e)]. In comparison to a random input 

field which has equal contributions from all channels u'(r) =  1 /.V. the optimized 

field for maximum S  has greatly enhanced contributions from the high transmission 

channels and reduced contributions from the low-transmission channels [Fig. 7.5(a)]. 

While the maximum transmission channel has the largest weight, a few channels 

with slightly lower transmission also make significant contributions. Thus the energy



0.75

0.5

n  2
0.50.5

0.5
z/L

0.5
z/L

0.5
z/L

Figure 7.4: Experimental control of intensity distribution inside the disordered waveg­
uide. (a, b, c) Two-dimensional intensity distribution I ( y : z ) inside the disordered 
waveguide shown in Fig. 7.1 for (a) random input fields, (b) optimized input for 
maximum light penetration (maximizing S).  (c) optimized input for minimum light 
penetration (minimizing S).  (d, e, f) The cross-section-averaged intensity, /(z ), ob­
tained from I ( y , z )  in (a, b, c). Dashed lines are experimental data  and solid lines 
are simulation results.

density distribution I (z)  is slightly lower than  th a t of the maximum transmission 

channel, and shifted a bit towards the front end of the waveguide [Fig. 7.5(b)]. As 

shown in Fig. 7.5(a), the weight w(r)  increases exponentially with r ,  in contrast to 

the linear increase of w with r  in the case of focusing (maximizing intensity of a single 

speckle) through a random medium. This difference indicates maximizing S  is more 

efficient for enhancing the contribution of the maximum transmission channel over 

all other channels.

W hen S  is minimized [Fig. 7.4(c,f)], the weights of high-transmission channels are 

strongly suppressed, especially the highest transmission channel [Fig. 7.5(c)]. While 

many low-transmission channels have slightly increased weights as compared to the 

random input field, none of them  becomes dominant. Since the low-transmission 

channels have exponential decay with different decay lengths, the to tal intensity dis­

tribution 7(z) obtained by minimizing S  also decays exponentially, but the decay
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length is longer than tha t of the minimum transmission channel [Fig. 7.5(d)].

The numerical simulation confirms that our wavefront shaping experiment results 

in selective coupling of the input light to open or closed channels, which leads to 

distinct intensity distribution inside the scattering waveguide. The total transmission 

is increased from ~  4.8% (for random input fields) to ~  47% (when S  is maximized), 

and the to tal energy inside the disordered structure is enhanced 3.7 times. The 

minimization of S  makes the total transmission drop to ~  0.1%. and the total energy 

inside is reduced by a factor of 2.

Finally we compare numerically the feedback-based approach to the transmission- 

m atrix approach by computing the transmission eigenchannels from the field trans­

mission matrix. W ith phase-only modulation, the input field for a transmission eigon- 

channel is decomposed by the waveguide modes, and the amplitude of the decompo­

sition coefficients are set to a constant. The removal of amplitude modulation mixes 

the maximum transmission channel with other channels, as seen in Fig. 7.5(a). While 

the weight of the maximum transmission channel decreases from unity to 7t/4 [32], all 

other channels have a constant weight (1 — (7r/4))/(Ar—1). The cross-section-averaged 

intensity distribution I (z)  is nearly identical to that obtained by maximizing S  [Fig. 

7.5(b)], Similarly, elimination of amplitude modulation from the minimum transmis­

sion channel introduces contributions from all other channels [Fig. 7.5(c)]. Their 

weights are equal (independent of their transmission), albeit smaller than that of the 

minimum transmission channel. Consequently, I(z)  displays a rapid decay at shallow 

depths, due to the dominant contribution from the minimum transmission channel: 

it is followed by a much slower decay at large depth due to the contributions of the 

remaining channels including the highly transm itting ones. The total transmission 

is ~  1%. approximately an order of magnitude higher than tha t obtained by mini­

mizing S.  This is attribu ted  to the stronger suppression of the higher transmission 

channels by the feedback approach, i.e., the higher the transmission eigenvalue, the

F2G



lower the weight. Therefore, with phase-only modulation of incident wavefront, the 

feedback approach is far more efficient in minimizing the total transmission than the 

transmission-matrix approach.

In summary, we apply the adaptive wavefront shaping technique to on-chip dis­

ordered nanostructures. Careful design of the coupling waveguide enables access 

to all input modes and allows us to reach the maximum or minimum transmission 

th a t is achievable with phase-only modulation. Selective excitation of the open or 

closed channels results in the variation of the optical intensity distribution from an 

exponential decay to a linear decay and to a profile peaked near the center of the ran­

dom system. The coherent control of multiple-scattering interference leads to diverse 

transport behaviors in contrast to universal diffusion, highlighting the possibility of 

controlling light-m atter interactions in turbid media.
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Figure 7.5: Numerical simulation of wavefront shaping experiment. (a,c) Weight w(r)  
of each transmission eigenchannel in the input field obtained by maximizing (a) or 
minimizing (c) light penetration into the disordered waveguide with the cost function 
S  (black solid line). For comparison, w(r)  for the random input held (blue solid line), 
and for the input held of the maximum (a) or minimum (c) transmission eigenchannel 
after removal of amplitude modulation (red dotted line) are also shown. (b,d) Cross­
section-averaged intensity distribution I (z)  for the maximized (b) or minimized (d) S  
(black solid line), as well as the maximum (b) or minimum (d) transmission channel 
with (green dash-dotted line) and without amplitude modulation (red dotted line).

128



Bibliography

[1] R. Sarma, A. Yamilov, S. Petrenko, Y. Bromberg, and H.Cao. Phys. Rev. Lett. 

117, 086803 (2016).

[2] M. C. W. van Rossum and T. M. Nieuwenhuizen, Rev. Mod. Phys. 71, 313 (1999).

[3] E. Akkermans and G. Montambaux, Mesoscopic Physics of Electrons and Pho­

tons (Cambridge University Press, Cambridge, 2007).

[4] O. N. Dorokhov, Solid State Commun. 51, 381 (1984).

[5] Y. Imry, Europhys. Lett. 1, 249 (1986).

[6] M. Davy, Z. Shi, J. Park, C. Tian, and A.Z. Genack, Nat. Commun. 6 , 6893 

(2015).

[7] R. Sarnia, A. Yamilov, S. F. Liew, M. Guy, and H. Cao, Phys. Rev. B  92, 214206 

(2015).

[8] K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, Nat. Mat. 11, 1017 (2012).

[9] D. S. Wiersma, Nat. Photon. 7, 188 (2013).

[10] V. Y. F. Leung, A. Lagendijk. T. W. Tukker, A. P. Mosk, W. L. Ijzerman, and

W. L. Vos, Opt. Exp. 2 2 . 8190 (2014).

[11] X. Cheng and A. Z. Genack, Opt. Lett. 39, 6324 (2014).

129



[12] Q. Song. S. Xiao. Z. Xu. V. M. Shalaev. and Y. L. Kim. Opt. Lett. 35. 2624 

(2010).

[13] J. Yoon, M. Lee, K. Lee, N. Kim, J. M. Kim, J. Park, H. Yu, C. Choi, W. Do

Heo, and Y. Park, Scientific Reports 5 (2015).

141 I. M. Vellekoop and A. P. Mosk, Phys. Rev. Let. 101, 120601 (2008).

15! A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, Nat. Photon. 6, 283 (2012).

161 W. Choi, A. P. Mosk, Q. H. Park, and W. Choi, Phys. Rev. B  83, 134207 (2011).

171 A. Pena, A. Girschik, F. Libisch, S. Rotter, and A. A. Chabanov, Nat. Commun. 

5 (2014).

181 S. F. Liew, S. M. Popoff, A. P. Mosk, W. L. Vos, and H. Cao, Phys. Rev. B  89, 

224202 (2014).

19] S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, 

Phys. Rev. Lett. 104, 100601 (2010).

20] Z. Shi and A. Z. Genack, Phys. Rev. Lett. 108, 043901 (2012).

211 M. Kim. Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, Nat. 

Photon. 6, 581 (2012).

221 H. Yu, T. R. Hillman, W. Choi, J. O. Lee, M. S. Feld, R. R. Dasari, and Y. K.

Park, Phys. Rev. Lett. I l l ,  153902 (2013).

23] B. Gerardin, J. Laurent, A. Derode. C. Prada. and A. Aubry, Phys. Rev. Lett. 

113. 173901 (2014).

[24] A. Goetschy and A. D. Stone. Phys. Rev. Lett. 111. 063901 (2013).

130



[25] S. M. Popoff, A. Goetschy, S. F. Liew, A. D. Stone, and H. Cao, Phys. Rev. Lett. 

112, 133903 (2014).

[26] O. S. Ojambati, H. Yilmaz, A. Lagendijk, A. P. Mosk, and W. L. Vos, New Jour, 

of Phys. 18, 043032 (2016).

[27] R. Sarma, A. Yamilov, P. Neupane, and H. Cao, Phys. Rev. B  92, 180203 (2015).

[28] C. W. Groth, M. Wimmer, A. R. Akhmerov, and X. Waintal, New Jour, of Phys. 

16, 063065 (2014).

[29] M. Kim, W. Choi, Y. Choi, C. Yoon, and W. Choi, Optics Express 23, 12648 

(2015).

[30] H. Yu, J. Park, K. Lee, J. Yoon, K. Kim, S. Lee, and Y. Park, Current Applied 

Physics 15, 632 (2015).

[31] I. M. Vellekoop, Optics Express 23, 12189 (2015).

[32] I. M. Vellekoop, E. G. Van Putten , A. Lagendijk, and A. P. Mosk, Optics Express 

16, 67 (2008).

131



Chapter 8 

Control of light transport inside a 

random m edium  w ith  

inhom ogeneous scattering and loss

8.1 Introduction

1 In recent years there have been rapid advances in coherent control of light propaga­

tion in strong scattering media [2], It has been shown that light can be focused inside 

or through a turbid medium by shaping the input wavefront [3]. which enables image' 

transmission through an opaque material [4], As shown in the previous chapter and 

other experiments, wavefront shaping techniques have also been used to enhance the 

to tal transmission of light through a diffusive system via selective coupling of incident 

light to high transmission channels [5 10]. These studies have im portant implications 

in biophotonics and biomedical applications [11.12]. However, in real samples such as 

biological tissue's, the amount of light scattering often varies spatially. So far all the

sample's in wavefront shaping (experiments are homogeneous, namely, the scattering 

1. This  c h a p te r  is pr im arily  based on the  jo u rn a l  article' published in ref. [1].
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strength is constant everywhere. Coherent control of light transport has not been 

dem onstrated in inhomogeneons samples and the power of wavefront shaping in such 

systems is not known.

Light absorption is common in optical systems, and it can strongly modify high 

transmission channels. W ith strong absorption uniformly spread across a scatter­

ing medium, the diffusive transport of light in the maximum transmission channel 

turns into quasi-ballistic [13]. In reality, optical absorbers are often distributed non- 

uniformly in random samples, and the high transmission channels redirect the energy 

how to circumvent the absorbing regions to minimize attenuation [14]. These results 

are obtained from numerical simulations, and there has been 110 experimental study 

yet. Further, it is not clear what will happen when both scattering and absorption 

are spatially inhomogeneons.

