
Modification of light transmission
channels by inhomogeneous absorption

in random media

Seng Fatt Liew and Hui Cao∗

Department of Applied Physics, Yale University, New Haven, CT 06520, USA
∗hui.cao@yale.edu

Abstract: Optical absorption is omnipresent and often distributed
non-uniformly in space. We present a numerical study on the effects of
inhomogeneous absorption on transmission eigenchannels of light in highly
scattering media. In the weak absorption regime, the spatial profile of
a transmission channel remains similar to that without absorption, and
the effect of inhomogeneous absorption can be stronger or weaker than
homogeneous absorption depending on the spatial overlap of the localized
absorbing region with the field intensity maximum of the channel. In
the strong absorption regime, the high transmission channels redirect the
energy flows to circumvent the absorbing regions to minimize loss. The
attenuation of high transmission channels by inhomogeneous absorption is
lower than that by homogeneous absorption, regardless of the location of
the absorbing region. The statistical distribution of transmission eigenvalues
in the former becomes broader than that in the latter, due to a longer tail at
high transmission. The maximum enhancement factor of total transmission
increases with absorption, eventually exceeds that without absorption.
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1. Introduction

The ability to control light propagation in turbid media is of great importance to many fields,
ranging from medical imaging, laser surgery to photovoltaics and energy-efficient ambient
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lighting [1–5]. Thanks to the recent developments of adaptive wavefront shaping and phase
recording techniques in optics, the spatial degree of freedom of the input light can be controlled
at an unprecedented level of precision. These developments have enabled coherent control of
light propagation in highly scattering media by manipulating the interference of multiply scat-
tered waves [1,6–16]. One striking interference effect that has caught much attention is the exis-
tence of highly transmitting channels, termed ”open channels” in a diffusive system. These open
channels, which enable an optimally prepared coherent input beam to transmit through a strong
scattering medium with order unity efficiency, were predicted initially for electrons [17–23].
Since it is much more difficult to control the input electron states than the input states of clas-
sical waves, the wavefront shaping technique has been utilized in the past few years to increase
the coupling of the incident light to the open channels of random media [6, 8, 9, 11–13]. The
open channels greatly enhance light penetration into the scattering media, that will have a pro-
found impact in a wide range of applications.

In reality absorption exists in any material system, and could have a significant impact on
light transport in both diffusion regime and localization regime [24–26]. On one hand the in-
terference effects may be modified by absorption, on the other hand light absorption in strong
scattering media can be drastically enhanced or suppressed by interference effects [27–31].
Thus the interplay between absorption and interference determines not only the amount of en-
ergy being transmitted, but also the amount of energy being deposited in a random medium.
For example, wavefront shaping has enabled focusing of laser light onto a localized absorber
that is buried within a random medium to enhance the local absorption [32].

Absorption also has a strong effect on the transmission eigenchannels, especially the open
channels. The transmission channels are eigenvectors of the matrix t†t, where t is the field
transmission matrix of the system. The eigenvalues τ are the transmittance of the corresponding
eigenchannels. In the lossless diffusion regime, the density of the eigenvalues τ has a bimodal
distribution, with one peak at τ � 0 that corresponds to closed channels, and a peak at τ � 1
that corresponds to open channels [17–23]. An open channel has a spatial profile extended
throughout the entire random medium, with the intensity maximum near the center [33]. When
strong absorption is introduced uniformly across the entire system, the diffusive transport of
light in the maximum transmission channel turns into quasi-ballistic [26]. The straightening of
optical paths through the random medium reduces the dwell time and minimize the attenuation
by absorption. The statistical distribution of transmission eigenvalues are no longer bimodal, as
the peak at τ � 1 is diminished by strong absorption [24]. Experimentally absorbers are often
distributed non-uniformly in random samples, and it is not clear how the open channels would
respond to spatially inhomogeneous absorption.

