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ABSTRACT

Semiconductor microcavities are building blocks for integrated photonic systems. Mi-

crodisk cavities have based on whispering gallery modes have small mode volume and

very high quality factor. Hence, the quantum effect is significant in such structures.

We have studied the enhancement of spontaneous emission rates for InAs quantum dots

embedded in GaAs microdisks in the time-resolved photoluminescence experiment. Us-

ing the non-negative least squares algorithm, we recover the distribution of spontaneous

emission rates for an ensemble of QDs. The maximum enhancement factor of spontaneous

emission rate exceeds 10.

Boundary roughness is inevitable during fabrication process. We have demonstrated

the lasing action from a dynamically localized mode in a microdisk resonator with rough

boundary. Although substantial boundary roughness and surface defects in our devices

imply strong light scattering and destroy the regular whispering gallery modes, the de-

structive interference of the scattered light leads to the dynamical Anderson localization

in the phase space of the system and the formation of a different type of high-Q modes.

We have presented numerical and experimental studies of the high-quality modes in

two-dimensional semiconductor stadium microcavities. Although the classical ray me-

chanics is fully chaotic in a stadium billiard, all of the high-quality modes show strong

“scar” around unstable periodic orbits. For a high-quality mode associated with multiple
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unstable periodic orbits, its quality factor changes non-monotonically with the deforma-

tion, so that there exists an optimal deformation for each mode at which its quality

factor reaches a local maximum. Experimentally we optimized the lasing threshold of a

semiconductor microstadium by controlling its shape.

Finally, we demonstrate hybrid UV microdisk laser on a silicon substrate, and their

applications for chemical sensing.
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CHAPTER 1

INTRODUCTION

Semiconductor microcavities are essential components of integrated photonic circuits with

their size on the order of wavelength. There are several types of microcavities. Vertical-

cavity surface-emitting lasers (VCSEL) [1] have quasi 1-dimensional (1D) cavities. Light

propagates in such cavity is confined by two distributed bragg reflectors. Photonic crystal

cavities [2] are mode by 2-dimensional (2D) bragg scattering. Light is localized in the

structure as a defect mode. Microdisks [3], however, have the highest cavity quality

factor (Q) by utilizing total internal reflection (Fig. 1.1). Therefore microdisks have

great advantage for many applications (e.g., low threshold lasers, fast response light

sources), and have attracted continuate interests for more than one decay.

Figure 1.1: side view of a microdisk (left) and top view (right). The semiconductor disk
has larger refractive index than surrounding media (air), so once the angle of incidence
is larger than critical angle, a ray will always experience total internal reflection.
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With circular shape, microdisk has the highest symmetry in two-dimensional (2D)

system. The classical ray trajectories in the cavity show regular patterns. Due to the

rotational symmetry of the structure, a ray trajectory has conserved angular momentum

(respect to the origin of circle), and thus constant incident angles. In a dielectric mi-

crodisk with refractive index greater than one, once the light has incident angle greater

than the critical angle where total internal reflection (TIR) happens, it will always be

trapped in the disk classically. The energy can only escape from the cavity by tunnel-

ing. Therefor the corresponding optical modes have very high quality factor. With their

sizes comparable with optical wavelength, microdisks show significant quantum effects.

Semiconductor microdisk incorporate with quantum dots provides a great tool to study

the cavity quantum electrodynamics in solid state.

On the other hand, when boundary deformation is introduced into a circular disk,

the angular momentum conservation law no longer stands. The classical ray dynamics

may even become chaotic with sufficient deformations. We mainly focus on two types

of deformations, which drive the ray dynamics into fully chaotic in the systems. The

first one is the uncontrolled deformation - surface roughness on the boundary, which is

introduced during the fabrication process. Another type is smoothly deformed cavity,

such as stadium cavity, which shows completely chaotic ray dynamics in the cavity. In

these cavities, a ray having initial incident angle greater than critical angle will quickly

escape from the cavity refractively due to it’s chaotic behavior. It would be interesting

to exam whether there exits high-Q modes in such cavities, and what’s the mechanism
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to form such high-Q modes.

In the following part of this chapter, we give brief introductions of optical modes

in microdisks, the properties of semiconductor quantum dots, some basic concepts and

methods used in chaotic system, and finally the powerful numerical simulation method:

finite-difference time-domain (FDTD) method.

1.1 Microdisk cavity

In this section, we give a brief description of the general wave function solutions of

microdisk structure, namely the whispering gallery modes (WGMs).

Waveguide solutions The thickness of a typical microdisk usually is much smaller

than the size of the disk. In this case, we can approximate the disk layer an infinite large

layer (compare to the thickness). Consider a more general case, we have three infinitely

large dielectric layer structure as shown in Fig. 1.2, with refractive index n

Figure 1.2: Waveguide structure of three dielectric layers.
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n =







































n1 x > h

n2 0 < x < h

n3 x < 0

(1.1)

and n2 > n3 ≥ n1. The solution of electromagnetic (EM) wave propagate in such

structure can be solved by Maxwell equation (in dielectric media)

∇ · D = 0 ∇ × E = −∂B
∂t

∇ · B = 0 ∇ × H =
∂D

∂t

(1.2)

Assuming the solutions have harmonic time dependence e−iωt and propagate in {x, z}

plan, EM field can be expressed by separating variables

E(x, z, t) = E(x) exp [i(βz − ωt)]

H(x, z, t) = H(x) exp [i(βz − ωt)]

(1.3)

where β is the wave vector along z direction.

With Eq. 1.3 and 1.2, we can separate Maxwell equations into two parts (noting that

∂/∂y = 0






























βEy = ωµHx

∂Ey
∂x = iωµHz

iβHx − ∂Hz
∂x = −iωǫEy

(1.4)
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





























βHy = −ωǫEx
∂Hy
∂x = −iωǫEz

iβEx − ∂Ez
∂x = iωµHy

(1.5)

where ǫ is the electric permitivity, and µ is the magnetic permeability. Eq. 1.4 has E

field parallel to the interface of layers, and called transverse electric (TE) wave. While

Eq. 1.5 has H field parallel to the interface, called transverse magnetic (TM) wave. By

eliminating Hx and Hz (Ex and Ez) from Eq. 1.4 (1.5), we can get scalar Helmholtz

equation:

∂2Ey

∂x2
+ (k2

0n
2
j − β2)Ey = 0 (1.6)

∂2Hy

∂x2
+ (k2

0n
2
j − β2)Hy = 0 (1.7)

where k0 is the wave vector in vacuum, and j = 1, 2, 3.

When the condition k0n1(3) < β < k0n2 is satisfied, we can see the solutions have

main energy confined in layer 2 with exponential decay into the top and bottom layer

along x direction, due to total internal reflection. But not any β satisfying such condition

will exist because of the boundary condition. So we are interested in these eigen modes

in the waveguide, who has no energy leakage when propagates along the layer with high

refractive index. Let take TE wave for instance.
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Let’s assume the eigen mode can be express in such form

Ey(x) =







































A exp [−q(x− h)] x > h

B cos(κx) + C sin(κx) 0 < x < h

D exp(px) x < 0

(1.8)

By submitting Eq. 1.8 into Eq. 1.6, we get































κ =
√

k2
0n

2
2 − β2

q =
√

β2 − k2
0n

2
1

p =
√

β2 − k2
0n

2
3

(1.9)

Because of the continuity of Ey(x) and ∂Ey(x)/∂x at x = 0, h, we can get















































A = B cos(κh) + C sin(κh)

D = B

−Aq = −Bκ sin(κh) + Cκ cos(κh)

Dp = Cκ

(1.10)

Finally, with Eq. 1.10 and 1.9, we get the characteristic equation

tan(κh) =
κ(p+ q)

κ2 − pq
=

κ

[

√

k2
0(n2

2 − n2
1) − κ2 +

√

k2
0(n2

2 − n2
3) − κ2

]

κ2 −
√

k2
0(n2

2 − n2
1) − κ2

√

k2
0(n2

2 − n2
3) − κ2

(1.11)
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For symmetric structure, where n1 = n3, it can be simplified as:

tan(κh/2) =

√

k2
0(n2

2 − n2
1) − κ2

κ
(1.12)

Once the κ is get, we can calculate the eigen modes of waveguide by Eq. 1.3 and 1.8.

We are not going to detail of the waveguide mode solutions. But it’s worth to check the

a couple of things. Assuming

φ21 = arctan(
p

κ
) (1.13)

φ23 = arctan(
q

κ
) (1.14)

then from Eq. 1.11 we can get

κh = lπ + φ21 + φ23 (l = 0, 1, 2 · · · ) (1.15)

This is the phase quantization condition for waveguide mode. We can see here κ is

the wave vector along x direction, l is the order of waveguide mode, and φ21(3) is the

phase change when wave experiences total internal reflection on the interfaces. The

smaller h is, the less number of modes the waveguide can support. β =
√

k2
0n

2
2 − κ2

is the wave vector component parallel to interface. We can introduce the parameter

neff ≡ k0/β =
√

n2
2 − κ2/k2

0, which is only a function of h and l. For an arbitrary
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shape thin planner cavity, we have the scalar wave equation (TE polarization)

(∇2
x,y,z + k2

0n
2
j )E = 0 (1.16)

By separating variable E(x, y, z) = ψ(y, z)X(x), where X(x) satisfy the solutions of

Eq. 1.8, in layer 2 we have

(∇2
x,y,z + k2

0n
2
2)ψX = (∇2

y,z + k2
0n

2
2 − κ2)ψX = (∇2

y,z + k2
0n

2
eff )ψX = 0 (1.17)

In this way, we simplify the 3D wave equation to a 2D Helmholtz equation:

(∇2 + k2
0n

2
eff )ψ = 0 (1.18)

for general thin planner cavity problem. Note that Schröndinger equation has the same

form in 2D system.

Whispering gallery modes For circular disk, it’s more convenient to solve the Helmholtz

equation (Eq. 1.18) in cylindrical coordinates.

∂2ψ

∂r2
+

1

r

∂ψ

∂r
+

1

r2
∂2ψ

∂φ2
+ k2

0n
2
eff ψ = 0 (1.19)
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By separating variables ψ(r, φ) = R(r)Φ(φ), we can get

r2
d2R

dr2
+ r

dR

dr
+ (k2

0n
2
eff − u)R = 0 (1.20)

d2Φ

dφ2
− uΦ = 0 (1.21)

The exact solutions with dielectric boundary conditions are complicate [4]. For high-Q

modes in microdisks with total internal reflection on the boundary, we can take approx-

imation ψ(r = R0, φ) = 0, where R0 is the radius of disk. With periodic boundary

condition for φ, we get Φ(φ) = eimφ with u ≡ m2,m = 0,±1,±2, · · · . So the solutions

for Eq. 1.20 inside the cavity can be write as

ψin(r, φ) = Jm(2πrneff/λm,n)e
imφ (1.22)

where Jm(r) is Bessel function of m order, and the resonant wavelength λm,n can be

quantized by χm,n:

λm,n = 2πneffR0/χm,n (1.23)

where χm,n is the nth zero of Jm(r). Such eigen modes are called whispering gallery

modes [5]. Figure 1.3 shows the intensity distribution of a WGM12,1.

The wave of WGM propagating outward from the disk into the surrounding low

index region is evanescent, and the energy can only leak form the cavity to free space by
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Figure 1.3: (a) Intensity distribution of a WGM with m = 12, n = 1. (b) E-field
distribution along radius.

quantum tunneling. So usually WGM has very high-Q, which can be roughly estimated

as Q ≈ exp(2mη), where η = tanh
[

(1 − 1/n2
eff )

1/2
]

− (1 − 1/n2
eff )

1/2 [3].

1.2 Quantum dots

Quantum dots (QDs) refer to nano-scale solid state structures, in which electrons are

confined in all directions. Similar to electrons orbiting an atom with certain quantized

energy levels, all the available states in a quantum dot exist only at discrete energies.

Thus quantum dots can be regarded as artificial atoms [6]. Because most quantum dots

have their lateral dimensions much larger than vertical extension, they can be treated

as large 2D atoms. Figure 1.4 shows a shematic comparison of a real 3D atom and a

dis-shaped quantum dot [7].

Compare to real atom, quantum dots have much larger size, and the quantization

energy is of the same order of magnitude as the electron-electron Coulomb interaction.

One would expect in quantum dots an interplay between quantization and Coulomb

interaction-induced effects for multiple charges.
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Figure 1.4: Schematic comparison of a real atom (left) and a quantum dot “atom” (right)
represented by a dis-shaped quantum dot
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Figure 1.5: Schematic energy-band diagram

Semiconductor quantum dots can be formed by microstructuring of a quantum well

in 2-dimensions [8]. A better controlled method is self-organized epitaxial growth due to

lattice mismatch. Typical structure is InAs grown on a GaAs surface. Because of the

lattice mismatch between these two materials, the minimization of strain energy leads to

the formation of small InAs islands. Dimension of the quantum dots grown in this way

is 2.8 nm in height and 24 nm for base dimension for 1.8 monolayer (ML) InAs deposit

on GaAs substrate.

Figure 1.5 shows a schematic energy-band diagram of InAs quantum dots sample.

InAs has smaller band gap compare to GaAs. Carrier generated in the GaAs layer will

diffuse and be trapped by InAs quantum dots. The radiative transitions between electron

and hole confined states show narrow peaks in the photoluminescence (PL) spectra due

to their discrete energy levels. Despite of narrow emission spectrum linewidth of an
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individual quantum dot, the self-organized quantum dot sample usually shows a broad

PL spectrum due to inhomogeneous broadening, which is result from the Gauss statistics

of quantum dots size distribution.

1.3 Classical and quantum phase space representation

The phase space representation is a very useful tool to study the chaotic system. With

proper mapping method, phase space representation usually shows more clear physical

picture. In this section, we first give an brief description of phase space representation

and several important concepts in 2D classical dynamical system, then followed by the

corresponding quantum system representation.

Classical billiard

2D billiard is a classical system of a point particle moving freely in the region of the plane

bounded by a closed curve B (the “billiard”) and being reflected elastically at impacts

with B, according to the law: “the angle of reflection equals the angle of incidence”.

Since the ray dynamics is basically a billiard problem, this simple system provides a

good model to study the classical optics in 2D system.

Poincaré Surface of Section The phase space of a 2D Hamiltonian system has four

canonically conjugate variables:
{

px, py;x, y
}

, where px(y) is momentum and x(y) is

position coordinate. Since the energy is conserved in billiard problem, px and py are
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restrained by p2x+ p2y = const, thus one of the dimension is reduced. Yet the phase space

diagram still has 3D structure, which is difficult to visualize. Further investigation into

the billiard system, one can find that the particle moves in straight lines between impacts

with boundary B, and an trajectory may be completely specified by giving the sequence

of its positions and directions immediately after each impact. Thus, a 2D surface of

section (SOS) can be chosen in the 3D phase space, by only taking into account the

intersections of the orbit with the boundary [10]. Such technique is called Poincaré SOS

method, namely a reduction of a N -dimensional continuous time system to an (N − 1)-

dimensional discrete time map.

For illustration, we choose a simple system of circular billiard, as shown in Fig.1.6.

The two conjugate variables we used for the SOS map are {s, p}, where s denotes the arc

length of the position the orbit impact with boundary, and p is the tangential momentum

at position s. s usually is normalized to 1, and p can be expressed by the angle of

incidence χ as: p = sin(χ) for a unit mass particle. As we can see in the figure, because

of the rotational symmetry, the tangential momentum is conserved. So the blue spots

representing the trajectory in phase space lay on a horizontal line.

An orbit in phase space consists of consequent number pairs (dots in 2D map)

{sn, pn}, corresponding to the nth bounce. This discrete dynamics can be expressed

as a mapping M symbolically:









sn+1

pn+1









= M









sn

pn









(1.24)



25

Figure 1.6: (a) Ray trajectory in circular billiard, and (b) corresponding SOS map.
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Figure 1.7: (a) Poincaré SOS map of quadruple billiard r(θ) = r0[1+ ǫcos(2θ)], ǫ = 0.07.
(b) Invariant curve. (c) Stable periodic orbit, with island structures in vicinity. (d)
Chaotic orbit

Types of orbits There are three ways in which the orbit generated by infinitely iter-

ations of M can be explored in phase space (as shown in Fig.1.7).

(i) Periodic orbit A finite set of N points {s1, p1}, {s2, p2}, ..., {sN , pN} may be

encountered repeatedly (Fig.1.7(c)). Symbolically such closed orbit satisfies









sn+N

pn+N









= MN









sn

pn









=









sn

pn









(1.25)

so that each of its N points is a fixed point of the mapping MN .
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(ii) Invariant curve The iterates of {s1, p1} may fill a smooth curve, which maps onto

itself under M , although its individual points do not map onto themselves (Fig.1.7(b)).

(iii) Chaotic orbit The iterates of {s1, p1} may fill an area in phase space (Fig.1.7(d)).

this happens when the orbit, unrestricted by the existence of any conserved quantity,

evolves in a chaotic manner whose detail is sensitively dependent on the values of s1 and

p1.

