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By imposing a set of harmonic perturbations to a microcavity boundary, we induce conversion and
mixing of orbital angular momentum of light via surface scattering. Multiple scattering paths are available
due to high-order scattering, which can be greatly enhanced by quasidegenerate resonances. By
manipulating the relative strengths of these scattering processes, we theoretically synthesize the angular
momentum spectra of individual modes so as to control their far-field patterns. We demonstrate
experimentally that in wavelength-scale cavities of a fixed shape, the neighboring modes can have
dramatically different emission directionality. This phenomenon is robust against slight shape deviation
and surface roughness, and provides a general mechanism to control the emission direction of ultrasmall
resonators.
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High-order processes have been widely studied in many
areas of physics, and usually the lower-order effects
dominate over the higher-order ones. Here we use optical
microcavities as an example to show how to control high-
order scattering processes and illustrate their potential
advantages. Optical microcavities have a broad range of
applications from coherent light sources in integrated
photonics, to cavity quantum electrodynamics, and bio-
chemical sensing [1,2]. It is crucial to design cavity
resonances with properties suitable for target applications.
In this Letter, we consider the far-field emission pattern. In
a circular dielectric disk, whispering-gallery (WG) modes
are formed by total internal reflection, and their outputs are
isotropic. Directional emission is desired for many appli-
cations such as microlasers and single-photon emitters. One
approach to obtaining directional emission is to deform the
disk boundary from a circle. There have been extensive
studies on the emission directionality of deformed micro-
cavities; however, most of them explored the emission
directions of known cavity shapes, e.g., ellipse, quadruple,
stadium, spiral, or limacon [3,4]. The inverse problem, i.e.,
to design the cavity shape to obtain a desired emission
pattern, is much more challenging and remains an open
question. Moreover, the majority of deformed microcav-
ities that have been studied have a dimension significantly
larger than the wavelength; thus, the output directions can
be predicted from the escape routes of optical rays from the
boundaries [5–18]. As the cavity size approaches the
wavelength, the ray model fails, and the output direction

is dictated by wave effects [19,20]. Thus the emission
directionality is no longer universal; i.e., it varies from one
resonance to another. A general treatment of far-field
emission and a recipe to control the emission directionality
of individual resonances are still missing.
To address these problems, we adopt a general descrip-

tion of the cavity boundary as a sum of harmonic
modulations, and predict the far-field pattern of each
resonant mode from its angular momentum spectrum.
The electromagnetic field of a mode outside the cavity
can be decomposed into a set of outgoing waves with well-
defined orbital angular momentum, and the emission
pattern is determined by the interference of these waves
in the far field. In order to control the emission pattern, we
will theoretically synthesize the angular momentum spec-
trum. In a circular dielectric disk, each WG mode has only
one angular momentum. By introducing a set of harmonic
modulations of the disk boundary, we induce angular
momentum conversion and mixing through surface scatter-
ing, which can be described by the recently developed
perturbation theory [21–24]. Higher-order scattering proc-
esses, usually less efficient than lower-order ones, can be
resonantly enhanced and play an important role in con-
structing the angular momentum spectra of microcavity
resonances. By manipulating these scattering processes we
are able to design the angular momentum spectrum and
achieve the desired emission pattern for each individual
mode. In particular, we will show in wavelength-scale
microcavity lasers that neighboring modes can display
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dramatically different output directionality, from unidirec-
tional emission to bidirectional and to unidirectional in the
opposite direction, even though the cavity shape and spatial
pump profile are kept constant. This work differs from
previous ones, where different emission patterns were
obtained by modifying the pump profile [25].
Because of strong index guiding of light in the disk

plane, a semiconductor microdisk can be treated as a two-
dimensional cavity with an effective index of refraction
neff . We consider a GaAs disk surrounded by air with
neff ¼ 3.26. For a general description of the cavity shape,
we decompose the disk boundary into harmonic functions
in the polar coordinates,

