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Inverse design of long-range intensity correlation in scattering media
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We demonstrate a possibility of using geometry to deterministically control nonlocal correlation of waves
undergoing mesoscopic transport through a disordered waveguide. In case of nondissipative medium, we find
an explicit relationship between correlation and the shape of the system. Inverting this relationship, we realize
inverse design: we obtain specific waveguide shape that leads to a predetermined nonlocal correlation. The
proposed technique offers an approach to coherent control of wave propagation in random media that is
complementary to wave-front shaping.
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I. INTRODUCTION

Diffusion is a common description of the typical wave
propagation [1–4] in a scattering medium that disregards the
phase and, thus, the effects of interference. Persistent interfer-
ence phenomena lead to universal conductance fluctuations,
weak localization corrections, enhanced backscattering, and
nonlocal mesoscopic correlations [5–8] that can be captured
using the diagrammatic perturbation technique [3,9–11]. The
perturbation building block, which describes an interference
of two scattering paths, is known as “quantum crossing,” or
Hikami box [12,13]. The crossing, see Fig. 1, is a local object
confined to a volume �d , where � is the transport mean free
path and d is the dimensionality of the system. This locality of
the interference event means that it is independent of the exact
shape of the considered geometry. In contrast, propagation
between the source of waves to the interference site and on
to the detector does depend on the geometry of the system,
as seen from Fig. 1. It is described in terms of the ladder
propagator, which is in essence a Green’s function G(r, R)
of the diffusion equation for the disorder-averaged intensity.
Consequently, to describe the wave interference effects, the
knowledge of G(r, R) in the particular geometry is crucial.

In this work, we derive expressions for the Green’s function
in the two- and three-dimensional disordered waveguides with
an arbitrary shape in order to obtain the nonlocal long-range
mesoscopic correlations [9,14–21]. We adapt the projection
technique, developed in physical chemistry for the particle
diffusion in confined geometries [22,23], to describe wave
diffusion. We reduce the problem to one dimension and obtain
analytical solution. We further extend the projection technique
to include the effects of absorption commonly encountered in
experiments with the electromagnetic waves.

Spatial light modulator and related technologies have en-
abled manipulation of light propagation in scattering media
via shaping the incident wave-front field to tailor it to the
specific configuration of scatters in the sample [8,24,25]. This
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brought renewed attention to the nonlocal correlations as they
were found to be related to such transport parameters as
focusing contrast inside the medium [26] and energy depo-
sition [20,23,27–35]. The long-range correlation also affects
total transmission via an optimized wave front with a limited
degree of input control [21]; it is also a key factor determining
the broadband transmission achievable in wave-front shaping
[36]. Our derived analytical relation between the long-range
correlation and the shape of the waveguide enables the inverse
design: selecting the specific waveguide to obtain the desired
correlation profile. Therefore, our work opens up additional
avenues for coherent control of wave propagation in diffusive
scattering media. In recent works [20,35,37,38], we fabricated
two-dimensional disordered photonic waveguides with vari-
ous geometries, which can be used to experimentally test the
presented results.

II. PROJECTION TECHNIQUE

In this section we outline the projection technique that
allows one to reduce the two- or three-dimensional diffusion
problem to one dimension. For completeness, in this section
we will consider time-dependent diffusion and will also in-
clude the effect of absorption.

We define the Green’s function G(r, r′) of the diffusion
equation via the equation

∂G(r, r′, t )

∂t
− D0∇2

r G(r, r′, t )+ G(r, r′, t )

τa
= S0(t )δ(r − r′),

(1)
where D0 is the diffusion constant and τa is the absorption
time. Note that unlike the more conventional definition, we
retain a generic expression for intensity S0(t ) at the point
source at r′. In context of light scattering, G(r, r′) represents
an ensemble-averaged intensity at r in the medium with the
source at r′. The geometry of the three-dimensional (3D)
system is schematically depicted in Fig. 1, with 0 � z � L,
x2 + y2 � [W (z)/2]2 in three dimensions or −W (z)/2 � y �
W (z)/2 in two dimensions, where W (z) is the diameter of
the waveguide. The corresponding cross section area A(z) is
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FIG. 1. Schematic depiction of a disordered waveguide with
varying diameter. In diagrammatic description of wave transport, the
long-range correlation between intensities at r1 and r2 arises when
two propagation paths, described by the Green’s function of diffusion
equation, intersect allowing a swap of field amplitudes.