In this chapter, we adopt the adaptive wavefront shaping approach to enhance light 

transmission through a disordered waveguide with spatially inhomogeneons scatter­

ing and loss. The silicon waveguide contains randomly distributed air holes within 

photonic crystal sidewalls. The degree of input control is much higher than tha t in 

the open slab geometry, thanks to an 011-chip tapered lead. Light transport inside 

the two dimensional waveguide can be directly probed from the third dimension. Af­

ter optimizing input wavefront to enhance the total transmission, we observe tha t 

optical waves bypass the region of higher scattering and loss in the waveguide. The 

spatial inhomogeneity of scattering and loss leads to redirecting of energy flux to 

optical paths with less scattering and loss, in order to maximize the total energy 

transported through the system. The experimental data  agree to the numerical sim­

ulation results, revealing how a high transmission channel is modified by spatially 

inhomogeneons scattering and loss.
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8.2 2D  random  w aveguide w ith  inhom ogeneous scat­

tering and loss

The disordered waveguide is fabricated in a silicon-oii-insulator (SOI) wafer. The 

thickness of the silicon layer and of the buried oxide are 220 rim and 3 /mi, respectively. 

The patterns are made by electron beam lithography and etched by an inductively- 

coupled-plasma (ICP) reactive-ion-etcher (RIE). Figure 8.1 is the scanning electron 

microscope (SEM) image of a fabricated sample. The waveguide is L =  60 //m long 

and \V = 20 /mi wide. It contains a two-dimensional (2D) random array of air holes. 

While propagating in the waveguide, light is scattered both in plane and out of plane 

by the air holes. The out-of-plane scattering can bo treated as loss, and the material 

absorption at the probe wavelength (A =  1510 rim) is negligible [15].

To introduce spatially inhomogeneous scattering and loss, we vary the size and 

density of air holes in the waveguide. In a central region of diameter 10 //.m, the 

air holes are larger and denser (hole diameter =  150 11111. air filling fraction = 1 5  

%). leading to stronger in-plane scattering and out-of-plane scattering. Outside this 

region the scattering and loss are weaker, as the air holes are smaller (diameter =  90 

mil) and the filling fraction is lower (6 9c).

The relevant param eters to describe light propagation in the disordered waveguide 

are the transport mean free path  C and the diffusive dissipation length £f). Their 

values in the two regions of different air hole size and density are extracted from the 

measurement of intensity distributions and fluctuations in two separate waveguides 

with homogeneous scattering and loss [16]. In the central region, 1 = 1  //m and 

=  13 //in: in the surrounding region. 1 =  2.5 //in and £(l =  31 //m.

The waveguide has reflecting sidewalls made of a triangular lattice of air holes 

(diameter =  360 11111. lattice' constant =  550 11111). It supports an in-plane photonic 

bandgap at the' probe wavek'ngth. tha t confines the' scattered light within the waveg-
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Figure 8.1: 2D disordered waveguide with inhomogeneous scattering and loss, (a) 
Top-view scanning electron micrograph (SEM) of the fabricated silicon waveguide 
th a t consists of randomly positioned air holes. The waveguide width W  =  20 pm, 
and length L  =  60 pm. A circular region of diameter 10 pm  at the center of the 
waveguide has larger and denser air holes (hole diameter =  150 nm, the air filling 
fraction =  15 %). Outside this region, the air holes are smaller (diameter =  90 nm) 
and the filling fraction is lower (6 %). The sidewalls of the waveguide are made of 
a triangular lattice of air holes (diameter =  360 nm, lattice constant =  505 nm), 
which supports an in-plane photonic bandgap at the wavelength A =  1.51 pm. (b) 
Magnified SEM of the central region of the disordered waveguide showing air holes 
of two different sizes and densities.

uide. The incident light is injected from the edge of the wafer to a silicon ridge 

waveguide. Due to the refractive index mismatch between silicon and air, the light 

can only excite the lower-order modes of the ridge waveguide, limiting the number of 

input modes tha t could be controlled by wavefront shaping. As shown in the previous 

chapter, to increase the degree of input control, we design and fabricate a tapered 

waveguide tha t serves as a lead to the disordered waveguide [10]. The tapering angle 

is 15°, and the waveguide width is reduced from 330 pm  to 20 pm  over a length of 

578 pm. The wider waveguide at the input supports many more lower-order modes 

th a t are converted to higher-order modes by the taper. The numerical simulation 

confirmed th a t the number of waveguide modes excited at the air-silicon interface by 

the incident light is significantly larger than  the number of transmission channels in 

the disordered waveguide iV =  75.
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Figure 8.2: A schematic of the wavefront shaping experiment setup. A laser beam 
(HP 8168F) at A =  1510 nm is collimated (by lens L i), expanded (by L 2, L3), and 
linearly polarized (by a polarized beam splitter PBS) before being modulated by a 
phase-only SLM (Hamamatsu X10468). Two lens (L4, L5) are used to project the 
SLM plane to the pupil plane of an objective 0 \  (lOOx, NA =  0.7), and the edge 
of the coupling waveguide is placed at the focal plane of the objective. The light 
scattered out of the sample plane is collected by a second objective 0 2 (lOOx, NA =  
0.7) and imaged to an InGaAs camera (Xenics XEVA 1.7-320) by a tube lens (T6). 
Mi  and M 2 are mirrors, BS is an unpolarized beam splitter. The inset is an optical 
image of the illumination line on the front facet of the coupling waveguide, created 
by modulating the phase of the SLM pixels.

8.3 E xperim ental setup  and resu lts

To control light transport in the disordered waveguide, we adopt the adaptive wave- 

front shaping scheme th a t we implemented for 2D on-chip waveguides in the previous 

chapter. The setup is shown again schematically in Fig. 8.2. A monochromatic laser 

beam is collimated, expanded and linearly polarized. It is then phase m odulated by 

a spatial light m odulator (SLM). The SLM plane is demagnified and projected to 

the pupil plane of an objective. At the focal plane of objective lies the front facet of 

the coupling waveguide. We impose one-dimensional phase modulation on the SLM 

to create a line of illumination for the coupling waveguide, as shown in the inset of 

Fig. 8.2. To map the spatial distribution of light intensity, I ( y 1z ) 1 inside the dis­

ordered structure, the out-of-plane scattered light is collected by a second objective 

and projected to an InGaAs camera.

To enhance the to tal transmission through the disordered waveguide, we choose 

the feedback-based optimization technique, which is robust against measurement

Sample

IR CCD 0 E )  I
l6 0 2
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Figure 8.3: Optimizing the incident wavefront to enhance light transmission through 
the disordered waveguide with spatially inhomogeneous scattering and loss. Exper­
imentally measured 2D intensity distribution J(y, z) inside the waveguide shown in 
Fig. 8.1 for (a) unoptimized input fields, (b) optimized input for maximum cost 
function S.  The white box marks the boundary of the disordered waveguide.

noise as shown in the previous chapter. The cost function S  is given by the ratio 

of the cross-section integrated intensity of light at the back end of the waveguide to 

th a t at the front end. We use the continuous sequential algorithm to maximize S  

by adjusting the phase of SLM pixels [3]. Figures 8.3(a) and (b) show the intensity 

distribution I(y,  z) for an unoptimized input and an optimized input, respectively. 

W hen the input wavefront is not optimized, the light intensity decreases with the 

depth in the disordered waveguide. Stronger out-of-plane scattering brightens the 

central region tha t has larger and denser air holes. In contrast, the optimized input 

wavefront makes the central region dark, meanwhile the intensities on both sides of 

this region increases. Such changes indicate tha t light bypasses the central region 

with higher scattering and loss to maximize the to tal energy transported through the 

medium.

8.4 N um erical sim ulations

For a better understanding of the experimental results, in order to understand the 

energy flow for optimized input, we perform a numerical simulation [17] to calcu-
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Figure 8.4: Numerical simulation of the ensemble averaged Poynting vector J ( y : z) of 
light inside the 2D disordered waveguide with spatially inhomogeneous scattering and 
loss. The magnitude of J (y , z )  is shown by color plot, and its direction is shown by 
the arrows. The input held in (a) is optimized to maximize to tal transmission. W ith 
optimized input wavefront, the optical waves bypass the region of higher scattering 
and loss in the middle of the waveguide (denoted by a while circle), (b) shows 
J(y,  z) for the maximum transmission channel, which is nearly identical to tha t in
(a), indicating the optimized input held couples mostly to the maximum transmission 
channel.

late the ensemble averaged Poynting vector J {y ) z) for an optimized input of a 2D 

disordered waveguide with all param eters equal to the experimental values. Similar 

to the previous chapter, the continuous sequential algorithm is used to optimize the 

to tal transmission via phase-only modulation of the input wavefront. The total trans­

mission increases from 3.2% with unoptimized input to 42% with optimized input. 

Figure 8.4(a) plots the magnitude and direction of J{y ,z )  in the disordered waveg­

uide for an optimized input. The optimized input wavefront makes the energy hux 

circumvent the central region with higher scattering and loss, in agreement to the ex­

perimental result. Further, Fig. 8.4(b) shows the magnitude and direction of J (y , z )  

of the maximum transmission channel, which resembles tha t of the optimized input 

in Fig. 8.4(a). This result suggests th a t with the optimized input wavefront, light 

transport is dominated by the maximum transmission channel. We confirmed this by 

decomposing the optimized input wavefront by the transmission eigenchannels. The 

contribution from the maximum transmission channel is significantly larger than all 

other channels. Therefore, the optimization of incident wavefront leads to selective



coupling of light to the high transmission channels.

In summary, we enhanced light transmission through a 2D waveguide with spa­

tially inhomogeneous scattering and loss by shaping the wavefront of incident light. 

Using a tapered lead, we are able to access all input modes by a spatial light modula­

tor. The optimized wavefront selectively couples light to high transmission channels, 

which bypass the regions of higher scattering and loss. This work demonstrates the 

power of wavefront shaping in controlling light transport in inhomogeneous scatter­

ing samples, which are common in real applications. In addition, these results may 

trigger further studies of on-chip disordered photonic nanostructures with spatially 

varying scattering strength and loss to mold the flow of light [18].
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Chapter 9

Finite Difference Tim e Dom ain  

Algorithm  for R otating D ielectric  

Structures

9.1 Introduction

1 Optical gyroscopes have been widely used in industrial and military applications 

ranging from inertial navigation systems in aircrafts and vessels to control, stabiliza­

tion. and positioning systems for robotics and virtual reality applications [2]. Com­

pared to the mechanical gyros, optical gyros have higher sensitivity and lower drift 

rates. All optical rotation sensors exploit the Sagnac effect which is the phase differ­

ence between two counter-propagating waves along a closed-loop fiber or waveguide. 

Recently slow light structures, e.g., photonic crystals [3,4] and coupled microres­

onators [5 9], have been explored for the realization of high-sensitivity m iniatur­

ized optical gyroscopes. In addition to the phase shift, a rotation-induced photonic1 

bandgap has been suggested and studied [10]. All these optical gyros are passive

1. T h is ch a p te r is p rim arily  based on th e  jo u rn a l a rtic le  pub lished  in ref. [1],
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ill the sense that the light sources are external. The active gyros produce the two 

counter-propagating beams within the structures, and their frequency difference is 

often used as a measure of the rotation speed. Microeavitv lasers have recently been 

investigated for ultrasmall active optical gyroscopes [11-14]. Wavelength-scale mi­

crodisk cavities have small footprints and can be made with current semiconductor 

fabrication technologies [11-13].

