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We demonstrate order of magnitude coherent control of total transmission of light through randommedia
by shaping the wave front of the input light. To understand how the finite illumination area on a wide slab
affects the maximum values of total transmission, we develop a model based on random matrix theory that
reveals the role of long-range correlations. Its predictions are confirmed by numerical simulations and
provide physical insight into the experimental results.
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A lossless strong scattering medium that has a thickness
L much larger than the elastic mean free path l is normally
opaque to incident beams of light, with a small fraction l=L
of the incident photon flux diffusively transmitted.
However, it has been known for over two decades that,
due to the coherence of elastic scattering, this transmitted
flux is not totally random in character, but has subtle
correlations that were first discovered in the context of
mesoscopic electron transport [1–4]. One striking impli-
cation of these correlations is that an optimally prepared
coherent input beam could be transmitted through a
scattering medium hundreds of mean free paths in thickness
with order unity efficiency. These highly transmitting input
states are eigenvectors of the matrix t†t, where t is the
transmission matrix (TM) of the sample. They were
predicted using a random matrix theory approach [1–3]
and were termed “open channels.”
Because the input electron states are not controllable in

mesoscopic conductors, the open channel concept was not
testable there, except indirectly through other properties
such as conductance fluctuations or shot noise [5].
Experimental measurements of the TM through disordered
waveguides at microwave frequencies are consistent with
the theory developed for this geometry [6–8] and imply that
open channels should exist, but enhanced transmission has
not yet been directly demonstrated in these systems due to
the difficulty of imposing an appropriate input waveform.
The advent of wave front shaping methods using a spatial
light modulator (SLM) at optical frequencies has reopened
the search for this dramatic effect in strong scattering
media. It has already been shown that wave front shaping
of input states combined with feedback optimization can
enable diverse functions for multiple scattering media in
optics [9], causing them to act as lenses [10,11], phase
plates [12,13], or spectral filters [14,15]. However, coherent
control of total transmission, which is a nonlocal property
of the TM, is much more difficult. Some progress in this
direction has been made by studying the increase of the
total transmission when focusing light through scattering
media to wavelength scale spots [16] or by measuring the

partial TM and injecting light into calculated singular
vectors [17]. In addition, a recent study highlights effects
of the mesoscopic correlations on the transmission proper-
ties by measuring a large TM [18]. We report here a
further significant step: order of magnitude variation of
total transmission through a strong scattering medium with
average transmission ∼5%. We show that such dramatic
variations are only possible because of significant meso-
scopic correlations in the diffusive transmission.
Until recently the theory underlying the prediction of

open channels assumed full coherent control of all input
channels, which is in principle possible in the waveguide
geometry used in microwave experiments [6–8]. This is
not achievable in optical experiments, which usually have
limited numerical aperture (excluding some input wave
vectors), and also are based on incidence of a finite-cross-
section beam on a wide slab. Such a setup, however, is
widely used in many practical applications. Recently, it was
shown theoretically how to calculate the distribution of the
“transmission eigenvalues” (the eigenvalues of t†t) and the
maximum transmission enhancement in the presence of
incomplete channel control [19]. Loss of control reduces
the possible transmission enhancement, eventually causing
the TM to lose the mesoscopic correlations and behave like
an uncorrelated Gaussian random matrix, whose singular
value density follows the Marcenko-Pastur (MP) law
[11,20,21]. Thus it is essential to calculate the channel
control parameters for a realistic experimental setup, so
as to determine the maximum transmission enhancement
possible. However, the theory of Ref. [19], while it does
describe the effect of finite numerical aperture, did not
address the geometry of a finite illumination area used in
optical experiments, in which the light diffuses outwards in
the transverse direction at the same time as it penetrates
the sample. We present a quantitative theoretical solution
to this important problem in coherent diffusion, showing
that for a finite illumination area in an open geometry the
transmission eigenvalue density does belong to the family
of distributions derived in Ref. [19], with an effective
channel control parameter, which depends on the long-range
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mesoscopic correlations, and can be calculated microscopi-
cally with no fitting parameter.
To control total transmission through a disordered slab,