ρðθÞ ¼ R

�
1þ

X
υ

ευ cosðυθÞ
�

ðυ ¼ 2; 3;…Þ; (1)

where R is the average radius of the disk and εν is the
amplitude of the νth harmonic. The dipolar term of cos θ is
removed by a proper choice of the coordinate origin.
Starting from the unperturbed, circular microdisk, a WG
mode has a well-defined angular momentum described by
the azimuthal numberm0. A harmonic perturbation cosðνθÞ
of the disk boundary scatters light from m0 to m0 � ν, then
to m0 � 2ν, and so on. For small εν, the additional angular
momenta have only a modest effect on the intracavity field
profile, but they may have a dramatic effect on the far-field
pattern, because the m < m0 components have stronger
leakage and can have comparable and even larger ampli-
tudes than the m0 component outside the cavity.
The amplitudes of the additional angular momentum

components depend not only on the strength of the
perturbation (εν), but also on the spectral overlap between
the unperturbed resonance associated with the original
angular momentum and the newly generated angular
momentum [26]. For example, scattering from m0 to
m0 − ν is enhanced when the frequencies of the WG
modes with m0 and m0 − ν are well aligned. The spectral
overlap can make higher-order scattering processes sig-
nificant and even comparable to the lower-order ones [27].
The far-field emission pattern of a deformed microdisk

with an arbitrary combination of harmonic perturbations
can be estimated by first calculating the angular momentum
components which are introduced by the perturbations and
then considering the interference between these compo-
nents. Hence, introducing harmonic perturbations to the
cavity boundary shape may be used as a “knob” to tune the
far-field emission pattern. In previous studies [26,27], we
showed theoretically that the emission patterns of deformed
microcavities can be varied significantly with the first-order
or the second-order perturbations; however, many of these
numerical examples required a fine-tuning of the cavity
shape, which is difficult to realize experimentally. In this
Letter, we use higher-order scattering, which is more tolerant
to the limited accuracy of experimental fabrication than

lower-order scattering (see the Supplemental Material [28]).
In addition, we will control the resonant enhancement effect
by lowering the spectral overlap to further improve the
robustness. This combination of higher-order scattering with
reduced spectral overlap allows us to design a cavity shape
with a desired emission pattern which is robust to slight
deviations of cavity shape and surface roughness.
To illustrate this approach, we consider a deformed

microdisk defined by Eq. (1) with ε2 ¼ −0.069,
ε3 ¼ 0.008, and ε4 ¼ −0.0014. These parameters were
chosen to facilitate third-order scattering. We focused
our analysis on the transverse-electric polarized modes
in which lasing usually occurs. We calculated the resonant
modes in the passive cavity using the finite difference
frequency domain (FDFD) method. Since the cavity
shape is symmetric with respect to the horizontal axis
[ρð−θÞ ¼ ρðθÞ], the modes have either even or odd parity.
Below we present the even-parity modes, and the odd-
parity modes behave similarly. Figures 1(a)–1(c) show the
intensity distribution of three neighboring modes with
dominant angular momentum component m0 ¼ 10, 11,
and 12 inside the cavity. Because of the small perturbations
(jε2;3;4j ≪ 1), the spatial profiles of these modes inside the
cavity are quite similar to theWGmodes of the unperturbed
circular cavity, but the far-field patterns, shown in
Figs. 1(d)–1(f), are very different. The m0 ¼ 10 mode
emits primarily in the 0° direction (forward), while the

FIG. 1 (color online). Comparison of three neighboring modes
in a wavelength-scale cavity which exhibit totally different
emission patterns. The cavity boundary is defined by
ρðθÞ ¼ R½1 − 0.069 cosð2θÞ þ 0.008 cosð3θÞ − 0.0014 cosð4θÞ�.
(a)–(c) Intracavity intensity distribution calculated by the FDFD
method for the three modes at kR ¼ 4.37, 4.71, 5.03. They are
similar to whispering-gallery modes with dominant azimuthal
number m0 ¼ 10, 11, 12. (d)–(f) Far-field emission pattern for the
modes in (a)–(c). The red areas represent the numerical results,
and the black solid curves represent the second-order perturbation
calculation. The emission direction of these three modes changes
from forward (θ ¼ 0°) to bidirectional to backward (θ ¼ 180°),
which is not captured by the second-order perturbation treatment,
illustrating the importance of higher-order scattering processes.
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m0 ¼ 11 mode exhibits bidirectional emission, and the
m0 ¼ 12 mode emits in the 180° direction (backward).
To understand why the emission patterns are totally