Stability of periodic orbit The closed periodic orbits may be stable or unstable in

the sense that an orbit starting at {s1 + δs1, p1 + δp1}, where δs1 and δp1 is small, may

after many bounces remain near the closed orbit or may deviate increasingly from it. For

an N periodic orbit, the deviation after N iterations will be:









δsn+1

δpn+1









= MN









δs1

δp1









(1.26)

where MN is a 2×2 monodromy matrix. The orbital stability depends on the eigenvalues

of the MN , given in terms of the trace by:

λ± =
1

2

{

TrMN ± [(TrMN )2 − 4]1/2
}

(1.27)

After Nj iterations (i.e. j traversals of the closed orbit), the deviations
{

δsNj , δpNj
}
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can be written as a linear combination:









δsNj

δpNj









= Aλ
j
+









δs+

δp+









+Bλ
j
−









δs−

δp−









(1.28)

There are three possibilities.

(i) Unstable periodic orbit (UPO) If |TrMN | > 2, λ± are real, so that

λ±j = c±jγ (1.29)

The positive exponent guarantees that almost all the deviations grow exponentially so

that orbit is unstable. γ here is called Lyapunov exponent, which is an index of instability

of the orbit.

The dynamics in a stadium billiard with non-zero straight section is ergodic [11], i.e.,

all the orbits are unstable. The Lyapunov exponent of a UPO in stadium billiard can be

derived from the monodromy matrix MN =
∏N
i=1mi, where mi takes the form [12]:

ms
i =









1 0

−li−1 1









(1.30)
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for a point on a straight section, and

mc
i =









(2αili−1/R) − 1 2αi/R

−li −1









(1.31)

for a point on a semicircle. Here li is the path length form (i − 1)th collision to ith

collision, αi = 1/sinχi, R is the radius of semicircle.

(ii) Stable periodic orbit If |TrMN | > 2, it follows

λ±j = c±i 2π j β (1.32)

In this case, the deviations oscillate about zero as j increases, and remain bounded. In

phase space this shows island structures (Fig.1.7(c)). Here β is the winding number. It

describes the number of turns of neighboring trajectories around the reference orbit in

phase space [13].

(iii) Neutral periodic orbit For the case |TrMN | = 2, the deviations increase linearly

as j increase. A typical example is an orbit in circular billiard.

Stable and unstable manifolds The stable manifold of a periodic orbit is the set of

points x such that the forward orbit starting from x approaches the fixed point. Similarly,

the unstable manifold of a periodic orbit is the set of points x such that the orbit going

backward in time starting from x approaches the fixed point [14]. Unstable manifold of
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an UPO can be acquired by Eq. 1.28, and Eq. 1.29 of the positive exponent term. While

the stable manifold can also be acquired by the same manner of unstable manifold, but

reverse the time (i.e., the orbit moves in the opposite direction).

Quantum Poincaré section: Husimi distribution

To study the classical correspondence of an eigenstate ψ of a quantum system, Husimi

function is introduced by projection of the eigenstate onto a coherent state [15]:

Hψ(q0,p0) = |〈q0,p0|ψ〉|2 (1.33)

Here |q0,p0〉 is a coherent state centered around q0 in configuration space and around

p0 in momentum space. The coherent state can be expressed in position representation

as:

〈q|q0,p0〉 = (
1

πσ2
)1/4 exp

[

−(q − q0)
2

2σ2
+ ip0 · (q − q0)/~

]

, (1.34)

where σ/
√

2 is the dispersion in position, and 1/(σ
√

2) is the dispersion in momentum

space. So the Husimi function can be written as:

Hψ(q0,p0) = (
1

πσ2
)1/2

∣

∣

∣

∣

∫

d2q exp

[

−(q − q0)
2

2σ2
+ ip0 · (q − q0)/~

]

ψ(q)

∣

∣

∣

∣

2

(1.35)

There’re several cases Husimi distribution can be simplified.
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Circular cavity Comparing with the classical Poincaré SOS, we are interested in the

Husimi distribution at the boundary. So we can take simplifications: q → s, and p0 ·

(q − q0)/~ → k sin(χ) (s− s0), where k is the wave number. And due to the periodicity

of s, Eq. 1.34 becomes:

〈s|s0, ks〉per =
∞
∑

n=−∞
〈s− n|s0, ks〉

= (
1

πσ2
)1/4

∞
∑

n=−∞
exp

[

−(s− n− s0)
2

2σ2
+ i k sin(χ) (s− n− s0)

]

(1.36)

with s, s0 ⊂ [0, 1). Here ks = k sin(χ), is the tangential component of k at the position

s0. So the Husimi distribution can be calculated from:

Hψ(s, ks) =

∣

∣

∣

∣

∫ 1

0
ds′
〈

s, ks|s′
〉

per ψ(s′)
∣

∣

∣

∣

2

(1.37)

Closed cavity For a cavity with arbitrary boundary shape, we can’t perform the sep-

aration of variables to make it a 1D integral. Yet in a closed cavity, the wave function ψ

at the boundary is zero. So ψ closed to the boundary B is approximated as [15]:

ψ(r, s) ≈ S(s) ≡ ∂ψ(r, s)

∂r

∣

∣

∣

∣

B

= ∇ψ · r|B (1.38)

So Husimi function can be approximately:

Hψ(s, ks) ≈
∣

∣

∣

∣

∫ 1

0
ds′
〈

s, ks|s′
〉

per S(s′)
∣

∣

∣

∣

2

(1.39)
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Husimi function at dielectric interface When dealing with optical system, mostly

the cavity is made of dielectric material without metal coating on the boundary. So the

boundary condition is more complicated. And light can not always be confined within

the cavity, but may escape from the cavity at certain incident angle. A modification

of Husimi distribution of Eq. 1.35 is introduced by using four Husimi representations

H
inc,em
j for incident (inc) and emerging (em) rays inside (j = 1) and outside (j = 0) the

interface [16]:

H
inc(em)
j (q0,p0) ∼

kj
2π

∣

∣

∣

∣

(−1)jFj hj(q0,p0) + (−)
i

k0 Fj
h′j(q0,p0)

∣

∣

∣

∣

2

(1.40)

with the angular-momentum-dependent weighting factor Fj =
√

nj cos(χj), nj is the

refractive index inside (j = 1) and outside (j = 0) the cavity. The functions

hj(q0,p0) =

∫

d2q exp

[

−(q − q0)
2

2σ2
+ ip0 · (q − q0)/~

]

ψj(q) (1.41)

h′j(q0,p0) =

∫

d2q exp

[

−(q − q0)
2

2σ2
+ ip0 · (q − q0)/~

]

ψ′j(q) (1.42)

are the overlaps of the wave function ψ and its normal (radial) derivative ψ′, taken on

the respective side j of the interface, with the coherent state. For a circular cavity, we

can do further simplifications, and the integral (Eq. 1.41, 1.42) will be reduced to 1D

problem as mentioned above, which shows the results of reference [16].
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1.4 Finite-difference time-domain method

Finite-difference time-domain (FDTD) method is a powerful computational electrody-

namics modeling technique. First introduced by Yee in 1966 [17], this method has been

developed for decays and become more and more popular with the advance of computer

power. The basic ideal of this method is central difference approximation for Maxwell’s

curl equations, both in space and time. FDTD enables the accurate characterization of

complex inhomogeneous structures for which analytical methods are ill-suited.

Yee’s algorithm Maxwell’s curl equations in an isotropic medium are

∂B

∂t
+ ∇ × E = 0 (1.43)

∂D

∂t
− ∇ × H = J (1.44)

with

D = ǫE; B = µH ; J = σE (1.45)

where ǫ is the electrical permittivity, µ is the magnetic permeability, and σ is electric

conductivity. Equations 1.43 and 1.44 can rewrite as

∂H

∂t
= − 1

µ
∇ × E (1.46)

∂E

∂t
=

1

ǫ
∇ × H − 1

ǫ
σE (1.47)
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Figure 1.8: Illustration of a standard Yee lattice used for FDTD, in which different field
components use different locations in a single unit cell.

In Cartesian coordinates, this yields six coupled scalar equations

∂Hx
∂t

=
1

µ

(

∂Ey
∂z

− ∂Ez
∂y

)

∂Hy
∂t

=
1

µ

(

∂Ez
∂x

− ∂Ex
∂z

)

∂Hz
∂t

=
1

µ

(

∂Ex
∂y

− ∂Ey
∂x

)

∂Ex
∂t

=
1

ǫ

(

∂Hz
∂y

− ∂Hy
∂z

− σEx

)

∂Ey
∂t

=
1

ǫ

(

∂Hx
∂z

− ∂Hz
∂x

− σEy

)

∂Ez
∂t

=
1

ǫ

(

∂Hy
∂x

− ∂Hx
∂y

− σEz

)

(1.48)

In Yee’s algorithm, we denote a space point in a uniform, rectangular lattice as

(i, j, k) = (i∆x, j∆y, k∆z) (1.49)
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Here, ∆x,∆y,∆z are, respectively, the lattice space increments in the x, y, and z coordi-

nate directions, and i, j, and k are integers. Further, we denote any function F of space

and time evaluated at a discrete point in the grid and at a discrete point of time as

Fn(i, j, k) = F (i∆x, j∆y, k∆z, n∆t) (1.50)

Using central finite difference approximations, the spatial and temporal derivative of F

are written as

∂Fn(i, j, k)

∂x
=
Fn(i+ 1/2, j, k) − Fn(i− 1/2, j, k)

∆x
(1.51)

∂Fn(i, j, k)

∂t
=
Fn+1/2(i, j, k) − Fn−1/2(i, j, k)

∆t
(1.52)

By applying Eq. 1.51 and 1.52 into the scalar equation 1.48, we get six explicit finite

difference equations

Ex
∣

∣

n+1
i+1/2,j,k =







1 −
σi+1/2,j,k∆t

2ǫi+1/2,j,k

1 +
σi+1/2,j,k∆t

2ǫi+1/2,j,k






Ex
∣

∣

n
i+1/2,j,k

+







∆t
ǫi+1/2,j,k

1 +
σi+1/2,j,k∆t

2ǫi+1/2,j,k











Hz
∣

∣

n+1/2
i+1/2,j+1/2,k

−Hz
∣

∣

n+1/2
i+1/2,j−1/2,k

∆y

−
Hy
∣

∣

n+1/2
i+1/2,j,k+1/2

−Hy
∣

∣

n+1/2
i+1/2,j,k−1/2

∆z



 (1.53)
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Ey
∣

∣

n+1
i,j+1/2,k =







1 −
σi,j+1/2,k∆t

2ǫi,j+1/2,k

1 +
σi,j+1/2,k∆t

2ǫi,j+1/2,k






Ex
∣

∣

n
i,j+1/2,k

+







∆t
ǫi,j+1/2,k

1 +
σi,j+1/2,k∆t

2ǫi,j+1/2,k











Hx
∣

∣

n+1/2
i,j+1/2,k+1/2

−Hx
∣

∣

n+1/2
i,j+1/2,k−1/2

∆z

−
Hz
∣

∣

n+1/2
i+1/2,j+1/2,k

−Hz
∣

∣

n+1/2
i−1/2,j+1/2,k

∆x



 (1.54)

Ez
∣

∣

n+1
i,j,k+1/2 =




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The location of each component in a single unit cell is shown in Fig. 1.8. E and H are
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evaluated at alternate half time steps, such that all field components are calculated in

each time step ∆t.

Since FDTD simulations calculate the E and H fields at all points of computational

domain, in many cases an artificial boundary is needed due to finite computing power.

Such boundary must be constructed so that the solution region appears to extend in-

finitely in all directions. Perfectly matched layer (PML) formulations [18] is one of many

commonly used grid truncation techniques. The basic idea is to construct artificial lay-

ers, within which the transmitted wave propagates with the same speed and direction

as the impinging wave while simultaneously undergoing exponential decay along the axis

normal to the interface. In this way, the scattering from the boundary layers can be very

small so that it will not affect the accuracy of the simulation.

FDTD simulation with rate equations To simulate nonlinear process such as lasing

behavior in microcavities, we propose an extended FTDT scheme incorporating rate

equations [19]. The rate equations describe the time evolution of the atomic energy

level populations under the influence of applied signals. The system considered here is a

simplified yet realistic four-level atomic system (Fig. 1.9) with energy levels ǫ0, ǫ1, ǫ2, ǫ3,

and populations N0, N1, N2, and N3, respectively. Wp is the external pumping rate that

transfers atoms from the ground ǫ0 state to the level ǫ3. 1/τij is the decay rate of an

atom from energy level ǫi to level ǫj .
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Figure 1.9: Population in four-level atomic system

The populations of each energy level can be modeled by the following rate equations

dN3(t)

dt
= Wp(t)N0(t) −

N3(t)

τ32
(1.59)

dN2(t)

dt
=
N3(t)

τ32
+

1

~ωa
E(t) · dP (t)

dt
− N2(t)

τ21
(1.60)

dN1(t)

dt
=
N2(t)

τ21
− 1

~ωa
E(t) · dP (t)

dt
− N1(t)

τ10
(1.61)

dN3(t)

dt
=
N1(t)

τ10
−Wp(t)N0(t) (1.62)

where ~ωa = ǫ2 − ǫ1 is the emission energy, P (t) macroscopic polarization, E(t) is the

electric field. The term 1
~ωa

E(t)· dP (t)
dt is the classical expression for instantaneous energy

transfer divided by the energy per photon, and is equivalent to stimulated transition

probabilities more commonly used in the rate equation.
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Accordingly, Maxwell’s equation in Eq. 1.46 and 1.47 can be rewritten as

∇ × E = −µ∂H
∂t

(1.63)

∇ × H = ǫ0
∂E

∂t
+
∂P

∂t
+ σE (1.64)

where ǫ0 is the vacuum electrical permittivity. The relation between P and E for an

isotropic dielectric medium can be described by the following equation

d2p(t)

dt2
+ ∆ωa

dp(t)

dt
+ ω2

ap(t) =
γr
γc

(

e2

m

)

(N1(t) −N2(t)) E(t) (1.65)

Here ∆ωa is the actual linewidth (gain spectrum width) of the transition centered at

angular frequency ωa. e and m are single electron charge and mass, correspondingly. γr

is the real atomic transition rate, and γc is the classical electron oscillator decay rate,

given by

γc =

(

e2

m

)

ω2
a

6πǫ0c3
(1.66)

c is the speed of light in vacuum.

Thus by applying N0, N1, N2, N3 and p to each unit cell in Yee’s lattice, we calculate

the evolution of population at each energy level for each time step with the changes of

field components, and followed by updating the macroscopic polarization p with Eq. 1.65
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and centered difference approximation

∂2Fn(i, j, k)

∂t2
=

(

Fn+1(i, j, k) − Fn(i, j, k)

∆t
− Fn(i, j, k) − Fn−1(i, j, k)

∆t

)

/∆t

=
Fn+1(i, j, k) − 2Fn(i, j, k) + Fn−1(i, j, k)

∆t2

(1.67)

The following chapters are organized as below. Due to it small size and high-Q,

microdisk shows prominent quantum effects. Semiconductor microdisks have been used

as a tool to study cavity quantum electrodynamics (QED). In Chapter 2, we demonstrate

our experimental observations of spontaneous emission rate enhancement from quantum

dots in microdisk. In reality, defects are inevitable during the fabrication process. The

roughness on the boundary of microdisk will strongly affect the WGMs, and eventually

spoil the Q factor. In Chapter 3, we show our studies on microdisk lasers with rough

boundaries that dynamical localization will suppress the classical diffusion in angular

momentum space and result in high-Q mode. Contrast to small scale deformation on

the boundary profile, in Chapter 4, we present our numerical and experimental studies of

large scale deformation - stadium cavities. And finally, we demonstrate some applications

of semiconductor microdisk laser in Chapter 5.
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CHAPTER 2

ENHANCEMENT OF SPONTANEOUS EMISSION OF

QUANTUM DOTS IN MICRODISK

2.1 Purcell factor

The emission of a photon from an excited atom is a result of the interaction between the

atom and quantized vacuum field. Therefor the spontaneous emission (SE) is affected by

the nature of quantized vacuum field around the atom. Just like classical electromagnetic

field can be modified by optical cavities to form different cavity modes, so can be quan-

tized vacuum field. Therefore a properly designed microcavity can strongly modified the

spontaneous emission of an emitter inside it.

Control of spontaneous emission in a microcavity has many applications, e.g. im-

provement of the efficiency of light emitting devices, generation of non-classical states of

light [20,21]. A microcavity reduces the number of allowed optical modes, but increases

the vacuum field intensity in these resonant modes. The spontaneous emission outside

the cavity resonance is suppressed, while the spontaneous emission within the cavity res-

onance is enhanced. For an emitter that has negligible linewidth and is ideally spatially

and spectrally coupled to a cavity mode, its spontaneous emission rate is enhanced by
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the Purcell factor

Fp =
3Q(λ/n)3

4π2Veff
, (2.1)

where Q is the cavity quality factor, Veff is the effective mode volume, λ is the emission

wavelength, and n is the index of refraction [22]. Initial experiments of spontaneous

emission control are performed on atoms [23–26]. Recently, semiconductor quantum

dots (QDs), sometimes called “artificial atoms”, attract much interest for spontaneous

emission control [27–33]. Using the self-organized growth technique possible with highly-

strained systems, InGaAs quantum dots are formed and exhibit three-dimensional con-

finement of electrons. Owing to their discrete density of electronic states, self-assembled

InGaAs QDs have extremely narrow homogeneous linewidth.