πW 2(z)/4 in three dimensions and W (z) in two dimensions.
The boundary conditions consist of the reflection (zero flux)
condition ∂G(r, r′, t )/∂n = 0 at the walls of the waveguide
and open boundary conditions at the two ends (z = 0, L),
[z0∂G(r, r′, t )/∂z ∓ G(r, r′, t )]z=0,L = 0, where z0 = (π/4)�
is the extrapolation length [1]. We note that the above descrip-
tion of wave propagation implicitly assumes that the diffusion
description is applicable. This assumption involves the fol-
lowing conditions [3,11]: (i) k × � � 1, where k is the wave
number and � is the transport mean free path; (ii) W (z), L �
�; and (iii) g � 1, where g is the dimensionless conductance
of the system, which will be related to k, �,W (z) and L below.
Condition (i), known as the Rayleigh criterion, allows one
to avoid effects of Anderson localization [10]. Condition (ii)
stems from the fact that diffusion cannot adequately describe
processes on scales comparable to � [3]. Finally, condition (iii)
precludes quasi-1D localization [6].

In defining a projection to one dimension, it is instructive
to take a step back by writing Eq. (1) as a combination of the
diffusive flux J(r, r′, t ) and the continuity equations:

J(r, r′, t ) = −D0∇rG(r, r′, t ), (2)

∂G(r, r′, t )

∂t
+ ∇r · J(r, r′, t ) + 1

τa
G(r, r′, t )

= S0(t )δ(r − r′). (3)

As the first step, we will perform an average over the position
of the source r′ in the cross-section plane at a fixed depth z′ as
A−1(z′)

∫
A(z′ ) dρ′×, where ρ′ is the transverse coordinate at z′:

J(r, z′, t ) = −D0∇rG(r, z′, t ), (4)

∂G(r, z′, t )

∂t
+ ∇r · J(r, z′, t ) + 1

τa
G(r, z′, t )

= S0(t )δ(z − z′)/A(z′). (5)

G(r, z′, t ) represents the ensemble-averaged intensity at point
r with a planar source S0(t )/A(z′) at z′.

The divergence operator in Eq. (5) presents a challenge
while performing averaging over the cross-section coordinate
ρ in r ≡ (ρ, z). Instead, we accomplish this task by per-
forming integration over volume sandwiched between cross
sections at z and z + �z; see Fig. 1. Using the Gauss theorem,

the volume integration is reduced to surface integration,∮
V

∇r · J(r, z′, t )dr =
∫

S
J(r, z′, t ) · ndσ. (6)

In the next step we separate the surface integral into three
parts: a ring over the surface of the waveguide, and two cross
sections: at z and z + �z. The first contribution vanishes due
to the absence of the normal component of the flux at the
boundary. The remaining two contributions to Eq. (6) are
computed as follows:

−
∫

A(z)
Jz(ρ, z, z′, t )dρ +

∫
A(z+�z)

Jz(ρ, z + �z, z′, t )dρ

� 1

A(z)

∂

∂z
[A(z)Jz(z, z′, t )] × A(z)�z, (7)

where the subscript z denotes the longitudinal component (of
flux) and Jz(z, z′, t ) ≡ A−1(z)

∫
A(z) Jz(ρ, z, z′, t )dρ is the cross

section average. In Eq. (7) we accounted, in the leading order
of �z, for two possible sources of change in the value of
the integral—one due to ∂Jz(z, z′, t )/∂z and the other due
to the variability of the waveguide shape dA(z)/dz. Last,
the volume integration of remaining terms in Eq. (5) does
not pose problems, reducing them to the cross-sectional av-
erages, e.g.,

∮
V G(r, z′, t )dr � �z × ∫

A(z) G(ρ, z, z′, t )dρ ≡
G(z, z′, t ) × [A(z)�z].