we designed an experiment to achieve a high degree of
control of the phase of the input light with both polar-
izations. The illumination area on the slab surface is much
larger than the wavelength. The experimental apparatus is
presented in Fig. 1(a) and detailed in the Supplemental
Material [22]. The modulated wave front is projected onto
the pupil of a microscope objective of numerical aperture
0.95. Adjacent pixels of the SLM are grouped to form
“macropixels,” whose size determines the illumination
area on the sample. In order to collect light in all output
channels, we place the sample directly onto a large
photodetector. This allows us to measure the total trans-
mitted light without being limited by the numerical aperture
of the collecting optics. Two additional photodetectors are
used to measure the incident light intensity before the
microscope objective and the reflection from the sample.
We then perform a feedback optimization procedure similar
to the sequential algorithm developed in Ref. [10] to
increase or decrease the total transmission. The value to
maximize or minimize is the ratio of the total integrated
transmitted intensity over the input intensity, henceforth
termed the total transmission T. It is crucial to optimize
the ratio, because wave front shaping by the SLM modifies
not only the transport of light through the sample, but also
the transmission of the optical system that delivers light

from the SLM to the sample, and is, hence, vulnerable to
systematic errors or artifacts [23].
The scattering samples are slabs of randomly packed

polydisperse TiO2 microparticles of median diameter
410 nm, deposited on glass cover slips by evaporation.
The mean free path, measured from a coherent back-
scattering experiment, is l ¼ 0.8� 0.1 μm. To demon-
strate coherent control we both maximize and minimize T.
In Fig. 1(b) we show results for a sample of average
transmission hTi ∼ 5% that demonstrate an enhancement of
T ∼ 3.6, and a reduction ∼3.1. Thus, the total transmission
of a single realization of a scattering medium can be tuned
by more than a factor of 11 between 1.6% and 18%. The
diameter of the illumination area on the sample surface is
8.3 μm, and the number of macropixels of the SLM, whose
phases are optimized, is Nin ¼ 1740. We also measure the
change in reflection R (ratio of the reflected light intensity
over the incident intensity), and compare it to the change
estimated from the transmission using the relation R=hRi≃
ð1 − TÞ=ð1 − hTiÞ [Fig. 1(b)]. The good agreement con-
firmed that the variations of the measured total transmission
are due to changes of the total transmission through the
scattering sample (further verifications are considered in
the Supplemental Material [22]).
We show in the following that mesoscopic correlations

are essential to the significant variation of total trans-
mission. We compare our data to the predictions of the
uncorrelated random matrix ensemble. For an uncorrelated
TM described by the MP law, the mean maximum trans-
mission satisfies [20]

hTmaxi
hTi ¼ ð1þ ffiffiffi

γ
p Þ2; (1)

where γ is the ratio of the number of controlled input
channels to the number of excited output channels. A
reasonable estimate is γ ≃ ðD=DoutÞ2, where Dout is the
typical size of the diffusive output spot. The maximum
possible transmission (1) is monotonically decreasing with
the sample thickness L because Dout increases with L for
fixed input illumination diameter D. In Fig. 2(a) we plot
Tmax=hTi measured versus L for a fixed D, finding that
instead of decreasing, it increases and then saturates at
the largest L shown. The value of the enhancement at the
largest L is more than twice that of the MP law. Similarly,
for fixed L and variable D, the data in Fig. 2(b) show much
higher enhancements than the predictions of the uncorre-
lated model, implying that significant correlations in the
TM enable larger coherent control of transmission.
To further confirm this, we intentionally spoil the

correlations by increasing the illumination diameter, which
increases the total number of input channels Ntot, but
without increasing the number of controlled input channels
Nin. This should reduce the transmission enhancement
towards the MP value. We first use an illumination diameter

