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Spectral width of maximum deposition eigenchannels in diffusive media
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The maximum deposition eigenchannel provides the largest possible power delivery to a target region
inside a diffusive medium by optimizing the incident wavefront of a monochromatic beam. It originates from
constructive interference of scattered waves, which is frequency sensitive. We investigate the spectral width
of the maximum deposition eigenchannels over a range of target depths using numerical simulations of a 2D
diffusive system. Compared to tight focusing into the system, power deposition to an extended region is more
sensitive to frequency detuning. The spectral width of enhanced delivery to a large target displays a rather weak,
nonmonotonic variation with target depth, in contrast to a sharp drop of focusing bandwidth with depth. While
the maximum enhancement of power deposited within a diffusive system can exceed that of power transmitted
through it, this comes at the cost of a narrower spectral width. We investigate the narrower deposition width in
terms of the constructive interference of transmission eigenchannels within the target. We further observe that
the spatial field distribution inside the target region decorrelates more slowly with spectral detuning than the
power decay of the maximum deposition eigenchannel. Additionally, absorption increases the spectral width of
deposition eigenchannels, but the depth dependence remains qualitatively identical to that without absorption.
These findings hold for any diffusive waves, including electromagnetic waves, acoustic waves, pressure waves,
mesoscopic electrons, and cold atoms.
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I. INTRODUCTION

Targeted delivery of light deep into random-scattering me-
dia has important applications in deep-tissue imaging [1,2],
optogenetics [3–6], laser microsurgery [1,7], photothermal
therapy [8], and photopharmacology [9,10]. Light penetration
into a diffusive medium can be enhanced by tailoring the
incident wavefront of a coherent beam [11–13]. Over the past
decade, wavefront shaping techniques have been successfully
applied to focusing light through or into multiple-scattering
media [14–28], as well as enhancing total transmission and
power delivery inside them [29–48]. It has been shown that
the maximal enhancement of power delivered to an extended
region inside a diffusive medium can exceed that of total
transmission [45].

Deposition eigenchannels are introduced as an orthogonal
set of input fields at a given frequency, the largest of which
delivers the highest possible power to a designated region. The
maximum deposition eigenchannel has a finite spectral width.
As the input frequency is detuned from the frequency at which
the channel is defined, the power within the target drops, even-
tually reaching the level of random wavefront illumination.
The maximum deposition eigenchannel bandwidth and its

*Contact author: hui.cao@yale.edu

dependence on the target depth and size are not yet un-
derstood. Frequency detuning also changes the spatial field
distribution in the target. It is not known whether the field
decorrelates faster or slower than the power decay. Fur-
thermore, absorption is expected to impact the deposition
channels, as it does to transmission channels [49–52].

In this report, we conduct a numerical study on the
spectral width of the maximum deposition eigenchannels
and their field decorrelation with frequency detuning. Com-
pared to experimental studies, numerical simulations can
provide the internal field distribution with sub-wavelength
resolution. We find that the maximum deposition eigenchan-
nel for an extended target deep inside a two-dimensional
(2D) diffusive system has a narrower spectral width than
the maximum transmission eigenchannel. With increasing
depth, the deposition width first decreases gradually with
depth, then increases slightly. In contrast, focusing light
onto a wavelength-scale target inside the same system has
a broader width, which decays monotonically with depth.
By decomposing the maximum deposition eigenchannel into
transmission eigenchannels, we show that its spectral width
is dominated by the interference of constituent transmission
eigenchannels, which substantially narrows the deposition
width. The spatial field distribution in a large target decorre-
lates more slowly than the power decay with small frequency
detuning. This property persists for all target depths and is
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unique to the largest deposition eigenchannels. Our numerical
results are explained analytically using perturbation theory.
Finally, we find that optical absorption increases the deposi-
tion width, but its depth dependence is similar to that without
absorption.

II. DEPOSITION EIGENCHANNELS

Coherent wave transport through scattering media is de-
scribed by the field transmission matrix, which maps a set of
input spatial wavefronts to the transmitted field patterns. The
largest singular vector of the transmission matrix gives the
maximum transmission eigenchannel, which maximizes total
transmission through the medium. Recently, the deposition
matrix has been introduced to determine input wavefronts that
maximize power delivery inside a scattering medium [45].
This matrix defines a linear mapping from the incident wave-
front to the deposited field distribution over a target inside a
scattering medium. The largest singular vector of the depo-
sition matrix gives the deposition eigenchannel that delivers
the maximal power to the target. The depth and dimensions of
the target region can be chosen freely. The matrix elements
are constructed by launching a complete set of orthogonal
wavefronts and sampling the field inside the target. For a
monochromatic light of wavelength λ,

Zmn(λ) ≡
√

ε(rm)V/MEn(rm, λ), (1)

where M is the total number of sampling points, rm denotes
the position of the mth sampling point, V is the target vol-
ume, En is the internal field resulting from the propagation
of the nth input channel, ε(r) is the spatially varying di-
electric constant, and λ is the wavelength. The total power
within the target for an incident wavefront |ψ〉 is given by
〈ψ |Z†(λ)Z (λ)|ψ〉. Averaging over random incident wave-
fronts gives the mean power 〈ζ 〉 in the target. The complex
conjugate of each row of the deposition matrix provides the
input wavefront that focuses light on the corresponding sam-
pling point in the target.

To maximize the power delivered to the designated target,
we perform singular value decomposition on the deposition
matrix, Z (λ) = U�V †, which provides a set of right and left
singular vectors as the columns of V and U , respectively. The
right singular vector |v1(λ)〉 corresponding to the largest sin-
gular value

√
ζ1(λ) gives the spatial wavefront that maximizes

the power in the target, while the left singular vector |u1(λ)〉
is proportional to the resulting field distribution in the target,
and ζ1(λ) is the delivered power.