QDs embedded in microdisks are ideal systems for spontaneous emission control [34–

36]. The whispering gallery (WG) modes of microdisks have low volume and high quality

factor [38]. The homogeneous linewidth of InAs quantum dots is smaller than the spectral

width of WG modes. Thus, a large enhancement of the spontaneous emission rates should

be expected for QDs coupled to WG modes. However, inhomogeneous broadening of QD

energy levels and random spatial distribution of QDs in microdisks lead to complications.

The coupling of a QD to a WG mode depends both on the spectral matching of the QD

emission line with the WG mode frequency and on the spatial overlap of the QD with the

WG mode. Hence, the QDs, with different emission frequencies and spatial locations,

undergo different spontaneous emission rate enhancement. The average enhancement

factor is much less than the Purcell factor [35]. Recently, the Purcell effect of a single
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InAs QD in a GaAs microdisk is studied [36]. Although the frequency of the QD can be

tuned into resonance with a WG mode, its location in the microdisk cannot be controlled.

The spatial mismatch between the single QD and the WG mode reduces the spontaneous

emission enhancement factor.

In this Chapter, we demonstrate our directly measure the lifetime of radiative decay

of InAs QDs coupled to WG modes of GaAs microdisks [37]. Using the non-negative

least squares algorithm, we recover the distribution of spontaneous emission rates for

an ensemble of QDs. The maximum enhancement factor of spontaneous emission rate

exceeds 10.

2.2 Sample fabrication and optical measurement

The quantum dot sample is grown by molecular beam epitaxy. The structure consists of a

GaAs buffer layer, 500 nm Al0.7Ga0.3As, 45 nm GaAs, 2 monolayer (ML) InAs quantum

dots, 45 nm GaAs (Fig. 2.1 (a)). The areal density of InAs QDs is ∼ 1011 cm−2. The

photoluminescence (PL) spectrum of quantum dots at 5 K is centered around 970 nm

with a full width at half maximum (FWHM) of 20 nm.

The microdisks are fabricated by electron beam lithography and two-steps of wet

etching process [39]. As shown in Fig. 2.2, 100 nm silicon dioxide (SiO2) is deposited

on the wafer and used as the etch mask. Disk patterns are defined by electron beam

lithography with negative resist. Then the pattern is transferred from the e-beam resist

to the SiO2 etch mask by reactive ion etch (RIE). It is followed by two steps of wet
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Figure 2.1: (a) Layer structure of quantum dot wafer. (b) Scanning electronic microscope
(SEM) image of a microdisk
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etch. The first step is a non-selective etch, i.e., the sample is unselectively etched down

to the GaAs buffer layer in a dilute water solution of phosphoric acid (H3PO4) and

hydrodioxide (H2O2). The etch rate is low enough to allow a good control of etch depth.

The second step is a selective etch. A dilute solution of hydrofluoric acid (HF) is used to

etch the Al0.7Ga0.3 layer without attacking GaAs layers and InAs quantum dots. With

careful control of the etch time, microdisk structures are formed on top of the pedestals.

diameter of the disks is ∼ 3 µm. Each disk is supported by a 500-nm long Al0.7Ga0.3

as pedestal. The thickness of the disk is designed to be 90 nm so that it only supports

the lowest order transverse electric (TE) mode in the direction perpendicular to the disk

plane.

The sample is mounted in a liquid helium cryostat, as shown in Fig. 2.3. The sample

temperature is set at 5 K. The microdisks are optically excited by 200 fs pulses from a

mode-locked Ti:Sapphire laser with the repetition rate of 76 MHz. The excitation wave-

length is fixed at 780 nm (1.59 eV). A microscope objective lens focuses the pump beam

onto a single microdisk at normal incidence. The emission is collected from the side of

the microdisk with a short achromatic lens. A beam splitter splits the collected emission

into two. One half is dispersed by a 0.3 meter monochromator with 600 grooves/mm

grating, and then goes into a Hamamatsu streak camera for lifetime measurement. The

temporal resolution is 17 ps. The other half is directed to a 0.5 meter spectrometer with

1800 grooves/mm grating, and detected by liquid nitrogen cooled CCD array detector for

simultaneous spectral measurement. The spectral resolution is about 0.06 nm. Bandpass
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Figure 2.2: Fabrication process of microdisks.



48

Figure 2.3: Optical measurement setup.

filters are used to attenuate the scattered pump light.

Figure 2.4 (a) shows a two dimensional (2D) image taken by the monochromator-

streak camera. The incident pump intensity is 4.2×102 W/cm2. The horizontal axis

is wavelength, the vertical axis is time. Figure 2.4 (b) is the time-integrated spectra

obtained from Fig. 2.4 (a). The spectral peaks at 965.6 nm and 973.5 nm correspond to

the WG modes TE17,1 and TE13,2, respectively. The background emission, with nearly

constant intensity over the measured wavelength range, comes from the spontaneous

emission of QDs that are not coupled to the cavity modes. From Fig. 2.4 (a), we extract

the time traces of PL at various frequencies. For wavelengths both shorter and longer
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than the cavity resonances, the PL curves exhibit mono-exponential decay. The decay

time, obtained from mono-exponential curve fitting, is ∼ 570 ps (Fig. 2.5). This value is

close to the measured decay time of InAs QDs in the unprocessed sample.

Figure 2.5 also plots the PL curve at the wavelength of TE13,2 mode. From the

spectral linewidth of TE13,2 mode measured by the 0.5-meter spectrometer with 1800

grooves/mm grating, we find its Q value is around 3600. The InAs QDs, located near

the center of the microdisk, have little spatial overlap with the TE13,2 mode. Thus their

coupling to TE13,2 mode is very weak, even if their emission frequency is in resonance

with the TE13,2 mode. In anther word, the collected PL at the wavelength of TE13,2

mode consists of a resonant part and a nonresonant part. The resonant part represents

the emission of QDs into the TE13,2 mode, while the nonresonant part comes from the

emission of uncoupled QDs. We curve fit the temporal decay of PL with a double-

exponential function I(t) = I1 exp[−(t − t0)/t1] + I2 exp[−(t − t0)/t2] + I0. The first

term corresponds to the resonant part, the second term is the nonresonant part, the third

term is the background noise. t1 represents the decay time averaged over all coupled QDs.

t2 is the off-resonant spontaneous emission decay time. According to the curve fit of PL

decay at off-resonance wavelength, the value of t2 is set at 570 ps. t0 represents the

starting point of the curve fit. In our case, the curve fit starts after the emission pulse

reaches its intensity maximum. I1, I2, and I0 are fitting parameters. The fitted curve is

plotted in Fig. 2.5. The fitting result gives t1 = 150 ps. Thus, the average enhancement

factor for spontaneous emission rates of coupled QDs is 3.8.
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Figure 2.4: a) A 2D image of InAs QD emission from a 3 µm disk taken by the
monochromater-streak camera. The incident pump intensity is 4.2×102 W/cm2. (b)
The time-integrated spectrum obtained from (a).
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Figure 2.5: Time-resolved PL curves extracted from Fig. 2.4 (a) at the wavelengths 977.7
nm (curve A), and 973.5 nm (curve B). The dotted line represents a mono-exponential
fit for curve A. The dashed line represents a double-exponential fit for curve B.



52

2.3 Distribution of spontaneous emission rates

First, we briefly derive the expression of Purcell factor. Consider a radiating dipole

weakly coupled to the field in a cavity, if the emission line is much narrower spectrally

than the cavity resonance, we can calculate its spontaneous emission rate through the

Fermi Golden Rule [40]

γ =
2π

~2
ρ(ωe)

〈

|〈d · ǫ̂(re)〉|2
〉

(2.2)

where ρ(ωe) is the density of photon modes at the emitter’s angular frequency ωe, ǫ̂ is the

electric field operator, re is the location of the emitter, and the averaging of the squared

dipolar matrix element is performed over the various modes “seen” by the emitter. Field

quantization leads to the following expression for the electric field operator for the cavity

mode

Ê(r, t) = i ǫmaxf â(t) + h.c. (2.3)

where h.c. is Hermitian conjugate, and â is the photon creation operator. f is a complex

vector of the mode spatial function which describes the local field polarization and relative

field amplitude. It’s normalized so that its norm is unity at the antinode of the electric

field. ǫmax can be estimated by expressing of vacuum-field energy ~ω/2

ǫmax =

√

~ω

2ǫ0n2Veff
(2.4)
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Veff =
1

n2

∫

n(r)2 |f(r)| d3r (2.5)

n is the refractive index at the field maximum and Veff is the effective cavity volume,

which describes how efficiently the cavity concentrates the EM field in a restricted space.

For a cavity supporting a single-mode (angular frequency ωc, linewidth ∆ωc, and qual-

ity factor Q = ωc/∆ωc), the mode density seen by the emitter is given by a normalized

Lorentzian

ρcav(ω) =
2

π∆ωc
· ∆ω2

c

4(ω − ωc)2 + ∆ω2
c

(2.6)

whereas the “free-space” mode density can be written as

ρ0(ω) =
ω2V n3

π2c3
(2.7)

V here is nomalized volume.

Therefore, from Eq. (2.2, 2.3, 2.4, 2.6, 2.7), we can estimate the enhancement of a

QD’s spontaneous emission rate γ by a WG mode as

γ

γ0
=

3Q(λc/n)3

4π2Veff

∆ω2
c

4(ω − ωc)2 + ∆ω2
c

|E(r)|2

|Emax|2
2 η2 (2.8)

γ0 is the spontaneous emission rate of the QD in free space (without a cavity). ω is

the QD emission wavelength. The first term in Eq. 2.8 is the Purcell factor Fp. The

second and third terms describe the spectral and spatial matching between the QD and
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the WG mode. The factor of 2 comes from the two-fold degeneracy of the WG mode.

η = d · ǫ(r)/ |d| · |ǫ(r)| describes the orientation matching between the dipole of the QD

and the polarization of the WG mode.

The Purcell factor Fp is only related to cavity properties (Q, Veff ). It indicates the

maximum Purcell effect for an ideal emitter. This ideal emitter should be: 1) perfectly

matched spectrally with the cavity mode (ω = ωc), 2) located at the maximum of the

electric field, and 3) with its dipole aligned with the local electric filed. Note that Fp is

for one of the resonant cavity modes alone. Despite a possibly large value of the Purcell

factor, the spectral, spatial and orientation mismatches lead to significant reduction of

the enhancement factor. Assuming uniform distribution of QDs in space and in spectrum,

we estimate the average enhancement factor:

〈

γ

γ0

〉

= Fp

(

1

2λw

∫ λw

−λw

∆λ2
c

4(λ− λc)2 + ∆λ2
c
dλ

)

(

1

V

∫

|f(r)|2 d3r

)

2
1

3
(2.9)

λw is the full width at half maximum (FWHM) of the WG mode. For the experimental

TE13,2 mode, Fp ∼ 25, and the average enhancement factor is estimated to be 3.4. It is

close to the experimental value.

Since the spontaneous emission enhancement factor depends on the spectral and spa-

tial overlap of the QD with the WG mode, each QD in the microdisk undergoes a specific

spontaneous emission rate enhancement. Some QDs, with better spectral and spatial cou-

pling with the WG mode, experience large enhancement of their spontaneous emission

rates. Hence, the spontaneous emission rates for the coupled QDs have a distribution.
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Compared to the average enhancement factor, a more accurate way of describing the

spontaneous emission enhancement is to introduce a distribution function P (γ) for the

spontaneous emission rates γ. The temporal evolution of emission intensity I(t) at the

frequency of a WG mode can be written as:

I(t) =

∫ ∞

0
P (γ) e−γt dγ (2.10)

where P (γ) is normalized:
∫∞
0 P (γ)dγ = 1. We numerically solve the above integral

equation 2.10 to retrieve P (γ) from the measured I(t). We use the truncated singular

value decomposition to find the distribution with minimal L2 normal
∫∞
0 [P (Γ)]2 dΓ = 1

[41–43]. The nonnegative constraint, P (Γ) > 0, is applied to the search for P (Γ). The

numerical solutions of P (γ) are achieved with help of commercial program DYNALS.

Figure 2.6 shows the distributions of the spontaneous emission rates P (γ) recovered

from on-resonance and off-resonance PL decay curves I(t). Curves A and B represent

P (γ) at the off-resonance wavelength of 978 nm under the incident pump intensities of

4.2×102 and 1.3×103 W/cm2, respectively. Curves C, D, and E represent P (γ) at the

wavelength of TE13,2 mode under the incident pump intensities of 2.8×102, 4.2×102 and

1.3×103 W/cm2, respectively. At the off-resonance wavelength, the distribution function

is a narrow peak centered at ∼ 2 GHz. The central decay rate corresponds to a decay time

of ∼ 500 ps. This value is close to the decay time obtained from the mono-exponential

curve fitting of the non-resonance PL curves. At the wavelength of TE13,2 mode, P (γ)

has a long tail at the higher decay rate. This indicates the decay rates for some QDs are
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Figure 2.6: Distributions P (γ) of decay rates γ extracted from the PL curves at the
wavelengths 978 nm (A,B), and 973.5 nm (C,D,E). The incident pump intensities are
(A) 4.2×102, (B) 1.3×103 , (C) 2.8×102, (D) 4.2×102, and (E) 1.3×103 W/cm2.
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enhanced. The higher decay rates can result from the spontaneous emission enhance-

ment or the stimulated emission. In the absence of stimulated emission, the decay rate

distribution P (γ) should be independent of the pump intensity. As shown in Fig. 3, the

on-resonance decay rate distribution at the pump intensity of 4.2×102 W/cm2 (curve

D) is almost identical to that at 2.8×102 W/cm2 (curve C). This confirms that curves

C and D represent the distribution of spontaneous emission rates. In another word,

the pump intensity of 4.2×102 W/cm2 is low enough that the stimulated emission into

TE13,2 mode is negligible. According to curves C and D, the spontaneous emission rates

for some QDs exceed 20 GHz. The corresponding decay time is less than 50 ps. There-

fore, the spontaneous emission enhancement factor for some QDs exceed 10. When the

pump intensity is increased to 1.3×103 W/cm2, the on-resonance decay rate distribution

changes. P (γ) is extended further to higher decay rates. The change of P (γ) illustrates

the emergence of stimulated emission into TE13,2 mode. Note that at the same pump

intensity of 1.3×103 W/cm2, the off-resonance decay rate distribution (curve B) remains

identical to that at 4.2×102 W/cm2 (curve A). This means stimulated emission does

not exist in the off-resonance PL. Therefore, at the cavity resonant frequency stimulated

emission emerges at much lower pump intensity, owing to the high Q of the WG mode.

An important issue in the measurement of the spontaneous emission enhancement

by a microcavity is the elimination of stimulated emission. Some QDs have stronger

coupling to the cavity mode, and stimulated emission could occur in them at a lower

pumping intensity, where most QDs still spontaneously emit photons. Thus, it is difficult
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to estimate the pumping intensity when stimulated emission can be neglected for all the

QDs. From the dependence of the decay rate distribution on the pumping intensity, we

can identify the onset of stimulated emission for all the QDs, which thus eliminates the

possibility of having stimulated emission in any QDs.

In summary, we have studied the enhancement of spontaneous emission rates for InAs

QDs embedded in GaAs microdisks in a time-resolved PL experiment. Inhomogeneous

broadening of the QD energy levels and random spatial distribution of the QDs in a

microdisk lead to a broad distribution of the spontaneous emission rates. Using an

efficient regularized method based on the truncated singular value decomposition and

the non-negative constraints, we extract the distribution of spontaneous emission rates

from the temporal decay of emission intensity. The maximum spontaneous emission

enhancement factor exceeds 10.
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CHAPTER 3

DYNAMICAL LOCALIZATION IN MICRODISK LASERS

WITH ROUGH BOUNDARY

3.1 Ray dynamics in microdisks with rough boundaries

Due to their compact dimensions, long mode lifetime, and high versatility, semiconductor

microdisk resonators are among the most suitable components for microlasers, microsen-

sors, and micro-detectors [40, 44, 45]. The scientific and engineering aspects of these

devices have therefore recently gained considerable attention [46,47].

The mode structure of these circular microdisk resonators is usually associated with

stable quasi-periodic whispering-gallery (WG) ray trajectories (Fig. 3.1(a)). Each such

trajectory corresponds to a particular value of angular momentum, characterized by the

(conserved) angle of incidence χ. This can be seen more clearly in Poincaré surface

of section (SOS) phase space. Here we represent trajectory in terms of arc length of

the position s and sine of angle of incidence χ, which is proportional to the angular

momentum. As shown in Fig. 3.1(c), ray trajectory in a circular disk is a straight

line in SOS. The corresponding resonant mode in the microdisk is called WG mode

(Fig. 3.1(b), (d) is the corresponding phase space - Husimi distribution) as discussed in

Chapter I. In the quasi-classic case – when the radius of the cavity R0 is much larger
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Figure 3.1: Classical ray trajectory in real space (a) and Poincaré SOS phase space (blue
line in c) of a circular disk. (b) shows the corresponding resonant mode in real space,
and (d) is the Husimi distribution of this mode. Black dash lines in (c) and (d) indicate
the position of critical angle in phase space sin(χ) = 1/n.
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than the “internal” wavelength λ = λ0/n (n being the refraction index of the disk)

– the modes of the system can be deduced from the regular trajectories via Einstein-

Brillouin-Keller quantization scheme [48–50]. Since the trajectories with sin(χ) > 1/n

are classically trapped inside the cavity, the finite lifetime of the corresponding modes of

the optical resonator is attributed to diffraction loss through the curved boundary known

as evanescent escape. Since such an escape corresponds to violation of classical (ray)

dynamics, it is exponentially suppressed (as any tunneling process in wave-mechanical

system), giving rise to the Q-factors up to 105 [38].