Examining Eq. (7), we see that completion of our task of
reducing the higher-dimensional problem to one dimension
requires an expression for the longitudinal flux, Jz(z, z′, t ).
Cross-sectional (surface) integration of the z component
of Eq. (4) yields Jz(z, z′, t ) � −D0∂G(z, z′, t )/∂z assuming
W ′(z) is small. Upon substitution into Eqs. (7) and (5) we
obtain

∂G(z, z′, t )

∂t
− 1

A(z)

∂

∂z

[
D0A(z)

∂G(z, z′, t )

∂z

]

+ 1

τa
G(z, z′, t ) = S0(t )

A(z)
δ(z − z′). (8)

The above expression, together with similarly obtained
boundary conditions [z0∂G(z, z′, t )/∂z ∓ G(z, z′, t )]z=0,L =
0, represents the final result of this section.

We would like to finish this discussion by putting our
result in context of the available literature. Particle diffusion
in confined geometries is a common problem in physical
chemistry; see for example Ref. [22] for a review. In this
problem, it is convenient to define a cross-section integrated
quantity, as opposed to the cross-section averaged G(z, z′, t )
in Eq. (8), representing linear density c(z, t ) of, e.g., a solute.
The governing equation

∂c(z, t )

∂t
− ∂

∂z

[
D0A(z)

∂

∂z

c(z, t )

A(z)

]
= 0 (9)

is known as the Fick-Jacobs equation. It has been derived by
Jacobs [39] heuristically based on the particle conservation
argument, Zwanzig [40] via reducing higher dimensional
Smoluchowski equation to one dimension, and by others
[41,42]. Without the additional source and absorption terms in
the case of the wave diffusion, Eqs. (8) and (9) agree. We are
not aware of reports of derivation such as the one presented
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above, in particular, in the context of wave diffusion where
there is no particle conservation constraint.

In the context of particle diffusion, there was a consider-
able effort to evaluate the validity of the projection (reduction)
to one dimension via Eq. (9). It has been found [40–43] that
even for rapidly varying channel profiles with dW (z)/dz ∼ 1,
a reliable solution can be obtained from a modified Fick-
Jacobs equation with D0 → D0 × [1 + W ′2(z)]−α , where α =
1/3, 1/2 in two and three dimensions respectively. Hence, we
surmise that a similar substitution should extend the validity
of Eq. (8) as well.

A stationary version of the diffusion equation reduces to
a generic Poisson equation, which is common in different
branches of physics. As such, it can describe eigenmodes
of sound in an ideal fluid in a rigid tube (e.g., a horn or
a gramophone), transverse vibrations of a string of varying
cross section, etc. [44]. Reduction to one dimension in these
problems, known as the Webster equation [45], has a long
history with the original contributions due to Bernoulli, La-
grange, Euler, Heaviside, and Rayleigh; see Ref. [46] for a
historical review of early works. Such a reduction works well
in the “low-frequency” limit [47,48], i.e., solutions which
vary sufficiently slowly in space. This is consistent with
approximations in the Fick-Jacobs equation, where the very
process of diffusion tends to smooth out any rapid variation
of concentration/intensity. In acoustics, the reduction to one
dimension has been extended to include processes of dissipa-
tion [48] and the inverse design [46] considered in a different
context in this work.

Having completed the derivation of Eq. (8), in the re-
mainder of this work we will consider its static version (i.e.,
without the time-derivative term) to compute the long-range
spatial correlation of intensity.

III. INTENSITY CORRELATION IN DISORDERED
WAVEGUIDES WITH VARYING CROSS SECTION

Intensity correlations originate from interference in wave
scattering and propagation. It was first considered for elec-
tronic waves in mesoscopic physics [9,14,49,50]. The electro-
magnetic waves, such as visible light or microwaves, offer a
convenient testbed for the study of correlation with numer-
ous practical applications [3,11,16,17,51,52]. For the incident
plane wave, the spatial correlation is defined as

C(r1, r2) = 〈δI (r1)δI (r2)〉
〈I (r1)〉〈I (r2)〉 , (10)

where 〈. . . 〉 denotes the ensemble average and δI (r) = I (r) −
〈I (r)〉 is the deviation of intensity from its average at r. This
arrangement implies adding contributions from all trajectories
originating from the front surface, i.e., at all possible R1,2 in
Fig. 1.

