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We experimentally generate and characterize eigenstates of the Wigner-Smith time-delay matrix, called
principal modes, in a multimode fiber with strong mode coupling. The unique spectral and temporal
properties of principal modes enable global control of temporal dynamics of optical pulses transmitted
through the fiber, despite random mode mixing. Our analysis reveals that well-defined delay times of the
eigenstates are formed by multipath interference, which can be effectively manipulated by spatial degrees
of freedom of input wave fronts. This study is essential to controlling dynamics of wave scattering, paving
the way for coherent control of pulse propagation through complex media.
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Temporal dynamics of wave scattering in complex
systems has been widely studied in quantum mechanics,
nuclear physics, acoustics, and optics. Most of these
studies, e.g., electromagnetic or ultrasonic wave propaga-
tion in billiards [1–4], electron transport through quantum
dots [5,6], and light scattering in random media [7–12]
focused on statistics of delay times, i.e., eigenvalues of the
Wigner-Smith time-delay matrix [13–15]. Despite innu-
merable trajectories waves could take through an open
complex system, an eigenstate of the Wigner-Smith matrix
remarkably has a well-defined delay time. Some of the
eigenstates are particle-like with their wave functions
concentrating on a single trajectory [4], and hence a definite
transit time is expected. Most of the states, however, consist
of enormous trajectories with various lengths such that it is
concealed how well-defined delay times can be attributed to
these states.
Largely in parallel, the Wigner-Smith eigenstates were

introduced for multimode optical fibers (MMFs), which
recently attracted much attention due to the rapid develop-
ment of space-division multiplexing for telecommunications
[16]. Inherent imperfections and external perturbations
introduce random mode coupling and cause pulse broad-
ening and distortion in a MMF. As a generalization of
principal states of polarization in single-mode fibers [17],
the Wigner-Smith eigenstates, also called principal modes
(PMs) in MMFs, were proposed to suppress modal
dispersion [18].
Advances in wave front shaping techniques now make it

possible to probe a single Wigner-Smith eigenstate in
optics. Recently, PMs were observed in a MMF with weak
mode coupling [19]. In this regime, mode coupling in the
fiber is only perturbative and PMs are similar to eigenm-
odes of a perfect fiber [20]. In the strong mode coupling
regime, however, all modes are strongly mixed. Multiple
scattering of light between different modes generates

numerous paths for light to propagate through the fiber.
It thus remains obscure how PMs are formed with well-
defined delay times and what properties they possess in the
presence of nonperturbative mode mixing.
In this Letter, we report on a demonstration of PMs in a

MMF with strong mode coupling. Our analysis uncovers
that well-defined delay times of PMs can be explained by
multipath interference that is tailored by spatial degrees of
freedom of the input wave front. This multipath interfer-
ence also determines spectral bandwidths of PMs, which
limits the temporal width of pulses that can be transmitted
through the fiber without distortion.
The Wigner-Smith time-delay matrix is defined as

Q≡ −iS−1dS=dω, where S is the scattering matrix
[14,15]. In the absence of backscattering in the fiber, it
can be expressed as Q≡ −iT−1dT=dω [18,21], in which S
is replaced by the transmission matrix T. We experimentally
measure the spectrally resolved field transmission matrix of a
step-index MMF in an off-axis holographic setup shown
schematically in Fig. 1(a). To introduce strong mode
coupling in this one-meter-long fiber, we apply stress to it
with clamps. Field transmission matrices are measured in
momentum space and converted to mode space. Figure 1(b)
shows the amplitude of a measured transmission matrix.
Regardless of the mode light is launched into, the output
field spreads over all modes, although higher order modes
have lower amplitudes due to stronger loss. The transmission
matrix is different from that in the weak coupling regime,
which has larger elements closer to the matrix diagonal,
confirming the strong mode coupling in the current fiber.
The time-delay matrix Q is constructed from the spec-

trally resolved transmission matrix. Eigenvectors of Q give
input fields for PMs. They are unique input states with first-
order frequency derivatives of their output fields vanishing
at a certain frequency [18]. In an ideal MMF, PMs are
simply linearly polarized modes, which are eigenmodes of
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MMFs in the weak guiding approximation. In the weak
mode coupling regime, the fiber is shorter than the
correlation length (the distance beyond which the spatial
profile becomes uncorrelated [22]), and each PM consists
of a few modes with similar propagation constants [20].
However, if the fiber length well exceeds the correlation
length, all modes are thoroughly mixed and PMs are
expected to be distinct from those in the weak coupling
regime.
We use a spatial light modulator (SLM) to generate input