The deposition matrix Z (λ) and its eigenchannels change
with wavelength λ. As λ shifts away from λ0 where the maxi-
mum deposition eigenchannel is defined, the power delivered
by the same input wavefront to the target decays. Namely, the
input wavefront is fixed to |v1(λ0)〉, given by the maximum
deposition eigenchannel at λ0, and the power delivered to the
target at λ is given by

ζ1(�λ) = 〈v1(λ0)|Z†(λ)Z (λ)|v1(λ0)〉, (2)

where �λ = |λ − λ0| is the wavelength detuning. For large
�λ, ζ1(�λ) approaches the mean power 〈ζ (λ)〉 for random
input wavefronts. We define the deposition spectral width δλ

as the full-width-at-half-maximum (FWHM) of ζ1(�λ).

Previous studies have measured deposition eigenchannels
experimentally by imaging light inside two-dimensional dis-
ordered waveguides from the third dimension [45,53]. These
waveguides are fabricated in silicon-on-insulator wafers. The
220-nm-thick silicon membrane, sandwiched between silica
and air, supports only one guided mode in the direction per-
pendicular to the membrane. The disordered region inside the
waveguide consists of a random array of circular air holes with
a diameter of 100 nm. While these experiments convincingly
demonstrate the enhancement of power delivery, there are a
number of limitations. Primarily, field measurements inside
the disorder waveguides are performed indirectly by imag-
ing light scattered out of the plane. These measurements are
limited by the spatial resolution of the detection and cannot re-
solve wavelength-scale speckles in the sample. Furthermore,
the out-of-plane scattering inevitably induces loss, and it is
impossible to switch off this loss to investigate the effect of
absorption on deposition eigenchannels. Additionally, only a
handful of disorder realizations can be studied experimentally.

Therefore, to directly study the spectral width of maximum
deposition eigenchannels over many realizations, we numer-
ically simulate light transport in a 2D disordered waveguide.
The waveguide supports N = 56 propagating modes within
a spectral range of λ = 1575.5 − 1595.5 nm. The disordered
region has length L = 50 µm and width W = 15 µm. The
transport mean free path is 	t = 3.3 µm. Since 	t � L,W ,
light transport is diffusive. To account for out-of-plane scat-
tering of light in the experimental sample, we introduce an
effective absorption by adding an imaginary part to the di-
electric constant inside the waveguide [54]. The diffusive
absorption length is ξ = √

lt la/2 = 28 µm, where la is the
ballistic absorption length. This value is chosen to match the
experimental value extracted from the intensity distribution
[38,55]. Our simulations are conducted using KWANT, an
open-source Python package for coherent wave transport sim-
ulations [56]. We simulate identical disordered structures with
and without absorption. The wavelength is tuned with a step
size of dλ = 0.25 nm. All results shown represent an average
of 100 independent disorder realizations.

To calculate deposition matrices, we launch light in each
of the N propagating waveguide modes, and the respective
fields within the target region are calculated. This creates a
linear mapping from the input basis of propagating waveg-
uide modes to the spatial basis of field distributions in the
target region. The maximum deposition eigenchannels are
calculated from the simulated matrices using singular value
decomposition. For deposition, target regions are 10 µm by
10 µm squares centered on the target depth z. For comparison,
we calculate the transmission matrix and its eigenchannels
[38]. Transmission matrices map the incident fields to the
transmitted fields, both in the waveguide mode basis. In all
results, we normalize the spectral detuning �λ by the FWHM
of maximum transmission eigenchannel, δλt = 1.34 nm.

III. SPECTRAL WIDTH OF THE MAXIMUM
DEPOSITION EIGENCHANNEL

We consider an extended target of dimension 10 µm by
10 µm, containing roughly ∼1700 speckles within a wave-
length range of 1575.5 − 1595.5 nm. Figure 1(a) shows
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FIG. 1. Spectral bandwidth of the maximum deposition eigen-
channel. (a) Normalized power C (1)(z,�λ) deposited to a 10 µm by
10 µm region centered at depth z = 0.4L decays with wavelength
detuning �λ from λ0 where the maximum deposition eigenchannel
is defined (blue). It is compared to the decay of focused power to a
wavelength-scale speckle C (foc)(z,�λ) at z = 0.4L with wavelength
detuning (purple), which agrees with analytic theory (purple dashed).
Both curves are normalized such that they vanish at �λ → ∞. �λ

is normalized by the spectral width of transmission δλt . (b) Spectral
width in units of δλt for the maximum deposition to a large target
(blue squares) decreases and then increases slightly with depth z,
normalized by system length L. For comparison, the spectral width
of focusing to a wavelength-scale speckle (purple circles) decays
monotonically with depth z, which agrees with analytic theory (pur-
ple dashed). The black-dashed line marks the depth plotted in (a).

the optical power delivered at wavelength λ = λ0 + �λ by
the maximum deposition eigenchannel at λ0 = 1575.5 nm,
to a target centered at z = 0.4L (blue line). The power is
ensemble-averaged and normalized as

C (1)(z,�λ) = 〈ζ1(z,�λ)〉 − 〈ζ (z)〉
〈ζ1(z, 0)〉 − 〈ζ (z)〉 . (3)

The delivered power 〈ζ1(z,�λ)〉 decays monotonically with
wavelength detuning, approaching the value of a random
wavefront 〈ζ (z)〉. At large spectral detuning, the power decay
slows down, exhibiting a long tail. This is consistent with the
behavior of maximum transmission eigenchannel, which is
attributed to long-range mesoscopic correlations [57]. We note
that the analytical computation of 〈ζ1(z,�λ)〉 is difficult. So
far, it has been computed for �λ = 0 only [58], and the result
already shows a complicated nonlinear dependence on the
long-range mesoscopic correlation C2(z,�λ = 0) (see below
for a precise definition of C2).