Three universal, i.e., independent of the microscopical
details of the disorder, contributions to C(r1, r2) have been
identified [3,9,53]: short-range C1 describing a speckle pat-
tern, long-range C2 leading to, e.g., fluctuations of total trans-
mission, and an infinite range C3 underlying the universal
conductance fluctuation [11,54,55]. Diagrammatically, inter-
ferences between waves scattered along independent paths

give rise to C1, one crossing of paths shown in Fig. 1 generates
C2, and two crossings cause C3. The spatial correlation term
C1(r1, r2) has unit magnitude at r1 = r2 but decays quickly
when |r1 − r2| exceeds the speckle size. C2(r1, r2) ∝ 1/g
but decays much more slowly, while C3(r1, r2) ∝ 1/g2 is a
constant value. The dimensionless conductance g is assumed
to be large in diffusive systems considered here.

Serendipitously, averaging over the cross section of the
waveguide, such as that performed by the projection technique
in the previous section, allows one to obtain the long-range
correlation in the leading order of 1/g [19,20]. Indeed, av-
eraging over the cross section reduces the contribution of
the short-range C1 correlation by the factor 1/N (N is the
number of waveguide modes), whereas the contribution of
C2 ∝ 1/g remains unaffected because it is present at any value
of the transverse coordinate. The ratio of their magnitudes is
g/N ∝ �/L  1 for a strongly scattering system, where L is
the length of the waveguide. Meanwhile, the contribution of
the C3 term remains smaller, at the level of 1/g2. Therefore,
we conclude that

C2(z1, z2) � 〈δI (z1)δI (z2)〉
〈I (z1)〉〈I (z2)〉 . (11)

As seen above, the projection technique is perfectly suited
for calculation of the long-range correlation, which we under-
take next. We begin with an expression first obtained with the
Langevin approach [15,56]:

C2(r1, r2) = ad D2
0

∫
V 〈I (r)〉2∇rG(r1, r) · ∇rG(r2, r)dr

〈I (r1)〉〈I (r2)〉 .

(12)

Here, G(r, r′) is the Green’s function of the static version of
the diffusion equation (1) with a constant source S0(t ) ≡ 1.
a2 = 4/k� and a3 = 6π/k2� are the dimensionality dependent
coefficients. Equation (12) has a transparent diagrammatic
interpretation. In this expression, 〈I (r)〉2 represents two dif-
fusive paths connecting the input surface of the waveguide
to a crossing point at r; Green’s functions G(r1,2, r) describe
the diffuse propagation from r to the detectors at r1,2; and
the gradient operators together with the constant prefactors
originate from the interference (i.e., Hikami box) at r. Finally,
volume integration over r signifies averaging over all possible
locations of interference.

Cross-sectional average of 〈I (r1,2)〉 terms in the denom-
inator of Eq. (12) does not present challenges due to their
weak dependence on the transverse coordinates, i.e., 〈I (r)〉 �
〈I (z)〉. To proceed with the analytical calculation of Eq. (12),
we average the nominator over the transverse components of
r1 and r2. Although ∇rG(z1, r) · ∇rG(z2, r) includes deriva-
tives of the Green’s functions with respect to both longitudinal
and transverse coordinates, the former makes the dominant
contribution. Indeed, because the arguments of a Green’s
function can be swapped, ∇rG(z1,2, r) can be viewed as
∇rG(r, z1,2). In this form, G(r, z) represents intensity at point
r with a uniform planar source at the cross section z. Such
a source should not produce large transverse variation of
intensity as long as the cross section is not changing too
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FIG. 2. Intensity and the long-range correlation computed using 2D calculations (solid lines) and projection to 1D technique (dashed lines).
Line color corresponds to one of the four waveguide shapes depicted in the inset of panel (a). Passive/absorbing waveguides are shown in
(a)–(c) and (d)–(f) respectively; see text for system parameters.

rapidly, i.e., dW (z)/dz < 1. Hence, we obtain

C2(z1, z2) � ad D2
0

∫ L
0

∂G(z1,z)
∂z

∂G(z2,z)
∂z 〈I (z)〉2A(z)dz

〈I (z1)〉〈I (z2)〉 , (13)

where G(z, z′) is the solution of the static version of the diffu-
sion equation [with a constant source S0(t ) ≡ 1] we obtained
previously using projection technique; cf. Eq. (8). 〈I (z)〉 is the
solution of the same equation with S0(t ) ≡ 0, and a constant
value at z = 0, as will be discussed in the next section.
Equation (13) together with the static version of Eq. (8) have
rather broad applicability, for example, they can incorporate
the effects of absorption or gain on the correlations [20,57].