FIG. 1 (color online). (a) Schematic of the experimental setup
for the control of total transmission. As detailed in the
Supplemental Material [22], the two polarizations of a
Nd:YAG laser, λ ¼ 532 nm, are modulated by two different
areas of a phase-only SLM. The scattering sample is placed at the
focal plane of the objective. Three photodetectors, PD1, PD2,
and PD3, measure, respectively, the intensities of transmitted,
incident, and reflected light. (b) Measured T=hTi (left panel)
and R=hRi (right panel) versus the optimization step for enhance-
ment (increasing blue curve) and reduction (decreasing red
curve) of the total transmission. The sample is 20 μm thick,
and the average transmission hTi ∼ 5%. The dotted line
represents the reflection estimated from the transmission
using R=hRi ¼ ð1 − TÞ=ð1 − hTiÞ.
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of 3.6 μm and run the optimization algorithm controlling
all 460 independent macropixels on the SLM. Then we
increase progressively the illumination diameter to 12.4 μm
by shrinking the macropixels and run the optimization
process using only Nin ¼ 460 randomly selected indepen-
dent macropixels. We present in Fig. 2(d) schematics of
the SLM patterns for three illumination diameters D. The
uncontrolled macropixels are switched off by printing a
high spatial frequency pattern on the SLM. hTmaxi=hTi is
plotted in Fig. 2(c) versus the fraction of controlled input
channels Nin=Ntot. Incomplete channel control progres-
sively suppresses the effect of mesoscopic correlations
and the enhancement of total transmission decreases con-
tinuously. When only a small fraction of the macropixels
is chosen, they are nearly independent. Consequently,
hTmaxi=hTi becomes comparable to the value from the
uncorrelated model.
To get a quantitative understanding of the previous

results, we develop a theoretical model for the transmission
eigenvalue density that takes into account the effects of an
arbitrary input intensity profile and is valid for an open slab
as well as for a waveguide geometry. Since the maximal
total transmission is equal to the highest transmission
eigenvalue, this theory will give us access, in particular,
to hTmaxi. For this purpose, we use the filtered random
matrix (FRM) ensemble, recently introduced to describe
the role of incomplete channel control in experiments [19].
Applying the FRM equations to the study of the trans-
mission matrix, the authors calculated the eigenvalue
density of the matrix ~t†~t, where ~t is the filtered TM, with

only a fraction m1 (m2) of the input (output) channels
controlled (measured). The eigenvalue distribution is
determined by three parameters, m1, m2, and the mean
transmission eigenvalue τ̄. An important assumption of the
model is that all channels in the TM, whether measured or
not, play an equivalent “role” with respect to the scattering
process. This is always true for channels represented by
waveguide modes or plane waves which diffuse equiva-
lently inside the sample. Hence, the model can be applied to
a wide slab illuminated over its entire surface with a finite
numerical aperture (k-space filtering), which has been
confirmed by the agreement of the theory with numerical
simulations [19].
In general, the previous assumption does not hold for

spatial filtering arising from a finite illumination area,
for which there is an outwards spreading diffusion halo,
and points at the edge of the input area are not equivalent
to those in the middle. It was thus an open question as to
whether the transmission eigenvalue density for this geom-
etry corresponds to the FRM distribution, with effective
parameters m1 and m2. We focus on our current exper-
imental setup in which essentially all of the output light was
collected (m2 ≃ 1). Extensive simulations of this configu-
ration (described below) revealed that it does lead to a
transmission eigenvalue density described by the FRM
distribution, with an effective value of the input parameter
m1 and withm2 ¼ 1. A property of this FRM distribution is
thatm1, normally considered as an experimental parameter,
is also given by [19]

m1 ¼
Varð~τÞ
VarðτÞ ; (2)