For comparison, we also simulate light focusing on a
single speckle grain at the same depth z. Representing this
speckle grain by the state |m〉, the input wavefront |ψfoc(λ0)〉
is obtained from the conjugate of the mth row of the depo-
sition matrix, |ψfoc(λ0)〉 = N (λ0)Z (λ0)†|m〉, with N (λ0) =
〈m|Z (λ0)Z (λ0)†|m〉−1/2. The normalized power at the focus
at wavelength λ = λ0 + �λ is defined by

C (foc)(z,�λ) = 〈|〈m|Z (λ)|ψfoc(λ0)〉|2〉
〈|〈m|Z (λ0)|ψfoc(λ0)〉|2〉 , (4)

which gives C (foc)(�λ) 
 〈|〈ψfoc(λ)|ψfoc(λ0)〉|2〉, for N (λ) 

N (λ0) 
 〈N (λ0)〉. With the input wavefront fixed, the power
at the focus decreases when the wavelength is detuned from
λ0. As shown in Fig. 1(a), at small detuning, focusing decays
slower than deposition to an extended target, but at large
detuning, it becomes faster. This is because focusing is de-
termined primarily by the short-range correlation C1(z,�λ)
[59]. Our simulation results for focusing are well described
by the following theoretical expression derived in the Ap-
pendix [dashed line in Fig. 1(a)]:

C (foc)(z,�λ) = C1(z,�λ)

+ [1 − C1(z,�λ)]

[
C2(z,�λ) + 1

N

]
. (5)

Here, C1(z,�λ) and C2(z,�λ) are the short- and
long-range contributions to the spectral correla-
tion function of the total intensity, C (T )(z,�λ) =
〈I (z, λ0)I (z, λ)〉/〈I (z, λ0)〉〈I (z, λ)〉 − 1, where I (z, λ) =∑

b |Zba(λ)|2. The analytical expressions of C1(z,�λ)
and C2(z,�λ) have been derived in Ref. [53]. In the
diffusive limit L � 	t and at �λ = 0, C1(z, 0) = 1 and
C2(z, 0) = (4z/πN	t )(1 − 2z/3L). The theoretical prediction
shown in Fig. 1 corresponds to Eq. (5), where C1(z,�λ)
and C2(z,�λ) have been computed numerically, following
a procedure detailed in the Appendix. Interestingly, we
note that the power at the focus acquires a dependence on
the long-range component C2(z,�λ) for �λ �= 0, which
is smaller than C1(z,�λ) but not negligible in the results
presented in Fig. 1.

To find how the spectral width of the maximum deposition
eigenchannel varies with depth z, we move the 10 µm by
10 µm target region throughout the diffusive waveguide, and
compute C (1)(z,�λ) for different z. In Fig. 1(b), the spectral
width δλ, given by the FWHM of C (1)(z,�λ), is normalized
by δλt and plotted versus the normalized depth z/L. As the
target depth increases, the deposition width first drops grad-
ually and then rises near z = L. The spectral width of the
maximum transmission eigenchannel is greater than that of
the maximum deposition channel in most of the interior of
the waveguide. The nonmonotonic dependence of maximum
deposition eigenchannel bandwidth on target depth can be
understood qualitatively from the interference effect. Optical
power in the target at depth z is enhanced by constructive in-
terference of scattered waves. As the target moves deeper into
the diffusive waveguide, more scattering paths are available
to interfere inside the target. These waves can enter the target
from both front and back regions. Their interference increases
the spectral sensitivity, reducing the deposition bandwidth. As
the target approaches the waveguide end, the waves passing
through the target have a lower chance of returning to the
target, thus the interference effect is weakened, and the de-
position bandwidth becomes larger.

Figure 1(b) also shows the spectral width for focusing to a
single speckle as a function of depth. It is given by the FWHM
of C (foc)(z,�λ). The focusing width drops monotonically with
depth, in contrast to the weak, nonmonotonic variation of the
width for deposition to an extended target, which is mini-
mized inside the waveguide. We further show that our analytic
model (5) predicts the focusing spectral width for any depth,
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FIG. 2. Comparison between maximum deposition and transmis-
sion eigenchannels. (a) Maximum deposition enhancement ζ1/〈ζ 〉
for a 10 µm by 10 µm target centered at depth z/L (blue squares) of
a diffusive waveguide of length L increases and then decreases with
depth. It contrasts the linear increase of the maximum transmission
enhancement through a diffusive waveguide of length L̃ = z (red di-
amonds). The deposition enhancement inside the waveguide exceeds
transmission enhancement, both compared to random input wave-
fronts. (b) The spectral width of the power decay for the maximum
deposition eigenchannel (blue squares) is smaller than that of the
maximum transmission eigenchannel (red diamonds) at all depths.
The latter scales as 1/L̃2, as confirmed by the curve fitting (red
dashed). The deposition width shows a comparatively small change
with the target depth.

confirming that focusing on a single speckle inside the system
is primarily dictated by short-range correlations. With increas-
ing target size, long-range correlations become stronger and
eventually dominate over short-range correlations, leading to
a transition from point focusing to area focusing.

IV. COMPARISON OF MAXIMUM DEPOSITION
AND MAXIMUM TRANSMISSION EIGENCHANNELS

We wish to highlight the difference between the maxi-
mum deposition and transmission eigenchannels by isolating
the effects of forward and backpropagating waves entering
the target. To do this, we compare the maximum deposition
eigenchannel at depth z in a diffusive waveguide of length
L to the maximum transmission eigenchannel of a shortened
waveguide of length L̃ = z, where the section from z to L of
the waveguide has been removed.