In Fig. 2, we test the applicability of the projection tech-
nique for lossless (a)–(c) and absorbing (d)–(f) cases in
four different 2D waveguides, schematically shown in inset
of panel (a). First, the intensity and Green’s function were
obtained via direct numerical solution of the 2D diffusion
equation using Comsol Multiphysics solver. The long-range
correlation was obtained by averaging the nominator and
denominator of Eq. (12) over the cross section as in Ref. [20].
These 2D results are shown as solid lines in Fig. 2. In the sec-
ond method, we employed the projection technique by using
Eq. (8) (without time dependence) to compute 1D intensity
and Green’s function. By substituting these into Eq. (13) we
obtained the projection (1D) results, shown as dashed lines in
Fig. 2. We used the following system parameters: L/� � 35,
Wmin/L = 1/8 and Wmax/L = 3/4, and k� � 26. For absorb-
ing systems in Figs. 2(d)–2(f), we used diffusion absorption
length ξa � L/3. As it can be seen from Fig. 2, the projection
technique works well for both cross-section average intensity
and the long-range correlation with and without absorption.

IV. ANALYTICAL RESULT FOR LONG-RANGE
CORRELATIONS IN LOSSLESS DISORDERED

WAVEGUIDES

In this section we demonstrate that, without absorption,
the long-range intensity correlation can be obtained in a
closed form for an arbitrary slow-varying [dW (z)/dz < 1]
waveguide geometry. To that end, we introduce a change of
spatial variable,

ζ (z) =
z0

A(0) + ∫ z
0

dz̃
A(z̃)

z0
A(0) + ∫ L

0
dz̃

A(z̃) + z0
A(L)

. (14)

In terms of this variable, the defining equation for Green’s
function takes a simple form,

−∂2G(ζ , ζ ′)
∂ζ 2

= δ(ζ − ζ ′), (15)

with constant factors absorbed in the definition of the Green’s
function to make it dimensionless. Furthermore, extending the
region of applicability of ζ from ζ0 � ζ � ζL to 0 � ζ � 1
allows us to simplify boundary conditions to G(ζ , ζ ′)|ζ=0,1 =
0. Here ζ0 and ζL are defined by inserting z = 0 and L
in Eq. (14) respectively. Equation (13) for the long-range
correlation takes the form

C2(ζ1, ζ2) � ãd

∫ ζL

ζ0

∂G(ζ1,ζ )
∂ζ

∂G(ζ2,ζ )
∂ζ

〈I (ζ )〉2dζ

〈I (ζ1)〉〈I (ζ2)〉 , (16)

where 〈I (ζ )〉 satisfies the homogeneous version of Eq. (15)
with 〈I (ζ0)〉 = I0 and 〈I (1)〉 = 0 boundary conditions, and
ãd = ad × [z0/A(0) + ∫ L

0 A−1(z)dz + z0/A(L)].
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The final expression for the long-range correlation can now
be obtained substituting the solution of Eq. (15),

G(ζ , ζ ′) =
{
ζ (1 − ζ ′), ζ < ζ ′
ζ ′(1 − ζ ), ζ > ζ ′, (17)

and the corresponding intensity as 〈I (ζ )〉 = I0(1 − ζ )/(1 −
ζ0) into Eq. (16). We obtain

C2(ζ1, ζ2) = 2

3g

[
ζ1(2 − ζ1) + ζ1

1 − ζ1
(1 − ζ2)2

]
, (18)

where ζ1,2 ≡ ζ (z1,2) as defined by Eq. (14), and the dimen-
sionless conductance is introduced via g = 2/ãd . When ζ1 =
ζ2, Eq. (18) yields

C2(ζ , ζ ) = 2ζ

g

(
1 − 2ζ

3

)
. (19)

This quantity corresponds to the leading non-Rayleigh con-
tribution to the fluctuation of intensity and originates in the
nonlocality of wave transport. Both Eqs. (18) and (19) reduce
to known expressions for waveguides with constant cross
section, in this case ζ (z) = (z + z0)/(L + 2z0), which can be
found from Eq. (14).