different for three neighboring modes, we calculated their
angular momentum spectra inside the cavity by decomposing
their field distributions by the Bessel functions, and outside
the cavity by the outgoing Hankel functions. For each mode,
the relative weight of the lower angular momentum compo-
nents is larger outside the cavity due to stronger evanescent
leakage. The far field (r → ∞) can be expressed as

ψðθÞ ¼ ΣmBm cosðmθÞ; m ≥ 0. (2)

Bm is the coefficient of the angular momentum m.
Figures 2(a)–2(c) show the amplitudes of Bm for the three
modes. We found that them0 − 5 component, instead of the
m0 component, is dominant outside the cavity. The m0 − 5
component originates from two second-order scattering
processes m0 → m0 − 2 → m0 − 5 and m0 → m0 − 3 →
m0 − 5 by the ε2 cosð2θÞ and ε3 cosð3θÞ deformations (see
the Supplemental Material [28]). The strong spectral over-
lap of the unperturbed WG modes with m0 and m0 − 3
enhances the latter process, and makes it stronger than the
former.
We applied the second-order perturbation theory derived

in Ref. [26] to the m0 ¼ 10, 11, and 12 modes. As shown
by the solid curves in Figs. 1(d)–1(f), the second-order
perturbation theory effectively captures the forward emis-
sion of the m0 ¼ 10 mode but gives a noticeably different
far-field pattern for the m0 ¼ 11 mode, and its prediction
for the m0 ¼ 12 mode completely deviates from the actual
emission pattern. A similar progressing deviation is found
for the amplitudes and phases of Bm≤m0−6 from m0 ¼ 10 to
12, as shown in Fig. 2. Since the far-field pattern is
determined by the interference of the angular momentum
components, both their amplitude and phase relations are
important. The phase difference between the numerical
calculation and the second-order perturbation theory,
weighted by the amplitude from the latter, is plotted for
each Bm in Figs. 2(d)–2(f). The m ¼ m0 − 6 term stands
out as the angular momentum component that displays the
most significant phase difference in the m0 ¼ 12 mode.
This result suggests that the m ¼ m0 − 6 component plays
a key role in flipping the emission direction of them0 ¼ 12
mode. For further confirmation, we changed the phase of
Bm0−6 given by the second-order perturbation theory to its
value in the numerical simulation and found that the
emission direction of the m0 ¼ 12 mode was flipped
(see the Supplemental Material [28]).
Next, we looked into the m ¼ m0 − 6 component. It

comes from five scattering processes: three are second
order: m0 → m0 − 3 → m0 − 6 by the ε3 cosð3θÞ deforma-
tion and m0 →m0− 2→m0− 6, m0 → m0 − 4 → m0 − 6
by the ε2 cosð2θÞ and ε4 cosð4θÞ deformations; the remain-
ing two are third order:m0 → m0 − 2 → m0 − 4 → m0 − 6

by the ε2 cosð2θÞ deformation and m0 → m0 − 4 → m0 −
8 → m0 − 6 by the ε2 cosð2θÞ and ε4 cosð4θÞ deformations,
which are not captured by the second-order perturbation
treatment. The strong deviation of the actual m ¼ m0 − 6
coefficient from the value predicted by the second-order
perturbation theory clearly shows the importance of the
third-order scattering processes. To be more quantitative,

we deduced the third-order contribution Bð3Þ
m0−6by sub-

tracting the second-order contribution Bð2Þ
m0−6 (calculated

by the second-order perturbation theory) from the actual

Bm0−6 (obtained by numerical simulation). While Bð2Þ
m0−6

remains nearly the same for the m0 ¼ 10, 11, and 12

modes, the amplitude of Bð3Þ
m0−6 increases nearly 10 times

from m0 ¼ 10 to 12 (see the Supplemental Material [28]).

