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Whispering gallery modes formed by partial barriers in ultrasmall deformed microdisks
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Unexpected formation of regular high- O whispering gallery modes in a deformed microdisk where the radius
is of the order of the vacuum wavelength is explained in terms of partial barriers in phase space. Using a
semiclassical approach to determine the action flux of the partial barriers, we successfully predict spectral ranges
in which the high-Q modes can exist. Our analysis enables optimization of emission directionality and the Q

factor of deformed ultrasmall microcavities.
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For the past few decades, microcavities with whispering
gallery modes (WGMs) have become indispensable elements
in nano-optics [1], mainly because they can confine light for
a long period of time and allow for extremely high quality-
factor (Q-factor) modes with micrometer-scaled structures [2].
Using this property, several unique devices are developed
from optical switches to optical sensors, and also various
unprecedented optical phenomena such as optomechanical
vibration [3] and strong interaction of atoms and photons [4]
are realized.

Furthermore, the application domain of microcavities with
WGMs is broadened through the deformation which enables
directional light emission from WGMs by breaking the
rotational symmetry [5]. In the process of deformation, the
Q factor is reduced, but a considerable portion of the modes
still has high Q factors. The deformed microcavities have been
experimentally realized with several different cross-sectional
shapes and various materials [6—10]. Also, they become
important models in the field of quantum chaos [11,12] for the
study of ray-wave correspondence in open systems [13—17].

Nonetheless, it is not easy to understand and predict the
spectrum and emission directionality because the internal ray
dynamics is chaotic due to the broken rotational symmetry.
Therefore, many studies have concentrated on the properties
of the spectrum and the role of the chaotic dynamics to
generate directional light emission from high-Q WGMs. As
a result, the studies reached a common conclusion, at least
in the emission directionality, that the overall dynamical flow
following unstable manifolds in the phase space determines
the emission directionality [15,16].

Currently, experiments in micro-optics pursue fabrication
of smaller cavities to improve the single-mode availability
for laser operation or sensitivity of optical sensors [10].
Accordingly, deformed microcavities are realized in such a
ultrasmall regime where the vacuum wavelength X is of the
order of the length scale of the cavity size R, i.e., R/A ~ 1
[8,9]. In this regime, high- O WGMs still exist, but the emission
from them is not as directional as from larger cavities, and the
ray dynamical prediction of emission directionality is not valid
anymore, because the resolutions of the modes are not enough
to follow the fine structures in chaotic phase space [17,18].
So far, only the possibility of accidental coupling with low-Q
modes is known to lead to directional emission [9].

However, such a limit of the resolution can induce a
stronger suppression of chaotic mixing and diffusion than
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dynamical localization in cavities with a surface roughness
in a higher spectral regime (R >> A) [19]. Hence, a better
predictability of optical properties can be expected. In this
Rapid Communication, the theoretical analysis on the high-Q
WGMs in ultrasmall microcavities is performed. Applying
a semiclassical quantization scheme with consideration of
openness, the mechanism which suppresses the directional
emission and constructs the high-Q WGMs is clarified. Fur-
thermore, the spectral criteria for high-Q WGMs are derived
and confirmed by comparison with numerical data. Though our
results are relevant for all deformed ultrasmall microcavities
(microspheres, etc.), we focus in this Rapid Communication
on the microdisk of Limagon shape, the boundary of which
is given by r(¢) = R(1 + € cos ¢) in polar coordinates. This
microcavity shows unidirectional light emission and high QO
factors for sufficiently large R/X [16] [Fig. 1(a)], the shape of
which has been experimentally realized [7-9]. In this Rapid
Communication, the deformation parameter ¢ is set equal to
0.43 and the refractive index n is set as 3. To analyze the
ray dynamics in this cavity, the Poincaré surface of section
(PSOS) can be obtained by recording the position of the ray
on the boundary along the perimeter S in units of R and the sine
value of the reflection angle sin y as a corresponding canonical
momentum at every bounce [see Fig. 1(a)]. As Fig. 1(b) shows,
the ray dynamics is strongly chaotic in most of the PSOS.
The spectrum of the model system is numerically calculated
using a normalized frequency Rw/c = kR and the boundary
element method [20]. Figure 2(a) presents the spectral data in
2 < Re(kR) < 25 for transverse magnetic (TM) polarizations.
The polarization of modes does not affect the physical essence
of this work. The noteworthy feature of this spectrum is that
there are convex curved mode series with local maxima of
the Q factor which are denoted by colored (black) symbols in
Fig. 2(a). More intriguingly, these mode series show an inverse
tendency in the property of unidirectional emission [Fig. 2(b)].
To quantify the directionality of the emission, we introduce
a measure of unidirectionality U = fOZJT cos0f(0)do, where
f(0) is the normalized far-field distribution of the given mode
[9].