wave fronts of individual PMs in this MMF with strong
mode coupling. To modulate the amplitude and phase of the
input field with the phase-only SLM, a computer-generated
phase hologram is employed [23]. Figure 1(c) shows the
output pattern of a PM, which is speckled and does not
resemble any linearly polarized mode. Modal decomposi-
tion of the output field reveals that the PM is a mixture of
many modes [Fig. 1(d)], in contrast to PMs in the weak
mode coupling regime [20].
To investigate the spectral property of PMs, we scan the

frequency ω while keeping the input field to that of a PM at
ω0. Figure 2(a) shows the nearly identical far-field patterns

of the PM at three different frequencies (top row). For
comparison, a random superposition of modes at the input
results in different output profiles at these frequencies
[bottom row of Fig. 2(a)]. This striking difference illus-
trates the slower spectral decorrelation of a PM.
To be quantitative, we calculate the spectral correlation

function CðΔω≡ ω − ω0Þ≡ jΨðω0Þ� ·ΨðωÞj, where
ΨðωÞ is a vector representing the output fields in all spatial
channels with its magnitude normalized to unity. As shown
in Fig. 2(b), CðΔωÞ for the PM is significantly larger than
that for the random input. It displays a broad plateau at
Δω ¼ 0. To understand the shape of the correlation curve,
we denote CðΔωÞ ¼ cos½θðΔωÞ� [20], where θ is the angle
between the two output field vectors at ω and ω0. Since
θð0Þ ¼ 0, the first-order derivative of C with respect to Δω
vanishes at Δω ¼ 0 for any input wave front. The second-
order derivative at Δω ¼ 0 is proportional to ½θ0ð0Þ�2,
where θ0 ≡ dθ=dΔω. For PMs, θ0ð0Þ ¼ 0, because the
output field remains unchanged to the first order of
frequency variation. Thus the second-order derivative

FIG. 2. (a) Output field amplitude for a PM input with short
delay time at ω0 ¼ 1219 THz (top row), or a random super-
position of linearly polarized modes (bottom row). The input
frequency is ω − ω0 ¼ −157 GHz (left), 0 (middle), and
157 GHz (right). The output fields for the PM input are similar
while those for random input are totally different. (b) Spectral
correlation function CðΔωÞ of the output field, experimentally
measured for a PM (red solid), and calculated from the trans-
mission matrix and input wave front of the same PM (green
dotted). For comparison, CðΔωÞ for a random input is also shown
(blue dashed). CðΔωÞ is normalized to one at Δω ¼ 0. Its value
decreases to 0.9 at Δω ¼ 338 GHz for the PM and 173 GHz for
the random input. The agreement between the red and green
curves illustrates the accuracy of the measurement.

FIG. 1. (a) Schematic of the experimental setup. The continu-
ous-wave output of a tunable laser is collimated at C1, and split
into two arms by a beam splitter (BS1). Light in one arm is
modulated by the SLM and imaged to the fiber facet by a lens
(L1) and an objective (O). The output field from the fiber is
collected by a lens (C2) that one focal length away from the fiber
facet and combined with light in the other arm at a second beam
splitter (BS2). By offsetting BS2 to introduce a phase tilt between
the two wave fronts, interference fringes are formed. From the
interferogram recorded by the camera (CCD) at the back focal
plane of C2, the output field is extracted in momentum space. The
mirrors (M1, M2) are used to match the path length of the two
arms. The MMF has 50 μm core diameter and 0.22 numerical
aperture. (b) Amplitude of the measured transmission matrix at
λ ¼ 1550 nm (ω ¼ 1219 THz). (c) Amplitude profile of a PM at
the output. (d) Decomposition of the PM in (c) by linearly
polarized modes.
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vanishes for PMs, leading to a plateau, which is absent for
random inputs, at the center of the correlation curve.
Next, we probe temporal dynamics of a single PM.

The transmission of a pulse through a MMF with strong
mode coupling involves spatial and temporal distortions.
Strong mode mixing results in the hop of light among
modes with different propagation constants. Thus light can
take many paths of varying lengths through the fiber. The
output field in each spatial channel (e.g. speckle grain) is a
sum of waves with different paths, each associated with a
respective time delay, leading to temporal broadening and
distortion of the input pulse. Typically, temporal traces vary
from one channel to another, since combinations of paths
differ. This is confirmed by simulating the propagation of a
pulse, ϕðtÞ ¼ R