where τ and ~τ are the eigenvalues of t†t and ~t†~t, respec-
tively. Equation (2) allows us to define the effective channel
fraction m1 for our experiment, since we do not know
a priori how to extract it from the geometric parameters D,
L. In the Supplemental Material [22] we confirm numeri-
cally, from direct solution of the wave equation in 2D and
3D, that Eq. (2) gives the correct value of m1 to predict
numerically generated transmission eigenvalue densities
for our setup of a wide slab with finite illumination area.
The numerical method is the same as was used to generate
the data shown in Figs. 3 and 4 (described below).
Having established numerically that Eq. (2) determines

the desired eigenvalue density, we can formulate an
analytic theory for this quantity using the diagrammatic
methods developed for coherent wave transport [4,24].
Using VarðτÞ ¼ 2τ̄=3 − τ̄2, and decomposing h~τ2i as the
product of four Green’s functions of the wave equation, we
show in the Supplemental Material [22] that the effective
control parameter m1 can be accurately expressed as

m1 ¼
1

1 − 3τ̄=2

�Z
dqρðqÞ IðqÞIð−qÞFðqÞ

Ið0ÞFð0Þ −
3τ̄

2

�
; (3)

(a) (b)

(c) (d)

FIG. 2 (color online). Enhancement of transmission as a
function of the sample thickness L for an illumination diameter
of D ¼ 8.3 μm (a) and as a function of the input illumination
diameter D for a fixed sample thickness L ¼ 23 μm (b).
Experimental data are shown by blue dots, the estimation by
Eq. (1) in red dotted lines. (c) Tmax=hTi as a function of the
fraction of controlled input channels Nin=N tot. Experimental data
are blue dots with the error bars from ensemble measurements;
the dotted red curve represents the prediction of Eq. (1) for
uncorrelated systems. (d) Representative amplitude patterns of
the SLM macropixels for three illumination diameters D. The
dark macropixels are switched off.
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where ρðqÞ ¼ P
nδðq − ΔqnÞ=A is the density of trans-

verse states spacings Δqn per unit area A ¼ Wd−1 (d is the
space dimension and W is the transverse dimension,
W → ∞ in free space), IðqÞ is the Fourier transform of
the transverse input intensity profile, and FðqÞ is the kernel
that gives rise to the long-range correlation of the speckle
pattern, which is described by the C2 correlation function
(see the Supplemental Material [22] and Ref. [24]). More
specifically, the correlation between the total transmission
associated with two channels with transverse momenta qa
and qa þ q is C2ðqÞ ¼ FðqÞ=g, where g ¼ hTrðt†tÞi. Its
long-range character is due to interference of pairs of
diffusive paths that interact through a Hikami vertex with a
probability 1=g. The effect of the finite illumination area is
taken into account by the factor IðqÞIð−qÞ=Ið0Þ in Eq. (3),
which arises because the four input channels involved in

h~τ2i have different weights due to spatial variation of the
input beam. The three terms, ρðqÞ, IðqÞ, and FðqÞ, have
distinct length scales, 1=W, 1=D, and maxð1=L; 1=WÞ,
respectively. They lead to different expressions for m1 in
different situations.
In the case of a quasi-one-dimensional waveguide

[W ≪ L, Fig. 3(a)] with a lossless reflecting boundary, only
the q ¼ 0 component is selected by the density of states,
leading to a simple geometrical result,m1 ≃ ðD=WÞd−1. The
situation is very different in an optics experiment with a
wide slab [W → ∞ and ρðqÞ ¼ 1=ð2πÞd−1]. If the slab is
illuminated with an area of diameterD much larger than the
sample thickness L [Fig. 3(b)], only the term Fð0Þ ¼ 2=3
contributes, and one finds m1 → 1, consistent with the
physical picture that if the transverse diffusion is negligible
in crossing the sample then all channels are equivalent and
controlled. However, if D≲ L [inset of Fig. 3(c)], all
components q ≠ 0 of FðqÞ contribute to the result (3),
meaning that the effective fraction of controlled channels
is not simply given by geometrical considerations based on
the diffusion equation, but originates fromwave interference
that leads to long-range correlations. Further analysis of
the wide slab case gives anm1 that is essentially determined
by the ratio D=L, with small corrections due to τ̄ ∝ l=L
that vanish in the limit τ̄ → 0. In the limit l ≪ D ≪ L, we
find the striking result that m1 ∼ ðD=LÞ lnðL=DÞ in 2D and
m1 ∼D=L in 3D. In particular, the loss of control in 3D does
not decrease as the ratio of the input and output areas as one
might expect from an analysis based only on the diffusion
equation, and, hence, the possible transmission enhancement
in 3D is parametrically larger than expected.
To test the validity of the prediction (3), we studied