A clue to reveal the physics behind this observation can be
found in the individual mode distribution. Figures 3(a)-3(c)
are the spatial distributions of the modes, which are located
in the spectrum around the top of each curved mode series.
A striking feature is the existence of well-defined mode
numbers in the spatial mode distributions. As Figs. 3(a)-3(c)

©2011 American Physical Society


http://dx.doi.org/10.1103/PhysRevE.84.035202

JEONG-BO SHIM, JAN WIERSIG, AND HUI CAO

sin

FIG. 1. (Color online) (a) Optical mode in a normal-sized
Limacon cavity with ¢ = 0.43. The superimposed coordinate system
is implemented for the PSOS. Inset: Far-field intensity distribution of
the mode. It shows a strong unidirectional emission to the right-hand
side. (b) PSOS for the same system. Strong chaos is generated above
the critical line sin x = 1/n, denoted by the horizontal line. The area
under the line is the leaky region, where the total internal reflection
condition is not satisfied.

demonstrate, all of the modes have very regular distributions
in the configurational space, i.e., one node along the radial
direction and 2m along the azimuthal direction, such as
(@) m =38, (b) m =16, and (c) m = 35 in Fig. 3. As can
be seen from the invariant torus quantization, such a feature is
typical for an integrable or near-integrable system. However,
considering the strong chaos and tiny regular region on the
top side of the phase space in Fig. 1(b), these features are
counterintuitive.

When we superimpose a pair of periodic orbits with p-
periods (p = 3-6) which are supported by Poincare-Birkhoff’s
theorem [21], another interesting feature is revealed, i.e., the
configurational distributions of the modes fit well to the area
between the boundary and the inner side of the pair of the
periodic orbits, as shown in Figs. 3(a)-3(c). This observation
is also confirmed by the Husimi distributions [22] in the
PSOS. Figures 3(d)-3(f) show that each Husimi distribution
has the average value of sin x well preserved from the angular
momentum of the cylindrical microcavity mode with the same
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FIG. 2. (Color online) (a) Spectrum of normalized complex
frequencies kR. Each symbol corresponds to a mode. The local
maximum of Q = —Re(kR)/2 Im(kR) is reached by a convex curve
plotted by colored symbols. The symbols mark the geometry of the
confining partial barrier. m (blue): period-3; e (red): 4; A (green):
5; ¥ (black): 6. (b) Corresponding measure of unidirectionality. The
opposite tendency to Q factors is visible.
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FIG. 3. (Color online) (a)—(c) Spatial pattern of high-Q WGMs
which are confined by partial barriers of periodic orbits. (a) Period-
3, (b) 4, (¢) 5. (d)—(f) Husimi distributions corresponding to (a)—
(c), respectively. Pairs of Birkhoff periodic orbits are denoted by ©
(dashed line) and x (solid line).

mode numbers, and the lower tail of it is bounded by the fixed
points of periodic orbits. This implies that chaotic diffusion in
the deformation process is somehow suppressed, supposedly
by the periodic orbits. Also we can see the distribution is
localized above the © points [23].