In Fig. 2(a), we plot the maximum transmission enhance-
ment vs L̃/L alongside the maximum deposition enhancement
for a 10 µm by 10 µm target centered at z/L. The transmis-
sion enhancement scales as L̃/	t [60], while the deposition
enhancement is maximized at z/L 
 3/4, exceeding the trans-
mission enhancement at z = L [45]. Notably, the deposition
enhancement at all target depths z < L exceeds the transmis-
sion enhancement for the waveguide of length L̃ = z. The two
become equal at L̃ = z = L.

The higher deposition enhancement throughout the waveg-
uide is explained by the constructive interference of waves
entering the target from all directions. In the case of

transmission, only the waves propagating to the exit facet
contribute to the transmitted light. For internal deposition,
however, scattered waves can enter the target from all direc-
tions. In the diffusive waveguide, for example, waves may
pass through the target and then return after multiple scat-
tering. As a result, power in a target at depth z is enhanced
by constructive interference of waves coming from both sec-
tions before and after the target region, while transmission
enhancement through the waveguide of length L̃ = z only
has contributions from the first section. The saturation of the
deposition enhancement is a finite-size effect. As the target
nears the exit facet, diffusive waves propagating past the tar-
get have a higher chance of leaving the sample instead of
returning back to the target. This reduces the contribution
of backpropagating waves to the power enhancement in the
target, thereby lowering the enhancement.

The larger enhancement factor for deposition, however,
corresponds to a narrower spectral range of enhancement.
Figure 2(b) shows that the spectral width of the maxi-
mum transmission eigenchannel decreases as 1/L̃2 with the
diffusive system length L̃ [61], while the transmission en-
hancement increases with L. For comparison, the spectral
width of the maximum deposition channel for a 10 µm by
10 µm target centered at depth z = L̃ is narrower than that
of maximum transmission through L̃. This is attributed to
diffusive waves returning to z from the section between z and
L. Their interference with the waves reaching z from z < L
enhances not only the power at z but also spectral sensitivity.
For z � L, the depth dependence of the spectral width for the
maximum deposition eigenchannel decays as 1/z2, similar to
the scaling of transmission. With increasing z, the decay is
replaced by a nearly invariant width as a result of the finite
length of the diffusive waveguide.

V. DECOMPOSITION INTO TRANSMISSION
EIGENCHANNELS

The spectral width of the maximum deposition eigen-
channel exhibits a peculiar dependence on the target depth,
attaining a minimum inside the waveguide. This contrasts the
nonmonotonic depth dependence of the deposition enhance-
ment, which is maximized inside the waveguide. However,
a precise explanation for the depth dependence is difficult
owing to the lack of an analytic model for 〈ζ1(z,�λ)〉. To
probe the effect of wave interference on the depth dependence
of the deposition spectral width, we decompose the maximum
deposition eigenchannel at wavelength λ0 into a superposition
of transmission eigenchannels at wavelength λ in a man-
ner similar to the approach of Ref. [45]. Our results show
that the contribution to the delivered power by transmission
eigenchannels interfering inside the target has a similar depth
dependence to the spectral width of the maximum deposition
eigenchannel.

The decomposition of an input wavefront at λ, cor-
responding to the largest deposition eigenchannel defined
at λ0, reads |v1(z, λ0)〉 = ∑N

β=1 dβ (z, λ0, λ) |vt
β (λ)〉, where

|vt
β (λ)〉 are the orthogonal right singular states of the trans-

mission matrix, and dβ are decomposition coefficients that
depend on both λ and λ0, as well as the target depth z.
Because incident fields map linearly to fields in the target
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FIG. 3. Decomposition of the maximum deposition eigenchannel by transmission eigenchannels. (a)–(c) Optical power ζ1(�λ) deposited
by the largest deposition eigenchannel defined at λ0 at three target depths z/L = 0.3, 0.6, 0.9 (blue) is decomposed into the sum of incoherent
(red) and coherent (green) contributions of transmission eigenchannels at the detuned wavelength λ. (d) The spectral width of the total power
(blue squares) is compared to that of incoherent contribution (red upward triangles) and of coherent contribution (green downward triangles).
The coherent contribution of transmission eigenchannels has a narrower width, which dominates the maximum deposition channel width. (e)
The percentage of coherent contribution Pc/P1 to the power of maximum deposition channel decays with depth (green downward triangles),
while the percentage of incoherent contribution Pi/P1 increases at �λ = 0. (f) Participation number of transmission eigenchannels to maximum
deposition Me(z, 0) decays with target depth z/L at �λ = 0.

region, the decomposition of the internal field distribution by
transmission channels has the same coefficients: E1(r, λ0) =∑N

β=1 dβ (z, λ0, λ) Et
β (r, λ), where Et

β (r, λ) denotes the field
distribution of the βth transmission eigenchannel in the target.

Since transmission eigenchannels are not guaranteed to be
orthogonal inside the scattering system, they can interfere in
the target region. The optical power of the maximum deposi-
tion channel P1(z,�λ) = 〈ζ1(z,�λ)〉 in the 10 µm by 10 µm
target region consists of two terms,

P1(z,�λ) = Pi(z,�λ) + Pc(z,�λ)

=
〈

N∑
β=1

|dβ |2Pβ (z, λ)

〉
+

〈∑
β

∑
β ′ �=β

dβd∗
β ′Pββ ′ (z, λ)

〉
.