However, the above semiclassical ray-to-wave correspondence is based on the fact

that the conserved angular momentum of the ray trajectory can be used as a “good

mode number” for the wave-optical system, and thus is valid only for an ideal circular

geometry. Any deviations from this ideal case – due to e.g. boundary roughness and

surface defects, leading to light scattering (and correspondingly to change of the angular

momentum of the trajectory), will inevitably break this idealized picture.

In particular, the symmetry of the resonator boundary is generally broken by the

surface roughness, which is inevitable in the device fabrication. For example, the surface

roughness may be transfered from mask, or introduced during lithography and etching

process. Quantitatively, for a disk with short-range deformed boundary:

R(φ) = R0 +
M
∑

l=1

1

l
[al cos(lφ) + bl sin(lφ)] (3.1)

where R0 = 〈R(φ)〉 is the average of the radius and M ≫ 1, the degree of roughness can
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be characterized by the parameter κ:

κ =

〈

(

dR

dφ

)2
〉1/2

=

√

M

〈

a2
〉

+
〈

b2
〉

2
(3.2)

Below the critical value of κc corresponding to the classical transition from integra-

bility to chaos (whose value is not universal and depend on the functional form of the

deformation δR (φ) ≡ R (φ) − R0), the ray trajectories inside the cavity remain quasi-

regular (Fig. 3.2 (b)) and are still trapped inside by the total internal reflection. In this

case, the mode patterns and lifetimes can be obtained using adiabatic approach [48, 51]

assuming that the high-Q modes of the asymmetric resonator adiabatically evolve from

the original WG modes of the circular resonator.

In contrast to this behavior, for κ > κc the ray dynamics inside the cavity becomes

completely chaotic, and no classical orbits are trapped inside the cavity (Fig. 3.2(c)).

Nevertheless, when we go back to the wave optics problem, the high-Q modes can

exist in the cavity even in the case κ > κc. The physical reasons behind this seeming

inconsistency strongly depend on the relation between the size of the cavity and the

wavelength of light inside the system. Namely, when the deviations from the idealized

geometry are substantially smaller than the wavelength, they only lead to a small change

in the mode patterns and lifetimes which can be calculated using perturbation theory. In

this regime the high-Q modes preserve their “whispering-gallery nature”, regardless of

the nature of the resulting ray dynamics in the “rough” resonator. Quantitatively [52],
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Figure 3.2: The typical ray trajectory in circular (a) and rough (b, c) resonators. The
resonator geometry in (b) corresponds to the adiabatic regime (κ ≈ 0.06), the geometry
in (c) corresponds to the device studied in our experiments (κ ≈ 0.2).
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in rough resonators, the perturbative regime is observed when

κ≪ λ/R0 (3.3)

Many earlier experiments, including the pioneering work of McCall et al [3], probed this

regime.

In contrast to this behavior, when the requirement (3.3) is violated and κ ≥ λ/R0,

the (chaotic) nature of the underlying ray dynamics does strongly affect the modes of

the resonator. The famous “Berry’s conjecture” [53] then implies that the modes follow

the random patterns formed by chaotic ray trajectories, and behave essentially similar to

random superpositions of plane waves. As Berry’s conjecture has been extensively tested

for various geometries [54], one may be strongly tempted to conclude that high-Q modes

in microdisk resonators can only be found for small roughness when κ < max [λ/R0, κc]

– which implies severe limitations on the fabrication tolerance of the final device perfor-

mance.

However, in the mechanism known as dynamical Anderson localization (DL) [55–59],

the destructive interference of the scattered light may lead to suppression of the chaotic

scattering and to the formation of the modes strongly localized in the phase space. In

particular, it was shown that in “rough billiards” dynamical localization may lead to

exponential localization of modes in the angular momentum space [52,60].

Although the refractive and evanescent escape from the dielectric microdisk resonator

make it a different dynamical system from a point particle in a billiard with ideal reflective
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Figure 3.3: The microdisks are fabricated by photolithography and two-step wet etching.

walls, the quasi-stationary states of the electromagnetic field in a rough optical resonator

retain the dynamical localized nature which shows up in the log-normal distribution

of their lifetimes [61]. By virtue of its “heavy tail” for large lifetimes, the log-normal

distribution implies the existence of high-Q modes even in a microdisk resonator with

strong boundary roughness. Lasing in one of these modes would therefore be a direct

evidence of dynamical localization.

Below, we present our study of lasing behavior from high-Q modes of semiconductor

microdisks with rough boundary. In section 2, we describe the details of our experimental

setup and measurement results. And section 3 is is devoted to theoretical simulations.

We calculate the quasi-stationary states in our microdisk devices, and directly show the

exponential localization of lasing modes in the angular momentum. By comparing the

theoretical mode patterns with the experimental data obtained by direct optical imaging,

we identify the lasing mode and confirm its dynamically localized structure.
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3.2 Lasing in rough microdisks

Our dielectric microlaser is made of 200 nm thick GaAs layer with a thin InAs quantum

well in the middle. The microdisks (with the typical diameter close to 5µm) are fabricated

by photolithography and two-step wet etching as shown in Fig. 3.3 (see Chapter 2 for

more detail). To isolate the disks from the GaAs substrate, each disk is supported by a

500nm-long AlGaAs pedestal. As the etching process is not exactly isotropic, the shapes

of the disk deviate from an ideal circle. Figure 3.4 shows the scanning electron microscope

(SEM) images of a typical disk – note the roughness at the disk boundary revealed in

the magnified image (left panel).

Figure 3.4: Top (a) and side (b) view SEM images of a GaAs microdisk on an Al0.7Ga0.3
pedestal.

The lasing experiment is performed on individual disks. Experimental setup is shown
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in Fig. 3.5. The microdisks are mounted in a low temperature cryostat, and cooled

down to 10K. The InAs quantum well is optically excited by a mode locked Ti-sapphire

laser at 790 nm. The pump beam is focused by an objective lens onto a single disk. The

emission from the disk is collected by the same lens, and sent to a 0.5-meter spectrometer

with a liquid nitrogen cooled charge coupled device (CCD) array detector. Figures 3.6

- 3.9 are the data of the measurement of the disk in Fig. 3.4. As shown in Fig. 3.6(a),

the emission spectrum features a broadband amplified spontaneous emission (ASE) and

several distinct peaks that correspond to the cavity modes. Figure 3.6(b) is a plot of

the intensity and linewidth of one mode at λ0=855.5nm as a function of the incident

pump power. When the pump power exceeds a threshold, the emission intensity exhibits

a sudden increase accompanied by a simultaneous decrease of the mode linewidth. This

threshold behavior corresponds to the onset of lasing oscillation in this mode. At high

pumping levels, lasing may occur in several cavity modes.

To find out the spatial profile of the lasing mode, we use a bandpass filter of 1nm

width to single out the mode at 855.5nm (Fig. 3.5). The filtered spectrum obtained in

this measurement, is shown in Fig. 3.7 as the blue solid curve. The spatial distribution

of the mode intensity on the disk surface is projected onto a digital CCD camera by the

objective lens. As shown in the inset I of Fig. 3.7, the near-field image of the lasing mode

reveals its intensity is concentrated near the disk edge. Thus, the lasing mode is similar

to a whispering-gallery mode, despite of the boundary roughness. We extract the spatial

intensity distribution I(r, φ) from the digital image, and calculate the radial distribution
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Figure 3.5: Optical measurement setup

by integrating over the angle:

Ir(r) =
1

2π

∫ 2π

0
I(r, φ)dφ (3.4)

The data for Ir(r) at several pump powers are shown in Fig. 3.8(a). Well below the

lasing threshold, Ir(r) represents the radial distribution of spontaneous emission, which

is nearly constant across the disk. When the pump power approaches the lasing threshold,

the contribution of the lasing mode gradually dominates the radial intensity distribution.

The intensity near the disk boundary grows much faster than that in the disk center.

This change in the intensity profile coincides with the rapid increase of the lasing mode

intensity in the emission spectrum. An intensity maximum is developed close to the

disk boundary. To confirm that the intensity maximum comes from the lasing mode, we
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Figure 3.6: (a) Spectrum of emission from the GaAs microdisk shown in Fig. 3.4. The
incident pump power is 44µW. (b) The emission intensity and linewidth of the mode at
855.5nm as a function of the incident pump power.
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measure the spatial distribution of the amplified spontaneous emission at the same pump

power – which is obtained when the frequency of the bandpass filter is tuned away from

any cavity resonance. The dashed curve in Fig. 3.7 shows the filtered spectrum of the

ASE alone. The inset II of Fig. 3.7 is the corresponding near-field image. It reveals a

virtually uniform distribution of the amplified spontaneous emission across the disk. The

radial distribution of ASE intensity, plotted as the dashed line in Fig. 3.8(b), is nearly

independent of r. The dramatic difference in the spatial distribution of the laser emission

and the ASE indicates that the lasing mode is localized near the disk boundary.

We also measure the spectra of emission from different parts of a microdisk. We use

an lens (as shown in Fig. 3.5, the lens is added in front of spectrometer) to project

a magnified image of the microdisk onto the entrance slit of an imaging spectrometer.

The magnification is about 400 times, thus the disk image is about 2mm in diameter.

We first fully open the entrance slit and rotate the grating to the position of the zeroth

order diffraction (i.e., reflection). The spectrometer projects the image at the plane of

the entrance slit onto the two-dimensional (2D) CCD array detector mounted at the

exit port. After aligning the disk image to the center of the entrance slit, we reduce

the width of the entrance slit to 0.1 mm. Now only the emission from a narrow strip

along the vertical diameter of the disk can enter the spectrometer. The grating is rotated

back to the position of the first-order diffraction, so that the light at different wavelength

is dispersed in the horizontal direction. The CCD array detector, located at the image

plane of the entrance slit, captures a 2D spatial-spectral image of the microdisk emission.
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Figure 3.7: The blue curve I and the inset I are the spectrum and near-field image taken
when the bandpass filter is tuned to the mode at 855.5nm. The red curve II and the
inset II are the spectrum and image taken when the bandpass filter is tuned away from
any cavity resonance. The incident pump power is 44µW.
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Figure 3.8: (a) Radial distribution of the emission intensity when the bandpass filter
is tuned to the mode at 855.5nm. The incident pump powers are marked next to the
curves. (b) The blue (red) curve represents the radial distribution of the laser emission
(or amplified spontaneous emission) intensity obtained from the inset I (II) in Fig. 3.7.



73

Figure 3.9: (a) Two-dimensional spatial-spectral image of the emission from the mi-
crodisk in Fig. 3.4. The incident pump power is 44µW. (b) Blue (red) curve is the
spectrum of emission collected from the edge (center) part of the disk, corresponding to
the horizontal strip marked by 1 (2) in (a). (c) Blue (red) line represents the emission
intensity distribution across the disk diameter inside the vertical strip marked by α (β)
in (a).
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The resulting “local” spectral data are presented in Fig. 3.9. In the panel (a), each

dark vertical line in the 2D image corresponds to a cavity mode. Because the vertical

coordinate in Fig. 3.9(a) represents the spatial location on the disk, we can obtain the

emission spectra from different parts of the disk by dividing the 2D image into many

horizontal strips. In particular, the horizontal strip marked by 1 corresponds to the disk

edge, while the strip marked by 2 is close to the disk center. The emission spectra,

obtained by integrating over the spatial coordinate inside the strips 1 and 2, are shown

in Fig. 3.9(b). In the spectrum of emission collected from the disk edge, the lasing peak

at 855.5nm is much higher than the ASE background. But in the spectrum of emission

taken from the disk center, the peak at 855.5nm is much weaker, although the ASE is a

little stronger. Similarly, by dividing the 2D images into vertical strips and integrating

over the spectral coordinate inside the strips, we can obtain the spatial distribution of

emission intensity in any frequency range. For example, the vertical strip marked by α

is centered at 855.5nm and has a width of 0.5 nm. It gives the spatial variation of the

lasing mode intensity across the vertical diameter of the disk [Fig. 3.9(c)]. The lasing

mode is peaked near the two ends of the disk. The vertical strip marked by β covers a

frequency range that has only ASE. It gives the spatial distribution of the ASE intensity

which is nearly constant across the disk diameter.

The above experimental data clearly show that in this 5 µm disk with rough boundary,

the lasing mode at 855.5nm has WG-like structure – its intensity near the disk boundary

is much stronger than that at the disk center. We have repeated the above measurements
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with many lasing modes in different microdisks, and similar results are obtained.

3.3 Dynamical localization of a lasing mode

To understand the dynamics inside the micro-resonator, it is necessary to consider the

system behavior in the phase (coordinate – momentum) space. We depict the classical

dynamics of the system via Poincaré surface of section (SOS).

If the system has circular symmetry, the angular momentum m~ of any trajectory

is conserved, where m = 2πnR/λ0 [49]. Correspondingly, each trajectory follows a 1D

horizontal line in SOS (Fig. 3.1). The line sin(χ) = 1/n effectively separates the SOS

into two parts. The trajectories which fall below this line can refractively escape from

the system. The ones above the “critical line” are classically trapped inside by the total

internal reflection. The corresponding modes of wave-dynamical system are allowed to

escape the cavity only through exponentially suppressed evanescent leakage, thus have

extremely high Q-factors [62].

Introduction of the boundary roughness dramatically changes the ray dynamics inside

the system. Thus the stability of all WG trajectories inside the experimental device

described in the previous section (corresponding to κ ≈ 0.2) is completely destroyed (see

Fig. 3.10). Furthermore, in the absence of circular symmetry, the angular momentum is

no longer a conserved quantity, and the system becomes classically chaotic. As the ray

propagates through such a cavity, its angular momentum undergoes the diffusive motion.
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Figure 3.10: Poincaré surface of section (SOS) in the microdisk of rough boundary shown
in Fig. 3.4. Note the chaotic dynamics in the fabricated microcavity.

No ray is now trapped above the “critical line”, which seemingly leads to the absence of

high-Q modes.

However, the classical angular-momentum diffusion of the initially close ray trajec-

tories may be suppressed by a destructive interference in wave-dynamical system. Such

an effect is known as dynamical localization, which in some sense similar to Anderson

localization of electrons in disordered potential; however, while the later takes place in

the real (coordinate) space, the former takes place in the phase (momentum) space and

is thus related to the system “propagation” (dynamics). The dynamical localization,

initially introduced for a quantum analog of classically chaotic kicked-rotator [55], was

later mapped onto the dynamics of quantum billiards [52] and semiclassical optical mi-

crocavities [61].

To confirm that the experimental lasing mode is in fact dynamically localized, we
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use the SEM image of the microdisk (Fig. 3.4) to digitize its shape and numerically

analyze its behavior. To numerically simulate the electromagnetic field distribution, we

use a generalization to open systems of the scattering quantization approach to quantum

billiard [66], originally introduced in ref. [65], and adopted for optical resonators in Ref.

[61]. This approach is based on the observation that every quantum billiard interior

problem can be viewed as a scattering problem. In the case of closed systems, the

internal scattering problem can be mapped rigorously to an external scattering problem,

and resulting scattering matrix is unitary. For the dielectric resonator problem with

radiation boundary conditions, we will see that the corresponding scattering operator is

inherently non-unitary, reflecting the physical fact of energy leakage.

In 2D system, Maxwell’s equations can be reduced to Helmholtz equation for the

scalarfield ψ with continuity conditions on the boundary ∂D:

(∇2 + n2
i k

2)ψi(x, y) = 0 (3.5)

ψ1|∂D = ψ2|∂D,
∂ψ1

∂v
|∂D =

∂ψ2

∂v
|∂D (3.6)

where ∂
∂v is normal derivative.