ϕðωÞe−iωtdω, with a spectrum ϕðωÞ. Light
is spatially launched into a random superposition of modes
at the input, and the output fields are experimentally
recorded at multiple frequencies. We perform the Fourier
transform to obtain the temporal evolution of the output
field in each spatial channel. Figure 3(a) shows temporal
traces of the field amplitude in three spatial channels. They
differ from each other, due to strong mode scrambling in
the fiber.
However, when input light is spatially coupled to a PM,

the output fields in all spatial channels are synchronized, as
shown in Fig. 3(b). This is a direct consequence of the
invariance of the output field with frequency. Specifically,
the output field vector at frequency ω can be written as
ΨðωÞ ¼ ϕðωÞTðωÞΦ, whereΦ corresponds to a PM input at
ω0. If the input pulse bandwidth is less than the spectral
correlation width of the PM, TðωÞΦ ≈ αðωÞΨ̂0, where Ψ̂0 is
a unit vector representing the normalized output field for the
PM at ω0, and αðωÞ is a complex number that may vary with

frequency. The Fourier transform of ΨðωÞ can be written as
ΨðtÞ ¼ ~ϕðtÞΨ̂0, where ~ϕðtÞ ¼ R

ϕðωÞαðωÞe−iωtdt repre-
sents the temporal shape of the output pulse. Hence, spatial
and temporal variations of the output field become
decoupled for PMs. The temporal traces in all output
channels are identical up to a constant factor given by the
elements of Ψ̂0. The spatial profile of the output field
remains constant in time, allowing the spatial and temporal
distortions to be corrected separately. For example, the
output pulse shape can be tailored bymodulating the spectral
phase of the input spectrum ϕðωÞ. Since the output fields are
spatially coherent, a spatial mask can convert the output to
any desired pattern or focus to a diffraction-limited spot.
Let us consider a simple case, αðωÞ≃ α0eiηðωÞ, where

α0 is a constant amplitude and the phase ηðωÞ≃
ηðω0Þ þ η00ðω − ω0Þ, where η00 is the value of dη=dω at
ω0. The output pulse, ~ϕðtÞ ∝ ϕðt − η00Þ, has the same
temporal shape as the input one. This is confirmed by
synthesizing a pulse with Gaussian spectrum and flat phase
at the input. The output intensity, summed over all spatial
channels, is plotted in Fig. 3(c) together with the input
pulse. The output pulse has negligible broadening and
shape distortion, despite strong mode coupling in the fiber.
In contrast, the same pulse, but with a random input pattern,
suffers from severe broadening as seen in Fig. 3(c). PMs
thus compensate for temporal distortions induced by modal
dispersion in a MMF.
The unique spectral and temporal properties of PMs hold

only within a finite frequency range. It is hence important
to determine bandwidths of PMs. Since the spectral
decorrelation of the output pattern for any input wave
front depends on fiber properties, such as fiber length and
numerical aperture, we consider below the ratio of PM
bandwidths to the average bandwidth of random inputs.
Figure 4(a) plots the experimentally measured bandwidths
of all PMs versus their delay times. The shorter the delay
time, the larger the bandwidth.
To obtain a physical understanding of PMs and their

spectral correlation widths, we resort to an intuitive picture
of optical paths in the fiber. The output field is a result of
interference of waves following innumerable possible
trajectories in the MMF created by strong mode coupling.
As the input frequency changes, relative phases accumu-
lated along trajectories of different lengths vary, modifying
the output field. Specifically, the output field in the mth
spatial channel can be written as Ψm ¼ R

umðlÞdl, where
umðlÞ is a sum of fields taking all possible paths with the
same length l. With a small frequency detuning Δω,
the output field becomes ΨmðΔωÞ ¼

R
umðlÞeiΔωl=cdl,

in the weak guiding approximation. Thus umðlÞ can be
obtained experimentally from the Fourier transform of
ΨmðΔωÞ. Accounting for all spatial channels, UðlÞ ¼P

mjumðlÞj2 gives an intensity distribution over path
lengths, which is determined by the input wave front.