(6)

where Pβ (z, λ) = ∫ |Et
β (r, λ)|2dr is the power of βth trans-

mission eigenchannel in the target region centered at depth
z, and Pββ ′ (z, λ) = ∫

Et
β (r, λ) Et∗

β ′ (r, λ)dr is the interference
between the βth and β ′th transmission channels within the
target. Hence, the first term Pi(z,�λ) is an incoherent sum
of transmission eigenchannels in the target, and the second
term Pc(z,�λ) represents the coherent contribution of trans-
mission eigenchannels to the power inside the target. The
coherent contribution depends on the relative phase between
transmission eigenchannels. Without the coherent term, the
incoherent contribution alone cannot enhance the power in a
large target more than the highest possible enhancement by a
single transmission eigenchannel.

Figures 3(a)–3(c) illustrates the decay of the ensemble-
averaged powers Pi(z,�λ) and Pc(z,�λ) with spectral
detuning �λ at three depths: z/L = 0.3, 0.6, 0.9. While
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FIG. 4. Spectral field decorrelation of deposition eigenchannels. (a) Spectral field correlation C (α)
E (z,�λ) of deposition eigenchannels

α = 1, 10, 15, 20, 25 show faster decorrelation for lower deposition eigenvalue (larger α). The target is a 10 µm by 10 µm box centered
at depth z = 0.6L. (b) Spectral field correlation of the maximum deposition eigenchannel C (1)

E (z,�λ) decays with wavelength detuning �λ

(orange, left axis) slower than the power enhancement by the the maximum deposition eigenchannel ζ1(�λ)/〈ζ 〉 (blue, right axis). The spectral
detuning is normalized by the spectral width of transmission δλt . (c) Spectral width of the field correlation C (1)

E (z,�λ) (orange asterisks) is
larger than that of power decay (blue squares) at all target depth.

the total power P1(z,�λ) and the incoherent contribution
Pi(z,�λ) both decay to 〈ζ 〉 at large spectral detuning, the
coherent contribution Pc(z,�λ) decays to zero as channel
interference vanishes at z = L. Figure 3(d) shows that the
FWHM of the incoherent contribution Pi is far greater than
that of coherent contribution Pc. This is because the latter
relies on wave interference, which is inherently narrow-
band. Most notably, the coherent contribution is dominant
in determining the deposition spectral width and its depth
dependence.

To quantify the percentage of incoherent and coher-
ent contributions to the maximum deposition eigenchannel,
we calculate Pi(z,�λ)/P1(z,�λ) and Pc(z,�λ)/P1(z,�λ)
at varying depth z and �λ = 0. As shown in Fig. 3(e),
Pi(z, 0)/P1(z, 0) increases with depth, while Pc(z, 0)/P1(z, 0)
decreases continuously to zero at z = L. The reduction in
the coherent contribution is attributed to a smaller number
of constituent transmission eigenchannels at larger z, where
low-transmission channels almost die out. This explanation
is confirmed by the depth dependence of the participation
number of transmission channels, defined as

Me(z,�λ) =
〈[ ∑N

β=1 |dβ (z, λ0, λ)|2]2

N
∑N

β=1 |dβ (z, λ0, λ)|4

〉
. (7)

Figure 3(f) shows that Me(z, 0) decreases monotonically with
z, indicating a decrease in the effective number of participat-
ing transmission channels as z → L.

VI. FIELD DECORRELATION
WITH SPECTRAL DETUNING

In addition to the power decay, spectral detuning changes
the spatial field distribution in the target region for the

maximum deposition eigenchannel. The spectral correlation
function of the field distribution for input equal to the αth
deposition channel at λ0, |vα (λ0)〉, is defined as

C (α)
E (z,�λ) =

∣∣∣∣
〈 〈vα (λ0)|Z†(λ)Z (λ0)|vα (λ0)〉
||Z (λ)|vα (λ0)〉|| ||Z (λ0)|vα〉||

〉∣∣∣∣. (8)

We define the spectral width of the field correlation function
as the FWHM of C (α)

E (z,�λ).
Figure 4(a) shows C (α)

E (z,�λ) for high-deposition eigen-
channels in a 10 µm by 10 µm target centered at depth
z/L = 0.6. Channels with larger eigenvalues (higher power
in the target) have slower field decorrelation with wavelength
detuning �λ. This dependence can be understood as follows.
When the input wavefront is set to that of the αth depo-
sition eigenchannel but its wavelength is slightly detuned,
it predominantly excites the αth eigenchannel along with
a superposition of the remaining deposition eigenchannels
in the diffusive waveguide. As its eigenvalue increases, the
αth eigenchannel becomes more dominant over the remain-
ing eigenchannels, leading to a slower decay in correlation
with frequency detuning. This behavior persists at all depths
and is analogous to the larger angular memory effect for
higher-transmission eigenchannels [62]. It is also consistent
with experimental observation of robustness against fre-
quency detuning for high-transmission channels in a diffusive
slab [63].

Compared to power decay, field decorrelation of the
largest deposition eigenchannel, C (1)

E (z,�λ), is slower at
small spectral detuning �λ. This is shown in Fig. 4(b) com-
paring the field decorrelation to the deposited power decay
〈ζ1(z,�λ)〉/〈ζ (z)〉 as a function of �λ. For large �λ, the
power decay becomes slower than the field decorrelation ow-
ing to long-range spectral correlations [53,57]. Figure 4(c)
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shows the dependence of the spectral width of the field cor-
relation of the largest deposition eigenchannel, FWHM of
C (1)

E (z,�λ), on the target depth z. At all depths, the field
correlation spectral width exceeds that of the power enhance-
ment. The former decreases rapidly for shallow depths before
attaining a minimum near the center of the waveguide, where
constructive interference between forward and backpropagat-
ing waves is strongest.