In this paper, we present a numerical study on the transmission eigenchannels in disordered
waveguides with spatially localized absorbing regions. We calculate the statistical distribution
of transmission eigenvalues and find it can be broader than that with uniform absorption. The
longer tail of the distribution is attributed to the higher transmission eigenchannels that manage
to circumvent the local absorbing regions to minimize loss. Compared to other transmission
eigenchannels, the one with the largest eigenvalue is the most efficient in bypassing the ab-
sorbing regions to transport the maximal amount of energy through the random system. Conse-
quently, the maximal enhancement factor of total transmission, given by the ratio of the highest
transmission eigenvalue to the average, increases with absorption and eventually exceeds that
without absorption.

2. Numerical model

In our simulation, we consider a 2D disordered waveguide, shown schematically in Fig. 1(a).
The dielectric cylinders with refractive index n = 2.0 and radius rc = 50 nm are randomly po-
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sitioned inside a waveguide with perfectly reflecting sidewalls. The dielectric cylinders occupy
an area fraction of 0.04 corresponding to an average distance between cylinders of a = 0.44 μm.
The probe light enters the waveguide from the left open end and is scattered by the cylinders.
The wavelength of input light λ is set to 510 nm, to avoid the Mie resonances of individual
dielectric cylinders, because the scattering properties of random medium vary strongly with
frequency in the vicinity of a Mie resonance. The light is transverse magnetic (TM) polarized,
its electric field is parallel to the cylinder axis (z-axis). The width of the waveguide is W = 10.5
μm; the number of guided modes in the empty waveguide is N = 2W/λ = 41. The length of
the random array of cylinders is L =20.6 μm.

Fig. 1. Schematic of the 2D disordered waveguide used in our numerical simulation. Di-
electric cylinders are placed randomly in a waveguide with perfect-reflecting sidewalls. (a)
Qu: homogeneous distribution of absorbers across the entire random arrays of cylinders.
(b) Q3: absorbers are confined to the three circles with diameter Da. (c) Q1: absorbers are
concentrated in a single circular region of diameter Da in the middle of the disordered
waveguide.

We use the recursive Green’s function method [29, 34, 35] to calculate the transmission ma-
trix of the disordered waveguide [26], which gives the output field for any arbitrary input.
Using the input and output fields as the boundary conditions, we further compute the field dis-
tribution inside the disordered waveguide. The field intensity is averaged over the waveguide
cross-section to give the evolution I(x) along the waveguide (in the x direction). The ensemble-
averaged 〈I(x)〉 displays a linear decay, from which we extract the transport mean free path lt =
1.65 μm [36]. The localization length is then estimated to be ξ = (π/2)Nlt =107 μm. Since
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lt � L � ξ , the propagation of light in the disordered waveguide can be described by diffusion.
After characterizing the scattering properties, we introduce optical absorption to the disor-

dered waveguide. Below we consider three cases. The first one, labeled Qu, has homogeneous
absorption across the entire random structure [Fig. 1(a)]. More specifically, a constant imag-
inary refractive index, ni > 0, is introduced to both dielectric cylinders and background, to
avoid any additional scattering caused by the spatial inhomogeneity of ni. The ballistic absorp-
tion length is la = 1/(2kni) = 1/(ρσa), where k = 2π/λ is the wavevector, ρ is the density
of absorbers, and σa is the absorption cross-section of each absorber. The diffusive absorp-
tion length, given by ξa =

√
lt la/2, determines the strength of absorption effects. In the weak

absorption regime, ξa > L, the average length of diffusive paths inside the random medium
lp = 2L2/lt is shorter than la, thus most scattering paths are barely affected by absorption. In
the strong absorption regime, ξa < L, large attenuation of long scattering paths significantly
modifies the transport through the system [26].

The next two cases have non-uniform absorption in the disordered waveguides, one is la-
beled Q3 where the absorption is confined to three isolated circles [Fig. 1(b)], the other is Q1

which has a single absorbing region in the middle of the waveguide [Fig. 1(c)]. All the circular
absorbing regions have the same diameter Da = 2.7lt , and the space in between the absorbing
regions, as well as the distance from an absorbing region to the waveguide sidewall, is larger
than the transport mean free path. When comparing the effects of absorption in the above three
cases, the total number of absorbers is kept constant, so that only the spatial distribution of
absorbers is different. Since ni is proportional to the density of absorbers ρ , the product ni Sa

is the same, where Sa is the total area of absorbing regions. The smaller the Sa, the larger is
the value of ni, and the stronger is the absorption within the absorbing region. Hence, la ∝ Sa

and ξa ∝
√

Sa. Below, the absorption strength is given by αL/ξa, where α =
√

Sa/(LW ) is a
scaling factor which is equal to 0.27 for Q1, 0.46 for Q3 and 1.0 for Qu.