We would like to point out several general properties of
Eqs. (18) and (19) that are common to all waveguides irrespec-
tive of their shape. For the sake of simplicity, we will assume
that small corrections z0/L ∼ �/L  1 can be neglected.
We find that g = (2/ad )/[

∫ L
0 A−1(z)dz]; C2(L, L) = 2/(3g);

the maximum value of the correlation max[C2(ζ1, ζ2)] =
C2(ζmax, ζmax) = (9/8) × 2/(3g), where ζmax = 3/4. C2(ζ , ζ )
is a monotonically increasing function of ζ between 0 and
ζmax and a monotonically decreasing between ζmax and 1. Fur-
thermore, C2(ζ , ζ ) � 2/(3g) for 0 � ζ � (1/2) and 2/(3g) �
C2(ζ , ζ ) � 3/(4g) in the interval for (1/2) � ζ � 1. Remark-
ably, C2(ζ , ζ ) varies by less than 12% in the second interval.
The long-range correlation between the output intensity at
ζ2 = 1 and that in the interior of the sample is C2(ζ , 1) =
2/(3g)ζ (2 − ζ ). It decays monotonically with distance from
the output surface, however, the rate of the decay is deter-
mined by the ζ (z), which is set by the shape of the waveg-
uide. In a waveguide with constant cross section, C2(z, L) �
2/(3g)z/L[2 − z/L] in agreement with Ref. [56].

Equation (18) also predicts correlation between intensities
at z = 0, L surfaces. In this case, z0 terms cannot be neglected
as they make the leading contribution to ζ0 and, therefore,
have to be retained. Evaluation of C2(ζ0, ζL ) gives 2/(3N0)
in both two and three dimensions, where N0 is the number of
waveguide modes at the input cross section z = 0. Correlation
between the transmitted and reflected intensities has been
studied theoretically [58,59] and experimentally [60]. It was
found to be negatively correlated at the level of −2/(3N0).
Because an increase of intensity at the front surface (positive
correlation) corresponds to a reduction (negative correlation)
of the reflected intensity, our results are in agreement with
Ref. [59]. In addition, the maximum value of C2(zmax, zmax) =
(9/8) × 2/(3g) is independent of the extrapolation length z0.
The leading term for C2(0, 0) � 1/N0 corresponds to addition
of N0 uncorrelated modes. In contrast, at output surface, the
leading correction is C2(L, L) � 2/(3g) + 1/(3NL ), where NL

is the number of modes at the output.
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FIG. 3. Solid line in the main panel depicts C2(z, z) in a 3D
expanding disordered waveguide shown in the inset; see text for
system parameters. The dashed line depicts the same quantity for
a 3D cylindrical waveguide of constant width. The inset plots the
long-range correlation C2(z, L) for the two cases in the main plot.

Figure 3 illustrates the dependence of the correlation on the
shape of the waveguide by plotting C2(z, z) and C2(z, L) for an
expanding disordered waveguide, in which the diameter W (z)
is a linear function of z. We used the following parameters:
L = 100�, k� = 10, A(0) = 100�2, A(L) = 1000�2, z0 =
(2/3)�, that correspond to g � 33. For comparison, we also
plot with a dashed line the same quantities for the waveguide
of constant width equal to A = 550�2, in this case g = 58. We
can clearly see that the shape of the waveguide can have a
significant effect on the correlation. Specifically, the reduced
width at the front end led to a steeper increase of both C2(z, z)
and C2(z, L) for small z. This dependence can be deduced,
e.g., from Eq. (19) as dC2(z, z)/dz ∝ ζ ′(z) ∝ A−1(z) for ζ 
1. Therefore, narrower opening of the linearly expanding
waveguide leads to a steeper increase of correlation in the first
half of the sample in Fig. 3. Since the maximum correlation is
bounded from above by the value 3/4g, a rapid increase at the
beginning of the waveguide inadvertently leads to a weaker
dependence towards z = L. In the case of C2(z, z), as was
discussed above, once the maximum value of 3/4g is reached
at zmax, in the remainder of the system the function varies in
only a narrow range, 2/3g � C2(z, z) � 3/4g; see Fig. 3.

To conclude this section, we note that since ζ (z) is deter-
mined by A(z) via Eq. (14), one can exploit the freedom of
choice in the shape of the waveguide in order to predictably
manipulate the correlation, within the constraints imposed by
the general properties above. We tackle this task below.