We assume the boundary R(φ) is some smooth deformation such that there exists only

one point of the boundary for each angle φ. We decompose the internal and external
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fields into cylindrical harmonics

ψ1(r, φ) =
∞
∑

m=−∞
(αmH

+
m(nkr) + βmH

−
m(nkr))eimφ r < R(φ) (3.7)

ψ2(r, φ) =
∞
∑

m=−∞
(γmH

+
m(kr) + δmH

−
m(kr))eimφ r > R(φ) (3.8)

Here H± are the Hankel functions of the first and second kind. For a quasi-bound

mode, it is safe to assume that there is no incoming waves in the external field, so that

δm = 0. The continuity conditions Eq. 3.6 give us further relations among the remaining

coefficients:

ψ1(φ,R(φ)) = ψ2(φ,R(φ)) (3.9)

∂ψ1

∂r
|φ,R(φ) =

∂ψ2

∂r
|φ,R(φ) (3.10)

These conditions can be written out as

∞
∑

m=−∞
(αmH

+
m(nkR(φ)) + βmH

−
m(nkR(φ)))eimφ =

∞
∑

m=−∞
γmH

+
m(kR(φ))eimφ

(3.11)

n
∞
∑

m=−∞
(αmH

+′

m (nkR(φ)) + βmH
−′

m (nkR(φ)))eimφ =
∞
∑

m=−∞
γmH

+′

m (kR(φ))eimφ

(3.12)

By multiplying both sides by e−inφ and integrating with respect to φ, we get a matrix
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equation for the coefficient vectors |α〉, |β〉 and |γ〉

H+
1 |α〉 + H−

1 |β〉 = H+
2 |γ〉 (3.13)

DH+
1 |α〉 + DH−

1 |β〉 =
1

n
DH+

2 |γ〉 (3.14)

and the matrices are defined by

[

H±
j

]

lm
=

∫ 2π

0
dφH±

m(njkR(φ))ei(m−l)φ (3.15)

[

DH±
j

]

lm
=

∫ 2π

0
dφH±′

m (njkR(φ))ei(m−l)φ (3.16)

Eliminating |γ〉, we obtain

S(k) |α〉 = |β〉 (3.17)

where the matrix S(k) is given by

S(k) =
[

n(DH+
2 )−1DH−

1 − (H+
2 )−1H−

1

]−1 [

(H+
2 )−1H+

1 − n(DH+
2 )−1DH+

1

]

(3.18)

In the interior expansion Eq. 3.7, the regularity of the solution at the origin requires

that |α〉 = |β〉. This provides us the quantization condition, considering the eigenvalue

problem of S(k)

S(k) |α〉 = eiϕ |α〉 (3.19)

where ϕ is a function of complex kq, and satisfies ϕ(kq) = q · 2π, q = 0,±1,±2, · · · .
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The real part of kq gives us the resonant frequency, while the imaginary part of kq gives

resonance width, which is related to resonant mode quality. By solving the quantization

condition, we can get the quantized eigenvalues and eigenvectors
{

kq,
∣

∣

∣α(q)
〉}

, so that

we can construct the resonant solutions of the interior and exterior problem. Details can

be found in Ref. [66].

With the boundary profile of the rough disk and S-matrix method, we are able to

calculate the resonant modes in such cavity and identify the lasing mode in experiment,

as shown in Fig. 3.11 (a). A direct comparison of the simulated and experimental

measurement is not possible due to the finite spatial resolution of the optical imaging

setup. Instead we compare the angle-averaged intensity distribution without any fitting

parameters. Figure 3.11 (c) shows that our numerical simulations well reproduce the

experimental data. The constant ASE background is subtracted from the measured

intensity distribution at the lasing frequency.

It reveals that the real space structure of the simulated mode in Fig. 3.11 (a) some-

what resembles the WG mode of regular (circular) resonator. Thus, similarly to the

standard WG modes most of the mode intensity is localized in an annular region along

the boundary. However, as opposed to the standard WG patterns (Fig. 3.1(b)), inside

the annulus the mode of the rough resonator shows strong and irregular intensity fluctu-

ations. Furthermore, while any WG wavefunction corresponds to some definite value of

the angular momentum, this mode shows the exponential distribution of different angular
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Figure 3.11: (a) Mode pattern of numerical simulation, and (b) experimental image. (c)
Radial intensity distribution of simulated mode shown in (a) (black curve), and intensity
of the experimental lasing in (b) with subtracted constant amplified spontaneous emission
background (blue dots).
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Figure 3.12: The angular-momentum distribution of the lasing mode obtained from our
numerical simulations. l ≈ 12.4 is the localization length. The red solid line correspond-
ing to critical angle sin(χc) = 1/n.

momentum components ψm, localized near some central angular momentum value m0:

ψm ∝ exp

(

−|m−m0|
l

)

, (3.20)

where the parameter l, which defines the localization length (in the unit of angular

momentum/~) is related to roughness parameter κ. Specifically, beyond the perturbative

regime, i.e. when the condition in Eq. (3.3) is violated, l ∝ (nkR0κ)
2 with k = 2π/λ0 [52].

As shown in Fig. 3.12, l ≈ 12.4 is obtained for the lasing mode in our simulation, which

indicates a clear evidence of the dynamical localization. Note that since DL as any

statistical process is often accompanied by strong fluctuations [52,63,64], the Eq. (3.20)

describes the envelope of the mode in the angular momentum representation.
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Since the escape from the resonator is dominated by a portion of the mode having

angular momenta below the critical value mc = nkR0sin(χc), the quality parameter of

the mode can be approximated using Q ≈ 1/ψ2
mc ∝ exp [2(m0 − kR0)/l] [61]. Therefore,

the dynamically localized mode with m0 sufficiently above the critical line and small (in

comparison with kR0) localization length, may have relatively long lifetime, and can be

used in all resonance-based systems (lasers, sensors, etc.). In our case, the theoretical

value of the Q-factor for the lasing mode is 4.7 × 103.

When the localization length [52] l ∝ (κnkR0)
2 becomes of the order of nkR0, the

escape from the resonator is no longer strongly suppressed by dynamical localization, and

the system no longer supports high-Q whispering-gallery modes – which sets an upper

bound for the roughness for an optical microdisk resonator

κ≪ 1/
√

nkR0 (3.21)

Note that in the semiclassical regime (kR0 ≫ 1) this criterion is much less stringent than

the perturbative border (3.3).

In conclusion, we have studied the effect of boundary roughness on the lasing modes

in semiconductor microdisks. Despite classically chaotic ray dynamics, our experiments

show lasing with decent threshold. We have demonstrated that the lasing modes in our

devices originate from dynamical Anderson localization. Our results demonstrate that

the microdisk resonators based on DL modes have a significant fabrication tolerance

advantage over their “regular” counterparts.
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CHAPTER 4

SEMICONDUCTOR ICRO-STADIUM LASERS

4.1 Open chaotic microcavities

Microlasers are essential components of integrated photonic circuits. To reduce power

consumption, low lasing threshold is desired, which can be realized with microcavities

of high quality factor Q. Among the various types of semiconductor microlasers that

have been developed over the past two decades, microdisk lasers have the highest qual-

ity factors. This is because light is confined in circular dielectric disks by total internal

reflection, and the only escape channel for light is evanescent tunneling whose rate is

extremely small. The major drawback of microdisk lasers is undirectional (isotropic)

output. To overcome this problem, deformation of the disk shape from circle was pro-

posed [51]. Directional laser output was observed in asymmetric resonant cavities of

quadrupolar deformation [67, 68]. Another type of deformed cavity is Bunimovich’s sta-

dium which consists of two half circles connected by two straight segments. Different

from a quadrupolar billiard, ray mechanics in a stadium billiard exhibits “full chaos”,

i.e., there exist no stable periodic orbits (Fig. 4.1). However, a dense set of unstable

periodic orbits (UPOs) are still embedded in the chaotic orbits. Although the UPOs are

found with zero probability in the classical dynamics, in wave mechanics they manifest
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themselves in the eigenstates of the system. There exist extra and unexpected concentra-

tions, so-called scars, of eigenstate density near UPOs [69]. Lasing has been realized in

both scar modes and chaotic modes of dielectric stadium with certain aspect ratio [70,71].

Highly directional output of laser emission was predicted [72] and confirmed in polymer

stadiums [73]. However, it is not known how the lasing modes would change when the

aspect ratio of the stadium is varied gradually. When optical gain is not high and uni-

formly distributed across the cavity, the lasing modes are typically the cavity modes of

high quality factor Q. Thus it is important to find out what the high-quality modes are

in the stadium cavities, and how their Q values depend on the cavity shape.

From the fundamental physics point of view, a two-dimensional (2D) stadium billiard

is a well-known model for classical and quantum chaos. There have been detailed studies

of the eigenmodes in closed stadium billiards, e.g., a microwave cavity where ray cannot

escape [54,69,74–78]. Even in the studies of conductance (transmission) through an open

stadium billiard, only a few leads are attached to the stadium boundary through which

ray can escape [79]. A dielectric stadium is very different in the sense that its entire

boundary is open so that refractive escape and tunneling escape of light could happen at

any point on the boundary. In terms of wave mechanics, the eigen-energies of a dielectric

stadium cavity are complex numbers whose imaginary parts reflect the lifetimes of the

eigen-modes. It is not clear whether the eigen-modes of a dielectric stadium can have

long lifetime, thus low lasing threshold. And if so what the physical mechanism for the

formation of long-lived modes is.
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Figure 4.1: (a) Structure of a stadium billiard. The deformation of the stadium is defined
as ǫ = a/r. (b) Poincaré SOS of a stadium with ǫ = 1.0.
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In this Chapter, we show our numerical simulations of high-Q modes in dielectric

stadiums [80], followed by our experimental studies of semiconductor microstadium lasers

[81]. We find for stadium with large deformations, high-Q modes are usually scar modes

consists of several UPOs. The interference of partial waves propagating along the different

orbits may minimize light leakage at certain deformation. Thus by tailoring the stadium

shape, we are able to achieve optimum light confinement in a dielectric microstadium

and thus a low lasing threshold.

4.2 Numerical simulations of small stadiums

We calculated numerically the high-quality modes in 2D dielectric stadium cavities. The

radius of the half circles is r, and the length of the straight segments is 2a (Fig. 4.1 (a)).

The area of the stadium is fixed while its shape is varied. We define the deformation

ǫ ≡ a/r. In our simulation, ǫ ranges from 0.1 to 1.6. The nonintegrable nature of the

problem precludes analytical results, thus we resorted to numerical computation in the

analysis of eigenmodes in a dielectric stadium surrounded by vacuum. The refractive

index of the dielectric n = 3. Using the finite-difference time-domain (FDTD) method

[82], we solved the Maxwell’s equations for the electromagnetic field both inside and

outside the cavity. The vacuum outside the cavity is terminated by a uniaxial perfectly

matched layer (UPML) that absorbs light escaping from the dielectric stadium into the

vacuum. We identify and characterize all high-Q modes in the spectral range of 600

- 1200 nm in two-step calculations. First, a short optical pulse of broad bandwidth
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is launched across the cavity to excite all resonant modes in the (vacuum) wavelength

range of 600 - 1200 nm. Photons in the low-Q modes quickly leak out of the cavity. Long

after the excitation pulse is gone, photons that still stay inside the cavity must be in

one of the high-Q modes. The Fourier transform of the intracavity electromagnetic field

exhibits narrow spectral peaks that correspond to these long-lived modes. The linewidth

of each mode reflects its Q value. Next, we repeated the FDTD calculation with quasi-

continuous wave excitation at the frequency of a high-Q mode. Since only one high-Q

mode is excited, the steady-state distribution of the electromagnetic field exhibits the

spatial profile of this mode.

To find out the classical ray trajectories that the high-Q modes correspond to, we

obtained the quantum Poincaré sections of their wavefunctions. We calculated the Husimi

phase space projection of a mode from its electric field at the stadium boundary. The

coordinates of the Husimi map are s and sinχ. s is the length along the boundary of

the stadium from point P (see the inset of Fig. 4.1), normalized to the perimeter of the

stadium. sinχ ≡ k‖/k, where k‖ is the k vector in the direction tangent to the stadium

boundary, k = 2πn/λ, λ is the wavelength in vacuum.

We have considered both transverse electric (TE) and transverse magnetic (TM)

polarizations, and obtained similar results in our calculation. The data presented in

this section are for the TM polarizations. Starting with a perfect circle, we gradually

increased the deformation ǫ while keeping the area of the stadium at 3.3 µm2. In the

range of ǫ from 0.1 to 1.6, we identified four classes of high-Q modes in the (vacuum)
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Figure 4.2: Maximum quality factor Qm of class I, II, III and IV modes, represented by
squares, up-triangles, down-triangles, and circles, as a function of deformation ǫ. Insets
are the spatial intensity distributions of typical modes of each class.
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wavelength range of 600 - 1200 nm. Figure 4.2 shows their maximum quality factor Qm

as a function of ǫ. Within each class, the highest-Q modes at different ǫ may not be the

same mode. As ǫ increases, Qm first decreases quickly, reaches a minimum at ǫ ∼ 0.6,

then starts increasing before reaching a plateau at large ǫ. Hence, ǫ ∼ 0.6 seems to

be a turning point, across which the spatial profiles of the high-Q modes also change

significantly. Based on these phenomena, we divided the deformation into two regimes.

In the regime of small deformation (ǫ . 0.6), Qm decreases monotonically as ǫ increases.

As will be shown in the next section, the high-Q modes in this regime, labeled as class

I and class II, have field maxima only near the stadium boundary. In the regime of

large deformation (ǫ & 0.6), Qm first increases with ǫ, then remains nearly constant with

small oscillations after ǫ exceeds 0.9. The high-Q modes in this regime, labeled as class

III and class IV, exhibit very different spatial profiles from those at small deformation.

As will be shown in section V, they have field maxima not only close to the boundary,

but also near the center of the stadium. Therefore, across the boundary (ǫ ∼ 0.6) of the

above two regimes, the characteristic of the high-Q modes changes dramatically, in other

words, different types of eigenmodes take over as the high-Q modes. In the following a

systematic study of the high-Q modes in the two regimes of deformation is presented.

4.2.1 high-Q modes in the regime of small deformation

We used the short pulse excitation to find all the high-Q modes in the (vacuum) wave-

length range of 600 - 1200 nm for ǫ . 0.6. Figure 4.3 is the spectrum of electromagnetic
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Figure 4.3: Spectra of electromagnetic field inside the dielectric stadium long after the
short excitation pulse is gone. The deformation is ǫ = 0.15
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field inside the stadium of ǫ = 0.15 long after the short excitation pulse is gone. There are

two groups of high-Q modes. Within each group, the modes have similar spatial profiles.

The group of class I modes is at shorter wavelength, while the group of class II modes

at longer wavelength. Using the quasi-continuous wave excitation, we studied individual

high-Q modes. Figure 4.4 (a) shows the spatial intensity distribution of a class I mode

at ǫ = 0.15. It is clear that the class I mode is not a chaotic mode, but a scar mode. To

identify the classical ray trajectories that the class I modes correspond to, we calculated

the quantum Poincaré sections of their wavefunctions. Figure 4.4 (b) is the Husimi phase

space projection of the class I mode shown in Fig. 4.4 (a). The main features are four

“pads”, which correspond to the rectangle orbit as illustrated in the inset of Fig. 4.4 (b).

Above the four pads, there is a “belt” which may represent long orbits that slide along

the stadium boundary. Moreover, the Husimi function has zero points near the diamond

orbit [marked by crosses in Fig. 4.4 (b)].

Similarly, the class II modes are also scar modes [Fig. 4.5 (a)]. As shown in Fig. 4.5

(b), the Husimi map of a class II mode consists of four “pads” that correspond to the

diamond orbit and a “belt” on top of it. It also reveals four zero points of the Husimi

function near the rectangle orbit [marked by dots in Fig. 4.5 (b)]. It is not clear why

class I modes form a group of high-Q modes in the wavelength region around 700 nm,

while the class II modes form a group of high-Q modes around λ ∼ 1000 nm. We notice

that within each group of high-Q modes, the frequency spacing between adjacent modes

is constant. Individual modes can be labeled by the number of field maxima N along the
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Figure 4.4: (a) Spatial intensity distribution of a class I mode in the dielectric stadium of
ǫ =0.15. (b) Husimi phase space projection of the mode in (a). The black dots represent
the rectangle orbit, which is shown schematically in the inset. The crosses correspond to
the diamond orbit.



94

Figure 4.5: (a) Spatial intensity distribution of a class II mode in the dielectric stadium
of ǫ =0.15. (b) Husimi phase space projection of the mode in (a). The crosses represent
the diamond orbit, which is shown schematically in the inset. The black dots correspond
to the rectangle orbit.

stadium boundary, as shown in Fig. 2(a). N is an even number due to the symmetry

of the wavefunction with respective to the horizontal x-axis and the vertical y-axis. We

compared the quality factor of individual modes within a group of high-Q modes. The

modes located spectrally near the group center always have higher Q values than those

away from the center. The small peaks around λ = 800nm in Fig. 4.3 (a) are class I or

II modes with lower Q factor.
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Figure 4.6: Quality factor Q (solid squares) and wavelength (open circles) of: (a) the
class I mode in Fig. 4.4, and (b) the class II mode in Fig. 4.5 as a function of the
deformation ǫ.
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To find out how the class I (II) modes change with the deformation, we traced indi-

vidual modes as we gradually varied ǫ. Figure 4.6 (a) [(b)] shows the calculation result for

the class I (II) mode in Fig. 4.4 (a) [4.5 (a)]. When ǫ increases, the mode shifts to longer

wavelength, and its Q value decreases. The wavelength shift is caused by an increase in

the stadium perimeter with ǫ as the area of the stadium remains constant. We repeated

the calculation with different class I (II) modes, and observed similar behaviors.