In the theoretical investigations of optical gyroscopes, diverse strategies have been 

undertaken, e.g.. the direct modal analysis of time-dependent Maxwell equations in 

the laboratory frame [15.16]. the extension of tight-binding theory to electrodynam­

ics of a rotating medium [3]. and the two-dimensional Greens function in a rotating 

environment [17]. The numerical approaches include the extended transfer m atrix 

method [6] and the fmite-difference time-domain (FDTD) algorithm in a rotating 

frame [18]. The FDTD m ethod is an ab-initio, time domain method th a t can simu­

late both steady state and transient processes. Analytical results are often difficult to 

be obtained for complex photonic structures with open boundaries, and the FDTD 

simulation provides a vital tool for the design and optimization of rotation sensors. 

An extensive and detailed analysis of the numerical dispersion, the dielectric bound­

ary condition and the perfectly matched layer absorbing boundary conditions in the 

rotating FDTD model has been performed previously [18].

In this chapter, we modify the standard FDTD algorithm for stationary frame to 

rotating frame by incorporating the modified constitutive relations due to rotation, 

and simulate a wavelength-scale optical gyroscope based on a circular microdisk. 

Different from the previous FDTD model, which calculates only E  and H,  we calculate' 

E. H . D. and D by solving simultaneously and separately the Maxwell equations and 

the constitutive' relations in the rotating frame'. We validate emr FDTD e*e>eles by 

eamiparing the simulatexl freepie'iiey splitting e>f resonant moek's of a eiroular elisk te> 

the' analytical results.
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9.2 F D T D  algorithm  for rotating  fram e

Basic physical laws governing electromagnetic fields are invariant under coordinate 

transform ation including noninertial ones [18,19]. Maxwell equations therefore retain 

their form, and the transform ation from the stationary frame to a rotating frame is 

manifested by the changes in the constitutive relations. Assume the medium rotates 

slowly with a constant angular velocity Q around a fixed axis, such th a t \QL\ <C c. 

where L is the maximum distance from the rotation axis, and c is the velocity of light 

in vacuum. The constitutive relations in the rotating frame to the first order of 

are [14.18.19]:

cE  =  D + c~2Q x r x H  (9.1)

/iH  = B  - c ~ 2Q x f x  E  (9.2)

We consider a dielectric disk of radius R  in free space. The disk is in the x  — y plane

and rotates around its center with Q =  Viz. The disk can be considered as a two-

dimensional system with an effective index of refraction n. It has been shown that 

in a rotating two-dimensional system the electromagnetic fields can be decomposed 

into transverse electric (TE) and transverse magnetic (TM) modes [17]. W ithout loss 

of generality, we concentrate on the TM mode's in this thesis. For TM modes, the 

non-vanishing held components are E Z,DZ, H r, H y. B r. and B y, and the constitutive 

relations are reduced to

eEz = D z — c~2(QyHy +  Hr 11.,.) (9.3)

fiH.,. =  B x - c ~ ' 2( i l rE z) (9.4)
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n H y = B y -  c~2(Q.yEs) (9.5)

The Maxwell equations remain the same in the rotating frame, and there are no free 

charges or currents in the microdisk systems. We adopt the Yee lattice and leapfrog 

scheme in our FDTD algorithm. All field components are updated with the Maxwell 

equations and the constitutive relations in a particular order:

^  dH x
dt dx  i)y [ J

eEz = D z -  c 2( t t yHy +  0.xHx) (9.7)

d B x d E z
dt dy

(9.8)

dBy d E Z
dt dx

(9.9)

fiHx = B x - c  2(ill-E,) (9.10)

fiHy =  B y - c  2(ny E z) (9.11)

Equations 9.6, 9.8, and 9.9 are identical to those in the stationary frame, and we 

discretize them in space and time following the standard procedure of Yee algorithm 

for a stationary frame. Equations 9.6, 9.8, and 9.9 update D z, B x, and B y, respec­

tively. Equations 9.7, 9.10, and 9.11, which update E Z1 HX1 and H y, respectively, 

contain additional terms from rotation, which make the discretization complicated. 

For example, the discretized form of Eq. 9.7 in terms of Yee notation where time step
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is given by superscript and spatial stepping is given by subscript is

1/2 j  +  1/2-^2: IT—l/2 , j  +  l /2  — ^2  l+ - 1/2 j  +  1/2 C ( ^ V ^ y  l i - 1 /2 , j+ 1 /2

-\-VtxHx |i_1/2j+ i /2) (9.12)

The semi-implicit-approximation or tem poral average of E z gives [20] :

71+ 1 / 2,  TP \ n    f  TP  I “ T 1 / z
i— l / 2 j  +  l/2 -^ /2 0 — 1 /2 J  +  1/2 1 /2 J + 1 /2 1  z \ i — 1/2,j  +  1/2

+^I“- X +i/2)/2

and a similar expression for Z)2. The leapfrog scheme does not calculate the value of 

H y at (i — 1/2, j  +  1/2), and we therefore use a spatial average as an approximation

H y \ U / 2 J + H2  =  { H y \ U J  +  l / 2  +

Similar spatial average is applied to H x. After substituting these expressions into Eq. 

9.12 we get

7+  171+ 1 / 2      T? 171—1 / 2
—1/2 j  +  1/2-^2 li —1/2.J +  1/2 — 1/2, j  +  1 / 2 l i  —1/2, j  +  1/2

+ ( ^ | " _ + 11T + 1 / 2  +  D + T / 2T 1/ 2 ) -  c - 2 ( n i 7 ( f f y | ? _ 1>;-+ 1 / 2

+ ^ l " j + i / 2) +  Slx{Hx \ U r w  +  Hx \ U n , ) )  (9.13)

Equation 9.13 is the hnal form th a t we use in our algorithm to update E z. To update 

Hx and H y with Eqs. 9.10 and 9.11, we follow the same procedure, but use the semi- 

implicit approximation or tem poral averaging for Hx and H yi and perform the spatial
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averaging for E z

n + l / ' l  

i —1/2 J  +  1/2

(9.14)

M i . j + 1 / 2

/ h . j  +  l / 2 ^ y  L j  +  1/2

(̂̂ ir++i!42J+1/2
a; +1 / 2 
j —1 / 2 , j  +  1 / 2 (9.15)

Our algorithm therefore uses Maxwell equations to update D  and D from E  and iL, 

and the constitutive relations to update E  and H  from D  and D. Although it includes 

additional quantities and equations compared to the previous FDTD algorithm, our 

algorithm is actually simpler as there are no time derivatives or spatial derivatives 

in the extra equations. This improves the numerical stability and accuracy of the 

FDTD simulation.

For simulating a stationary or rotating closed cavity, we use Dirichlet Boundary 

conditions in our FDTD algorithm. For stationary or rotating open cavities, we 

term inate the main grid by a uniaxial perfectly matched layer (UPML) designed for 

a stationary frame. The condition for vanishing reflection from the UPML has been 

obtained in the stationary frame [20]. In a rotating frame, since the constitutive 

relations are changed, the zero reflection condition cannot be perfectly satisfied [18]. 

To determine the applicability of the UPML designed for a stationary frame in a 

rotating frame, we estim ate the error caused by residual reflection from the UPML. 

The test region and benchmark region share the center, and both have a square­

shaped main grid term inated by UPML. However the main grid of the benchmark
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region is five times bigger than tha t of the test region. We launch a hard source at 

the centre of both the test region and the benchmark region at the initial time step 

n =  0. and calculate the global error [20]

<Vowl" = E  E  -  E...UI':/ (9.16)
i j

at various time steps n. where E z_T \ij is the value of E z at time step n and position 

( l . j )  in the test region and ih./iLp is the benchmark region. After the source 

has propagated and reached the UPML of the test region but not the UPML of the 

benchmark region. Eq. 9.16 gives an estimation of the reflection from the UPML.

We observed, for a stationary main grid term inated by a stationary UPML. the 

maximum global error is ~  1.3 x 10-12. For a rotating main grid with the maximum 

v / c  ~  0.01 and term inated by stationary UPML, the maximum global error is ~  

2.1 x 10-6 . The global error increases by a factor of ~  106 but still is small enough 

and the reflection does not corrupt the results as shown in the next sections.

9.3 Sagnac effect in a m icrodisk cavity

In this section, we present the analytical result of Sagnac effect in a rotating microdisk. 

In the rotating frame, the wave equation for electric held of TM polarized light can 

be written in the polar coordinates as [11.13,14]:

Or2 +
1 \  /  0  \  I d 2 0  o j 9

J h )  + r W  + 2t K m  + n k
E,  =  0 (9.17)

In a circular disk. E z(r\0) =  f(r)e.up( — ini9). where m is an integer, and

O '2 / 1 \  /  0_
dr'2 ^  V r )  Vclr

rn
X2 K l f ( r )  =  0 (9.18)
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where

K l  =  k 2 n2 +  2 m
ft

(9.19)

Equation 9.19 implies that rotation induces a change in the dielectric constant or the 

refractive index, which is given by njjj- — n 2 +  2 [ 1 4 ] .  For a given direction of 

rotation, the clockwise (CW) and counter-clockwise (CCW) waves inside the cavity 

experience different nef f  as they have opposite signs of the azimuthal number, in. 

The wave traveling in the same direction of rotation acquires a higher n(.jf than 

tha t traveling in the opposite rotation. Thus rotation lifts the degeneracy of WG 

modes. For a closed cavity, when'1 Dirichlet Boundary conditions are applied at the 

boundary, the frequency splitting between the CW and CCAV modes can be obtained 

analyticallv to the first order of f t  f i l l :

/  m  \
A lj = 2 ^ J f t  (9.20)

Equation 9.20 corresponds to the Sagnac effect in a closed cavity. For an open cavity. 

ncf f  is modified both inside and outside the cavity. Since for a whispering gallery 

mode, in ~  (where A and R  are resonant wavelength and radius of the cavity). 

Eq. 9.20 implies tha t Sagnac effect scales linearly with the size of the cavity.

9.4 V alidation  o f th e F D T D  algorithm

Using our FDTD algorithm, we simulate a rotating microdisk cavity with both closed 

and open boundary. The circular disk has a radius R  — 590 nm and a refractive index 

n(hsk __ g jn ()rqer t () find the frequencies of resonant mode's in a stationary open 

cavity, we first launch a seed pulse' with a broael banelwidth e-entered at A =  2R  to 

excite many cavity resonances. The modes with shorter lifetime' will elecay faster in 

time, and the Femrier transform e>f the fielel inside the cavity at a later time will give'
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the frequencies of the surviving modes with longer lifetime. We investigate the mode 

at A =  1131.48 nm with radial number I = 1 and azimuthal number rn =  7. The 

wavelength of the same mode in the closed cavity can be found from the zero of Bessel 

Function, which gives A =  1009.8 nm. Once we get the resonant frequencies of the 

stationary cavities, for our simulations of rotating open and closed cavities, we excite 

only tha t particular mode by launching a seed pulse with bandwidth narrower than 

the frequency spacing between the adjacent modes. The rotation induces a frequency 

splitting of the CW and CCW  modes, which causes a tem poral beating of the fields. 

The Fourier transform of the intracavity electric held gives the frequencies of the two 

split modes. The frequency difference Acu for the WG modes with rn =  ± 7 , 1 = 1 

in a closed cavity of R  = 590 nm and n^tsk — 3 is plotted by the circles in Fig. 9.1, 

and the solid line is the analytical result from Eq. 9.20. Their excellent agreement 

validates our FDTD model.