Our observation that the field decorrelation is slower than
power decay at small wavelength detuning can be explained
using a perturbation approach. For the input wavefront equal
to the maximum deposition eigenchannel at λ0, the field
distribution inside the target is |u1〉 = Z (λ0) |v1〉. The field
variation induced by spectral detuning of same input wave-
front is noted |�u〉 = Z (λ0) |v1〉 − Z (λ0 + �λ) |v1〉, and is
treated as a small perturbation of order ε � 1 for small detun-
ing. Up to a second-order expansion in ε, the power change in
the target region is

〈ζ1(z,�λ)〉
〈ζ1(z, 0)〉 =

〈
1 − 2Re[〈u1|�u1〉]

〈u1|u1〉 + 〈�u1|�u1〉
〈u1|u1〉

〉
, (9)

whereas the change in the spectral correlation function of field
distribution can be written as

C (1)
E (z,�λ) =

〈
1 − 〈�u1|�u1〉

2〈u1|u1〉 + |〈u1|�u1〉|2
2〈u1|u1〉2

〉
. (10)

While the power decay has both first- and second-order cor-
rections in ε, the field decorrelation only has second-order
corrections. Therefore, the power decay is faster than the field
decorrelation for small spectral detuning. This calculation
holds at all depths and explains the numerical results in Fig. 4.

VII. EFFECT OF ABSORPTION

In the previous section we ignore absorption of light. It is
known that absorption has a significant impact on coherent
wave transport [49–52]. Here, we investigate how absorption
affects the spectral width of maximum deposition eigen-
channels. We introduce homogeneous absorption to the 2D
diffusive waveguide, with a diffusive absorption length of
ξ = 28 µm. The target is still a 10 µm by 10 µm box centered
at depth z. We also compare focusing light to a single speckle
at the same depth.

Figure 5(a) shows that absorption increases the spectral
width of the maximum deposition eigenchannel at all depths.
The width dependence on depth, however, remains quali-
tatively identical to that without absorption. The trade-off
between power enhancement and spectral bandwidth persists
in the presence of absorption. The spectral width of the max-
imum deposition eigenchannel is again minimized inside the
waveguide. Therefore, absorption lowers the maximum power
enhancement throughout the waveguide [45] while simultane-
ously increasing the spectral bandwidth.

Figure 5(b) shows absorption also increases the spectral
width for focusing light to a single speckle. However, the
maximum enhancement of the focusing power remains un-
changed by absorption. The increase in the spectral width
results from the dominant contribution of the short-range cor-
relation, whose spectral width increases with absorption.

The focusing width becomes smaller than the deposition
width for z/L > 0.6 in the presence of absorption. This is be-
cause absorption reduces the maximum power enhancement
at �λ = 0, and therefore power decay at large �λ [Fig. 1(a)]
plays an important role in determining the spectral width. At
large �λ, long-range spectral correlations become dominant,
which are barely changed by absorption [53,57]. This leads
to an effective increase in spectral width. In contrast, the
maximum focusing enhancement at �λ = 0 is unaffected by
absorption, and the enhancement of the focusing bandwidth
is primarily caused by the increase of the short-range spectral
correlation width with absorption.

The introduction of absorption also increases the field
correlation width in the target for the maximum deposition
eigenchannel, FWHM of C (1)

E (z,�λ), as shown in Fig. 5(c).
The depth dependence is again maintained with absorption.
The width of C (1)

E (z,�λ) remains higher than that of the
deposited power decay at all depths. C (1)

E (z,�λ) is determined
by a combination of both short- and long-range correlations,
whose spectral widths are both broadened by absorption. This
results in an overall increase in the field correlation width with
absorption.

We further show that absorption increases the spectral
width of incoherent and coherent contributions of transmis-
sion eigenchannels to the maximum deposition eigenchannel
and preserves their depth dependence [Fig. 5(d)]. These
results illustrate that the width increase of the incoherent
contribution is more significant than that of the coherent
contribution. This trend causes a notable increase in the
deposition width as z approaches L, where the coherent
contribution vanishes. However, absorption slightly increases
the magnitude of coherent contribution, Pc(z, 0)/P1(z, 0), as
shown in Fig. 5(e). The crossing between the coherent and
incoherent contributions is at a larger depth than that without
absorption. To explain this change, we calculate the number
of participating transmission eigenchannels Me(z, 0) to the
maximum deposition eigenchannel with and without absorp-
tion. Figure 5(f) shows that absorption increases Me(z, 0),
thereby raising the magnitude of the coherent contribution.
Although absorption decreases the power delivered by the
maximum deposition eigenchannel, the number of contribut-
ing transmission eigenchannels increases at all target depths.
This is because absorption causes a stronger attenuation of
higher-transmission eigenchannels [52], making a larger num-
ber of moderately transmitting channels contribute more to the
largest deposition eigenchannel.

VIII. DISCUSSION AND CONCLUSIONS

In this paper, we present a numerical study on the spec-
tral bandwidth of the maximum deposition eigenchannel to
an extended target deep inside a 2D diffusive waveguide.
Compared to the maximum transmission channel, the max-
imum deposition eigenchannel is more sensitive to spectral
detuning, resulting in a faster decay of deposited power in
the target. The higher spectral sensitivity is a consequence
of back-propagating waves interfering constructively with
forward-propagating waves to maximize power in the target.
In contrast to the monotonic decrease of transmission band-
width with system length, the deposition bandwidth displays
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FIG. 5. Effect of absorption on the maximum deposition eigenchannel. (a) Spectral width of the maximum deposition eigenchannel ζ1(�λ)
(blue squares) with absorption (blue open squares) is larger than that without absorption (blue solid squares). The target is a 10 µm by 10 µm
box centered at depth z/L. (b) The spectral width of focusing on a wavelength-scale speckle with absorption (purple open circles) exceeds
that without absorption (purple solid circles) at all depths z/L. (c) The spectral width of the field correlation C (1)

