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We study Anderson transition for light in three dimensions by performing large-scale simulations of
electromagnetic wave transport in disordered ensembles of perfect-electric-conducting spatially over-
lapping spheres. A mobility edge that separates diffusive transport and Anderson localization is identified,
revealing a sharp transition from diffusion to localization for light. Critical behavior in the vicinity of the
mobility edge is well described by a single-parameter scaling law. The critical exponent is found to be
consistent with the value known for the Anderson transition of the orthogonal universality class. Statistical
distribution of total transmission at the mobility edge is described without any fit parameter by the
diagrammatic perturbation theory originally developed for scalar wave diffusion, but notable deviation
from the theory is found when Anderson localization sets in.
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Anderson localization is a phenomenon of breakdown of
quantum or, more generally, wave transport due to inter-
ference effects in a disordered medium [1,2]. The existence
of Anderson localization has been suggested for electro-
magnetic waves in general and light in particular [3,4].
Localization of light has indeed been observed in low-
dimensional systems [5–9] but not in three dimensions
(3D) [10] despite numerous attempts [11–19]. The current
belief is that longitudinal electric fields prevent Anderson
localization of light in 3D dielectric disordered media [20–
23]. Recently, brute-force numerical solutions of Maxwell
equations has led to a discovery of light localization [22] in
3D fully disordered ensembles of conducting particles
where longitudinal fields either do not exist (in perfect
electric conductors) or, at least, are strongly suppressed (in
good metals). This finding, however, raises a number of
questions: (i) Can the evolution from diffusion to locali-
zation of light in conducting disordered systems in
Ref. [22] be classified as an Anderson transition? (ii) Is
the transition sharp, i.e., does the transition occur at a single
frequency that defines a mobility edge? (iii) Does the
transition exhibit universal scaling near the mobility edge
as predicted by the standard scaling theory of localization
[24]? (iv) What is the universality class of this transition for
electromagnetic waves? These are the questions that we
seek to answer in the present Letter.

Anderson transition has been studied experimentally in
various systems, among which electrical (semi-)conductors
[25,26] as well as elastic [27,28] and matter [29–32] waves
are the most prominent examples. The theory of Anderson
transition provides a good understanding of underlying
physics [33,34] but lacks quantitative accuracy. This gap is
successfully filled by numerical approaches [35–44]. For
light, transitions from diffusion to localization and to the
photonic band gap regime have been recently studied
numerically in 3D disordered photonic band gap materials
[45,46].
A sharp transition between extended and localized states

is expected only in an infinitely large system, which is
impossible to realize experimentally or in numerical sim-
ulations. Such difficulty is circumvented by the finite-size
scaling approach [47] that investigates how the conductance
varies with the system size. The mobility edge separating
diffusive transport from Anderson localization is crossed as
the energy (frequency ω for light) is varied. On the diffusion
side of the mobility edge, the conductance increases with
the system size, while on the localization side it decreases as
the system gets larger. Moreover, the localization length
diverges at the mobility edge ωc: ξðωÞ ∝ jω − ωcj−ν. The
critical exponent ν depends only on the universality class of
the transition, and is independent of any details of particular
physical systems.
In this work, we numerically study Anderson transition in

3D fully disordered systems made of metallic scatterers.
Compared to experimental studies, numerical calculations

*Contact author: yamilov@mst.edu
†Contact author: hui.cao@yale.edu
‡Contact author: sergey.skipetrov@lpmmc.cnrs.fr

PHYSICAL REVIEW LETTERS 134, 046302 (2025)
Editors' Suggestion Featured in Physics

0031-9007=25=134(4)=046302(6) 046302-1 © 2025 American Physical Society

https://orcid.org/0000-0002-9339-6475
https://ror.org/00scwqd12
https://orcid.org/0000-0002-5339-6892
https://ror.org/03v76x132
https://orcid.org/0000-0001-6186-1929
https://ror.org/02rx3b187
https://ror.org/02rx3b187
https://ror.org/02mc6qk71
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.134.046302&domain=pdf&date_stamp=2025-01-29
https://doi.org/10.1103/PhysRevLett.134.046302
https://doi.org/10.1103/PhysRevLett.134.046302
https://doi.org/10.1103/PhysRevLett.134.046302
https://doi.org/10.1103/PhysRevLett.134.046302