To test the applicability of the UPML to the rotating case, we simulate a rotating

dielectric cavity of R  =  590 nm and n^lsk in free space, and calculate the frequency

splitting A lu for the WG modes with m  =  ± 7 ,/ =  1 (squares in Fig. 9.1). The

effect of rotation can also be treated as a change of the refractive index. According

to Ecp 9.19, the effective index of refraction as a function of the rotation velocity Q

is {nco sk)2 =  (riQlsk)2 +  2 whi ch for (VL/uj) <U 1 gives nftsk ~  +  (  .7,';/ ) .\ nri w /
where nfisk and nQlsk are the refractive indices for the stationary disk and rotating 

disk, respectively. Along with the disk, we also change the refractive index outside the 

cavity in a similar way. The rotation induced change of the resonant frequency can 

be calculated with an index change in the stationary cases The frequency splitting 

calculated in this way for the WG modes of rn =  ± 7 , 1 =  1 is plotted by the dotted 

line in Fig. 9.1, and it agrees well to the FDTD simulation in the rotating frame. 

Such agreement indicates the residual reflection from the UPML has negligible effect. 

Fig. 9.1 shows tha t an open cavity has a larger frequency splitting between the CW
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and CCW  modes than  a closed cavity. It can be a ttribu ted  to the increased mode 

size in the open cavity because the held can extend beyond the disk edge.

x 10

“O
05

jm ' *  Open cavity
3

< 1

Closed cavity

QR/c ■3
x 10

Figure 9.1: Frequency splitting between the CW and CCW modes in a circular di­
electric microdisk of radius R  =  590 nm and n =  3 in free space (n =  1) as a function 
of the normalized rotation speed QR/c.  The circles are the FDTD simulation results 
for a rotating closed cavity for a WG mode (/ =  1, m  =  7, A =  1009.8 nm) and the 
solid line is the analytical result from Eq. (20). Squares are the FDTD simulation 
results for the same mode (/ =  1, m  = 7, A =  1131.48 nm) in the rotating microdisk 
with open boundary. Dotted line represents the frequency shifts obtained from the 
FDTD simulation of the stationary microdisk with the effective indices of refraction 
(inside and outside the disk) th a t include the rotation-induced changes. The insets 
show the mode profiles for the closed and open cavities and the black circle marks 
the boundary of the cavity.

9.5 D iscussion

In this chapter, we present the FDTD algorithm th a t we developed to simulate pho­

tonic structures in a rotating frame. The Maxwell equations solved using the FDTD 

algorithm assumes th a t the rotation angular velocity D is constant in time, and the 

maximal speed v — QR  to be small in magnitude compared to the speed of light. The 

results therefore do not take into account relativistic effects. In addition, the effect of
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rotation on the electronic structure of the materials is not taken into account. Under 

these assumptions, good agreement between the FDTD simulations of the Sagnac 

effect in 2D closed cavities and the analytical results is obtained and that validates 

our simulation algorithm. For open cavities, UPML for stationary frame is adapted 

and the residual reflection from the UPML is shown to have negligible effects on the 

rotation-induced frequency shift of the wavelength-scale microdisk cavities as long 

as the maximal speed v <E c. Our numerical results illustrate tha t the frequency 

splitting in an open microdisk cavity is larger than that in a closed cavity of same 

size. This is a ttributed  to an increase of mode size in the open cavity.

Unlike the previous FDTD model which substitutes the constitutive relations into 

the Maxwell equations and updates only E  and H  in time stepping [18]. in our algo­

rithm  we calculate both E , H,  and D, B  by solving simultaneously and separately 

the Maxwell equations (identical to tha t in a stationary frame) and the modified con­

stitutive relations in the rotating frame. In the previous approach [18], the spatial 

derivatives associated with rotation require the values of the fields at the time mid- 

steps which are missing, and a linear extrapolation in time is used to evaluate the 

missing values based 011 the two previously calculated values. As a consequence of 

the linear extrapolation based on values of the fields in the previous time steps, the 

algorithm becomes unstable for all time steps and gives rise to 11011-physical exponen­

tially growing fields as shown analytically in Ref. [21]. This instability increases with 

faster rotation speeds and longer running times. I11 our algorithm, we avoid this issue 

by incorporating D  and B  in addition to E  and H  fields and using time interpolation 

into the1 algorithm instead of extrapolation. For same grid size and time-stepping, our 

algorithm however takes more computation time as it calculates 4 quantities instead 

of 2. The running time eventually puts a limit 011 the maximum size of microeavity 

and the minimum rotation speed tha t can be simulated.

Finally, in this chapter we studied only the rotation induced changes in the res­
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onant frequencies. As described above, the change in resonant frequency due to 

rotation can be attributed  to change in refractive index and a linear change in re­

fractive index due to rotation leads to a linear change in resonant frequency. For 

open cavities, the curvature' of the cavity boundary leads to an evanescent leakage 

and in absence of any additional loss, the leakage' rate determines the finite lifetime 

e>r the equality factor (Q) of the resonant mode and the shape determines the output 

intensity pattern. Since the Q and output intensity both originate from an evanes­

cent tunneling process, where the tunneling barrier is determined by the refractive 

index of the cavity, unlike the resonant frequency these two quantities are exponen­

tially sensitive to change in refractive index. Further, as shown above, the change 

in refractive index due to rotation is linearly proportional to azimuthal number m  

of the mode which is again linearly proportional to the radius of the cavity R. This 

implies tha t as compared to Sagnac effect which will increase linearly with cavity 

size, the m agnitude of rotation induced changes in Q and emission pattern  will show 

a much superior exponential scaling with the cavity size. In the next chapter, based 

on this motivation, we explore these two quantities and show that they indeed are 

more sensitive compared to Sagnac effect. In the simulations presented in this thesis, 

due to com putation limitations, we simulate only small cavities and correspondingly 

the rotation speeds arc very high. This however should not change the conclusions 

and as shown in the next chapter, the results of larger cavities can be inferred from 

the results of small cavities using scaling arguments.
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Chapter 10

R otation induced changes in 

optical resonances of dielectric 

m icrocavities

10.1 Introduction

1 Optical mieroeavitios have been (explored for various applications such as coherent 

light sources in integrated photonic circuits, single-photon emitters, and biochemi­

cal sensors [4.5]. One potential application that has received attention recently is 

ultrasmall on-chip optical gyroscope' [1.2.6 19]. Almost all conventional optical gy­

roscope's rely on the Sagnac effect for rotation sensing [12.14.20,21]. The Sagnac 

effect re'fers to rotation-induced phase shift between two counter-propagating wave's 

in an optical loop or frequency splitting in a resonant cavity as described in chapter 

9. Since the Sagnac effect scales linearly with the cavity size [20.22], microcavitie's 

have much lowe'r freepiency response' to rotation. As such, rotation-induce'd change's 

in other characteristics of microcavity resonance's, such as the epiality (Q) factor have' 

1. T h is c h a p te r  is p rim arily  based  on th e  jo u rn a l artic les pub lished  in ref. [1 3].



been investigated. For example, in circular Bragg microlasers. the rotation-induced 

intensity modulation lias been shown to have exponential dependence' 011 the rotation 

velocity [9].

Stationary microcavities with shape deformed from circle have generated a lot 

of interest in the past two decades, with the quest to achieve optimal directional 

radiation from microlasers. Deformed microcavities have also been explored for ro­

tation sensing, with the focus 011 rotation-induced changes in resonant frequencies of 

closed cavities [7.8.11.18.20], Unfortunately the shape deformation often lifts the 

frequency degeneracy of cavity modes, causing a threshold behavior for the Sagnac 

effect. For deformed cavities with open boundaries, it is however interesting to study 

how rotation modifies the emission intensity patterns and investigate its sensitivity 

to rotation.

In this chapter, we present a detailed numerical study on the effects of rotation on 

optical resonances in microcavities of various shapes with open boundary. We start 

with a circular cavity where we investigate the rotation induced changes in Q factors 

and compare tha t to the Sagnac effect. We show tha t the Q factor, which determines 

the lasing threshold and the output power, is more sensitive to rotation than the 

resonant frequency. In the second section we study a deformed elliptical cavity. We 

investigate how deformation effects the threshold behavior of the Sagnac effect. I11 

addition, we also show how rotation modifies the emission intensity patterns. I11 

the final section, we concentrate 011 deformed cavities with broken chiral symmetry. 

We show that emission intensity pattern  of such cavities can be extremely sensitive 

to rotation and can be used to detect rotation. Further, by tuning the degree of 

spatial chirality with cavity shape', we show that we are able to maximize the emission 

sensitivity to rotation without spoiling the quality factor.

Various methods have been developed to study photonic structures in rotating 

frame [23 29]. In this chapter, we numerically calculate the cavity resonances using
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the finite-difference time-domain (FDTD) method described in Chapter 9. In all 

the simulations, we consider the dielectric microdisk in free space, the disk thickness 

is much less than its radius, so it can be approximated as a 2D cavity with an 

effective index of refraction n. We present the results of the transverse magnetic1 

(TM) resonances with the electric field perpendicular to the disk plane (parallel to 

the 2 axis) and the magnetic* field parallel to the plane (the ;r — y plane). The disk 

rotates about the 2 axis in the counter-clockwise direction with a constant angular 

velocity of rotation Q. The' rotation is slow enough that QR  <C c. where' R  is the disk 

radius, and we keep only the leading-orcler terms of QR/c  in the wave equation. I11 

the rotating frame where the disk is stationary, the Maxwell equations retain their 

form, but the constitutive relations are modified [1.23.24.30].

10.2 R otation  induced changes in Q factor o f res­

onances o f a circular m icrocavity

In this section, we simulate the same circular cavity and the resonant mode that we 

studied in the previous chapter. The circular disk has a radius R — 590 nm and 

a stationary refractive index nq''sA' =  3. The wavelength of the resonant modi' is 

A =  1131.48 11111. radial number 1 = 1. and azimuthal number rn =  7. I11 an open 

cavity, along with the resonant frequency, rotation also changes the quality factor 

of a resonant mode, because the contrast of refractive index inside and outside the 

disk varies with the rotation and affects the degree of optical confinement by the 

cavity. For a rotating dielectric microdisk, the refractive index changes both inside 

and outside the disk, and the refractive index difference is given by

disk
1 1

( 10. 1)
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Equation 10.1 simplifies for the case of a disk in free space n outside  __  in — r as

n d i sk out side ( „d;i,sk
f i n  ~  f i n 1) +

mQ,
UJ , disk ( 10.2)

Equation 10.2 implies the rotation increases the refractive index difference for negative 

rn. Thus the Q factor for the counter-propagating mode increases with the rotation 

speed Q. For the co-propagating mode with positive m, the Q factor decreases with 

rotation. In the case of a microdisk, the change in the refractive index contrast is 

symmetric and opposite for the clockwise (CW) and counter-clockwise (CCW) modes. 

Figure 10.1 plots the Q values obtained from the simulation (given by the squares) 

for the CW and CCW modes for different rotation speeds. For the rn = 7 mode, we 

see a decrease in the Q factor whereas the Q factor for the rn — —7 mode increases. 

The change has the same m agnitude but opposite sign for the two modes. W ithin 

the range of rotation speed in the simulation, we observe an exponential dependence 

of A Q = Qcw(Sl) ~  Qcw(Q — 0) on Q. This is because ^  «  1 and the rotation- 

induced change of the refractive index scales linearly with Q. The Q factor of a 

TIR-based whispering gallery (WG) mode depends exponentially on the difference in 

the refractive index inside arid outside the disk, which scales linearly with the rotation 

speed according to Eq. 10.2.