3. Statistical distribution of transmission eigenvalues

A singular value decomposition of the transmission matrix t gives

t =U Σ V † , (1)

where Σ is a diagonal matrix with non-negative real numbers, σn =
√

τn, τn is the transmittance
of the nth transmission eigenchannel, τ1 > τ2 > τ3... > τN . U and V are N ×N unitary matrix,
V maps input channels of the empty waveguide to eigenchannels of the disordered waveguide,
and U maps eigenchannels to output channels. The input singular vector that corresponds to the
highest transmission eigenvalue τ1 gives the maximum transmission eigenchannel, its elements
represent the complex coefficients of the waveguide modes that combine to achieve the highest
transmission through the random waveguide.

In the absence of absorption, the density of the transmission eigenvalues of the disordered
waveguide P(τ) [Fig. 2(a)] follows the bimodal distribution [dashed line in Fig. 2(a)]: [17–23]

P(τ) =
τ̄
2

1

τ
√

1− τ
, (2)

where τ̄ represents the average transmittance. As shown in Fig. 2(a), the distribution has two
peaks, one at τ � 1 and another at τ � 0. The transmission eigenchannels with τ � 1 are “open
channels”, and the ones at τ � 0 are “closed channels”. The diffusive transport is dominated by
the open channels, and τ̄ is determined by the number of open channels [17, 18]. Figure 2(b)
plots the spatial distribution of field amplitude |Ez(x,y)| for the maximum transmission channel
in one random realization of the disordered waveguide. The input light penetrates through the
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Fig. 2. Statistical distribution of transmission eigenvalues P(τ) for disordered waveguide
with homogeneous and inhomogeneous absorption. (a) Without absorption, P(τ) (filled
circles) exhibits the bimodal distribution given by Eq. (2) (dashed line). (b) Spatial dis-
tribution of the electric field amplitude |Ez(x,y)| of the highest transmission eigenchannel
in one random realization of disordered waveguide. (c) Cross-section-averaged intensity
along the x-direction, having the maximum at the center of the waveguide, which coincides
with the absorbing region in Q1 (marked by the vertical dashed lines). (d) P(τ) for weak ab-
sorption αL/ξa = 0.4 [α = 1 for Qu, α = 0.46 for Q3 and α = 0.27 for Q1]. The peak near
τ = 1 is diminished and shifted towards smaller τ . The shift in the case of inhomogeneous
absorption is slightly larger than that of homogeneous absorption, as the open channels
experience more attenuation due to better spatial overlap with the localized absorbing re-
gions. (e) P(τ) for strong absorption αL/ξa = 1.8. Q1 has the highest transmission among
the three cases. (f) The normalized width Wτ of P(τ) as a function of the absorption strength
αL/ξa. (g, h, i) Spatial map of the normalized Poynting vector �S′(x,y) for the maximum
transmission channel in the disordered waveguide with homogeneous absorption Qu (g),
three absorbing regions Q3 (h) and one absorbing region Q1 (i) at αL/ξa = 1.8. Dashed
circles in (h, i) mark the boundary of the absorbing regions. When absorption is strong and
inhomogeneous, main energy flows bypass the absorbing regions.
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entire waveguide. The cross-section-averaged intensity I(x) = (1/W )
∫W

0 |Ez(x,y)|2dy, shown
in Fig. 2(c), is peaked at the center of the waveguide [33].

When absorption is introduced uniformly across the disordered waveguide, the open channels
experience more attenuation than the closed channels since light in an open channel propagates
deeper into the waveguide. Consequently, the peak of P(τ) near τ = 1 is diminished and shifted
towards smaller τ [dotted line in Fig. 2(d)]. The effect of absorption can be further enhanced by
inhomogeneous absorption, e.g. in the case of Q1, all absorbers are concentrated in the center of
the waveguide, which coincide with the intensity maximum of the highest transmission channel
[dashed line in Fig. 2(c)]. The calculated P(τ), shown in Fig. 2(d), has the τ � 1 peak moved
farther to smaller τ , reflecting a faster decreasing transmission of the open channels in Q1.