To explain these findings, we first focus on the remnants
of the broken dynamical invariant structures in phase space.
In the case of a circular cavity, all periodic orbits with the
same period lie on an impenetrable invariant line in the PSOS.
However, when the nonlinear coupling in the internal ray
dynamics is induced by the boundary deformation, the line
disappears and only the Birkhoff periodic orbits remain. In
this case, we can define a partial barrier with a line which fills
the gaps between the periodic orbits and the corresponding
action transport which measures the amount of trajectories
passing through it [24]. For this purpose, initial conditions are
chosen on the lines placed on the left-hand part of the PSOS
for the periodic orbits (denoted by red dashed-dotted lines in
Fig. 4), and iterate them backward and forward until they reach
the central gaps of the fixed points, which allows us to obtain
a curve consisting of the initial lines and the image of them
(black lines). With the resulting curve the partial barrier of a
periodic orbit can be defined and the PSOS is divided into an
upper and a lower part. At the central gap of each periodic
orbit, there are two areas enclosed by the backward (green
dotted) and forward images (black solid) of the initial lines
(W,’s in Fig. 4). With these areas the characteristic action
transport of each periodic orbit, i.e., the amount of trajectories
passing upward and downward through the partial barrier, is
defined. These areas are called the turnstile [24].

Applying the semiclassical quantization to entities of the
partial barrier, we can then set a hypothesis as the following
conceptual sketch: As the wave number of a corresponding
mode is increased, the resolution in phase space gets accord-
ingly higher. When the resolution reaches the area above the
partial barrier of a periodic orbit chain (marked by A, in
Fig. 4), then one mode can be formed in this area. We call
the corresponding value of Re(kR) the entering point. At
this point, the turnstile area (W, < A,) is still far below
the resolution limit, therefore the partial barrier is able to
confine the mode efficiently. However, when the wave number
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FIG. 4. (Color online) (a) Turnstiles of periodic orbits in PSOS:
The areas W,’s at central gaps (between V-marked fixed points)
are enclosed by the forward (black solid curves) and backward
image (green dotted curves) of initial lines (red dashed-dotted lines)
connecting two consecutive fixed points (x) through a fixed point
(©) from the other periodic orbit of the Birkhoff pair. (b) Areas A,’s
above the partial barriers. (c) Turnstile area (action flux) W,,.

is increased high enough to resolve the turnstile, the mode
can escape from the confinement and all the corresponding
features of a wave function disappear accordingly. We name
the corresponding value of Re(k R) the escaping point. Based
on this hypothesis, more detailed and precise conditions are
deduced to allow for a quantitative comparison with the
spectral data. First, a condition for the entering point is derived.
On account of the regular formation of the modes, we use
the analogy with WGMs in circular cavities and modity their
semiclassical quantization condition in terms of PSOS areas. In
acircular cavity, the governing wave equation can be separated
into radial and azimuthal degrees of freedom. The radial
motion can be described by a one-dimensional wave equation
with total energy E. = 1 and effective potential Veg(r) =
(ro/r)? + [1 — 7(r)1/n?, where 7i(r) = n(r < R),1(r > R),
and rop = Rsin x [Fig. 5(a)]. The semiclassical quantization
condition is applied to the oscillatory radial motion in this
effective potential to obtain a ground state along the radial
direction. Then the following inequality is formulated for the
minimum wavelength that allows a mode to lie in the area
above a partial barrier in the PSOS:

1 4
Re(kR) > — /4ty

n N —XIZ7 — X,cos71 X,

where «, is a phase sliding resulting from the Fresnel factor,
X,=1—A,/S0 A, is the area above the p-period orbit
partial barrier, and Sy is the total area of the PSOS. We
suppose that this inequality is valid for the partial barriers
in the deformed cavity as well and apply it as the entering
condition.