In the simulation, the Q factor of a cavity mode is extracted from the temporal 

decay of the field. At a given rotation speed, a single mode at frequency u  is excited 

by a seed pulse launched near the disk edge. By making the bandwidth of the pulse 

narrower than the frequency difference between the CW and CCW modes, we ensure 

only one mode is excited and eliminate beating in the time trace of E z. E z(t) displays 

an exponential decay after the seed pulse is gone, and from the decay time r  we obtain 

Q =  cur, where cu is the resonant frequency. An im portant point to notice is that, 

the sensitivity of the Q factor to rotation is more than one order of m agnitude higher
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Figure 10.1: Calculated quality factors for the I =  1, m  =  ± 7  modes as a function of 
normalized rotation speed QR/c.  The squares are obtained from the FDTD simula­
tion of a rotating microdisk of R = 590 nm and n — 3 in free space, and the crosses 
from the stationary microdisk with the effective indices of refraction ( inside and 
outside the disk) th a t include rotation-induced changes described in chapter 9. The 
dotted lines are linear fits showing th a t the Q changes exponentially with rotation 
speed.

compared to the change in frequency. Figure 10.2 plots the relative change in Q 1 

as a function of 12, in comparison with the normalized frequency splitting 

where Q0 is the Q factor of the stationary cavity, k0 — ujq/ c is the normalized resonant 

frequency of the stationary cavity, and A k =  A u / c  is the normalized rotation induced 

splitting of the resonant frequency. Both scale linearly with 12, and the slope for — ■ 

versus 12 is 2.16 x 10—12, whereas the slope for ^  versus 12 is 1.12 x 10~13. The 

Q factor for this cavity is therefore ~  20 times more sensitive to rotation than  the 

resonant frequency. The Q not only determines the threshold pump level for lasing, 

but also affects the output power above the threshold. Thus the change of Q by 

rotation would modify the lasing thresholds for CW and CCW  modes, and break the 

balance between the CW and CCW  output power. The higher sensitivity of Q to 12 

indicates the rotation-induced changes in lasing thresholds and output power can be 

more dram atic than  the lasing frequency shift in the microdisk lasers.
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Figure 10.2: Relative change in Q factor ^  (squares) and the normalized frequency 
splitting ^  (circles) as a function of the normalized rotation speed VlR/c for the WG 
mode of / =  1, m  — —7 in the dielectric microdisk of R  = 590 nm and n = 3. The 
dotted lines are the linear fits.

10.3 E llip tical cavities

In a stationary circular cavity, CW and CCW propagating waves do not couple and 

they form two degenerate resonant modes of the cavity, which are characterized by the 

azim uthal number m  and radial number I. The superposition of these two modes can 

form standing waves (with sine and cosine angular dependence) th a t are also resonant 

modes of the cavity. W ith rotation, the CW and CCW waves experience different 

refractive indices and their frequencies start to split [7]. This frequency splitting is 

linearly proportional to the rotation velocity fh Since rotation makes the CW and 

CCW  waves non-degenerate, the only resonances of a rotating circular cavity are the 

non-degenerate CW and CCW  resonant modes.

In deformed stationary cavities, however, the CW and CCW waves may be cou­

pled by scattering from the non-isotropic cavity boundary, and they form two quasi­

degenerate resonances of frequency splitting A k0. W ith rotation, the frequency dif-
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ference between these two quasi-degenerate resonances can be written as [7]:

where g is a coupling constant tha t is proportional to the size of the cavity. Only 

when the rotation velocity Q exceeds a certain threshold value Qc = cAk0/ g , the 

rotation-induced frequency shift gkl/c becomes comparable to the intrinsic splitting 

A Ay. For Q < Qc. A Ay is approximately equal to A Ay and is barely changed by 

rotation. Hence there exists a “dead zone’5 at low rotation speed for the Sagnac 

effect. Once the rotation induced frequency shift is much larger than the intrinsic 

splitting, A Ay approaches its asym ptote gkl/c and increases linearly with the rotation 

speed.

In this section, we study a simple deformed cavity shape, the ellipse [31-36], as 

drawn in Fig. 10.3(a). In the Cartesian coordinates the cavity boundary is given by 

( x / a) 2 +  (y/b)2 =  1, where 2a and 2b are the lengths of the minor and major axis 

respectively (a < b). We vary the ratio a/ b , while keeping the area nab constant. 

For the results in this section, we set R  — y/aJ) — 0.54 /mi, and the wavelength (in 

vacuum) A is around 0.72 //m. The refractive index is equal to 3.0 inside the cavity, 

and 1.0 outside. For a/b close to 1, the high-Q modes resembles the WG modes in 

a circular disk, and they each can be assigned a dominant azimuthal number m  and 

a radial number /. The coupling between CW and CCW  waves in the ellipse results 

in a frequency splitting A Ay. The quasi-degenerate pair of modes have even and odd 

symmetry with respect to the major or minor axis, as seen in an example given in Fig. 

10.3(b,c). The stronger the deformation, i.e., the smaller the ratio a/b , the larger the 

splitting A Ay.

When the ellipse rotates, the higher-frequency mode of the quasi-degenerate pair 

is blue shifted, and the lower-frequency one red-shifted [Fig. 10.3(d)]. We numerically

2  2

( 10.3)
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calculate the frequency splitting A Ay in the rotating ellipse using the FDTD method. 

Figure 10.3(e) plots the value' of AAy as a function of rotation speed V. for a pair of 

quasi-degenerate modes with ni — 11 and / =  1 in the ellipse with a/b — 0.88 (dashed 

line) and 0.92 (solid line). Their normalized frequencies are approximately the same. 

k:R ~  4.73, where A: =  2tf/ A arid R  —\fab is the average radius of the cavity. The 

threshold values, expressed as QcR/c.  are on the order of ~  10“ ' and ~  10-9 for the 

ellipses with a/b =  0.88 and 0.92 respectively, below which the frequency spacing of 

the two resonances remains nearly unchanged from AAy. Thus the larger deformation 

leads to a wider dead zone. For Q > Dc. A Ay increase's linearly with Q in both cavities, 

as it is dominated by rotation-induced frequency splitting.

The cavity shape deformation also causes a dead zone in the rotation-induced 

change of Q, as shown in Fig. 10.3(f). The quasi-degenerate pair of resonances have 

slightly different Q even at il — 0. For Q Qr. the Q for one mock' increases with 

Q and decreases for the other. The magnitude of the change in Q due to rotation, 

|AQ|, is the' same for the pair (to the leading order of RQ/c. [18]). The larger the 

deformation (smaller a/b),  the wider the dead zone for |AQ|. Beyond the dead zone, 

the larger slope of |AQ| vs Q for smaller value of a/b indicates the cavity with weaker 

deformation is more responsive to rotation.

In Fig. 10.3(g), we compare the relative change's in resonant frequency and Q 

factor due to rotation, i.e. AAy/Ay and A Q / Q q. where Ay and Q() are the average 

frequency and quality factor for the quasi-degenerate pair of modes at Q =  0. AQ/Qo 

is more than one order of magnitude higher than AAy/Ay, indicating the relative 

change of Q bv rotation is much larger than that of frequency in the wavelength-scale 

elliptical cavity.

Next we investigate the rotation-induced changes in the output intensity patterns 

of elliptical cavities with the FDTD method. As the radius of curvature' varies along 

the cavity boundary, the strongest ('mission occurs at the locations of the highest
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Figure 10.3: Rotation-induced changes in the resonances of elliptical cavities, (a) 
A 2D microcavity of elliptical shape. The length of minor (major) axis is 2a (2b). 
(b,c) Spatial distribution of the electric held m agnitude (|i?z|) for a pair of quasi­
degenerate modes in the elliptical cavity with a/b  =  0.88 and refractive index n =  
3.0. (d) A schematic showing the frequency splitting A£;0 of a quasi-degenerate pair 
of modes (solid lines) in an elliptical cavity without rotation, and the frequency 
splitting A k r with rotation. The higher-frequency (lower-frequency) mode of the 
quasi-degenerate pair is blue (red) shifted by rotation (dashed lines), (e) Normalized 
frequency shift A krR  as a function of the normalized rotation speed QR/c  for a pair 
of quasi-degenerate modes with m  = 11 and / =  1 in the ellipse with a/b — 0.88 (red 
dashed line) and 0.92 (black solid line), (f) M agnitude of rotation-induced changes 
in Q, |AQ |, for the same pair of modes in (b). Black solid line and red dashed line 
correspond to a/b  =  0.92 and 0.88 respectively, (g) Relative changes in the resonant 
frequency A k r/ k 0 and the quality factor A Q/Qo  for the corresponding modes in (e,f). 
The vertical axis is shown in log scale to show the differences in magnitudes.

164



(a)

180 h? 5 1  o

270
(b)

180 0

(C)

270
90

80

270

(d)

270

0

( e )

180 0

270

0

(f)

270

0

Figure 10.4: Evolution of far-field emission patterns of elliptical microcavities with 
rotation. The deformation of the ellipse is a /6  =  0.92 in (a-c) and 0.88 (d-f). (a,d) 
Angular distribution of far-held intensity 1(0) (at r =  50R)  of quasi-degenerate pairs 
of modes shown in Fig. 10.3 at Q R /c  =  0. The blue solid (green dashed) curve 
represents the mode with even (odd) symmetry with respect to the x axis. (b,e) 
Angular distribution of far-held intensity for the CW and CCW  wave components 
in the stationary resonances shown in (a,d). The solid (dashed) curve represents the 
CW (CCW) wave. The output directions of CW and CCW waves are symmetric 
with respect to the horizontal axis. (c,f) Angular distribution of far-held intensity 
1(9) (at r =  50i?) of the modes in (a,d) at Q R /c  = 10-4 . The interference fringes in 
the output intensity patterns of stationary cavity (a,d) vanishes, as the modes evolve 
from standing wave to traveling wave with rotation. The emission patterns of the 
two traveling-wave modes at high rotation speed are not symmetric with respect to 
the horizontal axis.
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curvature. The main emission directions for the elliptical cavities are therefore parallel 

to the minor-axis of the ellipse (;r axis. 9 =  0°. 180°). As shown in Fig. 10.4(a). the 

far-held intensity patterns for a stationary quasi-degenerate pair of inodes have even 

and odd parity with respect, to the major and minor axes of the ellipse, and there 

are several lobes around 9 =  0°. 180° as a result of the interference of the emission 

from CW and CCW waves in the cavity. By decomposing the held outside the cavity 

into CW and CCW wave components, we identify the far-held patterns for CW and 

CCW  waves [Fig. 10.4(b)]. The CW and CCW waves in the stationary resonances do 

not emit exactly in the same directions, even though they are symmetrical about the 

m ajor and minor axes. This difference is caused by wave effects, including the Goos- 

Hanchen shift and Fresnel filtering, which become significant in the wavelength-scale 

cavities [37-40].