can provide accurate results that are free of experimental
artifacts and measurement noises. Moreover, complications
from optical absorption may be avoided by simulating
perfect-electric-conducting (PEC) materials. Using a
highly efficient, hardware-optimized finite-difference time-
domain (FDTD) algorithm [48], we directly solve Maxwell
equations in space and time for 3D random ensembles
of PEC scatterers, see Sec. S1.2 in Ref. [22]. Our nume-
rical results reveal the existence of a mobility edge ωc
for Anderson transition of light, and confirm the single-
parameter scaling of the critical behavior in the vicinity
of ωc. We obtain an estimate for the critical exponent
ν ¼ 1.5� 0.3, which is consistent with previous results
for the Anderson transition in the 3D orthogonal universality
class.
To perform the finite-size scaling analysis and to explore

the degree of universality of the scaling, we simulate
random ensembles of overlapping spheres with four radii
r. For each sphere size, we perform time-domain simulation
of pulse propagation in a L × L × L cube with periodic
boundary condition on four sides. The pulse is incident onto
the front surface of the cube as a plane wave at normal
incidence. The time-dependent transmitted fields are
Fourier transformed to obtain the frequency-resolved trans-
mission over a wide spectral range. Then we compute the
total transmitted flux at each frequency that, with proper
normalization, yields the total transmission TaðωÞ [48].
Here a denotes the incident spatial mode. Details of
numerical simulations are given in Supplemental Material
[49] Sec. I.
In principle, the dimensionless conductance can be

obtained by summing over input modes a [50,51]:
g ¼ P

a Ta, but simulating all possible input modes a is
too resource consuming. Instead, we compute Ta for a

single input mode a of linearly polarized plane wave
incident normally onto the front surface of the scattering
system. Ensemble average over disorder realizations gives
hgi ¼ ð4=5ÞNhTai, where N ¼ ðωL=cÞ2=2π is the number
of transverse modes [50,52], and factor 4=5 accounts for
angle of incidence, see Supplemental Material [49] Sec. I.
Thus, hgi can be obtained from hTai, but performing the
finite-size scaling of hgi would be impractical due to strong
fluctuations of Ta from one realization of disorder to
another. To circumvent this problem, it is common to work
with a typical conductance g̃, which can be, for example, a
percentile of the statistical distribution of g or expðhln giÞ
[38,39]. The precise choice of g̃ has no importance,
although some options turn out to be better adapted to
numerical evaluation than the others [38]. We choose to
average lnTa and define

ln g̃ ¼defhln½ð4=5ÞNTa�i: ð1Þ
Figure 1(a) shows ln g̃ (dots) versus normalized fre-

quency ðω=cÞr for four sphere radii r and three system
sizes L (Table I). Lighter color corresponds to larger L.
Statistical averaging is performed over ensembles of 100,
50, and 25 realization for L=λ0 ¼ 3, 5 and 7, respectively.
For any given r, ln g̃ increases faster with frequency for
larger L. Notably, the conductance curves for different L
intersect at a single frequency ωc. At ω < ωc, g̃ decreases
with L, a signature of localization. For ω > ωc, g̃ increases
with L, consistent with diffusion. This indicates a sharp
Anderson transition in the L → ∞ limit, with the critical
frequency ωc that can be identified as a mobility edge [24].
We now proceed to the quantitative analysis near the

mobility edge ωc. We employ the following numerically
robust procedure for the finite-size scaling analysis [37,39].
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FIG. 1. Transition from diffusion to localization in random ensembles of overlapping spheres. (a) Logarithm of the typical
conductance, ln g̃, as a function of normalized frequency ðω=cÞr for different sphere radii and varying system size L=λ0 ¼ 3, 5, and 7
(lighter color for larger L). For a given r, all curves exhibit a crossing. Volume fraction is adjusted to f ¼ 48%, 55%, 61%, and 67% for
r ¼ 25, 50, 75 and 100 nm (blue, red, green, purple), so that the conductance crossing occurs around λ0 ¼ 650 nm for all radii. Solid
lines are fits of numerical data to Eq. (2), and the critical exponent ν is given next to each dataset. (b) An expanded view of the crossing
point for r ¼ 75 nm. (c) χ2 statistic versus critical exponent ν (symbols), and parabolic fits to the numerical data near minima of χ2 (solid
lines). Estimated uncertainty of ν for each r, given in (a), is obtained from the width of fitted parabola in (c). The mean value of ν and the
standard error of the mean are shown in (c) by the vertical dashed line and the shaded area, respectively.
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We fit ln g̃ datasets corresponding to a given r in a
frequency interval �Δωfit around the estimated mobility
edge to a scaling function

Fðω;LÞ¼ ln g̃cþBL1=νðω−ωcÞþCL2=νðω−ωcÞ2: ð2Þ
Values of the five fit parameters ln g̃c, B, C, ωc and ν are
obtained by minimizing the χ2 statistic defined as