Meanwhile, the relative phase between Bð2Þ
m0−6 and Bð3Þ

m0−6
increases from approximately 90° towards 180°, resulting

in destructive interference [28]. Therefore, Bð2Þ
m0−6 domi-

nates over Bð3Þ
m0−6 in the m0 ¼ 10 mode and Bm0−6≈

Bð2Þ
m0−6Bm0−6 ≈ Bð2Þ

m0−6, while in the m0 ¼ 12 mode Bð3Þ
m0−6

becomes dominant, causing a significant change in the
phase of Bm0−6.
To explain why the third-order scattering processes

become significant in the m0 ¼ 12 mode, we note that
the scattering strength is approximately proportional to the
amplitude product of each individual process [27]. In this
case the dominant third-order process is due to the
ε2 cosð2θÞ deformation; its strength is proportional to
jε2j3 ¼ 3.3 × 10−4, which is larger than those of the
second-order processes: jε3j2 ¼ 6.4 × 10−5 and jε2ε4j ¼
9.7 × 10−5. Thus the cavity shape was designed to favor the

FIG. 2 (color online). Analysis of orbital angular momentum
components in the three modes shown in Fig. 1. (a)–(c) Amplitude
jBmj for each angular momentum component, represented by the
azimuthal number m, in the far field. The red crosses connected
by the solid line represent the numerical results, and the open
squares are calculated by the second-order perturbation theory.
The arrow marks the m0 − 6 angular momentum component in
each mode. (d)–(f) The phase difference of Bm between the
numerical simulation and the second-order perturbation theory.
The phase change of Bm0−6 and its stronger presence in the
m0 ¼ 12 mode appear to be responsible for the switch of
emission direction.
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third-order scattering over the second order, and eliminate
the first order (ε6 ¼ 0). In addition, the scattering strength
can be resonantly enhanced due to the spectral overlap of
the unperturbed WG modes. Here, the frequency difference
Δ between the WG modes of m0 and m0 − 6 is 0.016 for
m0 ¼ 12, much smaller than those for m0 ¼ 11
(Δ ¼ 0.061) and m0 ¼ 10 (Δ ¼ 0.062). Note that the m0

and m0 − 6 modes have different radial quantum numbers
(3 and 1, respectively) allowing their frequencies to be
close together. A more accurate measure of the spectral
overlap is given in the Supplemental Material [28].
Experimentally, we confirmed the mode-dependent far-

field emission from microcavities with the shape described
above. GaAs disks of diameter between 1 and 1.5 μm were
fabricated by electron-beam lithography and two steps of
wet etching [15]. The disks were 265 nm thick and
supported by Al0.7Ga0.3As pedestals in the center [28].
InAs quantum dots (QDs) embedded in the GaAs disk were
optically excited to provide gain for lasing by a mode-
locked Ti:sapphire laser (λ ¼ 790 nm). We measured the
emission spectra and observed the lasing threshold in the
emission intensity as a function of pump power. To measure
the far-field pattern, we fabricated a ring of radius ∼15 μm
around each disk to scatter the in-plane emission from the
disk out of the plane and imaged the scattered light with a
camera [15,28]. An interference filter was placed in front of
the camera to select a single lasing mode.
Because of the small cavity size and large mode spacing,