However, as we continue increasing absorption, the behavior changes completely. As seen
in Fig. 2(e), the peak of P(τ) at large τ vanishes in all three cases, and the bimodal distribu-
tion is replaced by a monotonic decay of P(τ) with τ . Surprisingly, the disordered waveguide
with a single absorbing region Q1 exhibits the longest tail at high transmission, followed by
the waveguide with three separate absorbing regions Q3, while the waveguide with uniform
absorption Qu has the shortest tail. This trend is just opposite to that with weak absorption. To
quantify the change in the width of P(τ), we plot the normalized width Wτ =

√
〈τ2〉/〈τ〉2 −1

in Fig. 2(f). While Wτ for Qu decreases monotonically with increasing absorption, Wτ for Q3

and Q1 first decreases and then increases, eventually exceeds the value without absorption.

4. Maximum transmission channel

To understand why inhomogeneous absorption can reach higher transmission than homoge-
neous absorption, we examine the maximum transmission channel in the presence of strong
absorption. To map the energy flow inside the disordered waveguide, we compute the Poynting
vector�S(x,y) = (1/2)Re[�E(x,y)×�H∗(x,y)]. The net flow over a cross-section of the disordered
waveguide is F(x) =

∫W
0 Sx(x,y)dy, where Sx(x,y) is the projection of �S(x,y) on the x-axis.

While the net flux F(x) remains constant in the absence absorption, it decays in the presence
of absorption. For a clear visualization of the energy flow deep inside the random structure, the
Poynting vector �S(x,y) is normalized by F(x), �S′(x,y) = �S(x,y)/F(x). Figures 2(g)-2(i) plot
the normalized Poynting vector �S′(x,y) for the maximum transmission eigenchannels in the
disordered waveguide with homogeneous or inhomogeneous absorption. With homogeneous
absorption Qu [Fig. 2(g)], light propagates mostly in the forward direction in order to reduce
the dwell time within the random waveguide to minimize loss. Light transport changes from
diffusive to quasi-ballistic when absorption is strong [26]. In disordered waveguide with three
separate absorbing regions Q3 [Fig. 2(h)], the main energy flows are in between the three sepa-
rate absorbing regions to avoid the absorption. When there is only one absorbing region in the
middle of the waveguide Q1 [Fig. 2(i)], the incoming energy stream splits into two to circum-
vent the absorbing region. Therefore, the high transmission channels have modified their energy
flows to bypass the absorbing regions in the waveguide so as to achieve higher transmission in
the case of inhomogeneous absorption than that of homogeneous absorption.

Next, we track the evolution of the highest transmission channel with a gradual increase
of absorption. Figure 3(a) plots the change in the maximum transmission eigenvalue τ1 as a
function of the absorption strength αL/ξa for the disordered waveguide with homogeneous or
inhomogeneous absorption. When absorption is weak αL/ξa < 1, τ1 for Q1 decreases faster
than Q3 and Qu. However, as absorption becomes strong αL/ξa > 1, the drop of τ1 slows
down and its value for Q1 is higher than the other two cases. This transition occurs when the
maximum transmission channel modifies its energy flow to bypass the absorbing region. For
comparison, we plot the average of transmission eigenvalues τ̄ as a function of absorption
strength in Fig. 3(b). Its decay is qualitatively similar to that of τ1, because τ̄ has the largest
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Fig. 3. Comparison of the maximum transmission eigenvalue τ1 and the average of all trans-
mission eigenvalues τ̄ in the presence of inhomogeneous absorption to that of homogeneous
absorption. (a) τ1 decreases with absorption in all three cases. The drop is the fastest for
Q1 when absorption is weak [αL/ξa < 1] but switches to the slowest when absorption is
strong [αL/ξa > 1]. (b) Similar trends are observed for the change of τ̄ with absorption.
(c) The ensemble-averaged ratio 〈τ1/τ̄〉 shows the fastest reduction for Q1 compared to Qu