4.2.2 high-Q modes in the regime of large deformation

In the regime of large deformation ǫ & 0.6, we again found all the high-Q modes in the

(vacuum) wavelength range of 600 - 1200 nm with the short pulse excitation. Figure 4.7

shows the spectrum in the stadium of ǫ = 0.84 long after the short excitation pulse is

gone. The high-Q modes are sparse compared to the case of small deformation. Based

on their intensity distributions in the real space and phase space, we classified the high-Q

modes into two categories, class III and class IV. Figures 4.8 (4.9) exhibits the spatial

intensity distributions of two class III (IV) modes. These modes have field maxima not

only close to the boundary, but also in the center of the stadium. The class III mode has a

structure of “double-pentagon”, and class IV “double-circle”. The “double-circle” modes

have been observed previously in the stadium-shaped microwave billiard and dielectric

cavity [76, 83]. What is not known before is the change of their quality factor with

deformation ǫ. Figure 4.8 (c) [4.9 (c)] shows how the Q values of individual class III (IV)

modes vary with ǫ near ǫ = 1.0. For each mode, its Q value first increases with ǫ, then
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Figure 4.7: Spectra of electromagnetic field inside the dielectric stadium long after the
short excitation pulse is gone. The deformation is ǫ = 0.84
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decreases. There exists an optimal deformation ǫm for each mode at which its quality

factor reaches the maximum. Figure 4.8 (c) [4.9 (c)] also shows that the wavelengths of

individual class III (IV) modes increase with ǫ. This behavior is similar to that of class

I and class II modes.

The two modes of class III (IV), shown in Fig. 4.8 (4.9), have the same profile except

that the number of field maxima is different. We label the modes in terms of the number

of field maxima N along the stadium boundary. The two modes in Fig. 4.8 (a) and (b)

are labeled as III-56 and III-58, and the two modes in Fig. 4.9 (a) and (b) are IV-28

and IV-30. Because the stadium has symmetries about the x and y axes, N is always an

even number. The two modes in Fig. 4.8 (4.9) are adjacent modes, as their N numbers

differ by 2. The higher the N , the shorter the wavelength. After the mode of order N

reaches its maximum Q at certain ǫ, a further increase of ǫ sees the mode of order N + 2

in the same class takes over as the high-Q mode. Its Q value reaches the maximum at

larger deformation. Hence, within class III or class IV modes, the high-Q mode hops

from the mode of lower-N consecutively to the one of higher-N as ǫ increases. Since the

higher-N modes have shorter wavelength, the high-Q mode jumps to shorter wavelength.

This behavior is clearly seen in Fig. 4.10 for the class IV modes when ǫ increases in small

steps from 0.96 to 1.07 and N changes from 26 to 30. Individual modes shift slightly to

longer wavelength as ǫ increases. Yet the high-Q mode migrates to shorter wavelength,

forming a “high-Q band” with increasing ǫ. Figure 4.11 shows the optimal deformation

ǫm and the corresponding wavelength for each class IV mode in this high-Q band. The
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Figure 4.8: (a) and (b) are spatial intensity distributions of two adjacent class III modes
of order N = 56 and 58 at their optimal deformations. (c) Solid squares (triangles)
and open squares (triangles) represent the quality factor and wavelength of mode III-56
(III-58).
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Figure 4.9: (a) and (b) are spatial intensity distributions of two adjacent class IV modes of
order N = 28 and 30 at their optimal deformations. (c) Solid circles (triangles) and open
circles (triangles) represent the quality factor and wavelength of mode IV-28 (IV-30).
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Figure 4.10: Intracavity excitation spectra long after the short excitation pulse is gone.
ǫ increases in small steps from 0.96 to 1.07.

modes are antisymmetric with respective to the horizontal x-axis, while their symmetry

to the vertical y-axis alternates between odd and even.

The non-monotonic change in the Q value of a high-quality mode with ǫ and the

existence of an optimal deformation for maximum Q have not been reported before.

To explain these phenomena, we intend to understand the mode structures and their

corresponding classical ray trajectories. As an example, we consider a class IV mode,

whose intensity distribution is shown in Fig. 4.12 (a). Figure 4.12 (c) is the Husimi phase

space projection of this class IV mode at its optical deformation ǫm = 1.04. It reveals that
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Figure 4.11: Optimal deformation ǫm and corresponding wavelength for each class IV
mode in a high-Q band. Solid squares (open circle) represent the modes of even (odd)
symmetry about the y-axis. The inset shows the semiclassical prediction of wavelengths
(in unit of nm, horizontal axis) of class IV modes at various deformations (vertical axis)
in dielectric stadium cavities.
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the class IV mode consists mainly of two topologically distinct short periodic orbits: one

is the diamond orbit [marked by black dots in Fig. 4.12 (c)], the other is the bow-tie orbit

[marked by crosses in Fig. 4.12 (c)]. This result illustrates that the class IV mode is still

a scar mode. Note that scarring was introduced as a term for non-uniform field patterns

in systems like the stadium, because they were unexpected in the short-wavelength limit

where ray physics dominated the cavity properties. In the small cavities we simulated,

the wavelength was not short enough to apply the random-matrix theory, and the wave

solutions exhibited regular spatial patterns. Yet in the range of nkR that we studied,

most low-Q modes fill more or less uniformly the entire real space and phase space.

These modes are regarded as chaotic modes. In contrast, the class IV mode, as shown

in Fig. 4.12, exhibits non-uniform distribution in real space and phase space, thus it can

be considered as a scar mode. Its corresponding periodic orbits are above the critical

line for refractive escape (sinχ = 1/3). These orbits, which are unstable in the closed

stadium, remain unstable in the open stadium owing to small light leakage and long

dwell time inside the cavity. However, the measure of orbit instability, i.e., the Lypounov

exponent, is changed due to the open boundary condition. Because the class IV mode

is a multi-orbit scar mode, the interference of waves propagating along the constituent

orbits shown in Fig. 4.12 (b) could minimize light leakage out of the cavity [84,85]. The

interference effect depends on the phases of waves traveling in different orbits. Because

the phase delay varies with the orbit length which is a function of ǫ, the interference

effect may be optimized at certain deformation that gives the maximum Q value.
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Figure 4.12: Intensity distribution in real space (a) and phase space (c) of mode IV-28
at its optimal deformation ǫm = 1.04. (b) is a schematic of the constituent UPOs. The
black dots (crosses) in (c) correspond to the diamond (bow-tie) orbit.
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Next we present a possible explanation for the hopping of the high-Q modes to shorter

wavelength with increasing ǫ. To find the wavelength of a multi-orbit scar mode, we

applied the quantization rule to all the constituent orbits. Taking class IV modes as an

example, we utilized the Bohr-Sommerfeld quantization rule for the constituent diamond

and bow-tie orbits to determine the wavenumber k = 2πn/λ. Due to the relatively small

kR values of the class IV modes in our calculation, we consider only the resonances with

the lowest excitation in the transverse direction of the orbit. In other words, we only need

to quantize the longitudinal motion of ray along the orbit [86]. The quantization rule for

the diamond orbit is kd Ld +
∑4
i=1 φi − νd π/2 = 2πmd, where kd is the wavenumber,

Ld is the length of the diamond orbit, φi is the phase shift acquired during the i-th

bounce of the orbit with the stadium boundary, νd is the number of conjugate points

along the diamond orbit, md is an integer. Note that φi depends on the incident angle

χ of the ray on the stadium boundary, which varies with ǫ [87]. νd is equal to the

number of bounces with the half circles. For the diamond orbit, νd = 2. Similarly, the

quantization rule for the bow-tie orbit is kb Lb +
∑4
i=1 ϕi − νb π/2 = 2πmb, where kb

is the wavenumber, Lb is the length of the bow-tie orbit, ϕi is the phase shift acquired

during the i-th bounce of the orbit with the stadium boundary, νb is the number of

conjugate points along the bow-tie orbit which is equal to 4, and mb is an integer. If the

coupling between the constituent orbits is neglected, the class IV modes exist only when

the quantized wavenumbers of the two orbits coincide, i.e., kd = kb. We solved kd = kb

in the wavelength range of 600 - 1200 nm at various deformation. The inset of Fig.
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Figure 4.13: (a) Spatial intensity distribution. (b) Possible constituent UPOs (c) Husimi
projection of the class III mode III-50 in Fig. 4.7.

4.11 shows the wavelength that satisfies kd = kb as a function of ǫ. As ǫ increases, the

wavelength decreases. Because the coupling between the constituent orbits is neglected,

the wavelength determined by the quantization rule deviates from that obtained by the

numerical simulation [88, 89]. Nevertheless, the blue shift of the class IV high-Q modes

with increasing ǫ agrees qualitatively with the prediction of the semiclassical quantization

rule.
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The class III modes behave very much like the class IV modes. We identified the

possible constituent UPOs as hexagon orbit and bow-tie orbit. Finally we studied the

high-Q modes in the cross-over regime of ǫ ∼ 0.6. When ǫ increases and approaches the

turning point of 0.6, the “belts” in Figs. 4.4 (b) and 4.5 (b) gradually disappear from

class I and II modes, meanwhile additional components corresponding to non-WG-type

short UPOs start emerging in the Husimi map.

For comparison, we also calculated the high-quality modes of an open integral system

(dielectric elliptical cavity) and a partially chaotic system (dielectric quadrupolar cavity).

The boundary of elliptical cavity is defined as x2/a2 + y2/b2 = 1, and deformation ǫ is

defined as ǫ = a/b, a is the semimajor axis and b is semiminor axis. The quadrupolar

shape is defined as r(θ) = r0 [1 + ǫ cos(2θ)]. Typical high-Q modes in both cavity show

WG-like pattern with major intensity distributed around the boundary, as shown in the

insets of Fig. 4.14. These modes do not exhibit non-monotonic change of their quality

factors with the deformation, neither do they have optimal deformations at which their

Q values are maximized. Whether the behaviors of the high-quality modes observed in

the dielectric stadium cavities are unique characteristic of fully chaotic systems requires

further study.

Finally we discuss the implication of our results to the design of microlasers. For

many applications of microlasers, large deformation of cavity shape from circle is desired

for directional output. However, the spoiling of Q factor in the deformed cavity results

in an increase of the lasing threshold. Our calculation demonstrates that in the dielectric
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Figure 4.14: Solid squares and open squares represent the quality factor and wavelength
of a typical high-Q mode in (a) elliptical cavity and (b) quadrupolar cavity as a function
of deformation. Insets are the intensity distributions of corresponding modes
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stadium microcavities the Q spoiling would stop after the deformation exceeds a criti-

cal value. This behavior leads to a decent lasing threshold even at large deformation.

Note that our results are obtained with the calculation over a wide spectral range. The

commonly used semiconductor gain media have much narrower gain spectra. Since the

high-Q modes at large deformation are sparse, the chance of having a high-quality scar

mode within the gain spectrum is rather low. If the high-Q scar modes do not overlap

with the gain spectrum, lasing may occur in the low-Q chaotic modes located within

the gain spectrum but with much higher lasing threshold. Therefore, to reach low lasing

threshold, one must carefully choose the size and deformation of the stadium so that a

high-Q mode lies within the gain spectrum. Because of the low density of high-quality

modes at large deformation, it is easy to realize single-mode lasing, which has potential

application to single-mode laser.

4.3 Experimental optimization of lasing threshold

In this section, we demonstrate experimentally that low lasing threshold can be obtained

in a semiconductor microstadium by controlling its shape. Because the waveguide struc-

ture of sample we used in our experiment is not optimized for our purpose, the sizes of

microstadiums are larger than simulation ones in previous section to lower lasing thresh-

old.

The sample was grown on a GaAs substrate by molecular beam epitaxy. The layer

structure consists of 500nm AlGaAs and 200nm GaAs. In the middle of the GaAs layer
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Figure 4.15: SEM image of a semiconductor microstadium cavity (top view).

there is an InAs quantum well (QW) of 0.6nm. The lower refractive index of AlGaAs layer

leads to the formation of a slab waveguide in the top GaAs layer. Stadium patterns were

defined by photolithography. Then wet chemical etching was followed to form cylinder

structures. The major-to-minor-axis ratio of the stadiums was varied over a wide range

while the stadium area remains nearly constant. Figure 4.15 shows a SEM image of a

microstadium cavity.

To study their lasing properties, the stadium microcavities were cooled to 10K in

a cryostat, and optically pumped by a mode-locked Ti-sapphire laser at 790nm. The

optical setup is similar to the one in Chapter 3, as shown in Fig. 3.5. The pump beam

was focused by an objective lens onto a single stadium. The emission was collected by the

same lens, and sent to a spectrometer. As the pump power increased above threshold,

certain peak corresponding to cavity resonance showed drastically increasing of peak
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Figure 4.16: Emission spectra from a microstadium of ǫ ∼ 1.51 under pump power 0.44
mW (red curve) and 0.25 mW (black curve).
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Figure 4.17: Lasing spectra from twelve GaAs stadiums with different deformations.

intensity (Fig. 4.16), accompanied with width narrowing. These phenomena confirmed

lasing behavior in microstadiums.

Lasing was realized in most stadiums with ǫ ranging from 0.4 to 2.2 and area ∼ 70µm2.

Figure 4.17 shows the emission spectra of twelve stadiums slightly above their lasing

thresholds so that we mainly see the first lasing mode. As ǫ increases, the first lasing

mode jumps back and forth within the gain spectrum of the InAs QW. It is not always

located near the peak of the gain spectrum. At some deformation, e.g. ǫ = 0.94, 1.9,

the first lasing mode is far from the gain maximum at λ ∼ 857nm. This phenomenon

is not caused by lack of cavity modes near the maximum of the gain spectrum. A few

small and broad peaks in the emission spectrum between 847nm and 857nm are due
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to cavity resonances. These resonances experiences higher gain than the lasing mode

at λ ≈ 847nm. The only reason they do not lase is their quality (Q) factors are low.

This result indicates the lasing modes, especially the first one, must be high-Q modes.

However, when the lasing mode is away from the maximum of the gain spectrum, the

relatively low optical gain at the lasing frequency results in high lasing threshold. This is

confirmed in Fig. 4.18, which shows the lasing threshold strongly depends on the spectral

distance between the first lasing mode and the maximum of the gain spectrum. Unlike

many deformed microcavities [49, 51], the lasing threshold in a microstadium does not

increase monotonically with the deformation, e.g., the lasing thresholds in stadiums of ǫ

= 0.7 and 2.2 are nearly the same despite of their dramatically different deformations.

To investigate individual lasing modes in microstadiums, we used a narrow band

pass filter of 1 nm to select one lasing mode and took its near-field image with a CCD

camera. Figure 4.19 shows the measurement result of a stadium with ǫ = 1.51. The

solid curve is the emission spectrum when the narrow bandpass filter is tuned to the first

lasing mode at λ = 856.95nm. The near-field image exhibits four bright spots on the

curved part of stadium boundary. We believe these four spots represent the positions of

major escape of laser light from the stadium. They can be seen from the top because

of optical scattering at the boundary. However, the scattering inside the stadium is so

weak that the spatial intensity distribution of lasing mode across the stadium could not

be observed from the top. By tuning the bandpass filter away from cavity resonances,

we took the near-field image of amplified spontaneous emission (ASE) shown as the inset
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Figure 4.18: Wavelength and lasing threshold of the first lasing mode of the microstadi-
ums in Fig. 4.17 as a function of ǫ.
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Figure 4.19: The dotted curve is the lasing spectrum from a GaAs stadium with ǫ
=1.51. A bandpass filter of 1 nm bandwidth selects the first lasing mode at 856.95 nm
(solid curve), and the inset A is the corresponding near-field image taken simultaneously.
The dashed curve is the spectrum when the bandpass filter is tuned away from cavity
resonances, the corresponding near-field image of ASE is shown in the inset B.

B of Fig. 4.19. The virtually constant intensity along the curved boundary suggests

the ASE leaves the stadium mainly through the boundary of half circles instead of the

straight segments. The clear difference between the near-field images of lasing mode and

ASE not only confirms the bright spots in the former are from the laser emission, but

also reveals the escape routes for laser emission and ASE are distinct.

To understand the experimental results, we simulated lasing in GaAs microstadiums.

The polarization measurement of laser emission from the stadium side wall confirmed the
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lasing modes are transverse electric (TE) polarized (the electric field is parallel to the

top surface of the stadium). From the calculation of TE wave guided in the GaAs layer,

we obtained the effective index of refraction neff ≃ 3.3. The exact size and shape of the

fabricated stadiums were extracted from the scanning electron microscope (SEM) im-

ages. Using the finite-difference time-domain (FDTD) method, we solved the Maxwell’s

equations for electromagnetic (EM) field inside and outside a two-dimensional (2D) sta-

dium of refractive index neff together with the four-level rate equations for electronic

populations in the InAs QW [19]. Light exiting the stadium into the surrounding air was

absorbed by uniaxial perfectly matched layers. The external pumping rate for electronic

populations was assumed uniform across the stadium, similar to the experimental situ-

ation. We gradually increased the pumping rate until one mode started lasing. Fourier

transform of the EM field gave the frequency of the first lasing mode. Figure 4.20 (a)

shows the intensity distribution of the first lasing mode at λ = 850.7 nm in the stadium

with ǫ = 1.51 and area ≃ 70µm2. The pumping rate is slight above the lasing threshold.

For comparison, we also calculated the high-Q modes in the passive stadium (without

optical gain), in the way discussed in previous simulation section. By comparing the

lasing mode with the resonant modes of the passive cavity, we find the first lasing mode

corresponds to the highest-quality mode within the gain spectrum. As shown in Fig.