V. INVERSE DESIGN OF THE LONG-RANGE
CORRELATION

The compact-form analytical expression given in Eq. (18)
establishes a relation between shape of the diffusive waveg-
uide and correlation C2(z1, z2) of the cross-section averaged
intensity, thus enabling the predictive (inverse) design. Two
comments are in order. First, C2(z1, z2) is the function of
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two variables (z1 and z2) whereas A(z) is of one, so the
mapping cannot generally be defined. To circumvent this
problem, we are going to consider two possible mappings:
one from the diagonal (fluctuation) C2(z, z), and the other
from the off-diagonal (correlation) C2(z, L) functions. The
second comment concerns the constraints imposed on pos-
sible C2(z, z) and C2(z, L). Indeed, as discussed in previous
sections, see also Fig. 3, neither of the two mappings allow an
arbitrary function form. For example, neglecting z0, C2(z, z)
has to be monotonically increasing from 0 to a maximum and
then monotonically decreasing to 8/9 of the maximum value
at the output. Likewise, C2(z, L) has to be a monotonically
increasing function of z. Below, we obtain such constrained
mappings.

Solving Eq. (19) for ζ and then inverting ζ (z) with the help
of Eq. (14) we obtain

A(z) = ad

√
1 − 4g

3 C2(z, z)∣∣ dC2(z,z)
dz

∣∣ . (20)

The structure of this relationship is intimately related to the
constraints we imposed on C2(z, z). Indeed, the 4g/3 factor
ensures that the expression under the square root remains
positive or zero. The latter case corresponds to the maximum
of the function at zmax, where both the nominator and denom-
inator of Eq. (20) turn to zero simultaneously. To prevent A(z)
from turning to zero or having a singularity, we need to ensure
that C2(z, z) has a parabolic behavior in the vicinity of its
maximum.

Following steps similar to those used to arrive at Eq. (20),
we find

A(z) = 2ad

3

√
1 − C2(z,L)

C2(L,L)∣∣ dC2(z,L)
dz

∣∣ . (21)

Unlike Eq. (20), where the maximum value of the input func-
tion was related to conductance using a simple relationship,
the maximum value of C2(z, L) at z = L is only approximately
equal to 2/(3g) with additional (smaller) corrections due to
the finite extrapolation length z0. Hence, normalization by
C2(L, L) guarantees that the expression under the square root
does not fall below zero. Similar to Eq. (20), the vanishing of
dC2(z, L)/dz in Eq. (21) at z = L coincides with a zero of the
nominator, preventing a singularity.

Equations (20) and (21) open a possibility of inverse
design. As an example, we design a waveguide where the
diagonal term C2(z, z) is a (nearly) piecewise linear function.
As discussed in previous sections, a choice of model correla-
tions has several constraints. Therefore, we set out to find a
functional form of A(z), such that

C2(z, z) =
{

z
zc

× 3
4g, z < zc

L−z
L−zc

× 1
12g + 2

3g, z > zc
, (22)

where we neglected the small corrections at z = 0, L due to
the extrapolation effect. This function was chosen to satisfy
the following constraints: (i) it monotonically increases in
0 < z < zc; (ii) it monotonically decreases in zc < z < L;
(iii) it maximum value is 3/4g at zc; and (iv) its value is
2/3g at z = L. However, the model function does not have
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FIG. 4. Thick solid line in the main plot depicts C2(z, z) in a two-
dimensional expanding disordered waveguide defined by Eq. (23).
Thin line is the result of numerical simulation. The inset plots the
shape of the considered waveguide.

a vanishing derivative at its maximum at zc. This should result
in an artifact to be corrected at a later step. Substitution of
Eq. (22) into Eq. (20) gives

A(z) = 4gad

3

{ √
(zc − z)zc, z < zc

3
√

(z − zc)(L − zc), z > zc
. (23)

We observe that Eq. (23) predicts a zero cross section at zc.
To avoid this artifact, related to a cusp in the input function in
Eq. (22), we add a condition that A(z) does not fall below a
certain minimum value of Amin.

To test the above prediction we substitute Eq. (23) into
Eqs. (14) and (18) to compute the long-range correlation
in a two-dimensional disordered waveguide with parameters
quoted below. The thick solid line in Fig. 4 shows that the
C2(z, z) is indeed close to a piecewise linear function. The
deviations from the design in Eq. (22) can be seen at z ∼ 0
and ∼zc. The former is due to the fact that the model equation
did not explicitly account for the extrapolation length z0.
Replacement of a cusp-behavior at zc with a smooth parabolic
maximum is related to the structure of Eq. (20) as well as our
requirement that A(z) to be always greater than Amin. One can
see from Fig. 4, however, that this did not cause significant
deviation from linearity away from the maximum.