the gain spectrum of the InAs quantum dots (QDs) was not
broad enough to reach lasing in all three modes (m0 ¼ 10,
11, and 12) in a single disk. Instead, we fabricated a series
of microdisks with the same shape, but different radii, so
that we could tune the m0 ¼ 10, 11, and 12 modes in
separate disks to the center of the QD gain spectrum.
Figures 3(a)–3(c) are the top-view SEMs of the three disks.
The design shape from Fig. 1 is overlaid on the SEM,
confirming that the fabricated disks each had almost the same
shape. Slight deviations can be seen, whose effects will be
discussed later. The lasing modes correspond to them0 ¼ 10,
11, and 12 modes shown in Fig. 1. Figures 3(d)–3(f) are the
measured far-field patterns, exhibiting the transition from
forward to bidirectional to backward emission, in agreement
with the calculated emission direction in Fig. 1. In the future,
multiple layers of QDs with different size and/or compound
composition may be grown in a single wafer to broaden the
gain spectrum to cover all three modes in a single disk. One
could then select for a specific lasing mode by shaping the
optical pump profile or patterning an electrode. Since these
modes have different directionality, switching the emission
directionality could be realized in a single cavity.
Finally, we discuss the robustness of the emission

directionality to surface roughness and slight deviations
of the cavity shape. Because of the limited accuracy of the
fabrication process, such deviations are unavoidable and
vary from disk to disk. Nevertheless, the measured

emission patterns from the three disks in Fig. 3 agree with
the theoretical predictions of the design. For further
confirmation, we fabricated two more disks of size and
shape similar to that in Fig. 3(c). SEM images of these disks
are shown in Figs. 4(a) and 4(b), overlaid with the design
shape. We achieved lasing in the m0 ¼ 12 mode in both
disks, and their far-field pattern are similar to that in
Fig. 3(f). To be quantitative, we computed the emission
directionality, defined by U ¼ R

2π
0 IðθÞ cosðθÞdθ, where

IðθÞ is the far-field intensity as a function of the polar
angle θ. As shown in Fig. 4(c), the values of U for the five
disks show a clear transition as a function of kR.
Furthermore, the three disks supporting lasing in the
m0 ¼ 12 mode exhibit similar far-field emission patterns
in the backward direction despite the presence of surface

FIG. 3 (color online). Experimental comparison of the emission
directionality of lasing modes in three microdisks of the same
shape and slightly different size. (a)–(c) SEMs of three micro-
disks fabricated with the same shape (indicated by the red dotted
line). The lasing wavelength, λ, and kR are indicated for each
microdisk. (d)–(f) The far-field emission pattern measured for
each mode. The emission direction changes from forward to
bidirectional to backward for three neighboring modes, in good
agreement to the numerical results in Fig. 1.

FIG. 4 (color online). Robustness of emission directionality
against fabrication error. (a) and (b) SEMs of two microdisks with
the same shape as in Fig. 1 (red dotted line) and designed to
support lasing in the m0 ¼ 12 mode. The lasing modes are at
kR ¼ 5.02 and 5.07. Both modes have far-field emission patterns
similar to Fig. 3(f). (c) The emission directionality U for five
microdisks showing a clear switching of directionality with kR.
Furthermore, all three cavities supporting the m0 ¼ 12 mode
(kR ∼ 5.1) show similar emission directionality indicating that
the far-field pattern is robust to slight variations in the cavity
shape and surface roughness.
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roughness which varies for each disk. Hence, the far-field
pattern is robust against slight variations of the cavity
shape. Such robustness is attributed to the tolerance of
high-order scattering processes to fabrication error and
the decrease of near-resonance enhancement (see the
Supplemental Material [28]).
In summary, we showed that the far-field emission

patterns of wavelength-scale microcavities can be varied
dramatically by manipulating higher-order scattering proc-
esses. The effects of third- and higher-order processes are
negligible in most systems in the presence of small
perturbations. Even when these effects are significant,
previous studies found that these higher order processes
produce only modest quantitative differences [29], rather
than the dramatic qualitative effect demonstrated here. We
attributed this unique phenomenon to the enhancement
provided by the underlying quasidegenerate resonances,
which is significant in wavelength-scale cavities and
gradually disappears in the semiclassical regime [27],
where the cavity size is much larger than the wavelength.
Unlike four-wave mixing in nonlinear optics, the third-
order effect studied here is a linear process that is intensity
independent, and it can be easily tuned experimentally.
Hence, the wavelength-scale microcavities provide an ideal
platform for the study of higher-order processes.
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