W ith increasing rotation speed, the standing-wave modes evolve to CW and CCW 

traveling-wave resonances, and the interference fringes in the far-held patterns vanish 

in Fig. 10.4(c). Moreover, output directions for CW and CCW waves are no longer 

symmetric with respect to the major and minor axes, as both rotate slightly in the 

direction of rotation (CCW). This behavior is attributed  to the rotation-induced 

change in the refractive index, namely, the index increases for the co-propagating 

wave (propagating in the same direction as the rotation) and decreases for the counter- 

propagating wave. In the elliptical cavity with smaller a/b. the difference; between the 

CW and CCW  output directions at 11 =  0 is larger, and the rotation-induced change 

in the far-held pattern  is smaller [Fig. 10.4(d-f)]. Above we present only the results 

for the higher-frequency mode of the quasi-degenerate pair; the lower-frequencv mode 

is red-shifted bv rotation and the magnitude of change is the same as tha t for the 

higher-frequency mode.
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10.4 R ota tin g  optical m icrocavities w ith  broken  

chiral sym m etry

Although the elliptical cavity is deformed, there exists a rotational or chiral symmetry 

in the shape i.e. the shape does not introduce any preferred sense of rotation. Opti­

cal resonators may acquire structural chirality from shape deformation or boundary 

scattering, which induces asymmetric coupling between the CW and CCW propa­

gating waves in the cavity [41 43]. W ith open boundary, the cavity resonances are 

dominated by either CW or CCW waves, thus possessing a preferred sense of rota­

tion [44 49]. Such cavities with broken chiral symmetry are called chiral cavities. In 

this section we investigate the interplay between openness and chirality of rotating 

microcavities.

It is not known what happens if a chiral cavity rotates, e.g.. whether the Sagnac* 

effect would survive in the absence of chiral symmetry, and how the intrinsic chi­

rality is affected by rotation. In a non-rotating cavity with chiral symmetry, every 

resonance has balanced CW and CCW  wave components, and the output intensity 

profile is symmetric. As shown in the previous section, rotation makes individual 

mode dominated by either CW or CCW wave, thus introducing asymmetry in the 

far-held pattern  if CW and CCW waves have different output directions. In a chiral 

cavity, even without rotation the breaking of chiral symmetry can make the far-held 

pattern  asymmetric; it is not clear how rotation would further modify the emission 

pro hie.

To answer these questions, in this section we investigate open microcavities with 

broken chiral symmetry in the rotating frame. Our calculations show that a quasi- 

degenerate pair of co-propagating-wave modes in the non-rotating chiral cavity evolve 

to counter-propagating ones at high rotation speed. The intrinsic chirality is thus 

removed by rotation, and the Sagnac effect is similar to tha t of a noil-chiral cavity.
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However, the flip of propagation direction for one of the quasi-degenerate inodes will 

lead to a striking change of its far-field pattern, as long as the CW and CCW waves 

have distinct output directions. By tuning the cavity shape, we are able to vary the 

degree of chirality without spoiling the quality factor. The maximal chirality results 

in the largest difference in CW and CCW outputs, making the emission profile most 

sensitive to rotation. The surprising enhancement of rotation sensitivity of chiral 

microcavities may open up the possibility of on-chip rotation sensors using a new 

scheme for rotation sensing .

10.4 .1  S im ple an a ly tica l m od el o f  a ro ta tin g  chiral cav ity  to  

ca lcu la te  Sagnac effect

Let us first model a non-rotating chiral cavity. The asymmetric coupling between CW 

and CCW propagating waves can be described by an effective Hamiltonian [42,49].

H n  =

V 0 LUq

+

J

r v

■ n v  r
(10.4)

where V  =  \V\en . cj0 is the frequency of the unperturbed CCW and CW wave 

components. Their coupling leads to an overall frequency shift T. and asymmetric 

transition elements V  and rjV*. where the deviation of |//| from unity represents the 

degree of asymmetry. Diagonalization of H () gives the eigenfrequencies

uj±  — u q  + r  4  v W  ■ (10.5)
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The frequency splitting Ace0 - 2y/rj\V\ results from the coupling of CW and CCW 

waves. The normalized eigenvectors are

€
fccw ^

y £ c \V  j

1
/ 1 \

( 10.6)

The eigenvectors are composed of CW and CCW waves with relative intensity ratio 

177), thus a higher asymmetry of the coupling leads to a stronger chirality of the 

eigenmodes. W hen the cavity rotates, the Hamiltonian becomes

V 0 - A
(10.7)

where ± A  represents the frequency shift of C C W /C W  wave by rotation. We assume 

the rotation speed is slow enough tha t |A| is linearly proportional to the rotation 

frequency 11. For simplicity, we set A =  11. The eigenfrequencies are

ce± =  ce0 +  T ±  y/rj |C |2 +  A 2 . ( 10.8)

The frequency splitting becomes A uj = 2 y / q \ V \ 2 +  A 2 =  2 y j (Ace0/2 )2 +  Id2. The

normalized eigenvectors are

 ̂ fccw  ̂

y fe w  J 1 T hr I ae
(10.9)

J

where a  =  ± y / q  +  A 2/ |C |2 — A/1V | .

At low rotation speed, the additional frequency splitting induced by rotation (11) 

is much smaller than  the original splitting (Ace0). s o  the total splitting remains nearly 

constant Ace ~  Ace0- Only when 11 becomes comparable to Ace0. the rotation-induced
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splitting becomes significant, and Ace starts to grow with Q. Eventually at Q Ace(), 

Au  ~  2D. the linear increase of A lj with D recovers the Sagnac effect. Hence, the 

frequency splitting at If =  0 causes a "dead zone" for the Sagnac effect [7].

In a chiral cavity the dependence of A ce 011 D is identical to that in a lion-chiral 

cavity, as long as the value of fj\V2\ is kept the same [Fig. 10.5(a)]. Although without 

rotation both modes in the chiral cavity are dominated by CCW (CW) traveling 

waves for \rj\ < 1 (|i/| > 1). one of them is transformed into a CW (CCW) traveling 

wave mode by rotation, and its frequency shifts in the opposite direction to the other 

mock', producing the same Sagnac effect as in the non-chiral cavity.

10.4 .2  R eson an t m odes in a n o n -ro ta tin g  chiral cav ity

We choose dielectric microdisks with the shape of asymmetric limagon. which unlike 

other chiral cavities have high Q factor and small frequency splitting Ace0 [49]. The 

microdisk can be regarded as a two-dimensional (2D) cavity as the disk thickness 

is much smaller than  the radius. I11 the polar coordinates, the cavity boundary is 

described by r(0) =  R[ 1 +  €\ c o s (6) +  c2 cos(20 +  5)]. where R  is the radius, eq and e2 

are the deformation parameters, and 8 determines the degree of chirality. For 8 =  n m  

(rn is an integer), the cavity has the chiral symmetry [r(—0) = r($)]. and the coupling 

from CW wave to CCW' wave is equal to that from CCW' to CW. As 8 deviates from 

nm.  the chiral symmetry is broken, so is the balance between CW and CCW' wave 

coupling. Consequently, each pair of quasi-degenerate modes are dominated by either 

CW  or CCW  wave.

We consider a pair of transverse-magnetic (TM) resonant modes where normalized 

frequencies of the two modes are k R  2  ̂ 6.2, where k =  2n/ A. and A is the vacuum 

wavelength. Their Q factors are about 56.500. The insets in Figure 10.6(a.b) show 

the spatial distributions of electric field intensity for these two modes. The intra­

cavity electric field (perpendicular to the cavity plane) is expanded in the cylindrical
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Figure 10.5: Comparison of Sagnac effect in a rotating microcavity with chiral sym­
m etry (77 =  1. dashed line) and without chiral symmetry (77 =  0.1, solid line). The 
value of 771V  |2 is kept the same, (a) (Dimensionless) frequency splitting for a pair of 
quasi-degenerate modes as a function of rotation frequency fl. (b,c) Evolution of CW 
(thick line) and CCW  (thin line) traveling-wave components in the quasi-degenerate 
modes with rotation. In the symmetric cavity (77 =  1), at low rotation speed the 
eigenmodes remain standing-wave modes with equal weights of CCW  and CW com­
ponents, and their frequency difference is barely changed by rotation. W hen the 
rotation speed is sufficiently high, one mode evolves to a CCW traveling-wave mode, 
the other one to a CW traveling-wave mode; and their frequency difference starts to 
grow significantly with Q. In a chiral cavity (77 =  0.1), the evolution of frequency 
splitting with rotation is identical to the symmetric cavity. W ithout rotation both 
modes are dominated by CCW traveling waves, but one of them (b) transforms into 
a CW traveling wave mode at high Q.
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harmonics, E z n \ r , d )  =  X^oo CLm J m { n k r ) e tTnd: where J m is the m -th order Bessel 

function of the first kind. Positive (negative) values of angular momentum m  cor­

respond to CCW (CW) traveling wave components. The origin of this expansion is 

chosen to be (x, y ) =  (ei/?/2, 0). The distributions of |am |2 in Fig. 10.6 (a,b) illustrate 

tha t both modes have more CW wave components than  the CCW ones. The spatial 

chirality of a mode is defined as

a  =  1 —
mmi n  ( E

-1
—o o !, e  r  m 2)

m ax ( E - o o  la ml2- E r  la "»l2)
( 10.10)

For this pair of modes, a  =  0.25. 
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Figure 10.6: A pair of quasi-degenerate modes (A =  598 nm) in a non-rotating dielec­
tric disk (n =  3.0) of asymmetric limagon shape (R  = 591 nm, t\ = 0 .1 , 62 =  0.075, 
5 =  1.94). (a,b) Spatial distributions of electric field intensity (inset) and angular 
momentum components (main panel) inside the cavity. Both modes have more CW 
wave (m < 0) than CCW wave (m > 0).

Both modes generate directional emissions, as shown in Fig. 10.7(a). To find the 

output directions for CW and CCW traveling waves, we decompose the electric field 

outside the cavity with outgoing harmonic waves, E°ut(r,9) = H m \ k r ) e irn9,

where Hm is the m -th order Hankel function of the first kind. By summing only 

positive or negative m  terms in the field expansion and taking r —»> 0 0 , we obtain 

the far-field intensity patterns for the CW and CCW waves separately, as shown in 

Fig. 10.7(b). The main output direction of CW wave is 9 ~  0.7 , and for the CCW 

wave 0 — 2.8 [Fig. 10.7(b)]. Due to the dominant presence of CW wave in the
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quasi-degenerate pair, their far-held patterns are similar to tha t of the CW wave.

(a) (b)
tt/2

n ■ ■ ■

3n/23n/2

Figure 10.7: Far-held emission intensity patterns of a pair of quasi-degenerate modes 
(A =  598 nm) in a non-rotating dielectric disk (n =  3.0) of asymmetric limagon 
shape (i? — 591 nm, e\ =  0.1, 62 =  0.075, 5 =  1.94). (a) Angular distributions of 
emission intensities at a distance of r — 507? from the cavity center for both modes, 
which have similar output directions, (b) Far-held patterns of CW (red solid line) 
and CCW  (blue dashed line) wave components in the resonances, exhibiting distinct 
output directions.