E (z,�λ) in the 10 µm by
10 µm target with absorption (orange asterisks, dashed line) exceeds that without absorption (orange asterisks, solid line). (d) Spectral width
of the incoherent contribution (red open upward triangles) and the coherent contribution (green open downward triangles) of transmission
eigenchannels to the maximum deposition eigenchannel with absorption exceeds those without absorption (solid symbols). (e) Percentage of
the incoherent (red upward triangles) contribution of transmission eigenchannels to the maximum deposition eigenchannel Pi/P1 increases
with absorption, while the coherent contribution Pc/P1 decreases. (f) Participation number of transmission eigenchannels to the maximum
deposition Me(z, 0) with absorption (dashed line) is higher than that without absorption (solid line) at all depths z/L.

a nonmonotonic dependence on the target depth, with the min-
imum inside the system. This is attributed to the finite length
of the diffusive system. We further show that the spectral
decorrelation of the field distribution in the target region is
slower than the power decay and provide an explanation with
a perturbation approach. Finally, we find that optical absorp-
tion increases the spectral width for the maximum deposition
eigenchannel at all target depths.

We stress the difference between delivering power to a tar-
get of size much larger than the wavelength and focusing light
to a wavelength-scale speckle inside the diffusive waveguide.
The spectral bandwidth of focusing is significantly larger and
displays a monotonic decrease with increasing depth. This is
owing to the dominant contribution of short-range correlations
to wavelength-scale focusing. For power delivery to a large
target, long-range correlations become dominant, leading to
distinct characteristics.

Here, we simulate scalar wave transport in a 2D disordered
waveguide. Vector wave simulations will illustrate the effects
of light polarization on deposition eigenchannels. Another
future direction is to extend this study to 3D diffusive systems,
e.g., a 3D slab with open boundary. Experimentally, it is much

more difficult to have complete control of the input wavefront
in a 3D slab compared to a 2D waveguide. Therefore, it
will be important to study the effect of incomplete channel
control on power deposition inside 3D scattering media. It
is worth noting that our simulation result in Fig. 4(c) con-
flicts with experimental results for high-transmission channels
through a disordered slab measured by digital phase conjuga-
tion [63], which showed the spectral field correlation width
of a high-transmission channel narrower than the transmission
decay width. Although the conditions for this experiment were
significantly different from those of our simulation, this dis-
crepancy warrants further investigation. The spectral width for
maximum power deposition may also depend on the overall
size and shape of a scattering system [64]. It is also worth
exploring deposition eigenchannels in systems with weak
scattering, correlated disorder [65], or in the localized regime
[66]. Finally, we point out that the current study applies
to the power deposition of general diffusive waves, includ-
ing microwaves, pressure waves, acoustics, or mesoscopic
electrons. Furthermore, understanding the spectral properties
of monochromatic deposition eigenchannels is important to
broadband power delivery into diffusive media [53].
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APPENDIX

1. Numerical simulation details

In our previous experiments, disorder is induced by
randomly distributed circular air holes fabricated on a silicon-
on-insulator waveguide. The hole diameter is d = 100 nm
and air filling fraction is 5.5%. Light is confined inside the
waveguide with photonic crystal sidewalls, modeled by the
reflecting boundaries in the simulation. The silicon membrane
220 nm thick, and supports only a single guided mode in the
direction perpendicular to the membrane. Although optical
absorption by silicon is negligible at wavelength ∼1550 nm,
light scattering out of the waveguide plane by the random
array of air holes is effectively modeled as uniform absorption
[54]. Experimental values of lt and ξa are extracted from the
cross-section averaged intensity profile I (z) and the magni-
tude of the intensity fluctuation, as described in [54,67]. Our
experiment also contains a weakly scattering buffer region at
the waveguide entrance to map the field distribution before
the disordered region [38]. The buffer region is replicated in
the simulation with the same parameters, length 25 µm and air
filling fraction of 0.55%. Numerically we find the inclusion of
a buffer region does not appreciably influence the results.

We conduct numerical simulations using KWANT, an open
source Python package for scalar wave transport simulations
[56]. KWANT employs a tight-binding model on a 2D square
lattice to calculate the scattering matrix of the system. The dis-
ordered waveguide has reflecting sidewalls and is connected
to two empty waveguide leads at the input and output ends
[52]. Disorder is induced by adding a random potential δE
to the on-site energy E0, and the frequency of light is given
by E0. To simulate light scattering in a dielectric medium, we
set the spatial grid size dx � λ, lt , so that the tight-binding
model can be mapped exactly onto the discretized Helmholtz
equation [68].

The system parameters are chosen to match those of our
previous experiments in 2D disordered waveguides [38]. The
waveguide width W and E0 are first chosen so that the

number of propagating modes is similar to experimental
value, N = 56 within the wavelength range �λ = 20 nm cen-
tered at λ0 = 1585.5 nm (wavelength of light in free space).
Then the length L is chosen to match the ratio L/W = 10/3,
corresponding to L = 50 µm and W = 15 µm. The scatter-
ing strength, max |δE |, is chosen to give the transport mean
free path, lt = 3.3 µm. Our system is strongly diffusive since
W, L � lt . To account for absorption, a small constant neg-
ative imaginary part γ is added to the on-site energy E0 →
E0 + iγ , corresponding to a diffusive absorption length ξa =√

lt la/2 = 28 µm, where la is the ballistic absorption length.
Deposition matrices, Z (λ), are computed by measuring

linear mappings from complex scalar wavefronts at the left
lead in the basis of waveguide modes to spatial wavefronts
in corresponding target regions of size 10 µm by 10 µm.
The frequency of the input light is scanned by changing the
on-site energy E0. To cover a frequency range of �λ = 20
nm, a total of 81 measurements are made in frequency steps
of dλ 
 0.25 nm. All results shown are averaged over 100
random disorder configurations.