4.20 (a), the spatial profile of the first lasing mode is almost identical to the mode at λ =

850.7nm in the passive stadium. This result illustrates the nonlinear effect on the lasing

mode is insignificant when the pumping rate is not far above the lasing threshold.
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Figure 4.20: (a) Calculated intensity distribution of the first lasing mode in a stadium
with ǫ = 1.51 (top), and the corresponding mode in the passive stadium without gain
(bottom). Both modes have the wavelength 850.7 nm. (b) Husimi phase space projection
of the mode in (a). The squares, dots and crosses mark the positions of three different
types of UPOs shown in the inset.
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The intensity of light escaping through the stadium boundary can be approximated

by the intensity just outside the boundary. From the calculated lasing mode profile, we

extracted the intensity about 100nm outside the stadium boundary. To account for the

finite spatial resolution in our experiment, the output intensity distribution along the

stadium boundary was convoluted with the resolution function of our imaging system.

The final result is shown as dashed curve in Fig. 4.21. It agrees well with the measured

intensity along the stadium boundary (solid curve), especially since it reproduces the

positions of four bright spots in the near-field image of the lasing mode. Since there is no

other mode that has similar (low) lasing threshold and output intensity profile like the

measured one, we conclude the first lasing mode observed experimentally in the stadium

of ǫ = 1.51 corresponds to the calculated mode at λ = 850.7nm. The slight difference (less

than 1%) in wavelength is within the experimental error of determining the refractive

index of GaAs and AlGaAs at low temperature. The escape of ASE from a stadium is

simulated by classical ray tracing in real space, as the interference effect can be neglected

due to lack of coherence in ASE. The initial distribution of 1.2*105 rays is uniform in

real space (within the cavity) and in angular direction. Each ray is given unit amplitude

initially. At each reflection from the boundary, the amplitude is reduced according to

the Fresnel formula. The outgoing amplitude is recorded at the position of escape, and

reflected ray is followed until its amplitude falls below 10−4. The calculated the intensity

distribution of output rays along the boundary of a stadium with neff = 3.3 and ǫ =

1.51 is ploted as dashed curve in Fig. 4.21 (b). The ray-tracing result agrees with the
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ASE intensity distribution obtained from the near-field image [solid curve in Fig. 4.21

(b)].

To find out the classical ray trajectories that the lasing modes correspond to, we

obtained the quantum Poincaré sections of their wavefunctions. Figure 4.20 (b) is the

Husimi phase-space projection of the lasing mode in Fig. 4.20 (a), calculated from its

electric field at the stadium boundary. It reveals the lasing mode is a scar mode, and it

consists mainly of three different types of UPOs plotted in the inset of Fig. 4.20 (b). The

asymmetric 6-period orbit (together with it’s spatial symmetry partner) is indicated by

black squares in phase space, the symmetric double-quadrilateral orbit by green circles,

and bow-tie by blue crosses. Since the constituent UPOs are above the critical line for

total internal reflection, the lasing mode has long lifetime. We calculated the quality

factor of this mode in passive stadium as we varied the deformation ǫ around 1.51, as

shown in Fig. 4.22. Its Q value first increases then decreases as ǫ increases, leading to a

maximum at ǫ = 1.515. Such variation of quality factor is attributed to interference of

waves propagating along the constituent UPOs [80,90]. The interference effect depends on

the relative phase of waves traveling in different orbits. The phase delay along each orbit

changes with the orbit length as ǫ varies. At some particular deformation, constructive

interference may minimize light leakage out of the cavity, thus maximizing the quality

factor. Since the actual deformation ǫ = 1.51 is nearly identical (within 0.3%) to the

optimum deformation (ǫ = 1.515), the mode is almost at the maximum of its quality

factor. Furthermore, its frequency is close to the peak of the gain spectrum. Thus the



120

Figure 4.21: Output intensity of laser emission (a) and ASE (b) along the boundary of a
GaAs stadium with ǫ = 1.51 and area ≃ 70µm2. The range of the horizontal coordinate
is half of the stadium boundary, from the center of one straight segment to the other.
The solid curves are the experimental results extracted from the near-field images of the
lasing mode and ASE in the insets of Fig. 4.19. The dashed curves are the numerical
simulation results obtained with the FDTD method (a) and real-space ray tracing (b).
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Figure 4.22: Q-factor of the mode in Fig. 4.20 (a) as a function of ǫ.

lasing threshold is minimized, as shown in Fig. 4.18.

Contrary to the low threshold microlaser at ǫ ∼ 1.51, the microlaser of deformation

ǫ ∼ 1.9 experience much higher lasing threshold for the cavity resonance far away from

maximum gain region. Red curve in Fig. 4.23 shows the emission spectrum when a

narrow band pass filter was tuned to the lasing wavelength at 841.72nm. Inset A is the

corresponding near field image which shows six bright spots on the boundary of curved

ends. While the near field image of ASE emission (inset B) shows almost uniform inten-

sity distribution along the curved ends. Our numerical simulation identified the lasing

mode as shown in Fig. 4.24. The intensity distribution 100nm outside the boundary

of this mode, which is convoluted with spacial resolution of image system, shows good
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Figure 4.23: The dotted curve is the lasing spectrum from a GaAs stadium with ǫ =1.9. A
bandpass filter of 1 nm bandwidth selects the first lasing mode at 841.72 nm (solid curve),
and the inset A is the corresponding near-field image taken simultaneously. The dashed
curve is the spectrum when the bandpass filter is tuned away from cavity resonances, the
corresponding near-field image of ASE is shown in the inset B.
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coincidence with the experimental result (Fig. 4.25 (a)). This confirm our conclusion.

Similarly, the boundary intensity distribution of ASE image well reproduce ray-tracing

result, as shown in Fig. 4.25 (b).

To study the classical ray correspondance, we investigated in the Husimi distribution

of the lasing mode in Fig. 4.24 (a). It clearly indicates a scar mainly consisting two

UPOs, as shown in Fig. 4.24 (b). The “fish” orbit is indicated by black squares in phase

space, and double-quadrilateral orbit by blue circle. Since the constituent UPOs are

above the critical line for total internal reflection, the lasing mode may has long lifetime.

Yet the lasing threshold is among the highest, due to the poor gain coupling efficiency.

We simulated lasing in fabricated microstadiums with various deformations. By com-

paring the simulation results with the experimental data, we find the first lasing modes

always correspond to high-quality scar modes of the passive cavities. This is because the

gain spectrum of the InAs QW is broad enough to cover some of these modes. Note that

not all the scar modes have high quality or long lifetime. Nevertheless the chaotic modes

always have short lifetime, because their relatively uniform distributions in the phase

space facilitate the refractive escape of light from the stadium. If the gain spectrum is

too narrow to contain any high-Q scar modes, lasing may occur in low-Q chaotic modes

lying within the gain spectrum [71] but with much higher threshold.

One unique property of microstadium lasers is that the Q-spoiling is effectively

stopped at large deformation [80]. High-Q modes exist at large ǫ, due to nonmono-

tonic change of quality factors of some multi-orbit scar modes with deformation. Indeed
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Figure 4.24: (a) Calculated intensity distribution of the first lasing mode in a stadium
with ǫ = 1.9, and (b) the corresponding mode in the passive stadium without gain. (c)
Husimi phase space projection of the mode in (a). The squares, and dots mark the
positions of two different types of UPOs shown in the inset.
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Figure 4.25: Output intensity of laser emission (a) and ASE (b) along the boundary of
a GaAs stadium with ǫ = 1.9. The solid curves are the experimental results extracted
from the near-field images of the lasing mode and ASE in the insets of Fig. 4.23. The
dashed curves are the numerical simulation results obtained with the FDTD method (a)
and real-space ray tracing (b).
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we observed different types of high-Q scar modes consisting of several UPOs at various

deformations in our simulation. This observation is supported by our experiment result

that the lasing threshold at large deformation ǫ = 2.2 is nearly the same as that at small

deformation ǫ = 0.7. Since the lasing wavelengths in these two stadiums of same area are

nearly the same, the spectral overlap of the first lasing modes with the gain spectrum is

almost identical. Therefore, the almost same lasing threshold implies the quality factor of

the first lasing mode in the stadium with ǫ = 2.2 is nearly identical to that with ǫ = 0.7.

The effective stop of Q spoiling does not exist in the elliptical cavity (an integral system)

or the quadrupolar cavity (a partially chaotic system) [49, 51]. Those systems exhibit

continuous Q spoiling with increasing deformation when the cavity area is fixed [80].

Thus a global increase of lasing threshold is expected when the major-to-minor-axis ratio

of dielectric ellipse or quadrupole increases.

In summary, we demonstrated experimentally that lasing in a semiconductor mi-

crostadium can be optimized by controlling its shape. By tuning the stadium shape to

the optimum deformation, we not only optimize light confinement in the stadium but

also extract the maximum gain by aligning the mode frequency to the peak of the gain

spectrum. The simultaneous realization of the lowest cavity loss and the highest optical

gain leads to minimum lasing threshold of a microstadium laser. As the dielectric mi-

crostadium represents a completely open fully chaotic cavity, this work opens the door

to control chaotic microcavity lasers by tailoring its shape.
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CHAPTER 5

APPLICATIONS

Semiconductor microdisks based on whispering gallery modes usually have very high

cavity quality. And their small size and fabrication process compatible standard semi-

conductor technics make the microdisks one of the ideal devices for integrated optoelec-

tronics. Blow we demonstrate the applications of microdisk: UV microdisk lasers on

silicon substrate [91], and utilizing such lasers as chemical sensor [103].

5.1 Hybrid UV microdisk laser on a silicon substrate

As optoelectronics becomes increasingly important for information and communication

technologies, there is a need to develop optoelectronic devices that can be integrated

with standard silicon microelectronics [92]. Over the past decade, there has been much

progress in developing silicon-based optoelectronic devices such as waveguides, tunable

optical filters, add/drop switches, optical modulators, CMOS photodetectors, photonic

crystals, and microelectromechanical systems. In addition to these passive devices, active

optical devices such as lasers and light emitting diodes (LEDs) are also important com-

ponents of integrated photonic circuits. Despite recent development of efficient silicon

LEDs [93–95] and report of optical gain in silicon nanocrystals [96], a silicon-based laser
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has not yet been realized. We take a different approach in fabricating silicon-based laser:

instead of extracting optical gain from silicon, we grow other gain materials on top of

silicon substrates. Usually the lattice mismatch between the silicon substrate and the

grown material reduces the optical quality of the gain material. However, we showed a

few years ago that the zinc oxide (ZnO) thin films non-epitaxially grown on amorphous

fused silica exhibit high optical gain [97]. Following this result, we made ultraviolet

(UV) microdisk lasers on silicon substrates. Microdisks sustain high quality factor (Q)

whispering gallery (WG) modes that are confined by total internal reflection. The high

quality factor would enhance the spontaneous emission coupling efficiency and reduce the

lasing threshold [99]. We fabricated the microdisks with SiO2 instead of ZnO, because

SiO2 disks can have very high Q [62]. A very thin layer of ZnO is deposited on top of the

SiO2 disks and serves as the gain medium. As compared to the vertical cavities made of

distributed Bragg reflectors, microdisks not only have higher Q, but also are much easier

to fabricate. The main disadvantage of microdisk cavities is lack of directional output.

However, recent studies show that deformed microdisks can provide directional output

while maintaining high Q values [68,98,100,101].

We fabricated the microdisks on a commercial silicon wafer which has 320 nm SiO2

layer on the top. The wafer is spin-coated with 1.1 µm thick photoresist. Disk patterns are

defined by optical lithography. The disk diameter varies from 2 µm to 20 µm. Then the

pattern is transferred from the photoresist to the SiO2 layer by reactive ion etching (RIE).

The RIE etching consists of two steps. First, a gas mixture of carbon tetrafluoride (CF4)
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and hydrogen (H2)is employed for the highly selective etching of SiO2 over photoresist.

Secondly, a short time etching with a gas mixture of CF4 and O2 is used to fully expose

the silicon surface and facilitate the subsequent wet etching. A selective wet etching of

silicon by TMAH solution is followed, and the Si pedestal is formed underneath a SiO2

disk. Figure 5.1 is the scanning electron micrograph (SEM) of a SiO2 microdisk on top

of a Si pedestal. The disk diameter is 10 µm. We can see that the disk periphery is very

smooth. The edge of SiO2 disk is uniformly undercut by the selective wet etching. The

top of the Si pedestal is shown as the dark circle in the middle of the SiO2 disk in the

top view of SEM. Its diameter is 10 µm.

After the SiO2 microdisks are formed on the Si wafer, a thin layer of ZnO is grown

on top of the disks as the gain medium. The thickness of ZnO layer is about 40 nm.

The ZnO film is deposited by metalorganic chemical vapor deposition (MOCVD) in a

pulsed organometallic beam epitaxy (POMBE) system. The growth apparatus has been

described elsewhere [102]. Diethylzinc (DEZn) is used as the zinc precursor. It is stored

in a liquid bubbler and cooled down to -26◦C degree during ZnO growth. Helium gas

passes through the bubbler and carries DEZn vapor to reaction chamber. Oxygen is

introduced into the chamber via a separated line to prevent premature reaction. The

flow rates of helium carrier gas and oxygen are both controlled by mass flow controller

to 1 standard cubic centimeter per minute(SCCM) and 30 SCCM respectively. During

ZnO film growth, the sample is immersed in a oxygen plasma excited by microwave

energy with frequency at 2.45GHz. The sample is heated to 600◦C by resistive heating
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Figure 5.1: Scanning electron micrographs of a SiO2 disk. (a) Top view, (b) side view.
The disk diameter is 10 µm.
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Figure 5.2: Scanning electron micrograph of a 10 µm disk after the deposition of ZnO
film. The inset is a close-up view.

of sample holder. Figure 5.2 is the SEM of the microdisk structure after ZnO deposition.

A close-up view in the inset shows that the disk surface is uniformly covered by the ZnO

nanocrystals whose size is ∼ 30 nm.

The hybrid ZnO/SiO2 microdisk is optically pumped by the third harmonics (λ =

355 nm) of a mode-locked Nd:YAG laser (10 Hz repetition rate, 20 ps pulse width). A

microscope objective lens is used to focus the pump beam onto a single disk. Some

emission from the WG modes is scattered into the normal direction and collected by the

same objective lens. The emission spectrum is measured by a 0.5 meter spectrometer with
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a liquid nitrogen cooled CCD array detector. The sample is at the room temperature.

Figure 5.3 shows the spectrum of emission from a 10 µm disk. The peaks correspond

to the cavity modes. Some peaks have much higher intensity and narrower width than

the others. Figure 5.4 is a plot of the spectrally integrated intensity of a peak versus

the pump power. We can see that the emission intensity increases dramatically above a

pumping threshold, and eventually saturates. The spectral width of an emission peak is

plotted as a function of pump power in Fig. 5.5. The linewidth is decreased from 0.36

nm to 0.17 nm as the pump power increases. These data clearly illustrate lasing in the

hybrid microdisk cavities.

The commercial silicon wafer is not designed for microdisk structure. The oxide layer

thickness is not optimized for single guided mode operation. In fact the disk layer, which

consists of 320 nm SiO2 and 40 nm ZnO, supports three transverse electric modes (TE0,

TE1, TE2) and three transverse magnetic modes (TM0, TM1, TM2). For the TE modes,

the electric field is parallel to the disk plane; while for the TM modes, the electric field is

perpendicular to the disk plane. To identify the lasing modes, we calculate the effective

index of refraction neff for the guided modes at the ZnO emission wavelength. neff =

1.63, 1.36, 1.06 for TE0, TE1, TE2 modes, and neff=1.44, 1.24, 1.01 for TM0, TM1,

TM2 modes. From the effective index of refraction, we find the frequencies of WG modes

in a microdisk. The radial variation of the mode field is given by the Mth order Bessel

function JM (2πneffr/λm), where r is the radial coordinate, and m is the azimuthal

number. We assume the field is zero at the disk boundary, i.e., JM (2πneffR/λm) =
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Figure 5.3: Spectrum of emission from a 10 µm disk. The incident pump pulse energy is
(a)0.42 nJ, (b)0.95 nJ, and (c)1.8nJ.
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Figure 5.4: Spectrally-integrated emission intensity of a WG mode as a function of
incident pump pulse energy.
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Figure 5.5: The full width at half maximum of a WG mode versus the incident pump
pulse energy.
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0, where R is the disk radius. By solving for the zero points of JM , we obtain the

wavelength λm,n of the WG modes. n represents the order of the zero points for JM ,

and it is called the radial number. Thus a WG mode is labeled as TEXm,n or TMXm,n,

where X is the order of the guided mode. For our disks, X can be 0, 1, or 2. In a

10 µm disk, there are many WG modes within the ZnO gain spectrum. The frequency

spacing between some WG modes is so small that the modes cannot be resolved. Instead

they appear to be one relatively broad peak. Although there exist six guided modes,

the lasing modes are mainly the fundamental transverse electric mode TE0 (Fig. 5.3).

To explain this phenomenon, we plot the spatial profiles of the six guided modes in Fig.

5.6. The TE0 mode has the largest spatial overlap with the ZnO layer (gain medium).

Hence, it experiences the highest gain. We also notice the lasing modes have small radial

number n. This is because the WG mode with smaller n has larger effective radius. Its

wavefunction has less extension to the disk center, thus the scattering los caused by the

pedestal is minimized.