and Q3 in the weak absorption regime. (d) 〈τ1/τ̄〉 starts to increase in the strong absorption
regime, and eventually exceeds the ratio without absorption in Q1 and Q3.
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contribution from τ1. Their ratio τ1/τ̄ displays the subtle difference in the change of their decay
rates by absorption. In the weak absorption regime [Fig. 3(c)], the ensemble-averaged ratio
〈τ1/τ̄〉 decreases monotonically for all three cases. The reduction is the fastest for Q1 when the
number of total absorbers is the same. This can be understood from the results in the previous
section. The spatial distribution of the maximum transmission channel is barely modified by
weak absorption, and it experiences the most attenuation when all absorbers are concentrated
in the spatial location where its field intensity is maximal (Q1). The lower transmission channels
do not penetrate as deep into the random waveguide, thus their intensity maxima are closer to
the input end of the wavewguide. The less spatial overlap with the absorbing region leads to
lower attenuation, thus the average of transmission eigenvalues τ̄ decreases more slowly than
τ1.

With a further increase of absorption, the ratio τ1/τ̄ starts increasing, especially in the case of
inhomogeneous absorption (Q3, Q1), its value eventually exceed that without absorption. This is
because the maximum transmission channel bypasses the absorbing regions to reduce the loss,
and its transmittance decreases less than other eigenchannels. Thus the reduction of τ1 becomes
smaller than that of τ̄ , leading to an increase of their ratio τ1/τ̄ with absorption. The ratio τ1/τ̄
surpasses its value without absorption at Da/ξ (3)

a ≈ 0.6 for Q3 and Da/ξ (1)
a ≈ 0.8 for Q1, where

ξ (3)
a and ξ (1)

a are the diffusive absorption lengths within the absorbing regions in Q3 and Q1

respectively. Hence, the highest transmission eigenchannel starts to circumvent the absorbing
regions when the diffusive absorption length becomes comparable to the size of the absorbing
region. In the case of homogeneous absorption, τ1/τ̄ levels off and then increases slightly when
αL/ξa > 1 [Fig. 3(d)]. Since the absorbers are everywhere in the random waveguide, light in
the maximum transmission channel cannot bypass absorbers when transmitting through the
waveguide. The only way to minimize loss is to shorten the dwell time inside the waveguide
by taking less winding paths when absorption is strong. The other transmission channels do not
change as much as the maximum transmission channel, so they may experience slightly higher
loss.

5. Other transmission eigenchannels

In this section, we investigate the changes in other transmission eigenchannels due to inho-
mogeneous absorption. Figure 4(a) shows the ratio τn/τ0

n for Q1, where τn is the transmission
eigenvalue for the nth channel with absorption and τ0

n is the eigenvalue without absorption.

When absorption is weak Da/ξ (1)
a < 1, τ1 decreases faster than all others. We also calculate the

absorption in each channel, An = 1−τn−Rn, where Rn is the reflectance of the nth transmission
eigenchannel. The absorption in the maximum transmission channel A1 is the largest [Fig. 4(b)],
which explains why τ1 reduces more than other channels when absorption is weak. However,

at higher absorption level Da/ξ (1)
a > 1, the transmission reduction of other eigenchannels such

as τ3 exceeds that of τ1. Correspondingly, the absorption experienced by the third eigenchannel
A3 becomes larger than the first eigenchannel A1 [Fig. 4(b)].

The above result can be explained by the modification of these transmission channels by
inhomogeneous absorption. In a lossless disordered waveguide, the intensity maximum of the
transmission eigenchannel moves from the front end towards the middle of the waveguide as the
transmission eigenvalue increases [37]. The field intensity maximum of the first transmission
eigenchannel is located at the center of the waveguide, whereas the intensity maximum of the
third eigenchannel is shifted towards the input end of the waveguide [Figs. 4(c) and 4(d)]. When
absorption is introduced only to the central region of the waveguide, the field intensity of the
first channel is peaked in the middle of the absorbing region while the field intensity of the third
channel is peaked at the edge [black dashed lines in Figs. 4(c) and 4(d)]. With weak absorption
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Fig. 4. Modification of transmission eigenchannels in disordered waveguide with a single
absorbing region in the middle Q1. (a) Ensemble-averaged ratio 〈τn/τ0

n 〉 for individual

eigenchannels. The reduction of τ1 is the largest when absorption is weak Da/ξ (1)
a = 0.32

but becomes less than other eigenchannels such as τ3 when absorption is strong Da/ξ (1)
a =