2. Focus power at wavelength λ = λ0 + �λ

The focus power is defined as

Pfoc(�λ) = 〈|〈m|Z (λ)|ψfoc(λ0)〉|2〉, (A1)

where |m〉 represents the target at focus (mth sampling point),
and |ψfoc(λ0)〉 = N (λ0)Z (λ0)†|m〉 is the input wavefront that
maximizes the focusing power for �λ = 0. The normalization
coefficient reads N (λ0) = 〈m|Z (λ0)Z (λ0)†|m〉−1/2. Writing
the focus power as

Pfoc(z,�λ) =
〈 |〈m|Z (λ)Z (λ0)†|m〉|2

〈m|Z (λ0)Z (λ0)†|m〉
〉
, (A2)

it is clear that it satisfies

Pfoc(z, 0) = NPrand(z), (A3)

where Prand(z) = 〈〈m|Z (λ0)Z (λ0)†|m〉〉/N = 〈|Zmn(λ0)|2〉 is
the fraction of power delivered by random illumination to
a speckle grain at depth z. Considering Z (λ0) as a square
N × N matrix, we also have Prand(z) = 〈ζ (z)〉/N , where
〈ζ (z)〉 = 〈Tr[Z (λ0)Z (λ0)†]〉/N is the mean deposition eigen-
value.

At �λ �= 0, the mean of the ratio in Eq. (A2) can be
replaced approximated by the ratio of the means of numerator
and denominator,

Pfoc(z,�λ) 
 〈|〈m|Z (λ)Z (λ0)†|m〉|2〉
〈ζ (z)〉

=
∑

i, j〈Zmi(λ)Zm j (λ)∗Zmi(λ0)∗Zm j (λ0)〉
〈ζ (z)〉 .

(A4)

This quantity can be computed by decomposing each Z-
matrix element on all possible scattering trajectories and
performing the average with standard diagrammatic tech-
niques [69]. We find

Pfoc(z,�λ) 
 〈ζ (z)〉
[

1

N
+ C1(z,�λ) + C2(z,�λ)

]
, (A5)
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where the diagrams corresponding to the short- and long-
range contributions C1(z,�λ) and C2(z,�λ) are explic-
itly represented and evaluated in the supplementary ma-
terial of Ref. [53]. The drawback of this approach is
that it is difficult to account for all sub-leading dia-
grams that may become non-negligible after summation
over the indices i, j. In particular, we note that the
expression (A5) does not coincide with the exact re-
sult (A3) at �λ = 0, since C1(z, 0) = 1 and C2(z, 0) > 0.
Nevertheless, it meets the anticipated result Pfoc(z,�λ �
δλ) = Prand(z).

Alternatively, we can perform a singular value decom-
position of each deposition matrix appearing Eq. (A4)
in terms of random unitary matrices, Z (λ) = U�V †,
and perform the average in the circular unitary en-
semble [70]. This second approach has the clear ben-
efit of properly accounting for all possible contribu-
tions. Since Eq. (A4) contains two doublets {U,U †}
and two doublets {V,V †}, it results in (2!)2 × (2!)2 = 16
terms, of which four dominate in the limit N � 1. The result
reads

Pfoc(z,�λ) 
 〈ζ (z)〉
[

1

N
+ C1(z,�λ)

+ C2(z,�λ) + C(c)
V (�λ)

]
, (A6)

where the C1 and C2 functions are defined in terms of the SVD
components, as

C1(z,�λ) = CV (�λ)CU (�λ)〈Tr[
√

�(z, λ)�(z, λ0)]2〉
N2〈ζ (z)〉2

,

C2(z,�λ) = CV (�λ)〈Tr[�(z, λ)�(z, λ0)]〉
N2〈ζ (z)〉2 . (A7)

Here, CV (�λ)=N2|〈Viα (λ)Viα (λ0)∗〉|2, and C(c)
V (�λ) = N2

〈Viα (λ)Vjα (λ)∗Vjβ (λ0)Viα (λ0)〉(c) is the connected non-

Gaussian part of the correlator made of the product of
two doublets {V,V †}. The definitions of C1(z,�λ) and
C2(z,�λ) in Eq. (A7) coincide with those based on the
microscopic diagrammatic picture and introduced in Eq. (A5).
In addition, since CV (0) = 1 and C(c)

V (0) = −1/N [70],
we find Pfoc(z, 0) 
 N[1 + C2(z, 0)]Prand(z), which is still
different from the exact result (A3) by the extra long-range
component C2(z, 0). The reason is not an incorrect evaluation
of the numerator of Eq. (A4), but rather the fact that the
approximation (A4) is not valid in the limit �λ � δλ. To
make the result (A6), which is valid for �λ � δλ, compatible
with Eq. (A3), we propose to replace it by the following
empirical expression

Pfoc(z,�λ) = 〈ζ (z)〉
[
C1(z,�λ)

+ [1 − C1(z,�λ)]

[
C2(z,�λ) + 1

N

]]
. (A8)

This expression is in excellent agreement with the results
of numerical simulations at different depths z and arbitrary
detuning �λ, using the numerical values of C1(z,�λ) and
C2(z,�λ). The short-range contribution C1(z,�λ) is calcu-
lated from the correlation of the field E (z, λ) measured in a
single speckle and averaged over random input wavefronts,

C1(z,�λ) = |〈E (z, λ)E (z, λ + �λ)∗〉|2
〈E (z, λ)E (z, λ)∗〉2 . (A9)

The long-range contribution C2(z,�λ) is calculated from
the spectral correlation function of the total intensity
C (T )(z,�λ) using the expression, C2(z,�λ) 
 C (T )(z,�λ) +
C1(z,�λ)/N , which generalizes the result known for �λ = 0,
C (T )(z, 0) = 2/3N〈ζ (z)〉 − 1/N [57].
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