numerically the transmission matrix of a two-dimensional
disordered slab embedded in a multimode waveguide,
using the recursive Green’s function method [25]. The
waveguide is wide enough that the diffusion halo at the
output never reaches side walls. We compare in Fig. 3
the numerical results (2), averaged over 100 configurations,
with the analytic expression (3), for four different slab
thicknesses and five different illumination areas, finding
excellent agreement.
Finally, once the value of m1 is known, the full

distribution of transmission eigenvalues follows from the
FRM equations [19], which allows us to calculate the
maximal transmission enhancement possible for a given
m1. hTmaxi is given by the upper edge of the support of the
eigenvalue density:

hTmaxi ¼ fmaxðm1; m2 ¼ 1; τ̄Þ; (4)

where the expression for fmax is given in Ref. [19].
The analytic predictions for the transmission enhance-

ment given by Eqs. (4) and (3) are confirmed by simulations
in a 2D slab with excellent agreement [Figs. 3(c) and 4(a)].
However the experiments use sequential search, phase-only

(a) (b)

FIG. 4 (color online). Maximal transmission in a slab of
thickness L, illuminated withD ¼ 16λ. (a) 2D simulations (dots),
calculated with the same parameters as in Fig. 3, are compared
with the theoretical prediction (solid and dashed lines) based on
Eqs. (4) and (3). The effect of the finite number of modes is taken
into account, as detailed in the Supplemental Material [22], and
the effect of the sequential algorithm (blue squares) is included
in the theory through the substitution m1 → αm1, with α≃ 0.26.
(b) The 3 D experiment (dots) is well described by Eq. (4), where
m1 → αm1, withm1 given by Eq. (3) solved in 3D and α identical
to the 2D case.

FIG. 3 (color online). (a),(b) Geometries for which the fraction
of controlled channels m1 is given by a simple analysis of the
input field (see text). (c) Effective fraction of controlled channel
(2) in the geometry relevant for our optical experiment. Numeri-
cal results (dots) are obtained from the simulation of the wave
equation in a two-dimensional disordered slab, for different
values of the illumination diameter D and the slab thickness
L. The dielectric function is ϵðrÞ ¼ n20 þ δϵðrÞ, with n0 ¼ 1.3
and δϵðrÞ uniformly distributed between [−1.02, 1.02] in the slab
and δϵðrÞ ¼ 0 outside the slab. The four sets of points correspond
to kL ¼ 120, 187, 280, 450. The solid lines represent the
theoretical prediction (3), where IðqÞ ¼ DsincðqD=2Þ.

PRL 112, 133903 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
4 APRIL 2014

133903-4



optimization, which is not expected to find the global
optimum predicted from the theory. We estimate from
2D simulations of sequential phase-only optimization that
m1 is effectively reduced to αm1 with α≃ 0.26, and apply
the same reduction factor to the 3D results to compare with
the experiment (for which simulations are computationally
unfeasible), finding rather good agreement (see Fig. 4). This
suggests that themaximal enhancement of total transmission
achieved for the samples in our experiment is limitedmainly
by the optimization procedure, instead of other effects such
as noise in the measurements or instability of the setup.
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