For the escaping condition, we use the fact that the turnstile
areain a PSOS equals the action difference of Birkhoff periodic
orbits [24,25]. In our system, the action of a trajectory is its
configurational length, due to the uniform refractive index
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FIG. 5. (Color online) (a) Effective potential along the radial
direction in circular microcavities and (b) conjugate points of period-4
orbits for counterclockwise propagation in a Limagon cavity with
& = 0.43 denoted by open circles (red).

inside. Figure 5(b) shows an example of Birkhoff’s pair of
the period-4 orbits. From the statement above, the turnstile
area in the PSOS is the same as the length difference of
the periodic orbits Wy = ALy = Ly — Ly, where L and
L are the lengths of the square- and diamond-shaped orbits
in units of R. In addition, we have to consider a phase
sliding, which is given by conjugate points [12]. In the
semiclassical quantization, each conjugate point is associated
with 7 /2-phase sliding [26]. The simplest way to assign the
conjugate points is the classical ray-tracing calculation with
a small bundle of rays around the periodic orbit as the initial
condition, which is also confirmed by calculation with the
stability matrix. The result of this calculation in our model
system reveals an important feature, which is two Birkhoff
periodic orbits have a different number of conjugate points, as
can be seen in Fig. 5(b). Whereas the square-shaped orbit has
four conjugate points on the trajectory, the diamond-shaped
orbit has only three points due to the minimum of the boundary
curvature. Therefore, the optical length difference of the pair is
represented by A¢, = nRe(kR)W, — w Am /2, where Am
is the difference in the number of conjugate points. The value
of Am,, is given as 1 for all periodic orbits which we consider
here. From this phase relation, the escaping condition can be
set as the following inequality:

Re(kR) < 2

T
2n W,,'
The minimum value of this inequality corresponds to the
smallest wave number that can resolve the length difference
between a pair of Birkhoff periodic orbits, or the corresponding
turnstile area in the PSOS [27]. If a mode does not fulfill this
condition, the pair of periodic orbits can play the role of an
effective caustic.

The escaping conditions (2), together with the entering
conditions (1), are applied and compared to the numerically
calculated spectrum. In Fig. 2, the entering condition for
a p-period orbit is denoted by black arrows with N, and
the escaping condition by red arrows with E,. As Fig. 2
shows, the arrows consistently point out the peak range of
each convex-curved mode series. Remarkably, the WGMs
with the regular feature can be found in a higher spectral
region [n Re(kR) ~ 100], and the escaping condition works
very consistently even there.

From the findings here, the overall mechanism to generate
the spectral and modal properties can be concluded as follows:
As stated above and shown in Ref. [16], the unidirectional
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emission results from the chaotic diffusion process following
classical unstable manifolds. However, when the action trans-
port through the turnstile is less than the resolution of a wave
function, the wave function needs a longer time to resolve the
turnstile and the refractive output through the chaotic diffusion
is effectively suppressed [28]. Nevertheless, the attenuation of
the wave function is still present through evanescent tunneling,
limiting the mode lifetime. This limited mode lifetime makes
the resolution of the chaotic diffusion even more unlikely.
Therefore, the low periodic orbits in the strongly chaotic
regime are enabled to confine regular modes, as shown in
this Rapid Communication. This can be also understood as an
enhancement of the effect of the partial barrier [27] due to the
openness. As the refractive output channel through the chaotic
diffusion is blocked, the cavity Q factors are increased and the
leakage through the tunneling forms bidirectional emission
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which is tangentially radiated on the cavity boundary, as also
shown in Ref. [29].

Based on the quantitative and qualitative understanding
presented in this Rapid Communication, the emission direc-
tionality and the quality factor of the nanoscaled deformed
cavity can be optimized and controlled, especially by choosing
the overlap of the gain profile with the spectrum. We
expect the finding to improve the controllability of deformed
microcavities. Also, the mechanism of the partial barriers
confining a mode in a chaotic phase space can be generalized
to other kinds of open chaotic systems. Therefore, the findings
here can be applied to other quantum systems with irregular
properties which we encounter in mesoscopic and nanoscaled
systems.
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