To further verify the predictions of our inverse-design
procedure, we performed numerical simulations. We consider
a two-dimensional waveguide where A(z) = W (z), and use
the following parameters: N0 = 125, L/� � 30, W (0)/� �
5, Wmin/W (0) = 1/3, zc = L/3, and g � 7. The simulations
were performed using the method described in detail in
our previous works [23,32,61]. The cross-section averaged
intensity was obtained numerically by solving the wave
equation and then was used to compute C(z1, z2) using
Eq. (11). The angular brackets represent the average over
1000 disorder realizations. The transport mean free path
was obtained by computing the dimensionless conductance
for a rectangular waveguide and then using relationship
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g = (π/2)N�/(L + 2z0), where N is the number of waveguide
modes. This allowed us to express all length scales in terms of
�, with the numerical values quoted above.

Equation (11) holds only approximately, because averaging
over the cross section of the waveguide does not fully remove
other contributions. In order to compare the numerical simu-
lation with our theoretical prediction, which only accounts for
the C2 contribution, we removed the following two residuals.
The first is related to the C1 contribution and can be evaluated
by noticing that cross-sectional averaging of intensities in
W −2(z)

∫∫ 〈δI (z1, y)δI (z2, y + �y)〉dyd�y has a small but z-
dependent contribution, which can be computed as

C1(z, z) � 1

W (z)

∫ W (z)

0
C1(�y)d�y. (24)

Away from boundaries z ∼ 0, L, the short-range correlation
[18,49] C1(�y) can be evaluated in two dimensions in terms
of the Bessel function [62] as J2

0 (k�y). The second residual
is related to another type of correlation, C0 [63], which is
nonuniversal. This contribution has been related to the vari-
ance of the local density of states [64,65], which we compute
directly in our numerical simulations. The magnitudes of
the two contributions are determined by 1/(kW ) and 1/(k�),
respectively. Therefore, in larger systems and, particularly in
three-dimensional systems, these residuals are expected to be
negligible.

The thin line in Fig. 4 shows the results of the numerically
computed C2(z, z) after subtracting the two residual contri-
butions described above. As predicted by Eq. (22), C2(z, z)
exhibits nearly linear dependence in both 0 < z < zc and zc <

z < L intervals. We attribute the deviation in the z ∼ 0 region
to the remaining ballistic intensity of the incident waves.

VI. CONCLUSIONS

In this work, we first present a method to compute the
Green’s function of the diffusion equation in two- and three-
dimensional disordered waveguides with slow-varying shape.

This is accomplished by reducing the dimensionality of the
problem to one dimension. Because geometry dependence of
the long-range intensity correlations arises from such depen-
dence in Green’s functions, the complexity of the problem of
determining the correlations is greatly reduced. Furthermore,
in the case of lossless media, we are able to obtain close-form
analytical expression for both the Green’s function and the
long-range correlation in arbitrary geometry. This relationship
allows us to design specific waveguide shapes with unusual
pre-determined nonlocal correlations, which we confirm with
the direct numerical simulations. We refer to this approach
as an inverse design. It is worth noting that the possibility
of inversion of the nonlocal long-range correlations via the
rather simple Eqs. (20) and (21) is not trivial.

Experimental measurement of the long-range correlation
in our previous work [20] in photonic disordered waveguides
already showed shape dependence. The results agreed with
theoretical predictions based on Eq. (12). In waveguides other
than rectangular, we had to resort to numerical calculation of
the full two-dimensional Green’s function. Although samples
in Ref. [20] exhibited absorption and our analytical results for
passive systems in the last section do not apply, Eq. (13) does.
Therefore, results of this work offer a much simpler approach
based on the projection technique.

Our technique of studying geometry dependence of in-
tensity correlations can be extended to studying other in-
terference phenomena such as localization-induced position-
dependent diffusion, transmission eigenchannels, etc.; see,
e.g., Refs. [8,23,66]. Our results are applicable to electronic,
acoustic, electromagnetic, and other types of waves and can
incorporate the effect of absorption or optical gain.
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