10.4 .3  E ffect o f ro ta tion  on  th e  em ission  p a ttern s o f ch i­

ral m icrocav ities  and com parison  o f its se n s itiv ity  to  

Sagnac effect

Next we investigate how the emission patterns of the asymmetric limagon are modified 

by rotation. As shown in the previous section, without rotation, the pair of quasi­

degenerate modes have similar far-held patterns, because they are both dominated by 

either CW or CCW  traveling waves. W ith rotation, we expect one of them  will hip the 

propagation direction, and its far-held pattern  will change dram atically since the CW 

and CCW  waves have distinct and different output directions. To illustrate this we 

simulate using FDTD an asymmetric limagon cavity rotating with a constant angular 

velocity D around a hxed axis perpendicular to the cavity plane. Using FDTD, we 

calculate the modes prohles of the resonant modes of the rotating cavity. As shown
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in Fig. 10.8. one of the two inodes in Fig. 10.7 switches from CW to CCW traveling- 

wavi'. while the other one remains CW. Consequently their output directions become 

very different.

Tilt' striking change of output direction by rotation originates from the breaking 

of chiral symmetry in the open mierocavity. Even when the cavity is at rest, the 

resonance's already acquire a preferred sense of rotation, as the quasi-degenerate pairs 

are both dominated by CW or CCW traveling waves. However, as the mierocavity 

starts rotating, the intrinsic chirality of the resonances is removed, and every pair has 

one mode CW dominated and the other CCW dominated.

The direction of rotation determines which one of the quasi-degenerate pair, the 

higher or lower frequency mode, will flip the propagation direction and exhibit a 

dram atic change in the output direction. For example, the two modes in Fig. 10.7 

are both dominated by CW traveling waves at rest; if the rotation is in the CCW 

(CW) direction, the lower (higher) frequency mode will transform to CCW, and its 

frequency will decrease (increase) further with rotation. Hence, by measuring the 

emission frequency in the main output direction of the CCW or CW wave, we can 

identify the direction of rotation.

In reality both of the quasi-degenerate modes are often excited simultaneously, 

and their relative phases depend on the excitation condition, which varies from one 

experimental setting to another. The interference of their output fields determine the 

emission pattern, which will be modified by rotation. To calculate quantitatively the 

change of emission pattern  by rotation, we simulate a generic: case. Seed pulses are 

launched from ten randomly chosen locations inside' the cavity to excite the quasi­

degenerate modes. The photodetectors are assumed to be stationary in the rotating 

frame and placed at a distance of 3R  from the cavity center. After the seed pulses 

pass by. the photocletectors are turned on to measure the emission intensity. Figure 

10.9 (a) plots the temporally-integrated intensity I, as a function of the emission
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Figure 10.8: Emission from the rotating asymmetric limagon cavity with the same 
param eters as the stationary one in Fig. 10.7. (a,b) Spatial distributions of field 
intensities for a pair of degenerate modes, which correspond to the stationary modes in 
Fig. 10.7, at the normalized rotation frequency Q R /c  =  10-3 . The intensities outside 
the cavity are enhanced to illustrate the main output directions of the two modes are 
different, even though they have the same output directions without rotation [Fig. 
10.7(a)]. (c) Spatial distribution of field intensity for one of the quasi-degenerate 
modes in the non-rotating cavity. It is dominated by CW wave. W hen the cavity 
rotates in the CCW direction, this mode switches from CW to CCW  wave, and the 
main output direction is changed dramatically, (d) Angular distribution of far field 
intensity for the pair of modes shown in (a,b) in the rotating cavity.
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angle 9 for the quasi-degenerate pair of modes in Fig. 10.7. The irregular oscillations 

of I (, with 9 results from the beating of the two excited modes, which depend on their 

initial phase difference.

The excitation condition is kept the same when the rotation speed il increases.W ith 

increasing Q, some peaks of Ie{9) increase while others decrease [Fig. 10.9(a)], as the 

co-propagating wave resonances evolve to counter-propagating ones. The main emis­

sion peak at 9 0.7 is from the CW wave, and its intensity decreases as one of the

modes is converted to CCW wave by rotation. Meanwhile, the secondary peaks at 

9 ~  2.8 increases with IF since they are from the CCW wave. In Fig. 10.9(b). the 

relative changes in the main peak intensity and its ratio to the secondary peak inten­

sity are plotted versus the normalized rotation speed Q R /c  (c is the speed of light in 

vacuum). The latter is about two times larger than the former.

To compare with the Sagnac effect, we calculate the frequency splitting A k =  ^  

of these two modes in a circular cavity with the same area and refractive index as the 

asymmetric limagon. The normalized frequency splitting where /,:() = l j q / c is the 

normalized resonant frequency in the non-rotating cavity, gives the relative change of 

the resonant frequency by rotation. A linear fit of the data in the log-log plot of Fig. 

10.9(b) finds the slopes, which reflect the sensitivity to rotation. The slope for the 

relative change in the main emission peak intensity of the asymmetric limagon cavity 

is about three orders of magnitude larger than the slope of the relative' frequency shift 

in the circular cavity.

10 .4 .4  T uning o f cav ity  sh ap e to  m axim ize sen s itiv ity

To enhance' the emission sensitivity to rotation, we' tune the degree of spatial chirality 

by varying 6 erf the limagem cavity. We compute' the spatial chirality ev erf the quasi­

degenerate moeles in the' nem-rotating cavity with varying eh As S ine-reases from 0 

to 7T, a  first grows anel roae*hes the maximum at S ~  1.94. then dmps to zero at
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Figure 10.9: Rotation-induced change in emission pattern  of the same cavity as the 
one in Fig. 10.8, when both quasi-degenerate modes are excited simultaneously, (a) 
Angular distribution of the emission intensity Ie at a distance of r =  3R  from the 
cavity center at three rotation speeds. To show the change in the emission profile,
Ie{9) is normalized (JQ27r Ie(9)d9 =  1). (b) Relative changes in the main emission peak 
intensity (at 9 =  0.73) (solid squares and solid line) and in the ratio of main peak 
intensity over the secondary peak intensity (at 9 — 2.79) (crosses and dashed line) 
vs. the normalized rotation frequency QR/c.  Both peak intensities are integrated 
over a range of emission angle marked by the double-arrowed segments in (a). For 
comparison, relative changes of resonant frequencies, are plotted for circular 
cavities with the same area and refractive index (open circles and dotted line). The 
symbols represent the numerical data, and the straight lines are linear fit of the data 
in the log-log plot, which gives the slope. The values of the slope are (from top to 
bottom ) 2.4 x 103, 1.2 x 103 , and 5.7 x ICR1 respectively. The rotation-induced 
changes of output intensity are much larger than  tha t of the resonance frequency.
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6 =  7T [49]. We simulate the rotating cavities with different S. and find that the 

relative' change of the main emission peak intensity increases monotoiiicallv with o 

at a fixed rotation speed [Fig. 10.10(a)].

To interpret this result, we compare the far-field patterns for CW and CCW 

waves in the non-rotating cavities with different S. The difference between CW and 

CCW emission patterns is quantified by [3 =  J()27r\Icw(9) — lcc i\v(d)\d,0, which is 

plotted as a function of a  in Fig. 10.10(a). Both lc\v(0)  and Icc\v(@) are normalized 

(f Q2/[ Icwx'('\v{0)d6 =  1). The monotonic increase of J with a indicates that the 

emission patterns for CW and CCW waves become more distinct at higher chirality, 

consequently the mode emission pattern  changes more significantly bv rotation. The 

maximal spatial chirality provides the highest sensitivity of mierocavity output to 

rotation.

The tuning of the structural chirality of the asymmetric limagon cavity to max­

imize the emission sensitivity to rotation does not spoil the Q factor of the cavity. 

To confirm, we calculate the Q values for the same resonances in the non-rotating 

cavities with different S. The Q factors of the pair of modes shown in Fig. 10.6 are 

very close and their mean is plotted as a function of S in Figure 10.11. As 6 varies 

from 0 to 7r. the Q decrease's slightly and monotoiiicallv. in agreement to the result 

of previous study on larger cavities [49]. Therefore, we are able to tune the spatial 

chirality of the resonances in the asymmetric limagon cavity without singnificantly 

spoiling the quality factor.

10.4 .5  Scaling o f ro ta tion -in d u ced  re la tive  change in o u tp u t  

in ten sity  w ith  cav ity  size and effect o f refractive in d ex

Due to limited computing power, we can simulate only wavelength-scale asymmetric 

limagon cavities in the rotating frame. Consequently, the rotation speed must be very 

high to change the emission direction. The emission sensitivity will increase with the
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Figure 10.10: O utput sensitivity to rotation for the asymmetric limagon cavity with 
varying degree of spatial chirality. The cavity parameters are the same as those in 
Fig. 10.6 except the value of 6. (a) Relative change of the emission intensity in 
the main output direction (solid squares and dashed line) as a function of spatial 
chirality a  for the quasi-degenerate modes in Fig. 10.7. The rotation frequency is 
fixed at Q R /c  — 1.5 x 10~5. The difference between the emission patterns for CW 
and CCW  waves in the non-rotating cavity is quantified by (3 (solid circles and solid 
line), which is also plotted against a. W ith increasing spatial chirality cn, CW and 
CCW  outputs become more distinct, enhancing the emission sensitivity to rotation. 
(b,c) Far-held patterns for CW wave (red solid line) and CCW wave (blue dashed 
line) in two cavities with 6 =  0 (b), and 2.75 (c). At 6 = 0, both CW and CCW  waves 
emit predominantly in the direction close to 0 =  7t/2 (b), and the slight difference of 
their emission directions is a result of wave effects in the wavelength-scale cavity. As 
S increases from 0 to ir, the main emission direction of the CW wave moves towards 
0 =  0, and the CCW wave towards 9 =  7r; meanwhile, the secondary emission peak, 
which is in the opposite direction of the main peak, grows monotonically.
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Figure 10.11: The quality (Q) factor of the non-rotating asymmetric limagon cavity 
with varying 6. The refractive index of the cavity is n — 3.0 and the radius is R  = 
591 nm. The deformation param eters are e\ = 0 .1  and e2 =  0.075. The Q is the mean 
of the quasi-degenerate pair of resonances at A ~  598 nm.

cavity size R. because the spatial chirality increases with cavity size [49], along with an 

increase of the Q factor and a decrease of the intrinsic frequency splitting Aa;0- In this 

subsection, we present a scaling analysis using the coupled mode theory developed in 

the previous studies [6,18]. The minimum rotation speed 12c to produce a noticeable 

change of the emission intensity is proportional to the size of the dead zone Acj0. Our 

numerical simulation of non-rotating cavities reveals th a t Alc0 reduces exponentially 

as k R  increases, leading to an exponential drop of flc with (increasing) R. Thus we 

can estim ate flc as a function of R  from the numerical data  of very small cavities.

For the asymmetric limagon cavity of R  = 591 nm [Fig. 10.9], the relative change 

of the main emission peak intensity is 1% at 11 =  4.2 x 1010 RPM (revolution per 

minute). Assuming such a change can be detected experimentally, we get flc =  

4.2 x 1010 RPM at R  = 0.59 /.mi. If we keep the wavelength the same (A =  598 nm) 

and increase R  to 10 pm, 12c reduces to 3.5 x 106 RPM; a further increase of R  to 25 

/im reduces l lc to 1.1 RPM  .

The scaling of flc with wavelength A can be inferred from the above analysis, since

1 2 
5( in radians)
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Figure 10.12: The minimum detectable rotation speed as a function of the radius 
R  of the asymmetric limagon cavity. The refractive index of the cavity is n — 3.0, 
the deformation param eters are €\ =  0.1 and 62 =  0.075, S =  1.94. The wavelength is 
kept at A =  598 nm.

Qc and Acc0 depend on k R  instead of k or R  separately. Thus reducing wavelength

fixed i?, reduces exponentially as k increases, so the rotation-induced change of 

emission pattern  is larger for a shorter wavelength.