Although we have realized lasing in the hybrid ZnO/SiO2 microdisks, the pump

intensity required to reach the lasing threshold is quite high. The high lasing threshold

result from several factors. (i) Most incident pump light is not absorbed by the thin ZnO

layer. (ii) Higher-order guided modes compete for gain. (iii) Impurities in the SiO2 layer

absorb laser emission. (iv) ZnO nanocrystals induce scattering loss. Therefore, we believe

the lasing threshold can be significantly reduced by decreasing the SiO2 layer thickness

to suppress the higher-order guided modes, using pure SiO2 to eliminate absorption, and
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Figure 5.6: Calculated spatial profile of the waveguide modes for (a) TE0, TE1, TE2
modes, and (b) TM0, TM1, TM2 modes. The layers (with different colors) from left to
right along x-axis are air, ZnO, SiO2, ZnO, and air.
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reducing the size of ZnO nanocrystals to minimize the scattering loss.

5.2 Application of microdisk lasers to chemical sensing

Over the past few years, several techniques have been developed for the construction of

chemical sensors based upon photonic devices. Among them, sensors based on microdisk

or microsphere resonators have demonstrated superior sensitivity due to very high quality

factors of the resonances. [104–111]. This high refractive index sensitivity is essential

when contemplating the detection of a single or a few molecules [107, 109]. Microdisks

and microspheres sustain whispering gallery (WG) modes that are confined by total

internal reflection at the boundary. The large quality factor of WG modes results in

very high intracavity light intensity and extremely narrow resonant width [106]. To this

point, two mechanisms have been proposed and realized for microdisk/microsphere sensor

applications. The first type of microdisk/microsphere sensor relies upon the buildup of

pump light intensity inside the cavity to enhance the fluorescence of molecules near the

cavity surface [105,110]. The second variety measures the spectral shift of cavity modes

or decrease of transmission, due to refractive index change of the cavity or an increase

of optical absorption accompanying target localization. [104, 107, 109]. Owing to the

extremely narrow linewidths displayed by WG modes, tiny spectral shifts, and thus a

small number of molecules can be detected [108]. However, in these demonstrations, the

detection of spectral shift requires a laser source whose frequency can be continuously

tuned. Moreover, the efficient evanescent coupling of light into and out of WG modes



139

requires precise optical alignment, which is difficult to realize and maintain in a real-world

sensing application. To overcome the above limitations, we utilized microdisk lasers to

sense the presence of volatile organic compounds (VOCs). In particular, we detected the

shift of lasing frequency when chemical molecules are adsorbed to the disk surface. As

compared to passive cavities, the narrowing of WG modes by stimulated emission leads

to a further improvement of sensitivity.

Recently, we fabricated ultraviolet microdisk lasers on silicon substrates as described

in previous section. Silicon dioxide (SiO2) microdisks were fabricated on a commercial

silicon wafer by a combination of photolithographic, reactive ion etching and wet etching

methods. Subsequently a thin layer of nanocrystalline zinc oxide (ZnO) was grown over

the SiO2 disks by metalorganic chemical vapor deposition. ZnO is a wide bandgap semi-

conductor, and it served as a gain medium under optical pumping. Scanning electron

microscopy revealed that the SiO2 disk surface was uniformly covered by ZnO nanoparti-

cles with an average size of 30 nm. Lasing oscillation in the whispering gallery modes was

realized at room temperature. Since adsorption of organic molecules onto metal oxide

surfaces is largely due to non-specific van der Waals interactions, we chose to examine

the adsorption of toluene and nitrobenzene onto the microdisk surfaces. The observed

sensitivity to these two molecules demonstrated the feasibility of ZnO/SiO2 microdisk

laser-based sensing scheme.

Beginning with toluene, we introduced the volatile phase analyte into a home made

sample cell permitting simultaneous optical interrogation. The cell, constructed from
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aluminum, had a TorrSeal adhered quartz window and two chromed luer lock ports to

facilitate vapor delivery. Both of the analytes were initially prepared as saturated vapors

in organic impermeable Tedlar bags (Pollution Measurement Corporation, Oak Park, IL).

Subsequent vapor dilution, with N2 gas, and delivery was performed using a Model 1010

Precision Gas Diluter (Custom Sensor Solutions, Naperville, IL). ZnO/SiO2 microdisk

lasers were optically pumped by a frequency tripled mode-locked Nd:YAG laser (λ = 355

nm 10 Hz repetition rate, 20 ps pulse width). A microscope objective lens (10×) was

used to focus the pump beam onto a single disk. A portion of the emission from the WG

modes was scattered in the normal direction and collected by the same objective lens.

Lasing spectra were then taken by a 0.5 meter spectrometer with a liquid nitrogen cooled

charge-coupled-device array detector.

Keeping the pump intensity above the lasing threshold, lasing spectra were measured

upon exposure to toluene vapor. Figure 5.7 shows the spectra of laser emission from a

10 µm diameter microdisk at the incident pump pulse energy of 15 nJ. The SiO2 layer

is 320 nm thick, and the ZnO layer is ∼ 55 nm thick. As shown in Fig. 5.7, lasing

was observed in several WG modes. As the saturated toluene vapor, in N2, flew into

the sample cell, molecules were adsorbed onto the microdisk surface. The adsorbtion

led to an increase of the effective index of refraction of the disk, thus the WG modes

were shifted to longer wavelengths. After equilibrium was established between the vapor

phase and surface-bound toluene molecules, the lasing wavelength did not shift further.

Upon flushing with pure N2 gas, the lasing modes returned to their initial wavelengths.
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Figure 5.7: Temporal evolution of emission spectra of a microdisk laser upon exposure
to saturated toluene vapor in N2. The disk diameter is about 10 µm. The incident pump
pulse energy is fixed at 15 nJ. At t = 1 min, saturated vapor is introduced into the sample
cell. At t = 4 min, the vapor is switched to pure N2. The time interval is shown in units
of minutes.
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To test the detection range and linearity of the sensor, we then exposed the microdisk

laser to varying concentrations of toluene vapor. As the concentration was increased, in

terms of percentage of saturated toluene vapor, the lasing wavelength shifts monotoni-

cally to longer wavelengths. Figure 5.8 demonstrated this by plotting the lasing wave-

length shift as a function of the percentage of saturated toluene vapor exposed to the

microdisk laser. Finally, we investigated the temporal response characteristics of the

sensing scheme. Shown in Figure 5.9 are the responses of a microdisk laser to both 50%

and 100% saturated toluene vapor in N2. Both experiments validated the reversibility of

the sensor response and showed a response time on the order of half a minute. While still

very respectable, the relatively slow response is not a product of the sensing media or

approach, rather an artifact caused by the vapor delivery system employed. Specifically,

the dilutor pump has a relatively large mixing chamber and the Bev-A-Line IV tubing

used to deliver the vapor has an small, but significant affinity for these organic molecules.

The result of this is that equilibrium must be reached not only at the disk surface, but

also along the entirety of the tubing length causing the artificially slow response.

Figure 5.10 shows an extension of microdisk laser sensor to the detection of nitroben-

zene vapor. The experimental exposure procedure, identical to that for toluene, again

results in an observed red-shift of the WG lasing modes, with a maximum shift of 0.62 nm

in response to 50% saturated nitrobenzene vapor. But it takes much longer time for the

spectrum back to the original position when flushed with pure N2 gas. This is because the

nitrobenzene molecules stick firm to the surface of the system. Notably, the ZnO/SiO2
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Figure 5.8: Wavelength shift of the lasing mode (marked by the arrow in Fig. 5.7) as a
function of increasing percentages of saturated toluene vapor. The straight line represents
a linear fit.
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Figure 5.9: Wavelength shift of the lasing mode (marked by the arrow in Fig. 5.7) versus
time. The toluene concentrations are 50% saturated vapor in N2 (squares) and 100%
(triangles). The surface density of toluene molecules, calculated from the wavelength
shift, is also presented on a second y-axis.
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Figure 5.10: Temporal change of the wavelength of a lasing mode and the corresponding
surface density of nitrobenzene molecules upon exposure to 50% saturated nitrobenzene
vapor in N2

microdisk laser appears to be much more sensitive to nitrobenzene than toluene. In fact

a concentration of nitrobenzene 300 times lower than that for toluene induces an equal

shift in lasing frequency. We preliminarily attribute this to redox interactions between

the n-type ZnO and the nitro group of the target molecule [114].

From the shift of lasing frequency, we can infer the amount of organic molecules

adsorbed to the microdisk laser. The ZnO/SiO2 disk layer supports three transverse

electric modes (TE0, TE1, TE2) and three transverse magnetic modes (TM0, TM1,

TM2). For the TE modes, the electric field is parallel to the disk plane; while for the TM

modes, the electric field is perpendicular to the disk plane. From the guided mode profile

normal to the disk plane, we calculate the effective index of refraction neff for the guided
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modes at the ZnO emission frequency. In the absence of any organic molecules, neff =

1.68, 1.38, 1.09 for TE0, TE1, TE2 modes, and neff=1.47, 1.28, 1.02 for TM0, TM1, TM2

modes. From the effective index of refraction, we can calculate the frequencies of WG

modes in the microdisk. The radial variation of the electric field for a WG mode is given

by the mth order Bessel function Jm(2πneff r/λ), where r is the radial coordinate, and

m is the azimuthal number. The boundary condition can be approximated by assuming

that the field goes to zero at the disk edge: Jm(2πneffR/λ) = 0, where R is the disk

radius. By solving for the zero points of Jm , we obtain the wavelength λm,n of the WG

modes. n represents the order of the zero points of Jm, and it is called the radial number.

Thus a WG mode is labeled as TEXm,n or TMXm,n, where X is the order of the guided

mode. For our disks, X can be 0, 1, or 2. In a 10 µm disk, there are many WG modes

within the ZnO gain spectrum. The frequency spacing between some WG modes is so

small that the modes cannot be resolved. Instead they appear to be one relatively broad

peak. Although there are six guided modes, the observed lasing modes arise mostly from

the fundamental transverse electric mode TE0, because it has the largest spatial overlap

with the ZnO layer (gain medium).

In the cylindrical coordinates, the electric field distribution of the TEXm,n mode can

be expressed as:

E(r, θ, z) = Jm(frac2πneffrλ) eimθ fX(z) er , (5.1)

where er is the unit vector along the radial (r) direction and fX(z) represents the TE

mode profile in the vertical (z) direction. When organic molecules are absorbed onto the
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disk surface, they are polarized by the cavity electric field. The induced dipole moment

of a single molecule is represented by pm = αE, where α is the molecular polarizability.

The induced dipole causes a shift of the cavity photon energy h δν = −pm · E/2 =

−α |E|2/2, according to Refs. [112, 113]. When many molecules are adsorbed randomly

but uniformly onto the disk surface, we sum over their contributions to the frequency shift:

h δν = −(1/2)ασ
∫

|E(r, θ, z = d)|2r dr dθ, where σ is the surface density of molecules.

Thus, the fractional frequency shift is

δν

ν
=

−ασ
∫

|E(r, θ, z = d)|2 r dr dθ
2
∫

ǫs(z)|E(r, θ, z)|2 r dr dθ dz =
−ασ|fX(d)|2

2
∫

ǫs(z)|fX(z)|2dz , (5.2)

where ǫs(z) represents the material permittivity along the z direction. Using Eq.(2), we

calculated the surface density of adsorbed molecules from the frequency shift of the WG

modes, plotted in Figs. 5.9 and 5.10 for toluene and nitrobenzene, respectively.

In conclusion, we have demonstrated that ZnO/SiO2 microdisk lasers can be used

as chemical sensors. When molecules from the vapor phase are adsorbed onto the disk

surface, the lasing modes are red-shifted due to an increase in the effective refractive index

of the microdisk. From the shift, we calculate the spatial density of molecules on the

microdisk. The drastically different sensitivity of the ZnO/SiO2 microdisk laser to toluene

and nitrobenzene demonstrates the potential of chemically selective sensing by utilizing

differential adsorption or implementing an additional partition layer. Compared to the

passive microdisk/microsphere sensors, it is advantageous that the microdisk laser-based

sensors do not require tunable laser source, rather the pump laser frequency can remain
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fixed and detuned from any cavity resonance. Moreover, electrically-pumped microdisk

lasers have already been demonstrated [115], and their application to this sensor motif will

further empower our approach by eliminating the need for optical pumping all together.
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CHAPTER 6

CONCLUSIONS AND FUTURE PROSPECTS

Circular structures have very high symmetry. The optical modes in a dielectric microdisk

are whispering gallery modes with regular patterns and high quality factors. Introducing

deformation on the boundary will destroy the symmetry, and may even drive the classical

ray dynamics into chaos. As a result, the quality factors of high-Q optical modes also

get spoiled. This work presented here covers the studies of physics in semiconductor

microdisks and deformed microdisk lasers, namely spontaneous emission rates of quantum

dots embedded in microdisks, dynamical localization of a lasing mode in microdisk with

rough boundary, and high-Q modes in microstadium lasers.

We have fabricated InAs quantum dots microdisks, and studied the spontaneous

emission rates for the embedded quantum dots in the time-resolved photoluminescence

experiment. A quantum dot ideally coupled with high-Q whispering gallery mode has

very large enhancement of its spontaneous emission rate, characterized by Purcell factor.

Yet inhomogeneous broadening of the quantum dot energy levels and random spatial

distribution of the quantum dots in a microdisk lead to a broad distribution of the

spontaneous emission rates. Using a non-negative least norm algorithm, we extracted the

distribution of spontaneous emission rates from the temporal decay of emission intensity.

The maximum spontaneous emission enhancement factor exceeded 10.
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We have studied the lasing action from a dynamically localized mode in a microdisk

resonator with rough boundary. Although substantial boundary roughness and surface

defects in our devices imply strong light scattering and destroy the regular whispering

gallery modes, the destructive interference of the scattered light leads to the dynamical

Anderson localization in the angular momentum phase space of the system. While most

of the angular momentum components are above critical value corresponding to critical

angle, it forms a high-Q mode different from regular whispering gallery mode. Using

direct optical imaging of the lasing mode and theoretical calculations, we showed that

the lasing modes in our devices had dynamical localization origin.

We have presented a numerical study of the high-quality modes in two-dimensional

dielectric stadium microcavities. Although the classical ray mechanics is fully chaotic in

a stadium billiard, all of the high-quality modes show strong “scar” around unstable pe-

riodic orbits. When the deformation (ratio of the length of the straight segments over the

diameter of the half circles) is small, the high-quality modes correspond to whispering-

gallery-type trajectories, and their quality factors decrease monotonically with increasing

deformation. At large deformation, each high-quality mode is associated with multiple

unstable periodic orbits. Its quality factor changes non-monotonically with the deforma-

tion, and there exists an optimal deformation for each mode at which its quality factor

reaches a local maximum. This unusual behavior is attributed to the interference of

waves propagating along different constituent orbits that could minimize light leakage

out of the cavity. We also demonstrated experimentally that lasing in a semiconductor
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microstadium can be optimized by controlling its shape. Under spatially uniform optical

pumping, the first lasing mode in a GaAs microstadium with large major-to-minor-axis

ratio usually corresponds to a high-quality scar mode consisting of several unstable peri-

odic orbits. Interference of waves propagating along the constituent orbits may minimize

light leakage at particular major-to-minor-axis ratio. By making stadium of the optimum

shape, we were able to maximize the mode quality factor and align the mode frequency

to the peak of the gain spectrum, thus minimizing the lasing threshold.

In the application aspect, we have fabricated ultraviolet microdisk lasers on a silicon

substrate. A thin layer of zinc oxide was grown on top of the silica microdisks and

serves as the gain medium. Under optical pumping, lasing occurred in the whispering

gallery modes of the hybrid microdisks at room temperature. Above the lasing threshold,

a drastic increase of emission intensity was accompanied by a decrease of the spectral

width of the lasing modes. We have also utilized such hybrid microdisk lasers to sense

volatile organic compounds, such as toluene and nitrobenzene. Nonspecific adsorption

of these organic molecules onto the microdisk surface causes an increase in the disk

refractive index, ultimately resulting in a red-shift of the observed lasing wavelengths.

The monitoring of these shifts provides the sensing modality. Microdisk lasers were

found to respond rapidly and reversibly to the investigated chemicals demonstrating, in

principal, the chemical and biological sensing capabilities of such devices.

Finally, we would like to point out some interesting research works that could be done

in the future:
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Approaching to single quantum dot emitter Single quantum dot coupled to whisper-

ing gallery mode in a microdisk provides a way for high efficiency single photon source,

which already shows broad application futures such as secure quantum cryptography and

linear optical quantum computing [116]. One of the major problem is still the spacial

and spectral overlapping of the QD with WGM. We find out some way to control the

position of quantum dots during the growth [117], which is the first step to approach

the final goal. And the spectral overlapping may be possibly controlled by tuning some

experimental conditions such as temperature.

Directional output from semiconductor microstadium lasers Achieving directional

output is one of the goal to study deformed cavities. Lasing output from polymer mi-

crostadiums has been studies [72,73], which shows the output mainly follows the unstable

manifold of classical ray dynamics. Semiconductor microstadium, on the other hand, has

much larger index of refractivity. Light may experience longer path before finally escapes

from the cavity. Thus wave effects, such as interference may show up and possibly give

different far-field pattern from classical prediction.

We hope our work can provide some guidance for future studies on optical microcav-

ities and quantum chaos.
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