χ2 ¼ 1

3

X3
i¼1

1

NðΔωfit; LiÞ
XNðΔωfit;LiÞ

j¼1

½Fðωj; LiÞ − ln g̃ji�2
σ2ji

; ð3Þ

where NðΔωfit; LiÞ is the number of data points ðωj; ln g̃jiÞ
in 2Δωfit interval for the system of dimension Li; ln g̃ji is
the value of ln g̃ obtained after ensemble averaging of data
at frequency ωj for the system of size Li; σji is the
corresponding standard error of the mean. The fitting
results are plotted by solid lines in Fig. 1(a), with an
expanded view for r ¼ 75 nm in Fig. 1(b). The best-fit
parameters ν, ωc, and ln g̃c are listed in Table I. To obtain
their uncertainties, we compute χ2 as a function of one of
them, e.g., ν, with all other parameters fixed at their best-fit
values. We then perform a parabolic fit of the dependence
χ2ðνÞ around its minimum at ν ¼ νbest, see Fig. 1(c), and
compute the uncertainty of ν as Δν ¼ ½2∂2χ2=∂ν2�−1=2 at
ν ¼ νbest [53]. The same analysis is repeated for ωc and
ln g̃c; see Supplemental Material [49] Sec. II.
The mobility edge ωc follows from the fit with a rather

small uncertainty and varies very little with Δωfit, see [49]
Sec. II. In contrast, the best-fit value of the critical exponent
ν varies substantially with Δωfit but converges robustly
towards 1.5 with increasingΔωfit for all r, see Fig. 2(a). We
therefore use the values for the largest Δωfit for each r as
the best estimates of ν. Four systems with different r
provide four independent estimates of νwith corresponding
uncertainties listed in Table I. Their mean value and the
standard error of the mean provide the final estimate for the
critical exponent: hνi ¼ 1.5� 0.3. This result is consistent
with the value ν ≃ 1.57 previously found for Anderson
transition of the orthogonal universality class in various
systems: Anderson tight-binding model [37,39], kicked
rotor [29,54], random networks of masses connected by
springs [43], elastic waves [55], light scattering by cold
atoms [56].
The analysis presented above is based on the hypothesis

of single-parameter scaling: g̃ ¼ g̃ðL=ξÞ, where ξ is the
localization length. We check to what extent our numerical

results are consistent with this hypothesis. This is done by
replotting the data of Fig. 1 as a function of the ratio L=ξ,
where ξ ¼ ξ0=jω − ωcjν, in Fig. 3. The unknown constant
ξ0 leads only to a horizontal shift of data points in the
chosen logarithmic scale for the horizontal axis. We see that
the data points corresponding to different sphere radii [dots
in panels (a)–(d)] and different system sizes (colors of
different shades) collapse to a single curve given by the
scaling function (2) shown by solid lines. This curve has
two branches, the top one for diffusion, and the bottom one
for localization. Good agreement between our numerical
data and the scaling theory confirms that g̃ can be
considered as a function of a single parameter L=ξ, and
justifies the validity of our analysis a posteriori. In
Supplemental Material [49] Sec. III, we also test the
dependence of our results on the range of system sizes
and number of realizations used in the scaling analysis
demonstrating the robustness of our analysis.
Our results of single-parameter scaling with similar

values of the critical exponent ν for all four different sphere
sizes r simulated, as well as the proximity of the values of ν
that we find with those from the literature, can be interpreted
as a confirmation of the universality of Anderson transition.

TABLE I. Parameters of disordered systems simulated and scaling parameters obtained from fitting for the largest Δωfit.

Radius r (nm) Filling fraction f Size L=λ0 Critical exponent ν Mobility edge ðωc=cÞr ln g̃c Critical conductance gc

25 48% 3, 5, 7 1.4� 0.4 0.22þ 0.01 −1.7� 0.4 0.40� 0.01
50 55% 3, 5, 7 1.5� 0.5 0.44þ 0.02 −2.4� 0.6 0.27� 0.01
75 61% 3, 5, 7 1.6� 0.7 0.66þ 0.03 −2.7� 0.7 0.23� 0.01
100 67% 3, 5, 7 1.5� 0.7 0.93þ 0.05 −2.8� 0.6 0.24� 0.01