1.45. (b) The absorption of individual eigenchannels An. The first eigenchannel is the one
that experiences the most absorption at weak absorption but it is replaced by the third
eigenchannel at higher absorption level. (c, d) Ensemble average of cross-section-averaged
electric field intensity 〈I(x)〉 for the first and third eigenchannels. Both are normalized to

their maximal values when there is no absorption. With weak absorption Da/ξ (1)
a = 0.32

(brown dotted lines), the field intensity of the first eigenchannel decreases more at the
waveguide center than the third eigenchannel. The vertical dashed lines mark the boundary

of the absorbing region. When absorption is strong Da/ξ (1)
a = 1.45, the reduction of field

intensity behind the absorbing region becomes less for the first eigenchannel than the third
eigenchannel as the former is modified to circumvent the absorbing region.
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ξ (1)
a >Da, the spatial distribution of field intensity in both channels are barely changed, thus the

first eigenchannel is attenuated more than the third eigenchannel [brown dotted lines in 4(c, d)].
However, at strong absorption where the diffusive absorption length within the absorbing region

becomes shorter than the size of the absorbing region ξ (1)
a < Da, light transmission through the

central absorbing region becomes very low and the scattering paths in the first eigenchannel
avoid that region to achieve high transmission as seen in Fig. 2(i). The circumvention of light
paths around the absorbing region helps to reduce the absorption of light and therefore the field
intensity in the section of the waveguide behind the absorbing region is higher for the first
eigenchannel than the third eigenchannel [green solid lines in Figs. 4(c) and 4(d)].

Similar modifications of the transmission eigenchannels are observed in the disordered
waveguide with three separate absorbing regions Q3. Since it is more difficult to bypass three
absorbing regions than a single one, the decrease of τ1 is higher for Q3 than for Q1 [Fig. 3(a)],
and also Q3 has a narrower distribution of transmission eigenvalues than Q1 [Figs. 2(e) and
2(f)]. Note that in both Q1 and Q3, the space in between the absorbing regions or between the
absorbing region and the waveguide wall is larger than the transport mean free path, so that the
multiple scattering of light in the non-absorbing regions and the interference of the scattered
light enable an efficient steering of energy flow away from the absorbing regions.

6. Conclusion

We have performed a detailed numerical study to understand how spatially non-uniform ab-
sorption modifies the transmission eigenchannels in a 2D disordered waveguide. In the weak
absorption regime, the spatial profile of a transmission channel remains very similar to that
without absorption, and the effect of inhomogeneous absorption can be stronger or weaker
than homogeneous absorption depending on the spatial overlap of the localized absorbing re-
gion with the field intensity maximum of the channel. In the strong absorption regime, the high
transmission channels redirect the energy flows to circumvent the absorbing region to minimize
loss. Thus the attenuation of high transmission channels by inhomogeneous absorption is lower
than that by homogeneous absorption, making the statistical distribution of transmission eigen-
values in the former broader than that in the latter. Compared to other transmission eigenchan-
nels, the one with the largest eigenvalue is the most efficient in bypassing the absorbing regions
to transport the maximal amount of energy through the random medium. Hence, the maximal
enhancement factor of total transmission, as well as the normalized width of the eigenvalue dis-
tribution, increases with absorption and eventually exceeds the value without absorption. Our
numerical study provides a physical understanding of the effects of inhomogeneous absorption
on transmission eigenchannels in diffusive media. The finding that inhomogeneous absorp-
tion may have a weaker impact on open channels than homogeneous absorption is promising
for imaging applications, such as following the evolution of tumors in terms of their acousti-
cal absorption characteristics [38, 39]. In addition, to avoid any obstacles in scattering media,
absorbers may be added locally to these obstacles such that high transmission eigenchannels
would bypass them.
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