The sensitivity of emission intensity will also depend on the refractive index of the 

mierocavity. To investigate the dependence of the rotation-induced output change on 

the refractive index of the cavity, we repeat the numerical simulation tha t produces 

Fig. 10.9, but for different values of refractive index n. Figure 10.13 plots the relative 

change in the main emission peak intensity at a fixed rotation speed of klR/c — 

3 x 10-5  as a function of n. As n decreases, the same rotation speed causes a larger 

change in the output intensity. This is because the dead zone is smaller when the 

refractive index of the cavity is lower. In addition, the lower refractive index will 

increase the output coupling efficiency due to higher radiation rate, thus further 

enhancing the absolute emission intensity change by rotation.

A in a cavity of fixed R  is equivalent to increasing R  while fixing A. In a cavity of
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Figure 10.13: Relative changes in the main emission peak intensity as a function of 
refractive index n  of an asymmetric limagon cavity with R  =  591 nm, e\ =0.1, e2 
=0.075, and 5 =1.94. The resonant modes in all the cases have X/n  ~  200 nm where 
A is the vacuum wavelength and n  is the refractive index of the asymmetric limagon 
cavity. The rotation speed is fixed at Q R /c  ~  3 x 10-5 .

10.4 .6  A b so lu te  change in o u tp u t in ten sity  by ro ta tion

The scaling analysis in the last section is based on the relative change in the output 

intensity by rotation. The absolute amount of change in the output intensity, at a 

given input power, also depends on the output coupling efficiency of the cavity. In 

this final section, we analyze the absolute intensity change due to rotation, which 

determines the signal to noise ratio of the rotation sensing measurement [12].

We consider two dissipation channels for the input power: (i) radiation into the 

far field, (ii) absorption inside the cavity. The former is determined by the radiation 

rate yr , which is inversely proportional to the radiative quality factor Qr\ and the 

la tter is by the absorption rate which is inversely proportional to the absorptive 

quality factor Qa. The to tal loss rate is 7 * =  yr +  ya, and the to tal quality factor is 

Qt = (1 / Qr T  1 / Qa)~ 1 • W hen the input power is constant, the absolute change in
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the output intensity at a fixed rotation speed U is

A I0 x — 6I„. (10.11)
It

The fraction on the right hand side is the output coupling efficiency (the percentage 

of the input power converted to radiation), and the second term  is the relative change 

in the output intensity due to rotation. Both terms depend on the cavity size R.  As 

R  increases, the radiation rate decreases exponentially and eventually submerged by 

the absorption rate which remains constant with R.

In the wavelength-scale cavity. 7 ,. ga. and gt «  gr. The output coupling ef­

ficiency is approximately equal to unity, thus A I () is determined solely by SIQ. As 

discussed in the previous section, the relative change in the output intensity is in­

versely proportional to the size of the dead zone Acc0, which scales exponentially 

with k R  at a given rotation speed, thus SIa cx cJkri, and the exponent /  depends 

011 the cavity shape, refractive index and the type of resonance. For a small cavity 

whose radiation dominates over absorption, the absolute change in output intensity 

A IQ increases exponentially with R  for fixed Q and A. i.e. A I Q oc e /kR.

However, as R  increases. 7 ,. decreases exponentially. 7> cx e~gkR. where the expo­

nent g also depends on the cavity shape, refractive index and the type of resonance'. 

Eventually 7 ,. becomes much smaller than 7 ,,. and 7 , 7a is independent of R.  The 

output coupling efficiency then decreases exponentially with increasing A, counter­

acting the exponential increase of 5I0. The final scaling of A Ia with R  depends 011 

the values of /  and g. If /  < (}< A I Q first increases exponentially with R  and then 

decreases exponentially, as shown in Fig. 10.14(a). The turning point R 0 is set by 

7r(i?o) =  7(l. However, if /  > g. A I„ keeps increasing exponentially with R.  albeit 

the exponent decreases at R > R 0 [Fig. 10.14(b)], As the absorption rate reduces, 

the turning point i ?0 moves to a larger value, enhancing A I () of large cavity [Fig.
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10.14(a,b)].
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Figure 10.14: Absolute change in output intensity by rotation, A /0, as a function of 
the cavity size R  for fixed wavelength and rotation speed. The variation of A IQ with 
R  depends on the values of /  and g of the resonant modes, (a) W hen /  =  0.1 and 
g =0.12, A I Q first increases exponentially and then decreases exponentially. At the 
turning point R q, the radiation rate is equal to the absorption rate, 7r (i?o) =  7a- (b) 
W hen /  =  0.08 and g =  0.04, A /0 keeps increasing exponentially with R,  but the 
exponent decreases at large R. As the absorption rate reduces, the turning point Rq 
moves to a larger value. In both panels, the solid line corresponds to R 0 ~  15/im, 
and the dashed line to R 0 ~  25/iin.

In our numerical simulation of asymmetric limagon cavity with — 0.1, e2 =  

0.075, S =  1.94 and refractive index n  =  3.0, we found varying values of /  and g 

for different high-Q resonances. Some of them  have /  <  9 , the others /  >  g. By 

optimizing the cavity shape and refractive index, we can tune the values of /  and g 

to maximize the absolute change in output intensity. Further enhancement may be 

achieved by minimizing the absorption in the cavity, e.g., by fabricating the cavity 

with more transparent m aterial or turning the operation wavelength farther away 

from the absorption band. Such optimization is beyond the scope of the work in this 

thesis. Such optimization will however become m andatory for designing a practical 

and sensitive on-chip rotation sensor.
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Chapter 11

Conclusions

In this thesis, we studied two types of dielectric structures. The first one is a random 

medium where the refractive index varies spatially in length scales comparable to the 

wavelength. Light inside such structures is multiply scattered and the interference of 

multiply scattered waves inside the medium leads to interesting mesoscopic effects. 

We studied and controlled experimentally some of these mesoscopic effects inside an 

011-chip random medium.

The first mesoscopic effect that we studied is the renormalization of the diffusion 

coefficient. We presented in chapter 2 of this thesis, the first direct experimental 

observation of position dependent diffusion which is a weak localization effect. We 

showed that because of interference effects, the diffusion coefficient D  is 110 longer 

a constant and becomes renormalized where the amount of renormalization depends 

011 the spatial position inside the medium. We further showed th a t by varying the 

scattering strength and absorption, the renormalization of the diffusion coefficient, can 

be modified. In chapter 3 of this thesis, we studied another mesoscopic effect which 

is the long range correlation of intensity inside a random medium. We dem onstrated 

how these correlations evolve as light propagates through the random medium. We 

showed tha t by modifying the conductance of the medium, the m agnitude of these
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correlations can be modified. This happens because the long range correlations arise 

due to crossing of the scattering paths of light and the probability of such crossings 

happening inside the medium is inversely proportional to the conductance. Therefore' 

by modifying the conductance, the magnitude of such correlations can be altered.

In the second part of the thesis, we dem onstrated experimentally a simple but 

efficient approach of using geometry to deterministically and efficiently control the 

above measured mesoscopic effects. In chapter 4. we showed that by varying the 

width in a single waveguide, the localization effects can be modified which can lead 

to modification of D. Using geometry, the diffusion of light inside the random media 

can therefore be locally modified. In chapter 5. we further dem onstrated experi­

mentally tha t spatial correlations can also be tailored by designing the shape of the 

waveguide. Bv fabricating photonic random waveguides with the cross section varying 

along their length, the functional form of the long-range correlation can be modified 

inside waveguides of different shapes because the crossing probability of scattering 

paths is affected nonuniformly in space.

The ability to control the interference effects inside a random medium besides 

being of fundamental importance is also im portant from application point of view. 

For example, by controlling diffusion inside the random medium, we can control the 

energy density inside the medium. Since the energy density dictate's the light m atter 

interactions, our ability to control the energy density also gives us the ability to 

control the light m atter interactions inside a random medium. Similarly, the ability 

to control the long range correlations can also be of great significance for applications 

whore it may be necessary to focus light in a speckle spot inside a random medium. 

As shown in chapter 5. by tailoring the shape of the correlation function we can tailor 

the contrast of focusing and the energy deposition inside the random medium.

Another fascinating interference effect in random media that has recently drawn 

much attention is the creation of open and closed transmission eigenchannels. The
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open and closed channels not only dictate the transmission through the random 

medium, but also determine the spatial profile of the energy density. W ith recent 

advances in the held of adaptive1 wavefront shaping, it has now become possible to 

selectively couple input light to these eigenchannels. In chapter 6 of the thesis, we 

showed experimentally and numerically tha t by varying the geometry of a random 

waveguide1, the spatial structure of e)pen channels can be significantly anel determinis- 

tically altered fremi the universal emes and that enables us to tune the energy density 

profiles insiele the random me'dimn. As compareel to using the localization effects 

mentioned in chapter 2 and 4. the advantage e)f using geometry is that although it 

modifies the energy density profiles, the bimodal distribution is still maintained which 

implies tha t open channels with high transmission are still retained. In chapter 6. 

we also showed tha t by gradually increasing the waveguide cross-section, we can con­

vert evanescent channels to propagating channels. Further, perfect reflection channels 

can be created in certain confined geometries, which do not exist in waveguides with 

uniform cross-section. Unlike high-reflection channels in uniform waveguides tha t ex­

hibit shallow penetration into the disordered system, a perfect reflection channel can 

penetrate almost through the entire system but does not transm it any light. Such 

channels can be of great importance for sensing applications.

In chapter 7. we extended our work on transmission eigenchannels and imple­

mented the adaptive wavefront shaping technique to our on-chip random nanostruc­

tures. We carefully designed our coupling waveguide to achieve complete control of 

the input. Using adaptive wavefront shaping techniques, we optimized our input light 

to selectively couple to the open and closed channels. Thanks to the complete control 

of the input and distinct and different spatial profile's and transmission eigenvalues of 

the open and closed channels, we achieved an unprecedented control of transmission 

and energy density inside the random nanostructures. In chapter 8. we dem onstrated 

tha t such coherent control of light using wavefront shaping is also possible inside rail-
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dom media with inhomogeneous scattering and loss which are common in real life for 

example the biological tissues.

The second type of dielectric structures tha t we studied in the final part of this 

thesis are microcavities. Dielectric microcavities, unlike random media, have a ho­

mogeneous refractive index profile and the light inside such structures is confined by 

to tal internal refraction. However, in a rotating frame, the effective refractive index 

of the resonant modes is no longer a constant and becomes a function of rotation 

speed. This leads to modification of the characteristics of the resonances in the ro­

tating frame and such modification of the properties of the resonances can be used 

to detect rotation. One such example is the modification of the resonant frequency 

which is called as the Sagnac effect. In chapter 9, we presented a Finite Difference 

Time Domain simulation algorithm tha t we developed to study dielectric microcavi­

ties of different shapes with open boundaries in a rotating frame. In chapter 10, we 

used the algorithm to study rotating microcavities and along with Sagnac effect, we 

also studied rotation induced changes in other properties of the resonances such as 

the Q factor and output intensity pattern. We dem onstrated th a t the Q factor and 

emission intensity can be more sensitive to rotation compared to the Sagnac effect. 

We further tuned the cavity shape to maximize the sensitivity of the output intensity 

and finally proposed an alternative scheme to detect rotation using the change in 

output intensity pattern.
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