FIG. 2. Critical exponent and typical conductance at the
mobility edge. Values of critical exponent ν (a) and of the typical
conductance at the mobility edge ln g̃c (b) obtained from fitting in
the frequency interval �Δωfit around the estimated mobility
edge. In (a), the horizontal dashed line and the shaded gray area
show the value of ν averaged over the four sphere radii at the
largest internal Δωfit for reach r and its uncertainty, respectively.
In (b), error bars are shown for the largest fitting intervals Δωfit,
see Supplemental Material [49] Sec. II.
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Namely, the critical behavior is insensitive to microscopic
details of disorder aswell as to the type ofwaves andwhether
they are scalar or vector waves.
The single-parameter scaling shown above relies on the

typical conductance g̃ defined in Eq. (1) as the scaling
parameter. Since we define g̃ in terms of the total trans-
mission Ta, one may wonder about its relation with the
average conductance hgi, which is believed to be the
relevant scaling parameter for the Anderson transition
[33]. It is worthwhile to note that even though we compute
Ta and not g, we can still obtain the mean hgi ¼
ð4=5ÞNhTai [51]. The value of hgi at mobility edge gc
can be estimated by averaging hgi over a narrow frequency
interval δω around ωc. Using ðδω=cÞr ¼ 0.02 yields gc that
depends only weakly on the range Δωfit of the fit in Fig. 1.
For each sphere size r, averaging over all L’s for the largest
Δωfit, yields the best estimate for the critical value gc given
in Table I. These values are consistent with the expectation
that gc is of the order of unity [57].
To further illustrate the relation between g̃ in Eq. (1) and

hgi, we study the full probability distribution of Ta.
Figures 4(a)–4(c) show the probability density of the
normalized transmission sa ¼ Ta=hTai for different hgi,
obtained by sampling the ensemble of disorder realizations
within different frequency intervals. It is compared to the
prediction of the perturbation diagrammatic theory devel-
oped for hgi ≫ 1 [58,59] (red solid lines):

PðsaÞ ¼
Z

i∞

−i∞

dx
2πi

exp ½xsa −ΦconðxÞ�; ð4Þ

ΦconðxÞ ¼ hgiln2½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x=hgi

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
x=hgi

p
�: ð5Þ

Figures 4(a)–4(c) show the comparison in three regimes:
diffuse transport hgi > gc, mobility edge hgi ¼ gc, and
Anderson localization hgi < gc. In Fig. 4(d), we quantify
the deviation χ2P between the numerical and theoretical
distributions for a given hgi, see Supplemental Material
[49] Sec. II. For hgi ≥ gc, the agreement between numerical
PðsaÞ and Eq. (4) is remarkable without any adjustable
parameters, with the value of hgi that parametrizes PðsaÞ
calculated directly from hTai [50]. This not only demon-
strates the validity of Eq. (4) for light near and at the
localization transition but also, and more importantly,
establishes the equivalence of using g̃ or hgi as the relevant
scaling parameter for the Anderson transition. Indeed, as
far as PðsaÞ is parametrized only by hgi—which is the case
according to Fig. 4—the average of any function of sa,
including ln g̃ ∝ hln sai, is a function of hgi and thus can be
used as a scaling parameter.
Figure 4 also shows that in the regime of Anderson

localization where hgi becomes significantly smaller than
gc, Eq. (4) does not hold any more. In particular, the
discrepancy between numerical PðsaÞ and Eq. (4) is
significant for hgi ¼ 0.1. Even if hgi is treated as a fitting
parameter, the numerical PðsaÞ cannot be satisfactorily
fitted by Eq. (4), see Supplemental Material [49] Sec. IV.
Nevertheless, the numerical data for different r’s and L’s in
Fig. 4(a) collapse onto a single curve.
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FIG. 3. Numerical data from Fig. 1(a) replotted for each of the
four systems in panels (a)–(d) versus system size L normalized by
the localization length ξ ¼ ξ0=jω − ωcjν. All data collapse on
universal curves given by the scaling function (2) shown by solid
lines, which confirms the validity of the single-parameter scaling
hypothesis.
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transmission sa ¼ Ta=hTai for three values of average conduct-
ance hgi ¼ 0.1, 0.24 (≃gc), and 1.0, obtained by spectral binning
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gc) and all system sizes L in Table I (dots). Solid lines show
Eq. (4) with the actual values of hgi. (d) Deviation of Eq. (4) from
the numerical PðsaÞ as a function of hgi. The circles and the error
bars represent the mean and standard deviation over different r’s
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Finally, we point out that dissipation is absent in PEC
media simulated. Any realistic metal has some degree of
optical absorption—an aspect that becomes particularly
crucial in the context of Anderson localization [11,12,15].
It would therefore be important to extend the analysis
presented in this Letter to disordered media with dissipa-
tion. Previous studies have shown that absorption breaks
down the single-parameter scaling [60], making it neces-
sary to introduce a second scaling parameter. Finite-size
scaling in the framework of two-parameter scaling hypoth-
esis may be an interesting extension of our work for
Anderson transition of light in realistic 3D systems.
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