FIG. 3. (a),(b) Temporal variation of the output field amplitude
in three spatial channels (three speckles grains) when an optical
pulse is spatially launched into a random superposition of modes
(a) or a PM at ω0 ¼ 194 THz (b). The output field is recorded in a
frequency range of 400 GHz with a step size of 2.5 GHz. The
Fourier transform is performed to obtain the temporal evolution
of the field. The horizontal axis is the relative delay time,
obtained by subtracting the average delay time for random
inputs. The temporal traces of individual spatial channels are
totally different for the random input, but nearly identical for the
PM input. (c) Spatially integrated intensity of the input (black
dotted) and the output pulses when a Gaussian pulse is injected to
the MMF with random spatial profile (blue dashed) or with the
profile of a PM (red solid).
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Figure 4(b) compares UðlÞ for three PMs with different
delay times. The fast PM concentrated the intensity on
shorter paths. Although the waves can take many longer
paths, destructive interference of longer paths makes UðlÞ
vanish. The opposite happens to the slow PM. The
redistribution of intensity among different path lengths is
determined by the input wave front. Therefore, delay times
in a MMF with strong mode coupling is determined by
multipath interference, which can be effectively controlled
by spatial degrees of freedom of the input wave front. We
emphasize that the well-defined delay times for PMs are
only guaranteed at the output end of the fiber, such that
PM-based pulses spread in the middle of the fiber before
recompressing again at the output. This behavior is in sharp
contrast to that of particle-like states [20,24].
The intensity distribution over path lengths also deter-

mines the spectral correlation widths of PMs. The narrower
the distribution, the weaker the dephasing between different
path lengths by frequency detuning, and the smaller the
change in the interference pattern at the output. Hence, PMs
with shorter delay times have larger spectral correlation
widths due to the narrower path-length distribution.

The final question we address here is why fast PMs
have narrower path-length distributions. To answer this
question, we perform numerical simulations using the
concatenated waveguide model [25]. For simplicity, we
consider a planar waveguide with a 300 μm core and a
0.22 numerical aperture, supporting 86 modes. The wave-
guide is one meter and composed of 20 segments. Light
propagates without mode coupling in each segment.
Between adjacent segments, all modes are randomly
coupled, as simulated by a unitary random matrix. To
include mode-dependent loss, we introduce a uniform
absorption coefficient to each segment. Higher-order
modes with smaller propagation constants, have longer
transit time, thus experiencing more attenuation. In terms
of optical path, longer paths have more loss than shorter
ones.
Figure 4(c) plots spectral correlation widths of PMs in

the absence of mode-dependent loss (black crosses). The
fast and slow PMs have almost identical bandwidth, as the
corresponding intensity distribution among the path-
length exhibits similar spread at different mean values
[Fig. 4(d), solid curves]. With the introduction of mode-
dependent loss, the bandwidth of fast PMs increases,
while the bandwidth of slow ones decreases, leading to
agreement with the experimental data [compare red dots
in Fig. 4(a) with those in Fig. 4(c)]. This rearrangement
can be explained by the change in UðlÞ that is plotted in
Fig. 4(d). The distribution for a fast PM, which concen-
trates on short paths, becomes narrower, because longer
paths are further suppressed by loss. For a slow PM, the
stronger attenuation of longer paths not only shifts the
peak of UðlÞ to smaller l, but also broadens the distribu-
tion. Qualitatively, the change of PM bandwidth induced
by the mode-dependent loss is not sensitive to the kind
of loss the fiber experiences, as long as higher-order
modes have more loss, as expected for MMFs.
In summary, we experimentally probe individual eigen-

states of the Wigner-Smith time-delay matrix of a MMF
with strong mode coupling. We find that the well-defined
delay times of the eigenstates are formed by multipath
interference, which can be manipulated by spatial degrees
of freedom of the input wave front. The multipath inter-
ference also determines the frequency range over which the
unique spectral and temporal properties of the Wigner-
Smith eigenstates preserve. Within the bandwidth, spatial
and temporal variations of the transmitted field are
decoupled for the eigenstates, enabling a global spatio-
temporal control of pulse transmission through complex
media. Such global control, which is more challenging than
control over a single spatial channel such as spatiotemporal
focusing [26–31], has potential applications in optical
communication, imaging, and sensing.
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FIG. 4. (a) Measured spectral correlation width Δωc of PMs
with different delay times. Δωc, given by jCðΔωcÞj ¼ 0.9jCð0Þj,
is normalized by the average bandwidth of random inputs. The
shortest delay time is set to 0. (b) Intensity distribution over the
path-length UðlÞ for three measured PMs with the delay
time ¼ 0, 0.06, 0.12 ns. The relative path-length l is obtained
by subtracting the average path-length of random inputs. UðlÞ is
normalized:

R
UðlÞdl ¼ 1. (c) Calculated spectral correlation

width of the PMs with (red circles) and without (black crosses)
mode-dependent loss. (d) Intensity distribution over the path-
length for two PMs with the delay time ¼ 0 (blue), 0.12 ns
(black), in the presence (dashed) or absence (solid) of mode-
dependent loss. The mode-dependent loss narrows (broadens) the
path-length distribution for the fast (slow) principle mode,
thereby increasing (reducing) the spectral correlation width.
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